JP6044503B2 - Conductive adhesive film and multi-junction solar cell using the same - Google Patents

Conductive adhesive film and multi-junction solar cell using the same Download PDF

Info

Publication number
JP6044503B2
JP6044503B2 JP2013211255A JP2013211255A JP6044503B2 JP 6044503 B2 JP6044503 B2 JP 6044503B2 JP 2013211255 A JP2013211255 A JP 2013211255A JP 2013211255 A JP2013211255 A JP 2013211255A JP 6044503 B2 JP6044503 B2 JP 6044503B2
Authority
JP
Japan
Prior art keywords
solar cell
adhesive film
conductive adhesive
conductive
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013211255A
Other languages
Japanese (ja)
Other versions
JP2015074708A (en
Inventor
大麻 正弘
正弘 大麻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013211255A priority Critical patent/JP6044503B2/en
Publication of JP2015074708A publication Critical patent/JP2015074708A/en
Application granted granted Critical
Publication of JP6044503B2 publication Critical patent/JP6044503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、近赤外領域の太陽光を有効に利用できる多接合型太陽電池に好適に用いられる導電性接着フィルム及びそれを用いた多接合型太陽電池に関する。   The present invention relates to a conductive adhesive film suitably used for a multi-junction solar cell that can effectively use sunlight in the near-infrared region, and a multi-junction solar cell using the same.

太陽光のエネルギーを電気エネルギーに変換する太陽電池は、分光感度の異なる発電層を積層させてタンデム構造とした多接合型太陽電池にすることにより、変換効率を向上させることができる。この多接合型太陽電池では、太陽光の入射側から見てバンドギャップの大きな発電層(短波長を吸収)からバンドギャップの小さな発電層(長波長を吸収)へと順次積層されている。   A solar cell that converts sunlight energy into electric energy can improve conversion efficiency by forming a multi-junction solar cell having a tandem structure by stacking power generation layers having different spectral sensitivities. In this multi-junction solar cell, power generation layers having a large band gap (absorbing short wavelengths) as viewed from the sunlight incident side are sequentially stacked from a power generation layer having a small band gap (absorbing long wavelengths).

積層された発電層間の電気的接続方法には、モノリシック型とメカニカルスタック型とがある。モノリシック型太陽電池は、両端に金属電極を有する2端子構造であり、pn接合を有する発電層とpn接合を有する発電層の間にn+/p+のトンネルダイオードを挟んで接続する方法である。一般に薄膜成長技術を用いて形成される。   There are a monolithic type and a mechanical stack type as an electrical connection method between the stacked power generation layers. The monolithic solar cell has a two-terminal structure having metal electrodes at both ends, and is a method in which an n + / p + tunnel diode is sandwiched between a power generation layer having a pn junction and a power generation layer having a pn junction. Generally, it is formed using a thin film growth technique.

一方、メカニカルスタック型太陽電池は、両端及び発電層間に金属電極を有する多端子構造であり、別々に形成した2つの太陽電池セルを機械的に張り合わせて形成される。+極の金属電極上にpn接合、及び一(マイナス)極の金属電極が順に積層されたセルが受光面側からバンドギャップの大きなセル(短波長を吸収)からバンドギャップの小さな発電セル(長波長を吸収)へと順次積層されている(特許文献1から4参照)。   On the other hand, a mechanical stack type solar cell has a multi-terminal structure having metal electrodes between both ends and a power generation layer, and is formed by mechanically bonding two separately formed solar cells. A cell in which a pn junction and a (minus) metal electrode are sequentially stacked on a positive electrode is a cell with a large band gap (absorbs short wavelengths) to a power generation cell with a small band gap (long). Are sequentially laminated (see Patent Documents 1 to 4).

モノリシック型太陽電池は、先に積層された層の物性を考慮して、後の層を積層させなくてはならない。例えば、先に積層される半導体層の安定な温度の上限が、後に積層される半導体層の最適積層温度よりも低い場合、後に積層される半導体層を最適な温度で積層すると先に積層された半導体層が劣化してしまうという問題がある。一方、メカニカルスタック型太陽電池では、2つの太陽電池セルを別々に形成させるため、各太陽電池セルを異なる条件で形成させることができる。   In the monolithic solar cell, the subsequent layers must be stacked in consideration of the physical properties of the previously stacked layers. For example, if the upper limit of the stable temperature of the semiconductor layer laminated earlier is lower than the optimum lamination temperature of the semiconductor layer laminated later, the semiconductor layer laminated later is laminated first at the optimum temperature. There is a problem that the semiconductor layer deteriorates. On the other hand, in a mechanical stack type solar cell, since two solar cells are formed separately, each solar cell can be formed under different conditions.

しかしながら、特許文献1や特許文献2に記載のメカニカルスタック型太陽電池は、各太陽電池セルが絶縁性の透明エポキシ樹脂などで機械的に接合されており、太陽電池セル間の電気的な接続はない。そのため、接合部から各太陽電池セルの電極を外部に取り出さなければならず、多端子構造となる。このような多端子構造を備えた太陽電池では、太陽電池セルの面積が大きい場合、太陽電池セル中央部から電極を外部に取り出すまでの距離が長くなるため、電気抵抗が増大して電力ロスが大きくなってしまうという問題が生じる。また、電極を外部に取り出して接続するためのスペースが余計に必要となるため、素子のサイズが大型化してしまうという問題もある。   However, in the mechanical stack type solar cells described in Patent Document 1 and Patent Document 2, each solar battery cell is mechanically joined with an insulating transparent epoxy resin or the like, and the electrical connection between the solar battery cells is Absent. Therefore, the electrode of each photovoltaic cell must be taken out from the junction, resulting in a multi-terminal structure. In a solar battery having such a multi-terminal structure, when the area of the solar battery cell is large, the distance from the center of the solar battery cell to the outside of the electrode is increased, so that the electrical resistance increases and the power loss increases. The problem of becoming larger arises. In addition, since an extra space for taking out and connecting the electrodes to the outside is necessary, there is a problem that the size of the element increases.

特許文献3のメカニカルスタック型の光電変換装置は、透明導電膜同士を密着させることにより光学的な・電気的な接合を可能としている。しかしながら、機械的接合強度を向上させるためには、接合が可能となる透明導電膜の種類、透明導電膜の平坦性など構造上の自由度が非常に小さいという問題がある。   The mechanical stack type photoelectric conversion device of Patent Document 3 enables optical and electrical bonding by bringing transparent conductive films into close contact with each other. However, in order to improve the mechanical bonding strength, there is a problem that the degree of structural freedom such as the type of transparent conductive film that can be bonded and the flatness of the transparent conductive film is very small.

特許文献4では多接合型太陽電池において、分光感度の異なる2つ以上の太陽電池セルが、異方性導電接着層を介して光学的に、且つ、電気的に直列に接続されている構造が提案されている。そして、導電性微粒子としてハンダボール、銅、ニッケル、黒鉛、銀、アルミニウム、錫、金、及び白金の微粒子、あるいは複数の異なる金属よりなる合金微粒子、ポリスチレンやアクリルなどの微粒子が金やニッケルなどの金属薄膜で覆われたもの、導電性酸化物の微粒子、導電性半導体の微粒子などが提案されている。   In Patent Document 4, a multijunction solar cell has a structure in which two or more solar cells having different spectral sensitivities are optically and electrically connected in series via an anisotropic conductive adhesive layer. Proposed. The conductive fine particles include solder balls, copper, nickel, graphite, silver, aluminum, tin, gold, and platinum fine particles, alloy fine particles made of a plurality of different metals, fine particles such as polystyrene and acrylic, such as gold and nickel. There have been proposed ones covered with a metal thin film, fine particles of conductive oxide, fine particles of conductive semiconductor, and the like.

しかしながら、金属粒子は電気伝導性には優れているが、太陽光の透過率に問題がある。ITO(錫添加酸化インジウム)、ATO(アンチモン添加酸化錫)に代表される導電性酸化物粒子は、一般に可視光領域の透過率は高いが、自由電子のプラズモン吸収により近赤外領域に吸収があり、受光面から遠い太陽電池セル(長波長を吸収)は途中の導電性酸化物粒子に長波長の光が吸収されて、発電量が減少するという問題がある。   However, although metal particles are excellent in electrical conductivity, there is a problem in sunlight transmittance. Conductive oxide particles represented by ITO (tin-added indium oxide) and ATO (antimony-added tin oxide) generally have high transmittance in the visible light region, but they absorb in the near infrared region due to free electron plasmon absorption. In addition, there is a problem that a solar cell (absorbing a long wavelength) far from the light-receiving surface has a problem that the long-wavelength light is absorbed by the conductive oxide particles in the middle and the amount of power generation is reduced.

一方、特許文献5、6には、可視光領域だけでなく赤外線領域においても透過性に優れ、しかも低抵抗値を有する酸化物透明電極膜として、チタンを含有する酸化インジウムを主成分とし、該酸化インジウムは結晶質であり、該酸化インジウムのインジウムがチタンに、チタン/インジウムの原子数比で0.003〜0.120の割合で置換されているTi添加酸化インジウムの酸化物透明電極膜や、タングステン/インジウムの原子比で0.001〜0.17のタングステンWを含むW添加酸化インジウムの酸化物透明電極膜が開示されている。   On the other hand, in Patent Documents 5 and 6, as an oxide transparent electrode film having excellent transmittance in the infrared region as well as the visible light region and having a low resistance value, indium oxide containing titanium is used as a main component, Indium oxide is crystalline, and the indium oxide indium oxide is replaced with titanium at a titanium / indium atomic ratio of 0.003 to 0.120, and the oxide transparent electrode film of Ti-added indium oxide, An oxide transparent electrode film of W-added indium oxide containing tungsten W having an atomic ratio of tungsten / indium of 0.001 to 0.17 is disclosed.

特開平6−283738号公報JP-A-6-283737 特開平7−122762号公報JP-A-7-122762 特開昭64−41278号公報JP-A-64-41278 WO2011/024534号国際公開パンフレットWO2011 / 024534 International Publication Pamphlet 特開2004−207221号公報JP 2004-207221 A 特開2004−091265号公報JP 2004-091265 A

本発明は、上記問題を解決するためになされたものであって、近赤外領域の太陽光を有効に利用できる多接合型太陽電池に好適に用いられる導電性接着フィルム及びそれを用いた多接合型太陽電池を提供することを目的とする。   The present invention has been made to solve the above-described problem, and is a conductive adhesive film suitably used for a multi-junction solar cell that can effectively use sunlight in the near infrared region, and a multiplicity using the same. It aims at providing a junction type solar cell.

本発明者は、以上の状況に鑑み、近赤外領域の太陽光を有効に利用できる導電性接着フィルムについて鋭意研究を行った結果、タングステン(W)及び/又はチタン(Ti)を添加した酸化インジウム微粒子を用いることにより、導電性接着フィルムにおいて赤外光領域における吸収を抑制でき、さらに太陽電池の変換効率を向上できる可能があることを見出し、本発明の完成に至った。   In view of the above situation, the present inventor has conducted extensive research on a conductive adhesive film that can effectively use sunlight in the near-infrared region, and as a result, has been oxidized by adding tungsten (W) and / or titanium (Ti). It has been found that by using indium fine particles, absorption in the infrared light region can be suppressed in the conductive adhesive film, and further the conversion efficiency of the solar cell can be improved, and the present invention has been completed.

すなわち、本発明の第1の発明は、メカニカルスタック型太陽電池の太陽電池セル間を接続するための導電性接着フィルムであって、
絶縁性接着剤と導電性粒子とを含有し、
前記導電性粒子が、Ti/Inの原子比で0.003〜0.120のTiを含むTi添加酸化インジウムを少なくとも表層に備える粒子、及び/又は、W/Inの原子比で0.001〜0.17のWを含むW添加酸化インジウムを少なくとも表層に備える粒子であることを特徴とする導電性接着フィルムである。
That is, the first invention of the present invention is a conductive adhesive film for connecting between solar cells of a mechanical stack type solar cell,
Containing an insulating adhesive and conductive particles;
The conductive particles are particles having at least a Ti-added indium oxide containing Ti of 0.003 to 0.120 in Ti / In atomic ratio and / or 0.001 in W / In atomic ratio. The conductive adhesive film is a particle having at least a surface layer of W-added indium oxide containing 0.17 W.

本発明の第2の発明は、分光感度の異なる複数の太陽電池セルを積層してなるメカニカルスタック型の多接合型太陽電池であって、
隣接する前記太陽電池セル間の少なくとも1箇所以上には、請求項1に記載の導電性接着フィルムが配置されていることを特徴とする多接合型太陽電池である。
The second invention of the present invention is a mechanical stack type multi-junction solar cell formed by laminating a plurality of solar cells having different spectral sensitivities,
The multi-junction solar cell according to claim 1, wherein the conductive adhesive film according to claim 1 is disposed in at least one place between the adjacent solar cells.

本発明によれば、導電性接着フィルムの導電性粒子として、Tiを含むTi添加酸化インジウム粒子や、Wを含むW添加酸化インジウム粒子を用いることにより、近赤外領域の太陽光を有効に利用できる多接合型太陽電池に好適に用いられる導電性接着フィルム及びそれを用いた多接合型太陽電池が得られる。   According to the present invention, by using Ti-added indium oxide particles containing Ti or W-added indium oxide particles containing W as the conductive particles of the conductive adhesive film, sunlight in the near infrared region is effectively used. A conductive adhesive film suitably used for a multi-junction solar cell that can be produced and a multi-junction solar cell using the same are obtained.

本発明に係る導電性接着フィルムは、メカニカルスタック型太陽電池の太陽電池セル間を光学的、電気的に接続するためのものである。そして、この導電性接着フィルムは、絶縁性接着剤と導電性粒子とを少なくとも含むものである。   The conductive adhesive film according to the present invention is for optically and electrically connecting between solar cells of a mechanical stack type solar cell. And this electroconductive adhesive film contains an insulating adhesive agent and electroconductive particle at least.

<絶縁性接着剤>
絶縁性接着剤の成分としては特に制限はないが、接続信頼性の観点から、熱硬化性樹脂を使用することが好ましい。
<Insulating adhesive>
Although there is no restriction | limiting in particular as a component of an insulating adhesive agent, From a viewpoint of connection reliability, it is preferable to use a thermosetting resin.

熱硬化性樹脂としては公知のものを使用できるが、例えば、エポキシ樹脂、フェノキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカーボネート樹脂等が挙げられ、その中でも、より十分な接続信頼性を得る観点から、エポキシ樹脂、フェノキシ樹脂及びアクリル樹脂のうちの少なくとも1種を含むことが好ましい。   Known thermosetting resins can be used, for example, epoxy resins, phenoxy resins, acrylic resins, polyimide resins, polyamide resins, polycarbonate resins, etc. Among them, the viewpoint of obtaining more sufficient connection reliability Therefore, it is preferable to include at least one of an epoxy resin, a phenoxy resin, and an acrylic resin.

また、樹脂の流動性やフィルムの物性制御の観点から、導電性接着フィルムは、絶縁性接着剤の成分としてゴム成分を含むことが好ましい。ゴム成分としては公知のものが使用できるが、例えば、アクリルゴム、ブチルゴム、シリコーンゴム、ウレタンゴム、フッ素ゴム等が挙げられ、熱硬化性樹脂との混合性、及び、被着体との密着性の観点からアクリルゴムが好ましい。   From the viewpoint of resin fluidity and film physical property control, the conductive adhesive film preferably contains a rubber component as a component of the insulating adhesive. As the rubber component, known materials can be used. Examples thereof include acrylic rubber, butyl rubber, silicone rubber, urethane rubber, and fluororubber, and are miscible with thermosetting resin and adherence to an adherend. In view of the above, acrylic rubber is preferable.

ゴム成分の配合量は、絶縁性接着剤の全量を基準として9〜34質量%であることが好ましい。ゴム成分の配合量が、絶縁性接着剤の全量を基準として9〜34
質量%であれば、導電性接着フィルムと被着体との密着性に優れるとともに、環境変化による被着体の物理的変動にも追随性がよく、被着体同士間の接続不良を十分に抑制することができる。
The compounding amount of the rubber component is preferably 9 to 34% by mass based on the total amount of the insulating adhesive. The amount of the rubber component is 9 to 34 based on the total amount of the insulating adhesive.
If it is% by mass, the adhesion between the conductive adhesive film and the adherend is excellent, and the physical fluctuation of the adherend due to environmental changes is also good, so that poor connection between the adherends is sufficient. Can be suppressed.

<導電性粒子>
導電性粒子としては、可視光及び近赤外領域の透過率が高く、電気伝導率が高いことが望ましい。ハンダボール、銅、ニッケル、黒鉛、銀、アルミニウム、錫、金、及び白金の微粒子等の金属粒子は電気伝導性には優れているが、太陽光の透過率に問題がある。
<Conductive particles>
As the conductive particles, it is desirable that the visible light and near-infrared region have high transmittance and high electrical conductivity. Metal particles such as solder balls, copper, nickel, graphite, silver, aluminum, tin, gold, and platinum fine particles are excellent in electrical conductivity, but have a problem in sunlight transmittance.

ITO(錫添加酸化インジウム)、ATO(アンチモン添加酸化錫)に代表される導電性酸化物粒子は、一般に可視光領域の透過率は高いが、自由電子のプラズモン吸収により近赤外領域に吸収があり、受光面から遠い太陽電池セル(長波長を吸収)は途中の導電性酸化物粒子に長波長の光が吸収されて、発電量が減少する。   Conductive oxide particles represented by ITO (tin-added indium oxide) and ATO (antimony-added tin oxide) generally have high transmittance in the visible light region, but they absorb in the near infrared region due to free electron plasmon absorption. In addition, in the solar battery cell (absorbing the long wavelength) far from the light receiving surface, the light having a long wavelength is absorbed by the conductive oxide particles, and the amount of power generation is reduced.

電気伝導率σはσ=e×n×μ(e:電気素量、n:キャリア濃度、μ:移動度)で表され、近赤外の吸収を抑えるためには、キャリア濃度nを低くする必要があるが、キャリア濃度nを下げると電気伝導率σが低下する。これを解決するためには、移動度μの大きな材料を使うことが有効である。   The electrical conductivity σ is expressed by σ = e × n × μ (e: elementary electric quantity, n: carrier concentration, μ: mobility). In order to suppress near-infrared absorption, the carrier concentration n is lowered. Although it is necessary, decreasing the carrier concentration n decreases the electrical conductivity σ. In order to solve this, it is effective to use a material having a high mobility μ.

ここで、上記のように特許文献5や6によれば、酸化インジウム薄膜にWやTiを添加すると、移動度が向上することが知られている。今回、本発明者らは、この導電性薄膜において得られた知見を、導電性「粒子」においても達成することに成功し、更に、この粒子をバインダー中に分散させてフィルム化し、これを太陽電池セル間の導電性接着フィルムとして適用した点に本発明の特徴がある。   Here, as described above, according to Patent Documents 5 and 6, it is known that when W or Ti is added to an indium oxide thin film, the mobility is improved. This time, the present inventors succeeded in achieving the knowledge obtained in the conductive thin film also in the conductive “particles”, and further dispersing the particles in a binder to form a film, The present invention is characterized in that it is applied as a conductive adhesive film between battery cells.

具体的には、Ti/Inの原子比で0.003〜0.120のTiを含むTi添加酸化インジウムを少なくとも表層に備える粒子、及び/又は、W/Inの原子比で0.001〜0.1のWを含むW添加酸化インジウムを少なくとも表層に備える粒子であれば、可視光及び近赤外領域の透過率が高く、電気伝導率が高い導電性接着フィルムを作成できることを見出したものである。   Specifically, particles having at least a surface layer of Ti-added indium oxide containing Ti of 0.003 to 0.120 in Ti / In atomic ratio, and / or 0.001 to 0 in W / In atomic ratio. It was found that a conductive adhesive film having high transmittance in the visible light and near-infrared region and high electrical conductivity can be produced if the particles have at least a surface layer containing W-added indium oxide containing W of .1. is there.

ここで、Ti添加酸化インジウムを少なくとも表層に備える粒子や、W添加酸化インジウムを少なくとも表層に備える粒子は、粒子全体がTi添加酸化インジウムやW添加酸化インジウムで構成されていてもよく、ポリスチレンなどの樹脂粒子や硫酸バリウムなどの無機粒子の表面に、上記のTi添加酸化インジウムやW添加酸化インジウムの層がコーティングされていてもよい。   Here, the particles having at least the surface layer of Ti-added indium oxide or the particles having at least the surface layer of W-added indium oxide may be composed of Ti-added indium oxide or W-added indium oxide, such as polystyrene. The surface of inorganic particles such as resin particles and barium sulfate may be coated with the above-described layer of Ti-added indium oxide or W-added indium oxide.

具体的には、例えば、特開平8−175815号に記載の無機酸化物粒子表面を導電性無機酸化物で被覆することにより導電性酸化物粒子を得る方法や、特開平6−329415号に記載のインジウムとスズとの合金を陽極としてこれを電解し、得られた水酸化インジウムとメタスズ酸の混合沈殿物を仮焼して酸化インジウム−酸化スズ粒子を得る方法や、特開2009−123458に記載のインジウム塩の水溶液とスズ塩の水溶液との混合水溶液とアルカリ水溶液を混合して共沈反応により得られた水酸化物を焼成して酸化インジウム−酸化スズ粒子を得る方法において、スズ源をTi源もしくはW源に置き換えることによって得ることができる。   Specifically, for example, a method of obtaining conductive oxide particles by coating the surface of inorganic oxide particles described in JP-A-8-175815 with a conductive inorganic oxide, or described in JP-A-6-329415. Electrolysis using an alloy of indium and tin as an anode, and calcining the obtained mixed precipitate of indium hydroxide and metastannic acid to obtain indium oxide-tin oxide particles, and JP2009-123458A In the method of obtaining indium oxide-tin oxide particles by mixing a mixed aqueous solution of an aqueous solution of indium salt and an aqueous solution of tin salt and an alkaline aqueous solution and calcining a hydroxide obtained by coprecipitation reaction, It can be obtained by replacing with a Ti source or a W source.

導電性粒子の平均粒径は1μm以上40μm以下であることが好ましい。導電性粒子の平均粒子径が小さいと凹凸のある電極表面の凹部に埋もれるため1μm以上とすることが好ましい。導電性粒子の平均粒子径が大きいと導電性接着フィルムの厚さが厚くなり光吸収量が増加するため40μm以下とすることが好ましい。   The average particle size of the conductive particles is preferably 1 μm or more and 40 μm or less. When the average particle diameter of the conductive particles is small, the conductive particles are buried in the concave portions of the uneven electrode surface, and therefore it is preferably 1 μm or more. When the average particle diameter of the conductive particles is large, the thickness of the conductive adhesive film increases and the amount of light absorption increases, so that the thickness is preferably 40 μm or less.

<導電性接着フィルム>
上記の絶縁性接着剤中に、従来公知の方法で上記の導電性粒子を分散させて導電性接着接着剤組成物を得て、従来公知の方法でフィルム化することにより、本発明の導電性接着フィルムを得ることができる。
<Conductive adhesive film>
The conductive particles of the present invention are obtained by dispersing the conductive particles in the insulating adhesive by a conventionally known method to obtain a conductive adhesive composition, and forming a film by a conventionally known method. An adhesive film can be obtained.

導電性接着剤組成物における導電性粒子の含有量は、樹脂を押し出して電気的に接触するために導電性接着剤組成物の固形分全体積を基準として1体積%以上が好ましく、樹脂の量が少ないと接着性が低下するため12体積%以下が好ましい。   The content of the conductive particles in the conductive adhesive composition is preferably 1% by volume or more based on the total solid content of the conductive adhesive composition in order to extrude the resin and make electrical contact, and the amount of the resin When there is little, since adhesiveness falls, 12 volume% or less is preferable.

導電性接着フィルムの厚さは、被接着物の表面粗さと導電性粒子径の点から5μm以上が好ましく、100μm以下が好ましい。   The thickness of the conductive adhesive film is preferably 5 μm or more, and preferably 100 μm or less in terms of the surface roughness of the adherend and the conductive particle diameter.

本発明の導電性接着フィルムの可視光及び近赤外領域の透過率は、波長1000μmにおいて86%以上という高い透過率が得られ、同時に、電気伝導率として1S/cmという高い導電性が得られ、高光線透過性と高伝導率を両立する導電性接着フィルムを得ることができる。   The transmittance of visible light and near infrared region of the conductive adhesive film of the present invention is as high as 86% or higher at a wavelength of 1000 μm, and at the same time, high conductivity of 1 S / cm is obtained as electrical conductivity. A conductive adhesive film having both high light transmittance and high conductivity can be obtained.

<多接合型太陽電池>
本発明に係る多接合型太陽電池は、分光感度の異なる複数の太陽電池セルを積層し、光学的、電気的に接続してなる多接合型太陽電池であり、隣接する前記太陽電池セル間の少なくとも1箇所以上には、請求項1に記載の導電性接着フィルムが配置されている。
<Multi-junction solar cell>
The multi-junction solar cell according to the present invention is a multi-junction solar cell in which a plurality of solar cells having different spectral sensitivities are stacked and optically and electrically connected, and between adjacent solar cells. The conductive adhesive film according to claim 1 is disposed in at least one place.

より具体的には、少なくとも光が入射する側と反対側の端部の太陽電池セルは、接続する側の最上層にそれぞれ導電性接着フィルムを有し、その他の太陽電池セルは接続する側の最上層及び最下層にそれぞれ導電性接着フィルムを有し、前記最上層及び最下層同士を導電性接着フィルムで接合させた構成が例示できる。   More specifically, at least the solar cell at the end opposite to the light incident side has a conductive adhesive film on the uppermost layer on the connecting side, and the other solar cells are on the connecting side. The structure which has a conductive adhesive film in the uppermost layer and the lowermost layer, respectively, and joined the uppermost layer and the lowermost layer with the conductive adhesive film can be illustrated.

多接合型太陽電池を構成する太陽電池セルは、受光面に近い側が、バンドギャップが大きく、遠くなるにしたがってバンドギャップが小さくなるものであればよい。   The solar cell constituting the multi-junction solar cell may be any cell as long as the band gap is larger on the side closer to the light receiving surface and the band gap becomes smaller as the distance increases.

太陽電池セルは結晶Si太陽電池、薄膜Si太陽電池、III−V族化合物太陽電池、CdTe太陽電池、カルコパイライト型太陽電池(CIGS、CZTS等)などが用いられる。   As the solar cell, a crystalline Si solar cell, a thin-film Si solar cell, a III-V group compound solar cell, a CdTe solar cell, a chalcopyrite solar cell (CIGS, CZTS, etc.) and the like are used.

以下、実施例によって、本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example at all.

[実施例1]
<導電性接着フィルムの作製>
まず、ブチルアクリレート40質量部と、エチルアクリレート30質量部と、アクリロニトリル30質量部と、グリシジルメタクリレート3質量部とを共重合してなるアクリルゴムを用意した。このアクリルゴム125gと、フェノキシ樹脂50gとを、酢酸エチル400gに溶解し、30%溶液を得た。次いで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ325gを上記の溶液に加えて撹拌し、接着剤組成物を得た。
[Example 1]
<Preparation of conductive adhesive film>
First, an acrylic rubber obtained by copolymerizing 40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile, and 3 parts by mass of glycidyl methacrylate was prepared. 125 g of this acrylic rubber and 50 g of phenoxy resin were dissolved in 400 g of ethyl acetate to obtain a 30% solution. Next, 325 g of liquid epoxy containing a microcapsule-type latent curing agent was added to the above solution and stirred to obtain an adhesive composition.

この接着剤組成物に対し、平均粒子径が2μmの導電性粒子(Ti/Inの原子比で0.003のTiを含むTi添加酸化インジウム)を分散させて導電性接着剤組成物を得た。このとき、導電性粒子は、その含有量が導電性接着剤組成物の固形分全体積を基準として5
体積%となるように配合した。
To this adhesive composition, conductive particles having an average particle diameter of 2 μm (Ti-added indium oxide containing Ti of 0.003 in Ti / In atomic ratio) were dispersed to obtain a conductive adhesive composition. . At this time, the content of the conductive particles is 5 based on the total solid content of the conductive adhesive composition.
It mix | blended so that it might become volume%.

得られた導電性接着剤組成物をポリエチレンテレフタレートフィルム上にアプリケータを用いて塗布し、ホットプレート上で70℃、3分間乾燥し、25μmの導電性接着フィルムを作製した。なお、膜厚の調整は、アプリケータのギャップを変更することで行った。このとき、ギャップと乾燥後の膜厚との関係式から、所望の膜厚が得られるようにギャップの調整を行った。   The obtained conductive adhesive composition was applied onto a polyethylene terephthalate film using an applicator and dried on a hot plate at 70 ° C. for 3 minutes to prepare a 25 μm conductive adhesive film. The film thickness was adjusted by changing the gap of the applicator. At this time, the gap was adjusted from the relational expression between the gap and the film thickness after drying so that a desired film thickness was obtained.

<多接合型太陽電池の作製>
非晶質Si薄膜太陽電池(ARコート層/ガラス/TCO/a−Si:H(p−i−n)/TCO)とヘテロ接合型太陽電池(TCO/a−Si:H(p−i)/c−Si(n−type)/Al)の間に導電性接着フィルムを配置した後、170℃、2MPで20秒間圧着して、太陽電池セルと太陽電池セルを光学的、電気的に接続した多接合型太陽電池を得た。
<Production of multi-junction solar cell>
Amorphous Si thin film solar cell (AR coat layer / glass / TCO / a-Si: H (pi-in) / TCO) and heterojunction solar cell (TCO / a-Si: H (pi)) / C-Si (n-type) / Al), a conductive adhesive film is placed, and then crimped at 170 ° C. and 2 MP for 20 seconds to optically and electrically connect the solar cells and solar cells. A multi-junction solar cell was obtained.

[導電性接着フィルムの透過率測定]
導電性接着フィルムの透過率測定は分光光度計(日立製作所製 U−4000)を用いて測定した。結果を表1に示す。
[Measurement of transmittance of conductive adhesive film]
The transmittance of the conductive adhesive film was measured using a spectrophotometer (U-4000 manufactured by Hitachi, Ltd.). The results are shown in Table 1.

[多接合型太陽電池の変換効率の測定]
多接合型太陽電池の変換効率の測定は、ソーラーシミュレーターで100mW/cm2の光を照射し、そのときの電流−電圧測定から変換効率を求めた。結果を表1に示す。
[Measurement of conversion efficiency of multi-junction solar cells]
The conversion efficiency of the multi-junction solar cell was measured by irradiating light of 100 mW / cm 2 with a solar simulator and obtaining the conversion efficiency from current-voltage measurement at that time. The results are shown in Table 1.

[実施例2]
実施例1において導電性粒子をTi/Inの原子比で0.01のTiを含むTi添加酸化インジウムにした以外は、全て同様の方法にて導電性接着フィルム及び多接合型太陽電池を作製した。作製した導電性接着フィルムの透過率の測定、及び多接合型太陽電池の変換効率の測定は、実施例1と同様の方法で行なった。導電性接着フィルムの透過率測定結果、及び多接合型太陽電池の変換効率の測定結果を表1に示す。
[Example 2]
A conductive adhesive film and a multi-junction solar cell were produced in the same manner as in Example 1 except that the conductive particles were Ti-added indium oxide containing Ti having an atomic ratio of Ti / In of 0.01. . The transmittance of the produced conductive adhesive film and the conversion efficiency of the multi-junction solar cell were measured in the same manner as in Example 1. Table 1 shows the measurement results of the transmittance of the conductive adhesive film and the conversion efficiency of the multi-junction solar cell.

[実施例3]
実施例1において導電性粒子をTi/Inの原子比で0.05のTiを含むTi添加酸化インジウムにした以外は、全て同様の方法にて導電性接着フィルム及び多接合型太陽電池を作製した。作製した導電性接着フィルムの透過率の測定、及び多接合型太陽電池の変換効率の測定は、実施例1と同様の方法で行なった。導電性接着フィルムの透過率測定結果、及び多接合型太陽電池の変換効率の測定結果を表1に示す。
[Example 3]
A conductive adhesive film and a multi-junction solar cell were produced in the same manner as in Example 1 except that the conductive particles were Ti-doped indium oxide containing 0.05 Ti in an atomic ratio of Ti / In. . The transmittance of the produced conductive adhesive film and the conversion efficiency of the multi-junction solar cell were measured in the same manner as in Example 1. Table 1 shows the measurement results of the transmittance of the conductive adhesive film and the conversion efficiency of the multi-junction solar cell.

[実施例4]
実施例1において導電性粒子をTi/Inの原子比で0.1のTiを含むTi添加酸化インジウムにした以外は、全て同様の方法にて導電性接着フィルム及び多接合型太陽電池を作製した。作製した導電性接着フィルムの透過率の測定、及び多接合型太陽電池の変換効率の測定は、実施例1と同様の方法で行なった。導電性接着フィルムの透過率測定結果、及び多接合型太陽電池の変換効率の測定結果を表1に示す。
[Example 4]
A conductive adhesive film and a multi-junction solar cell were produced in the same manner as in Example 1 except that the conductive particles were Ti-added indium oxide containing Ti having an atomic ratio of Ti / In of 0.1. . The transmittance of the produced conductive adhesive film and the conversion efficiency of the multi-junction solar cell were measured in the same manner as in Example 1. Table 1 shows the measurement results of the transmittance of the conductive adhesive film and the conversion efficiency of the multi-junction solar cell.

[実施例5]
実施例1において導電性粒子をTi/Inの原子比で0.12のTiを含むTi添加酸化インジウムにした以外は、全て同様の方法にて導電性接着フィルム及び多接合型太陽電池を作製した。作製した導電性接着フィルムの透過率の測定、及び多接合型太陽電池の変換効率の測定は、実施例1と同様の方法で行なった。導電性接着フィルムの透過率測定結果、及び多接合型太陽電池の変換効率の測定結果を表1に示す。
[Example 5]
A conductive adhesive film and a multi-junction solar cell were produced in the same manner as in Example 1 except that the conductive particles were Ti-added indium oxide containing 0.12 Ti in Ti / In atomic ratio. . The transmittance of the produced conductive adhesive film and the conversion efficiency of the multi-junction solar cell were measured in the same manner as in Example 1. Table 1 shows the measurement results of the transmittance of the conductive adhesive film and the conversion efficiency of the multi-junction solar cell.

[実施例6]
実施例1において導電性粒子をW/Inの原子比で0.001のWを含むW添加酸化インジウムにした以外は、全て同様の方法にて導電性接着フィルム及び多接合型太陽電池を作製した。作製した導電性接着フィルムの透過率の測定、及び多接合型太陽電池の変換効率の測定は、実施例1と同様の方法で行なった。導電性接着フィルムの透過率測定結果、及び多接合型太陽電池の変換効率の測定結果を表1に示す。
[Example 6]
A conductive adhesive film and a multi-junction solar cell were produced in the same manner as in Example 1 except that the conductive particles were changed to W-doped indium oxide containing 0.001 W in atomic ratio of W / In. . The transmittance of the produced conductive adhesive film and the conversion efficiency of the multi-junction solar cell were measured in the same manner as in Example 1. Table 1 shows the measurement results of the transmittance of the conductive adhesive film and the conversion efficiency of the multi-junction solar cell.

[実施例7]
実施例1において導電性粒子をW/Inの原子比で0.01のWを含むW添加酸化インジウムにした以外は、全て同様の方法にて導電性接着フィルム及び多接合型太陽電池を作製した。作製した導電性接着フィルムの透過率の測定、及び多接合型太陽電池の変換効率の測定は、実施例1と同様の方法で行なった。導電性接着フィルムの透過率測定結果、及び多接合型太陽電池の変換効率の測定結果を表1に示す。
[Example 7]
A conductive adhesive film and a multi-junction solar cell were produced in the same manner as in Example 1 except that the conductive particles were changed to W-added indium oxide containing 0.01 W in the atomic ratio of W / In. . The transmittance of the produced conductive adhesive film and the conversion efficiency of the multi-junction solar cell were measured in the same manner as in Example 1. Table 1 shows the measurement results of the transmittance of the conductive adhesive film and the conversion efficiency of the multi-junction solar cell.

[実施例8]
実施例1において導電性粒子をW/Inの原子比で0.05のWを含むW添加酸化インジウムにした以外は、全て同様の方法にて導電性接着フィルム及び多接合型太陽電池を作製した。作製した導電性接着フィルムの透過率の測定、及び多接合型太陽電池の変換効率の測定は、実施例1と同様の方法で行なった。導電性接着フィルムの透過率測定結果、及び多接合型太陽電池の変換効率の測定結果を表1に示す。
[Example 8]
A conductive adhesive film and a multi-junction solar cell were produced in the same manner as in Example 1 except that the conductive particles were changed to W-added indium oxide containing 0.05 W in atomic ratio of W / In. . The transmittance of the produced conductive adhesive film and the conversion efficiency of the multi-junction solar cell were measured in the same manner as in Example 1. Table 1 shows the measurement results of the transmittance of the conductive adhesive film and the conversion efficiency of the multi-junction solar cell.

[実施例9]
実施例1において導電性粒子をW/Inの原子比で0.1のWを含むW添加酸化インジウムにした以外は、全て同様の方法にて導電性接着フィルム及び多接合型太陽電池を作製した。作製した導電性接着フィルムの透過率の測定、及び多接合型太陽電池の変換効率の測定は、実施例1と同様の方法で行なった。導電性接着フィルムの透過率測定結果、及び多接合型太陽電池の変換効率の測定結果を表1に示す。
[Example 9]
A conductive adhesive film and a multi-junction solar cell were produced in the same manner as in Example 1 except that the conductive particles were changed to W-doped indium oxide containing 0.1 W in atomic ratio of W / In. . The transmittance of the produced conductive adhesive film and the conversion efficiency of the multi-junction solar cell were measured in the same manner as in Example 1. Table 1 shows the measurement results of the transmittance of the conductive adhesive film and the conversion efficiency of the multi-junction solar cell.

[実施例10]
実施例1において導電性粒子をW/Inの原子比で0.17のWを含むW添加酸化インジウムにした以外は、全て同様の方法にて導電性接着フィルム及び多接合型太陽電池を作製した。作製した導電性接着フィルムの透過率の測定、及び多接合型太陽電池の変換効率の測定は、実施例1と同様の方法で行なった。導電性接着フィルムの透過率測定結果、及び多接合型太陽電池の変換効率の測定結果を表1に示す。
[Example 10]
A conductive adhesive film and a multi-junction solar cell were produced in the same manner as in Example 1 except that the conductive particles were changed to W-doped indium oxide containing 0.17 W in atomic ratio of W / In. . The transmittance of the produced conductive adhesive film and the conversion efficiency of the multi-junction solar cell were measured in the same manner as in Example 1. Table 1 shows the measurement results of the transmittance of the conductive adhesive film and the conversion efficiency of the multi-junction solar cell.

[比較例1]
実施例1において導電性粒子をITOにした以外は、全て同様の方法にて導電性接着フィルム及び多接合型太陽電池を作製した。作製した導電性接着フィルムの透過率の測定、及び多接合型太陽電池の変換効率の測定は、実施例1と同様の方法で行なった。導電性接着フィルムの透過率測定結果を表1に示す。また、多接合型太陽電池の変換効率の測定結果を表1に示す。
[Comparative Example 1]
A conductive adhesive film and a multi-junction solar cell were produced in the same manner except that the conductive particles were changed to ITO in Example 1. The transmittance of the produced conductive adhesive film and the conversion efficiency of the multi-junction solar cell were measured in the same manner as in Example 1. The transmittance measurement results of the conductive adhesive film are shown in Table 1. Table 1 shows the measurement results of the conversion efficiency of the multijunction solar cell.

Figure 0006044503
Figure 0006044503

表1の結果より、本発明の導電性フィルムにおいては、波長1000nmにおける透過率が高く、変換効率も14%以上と高い太陽電池が得られていることが理解できる。   From the results in Table 1, it can be understood that in the conductive film of the present invention, a solar cell having a high transmittance at a wavelength of 1000 nm and a high conversion efficiency of 14% or more is obtained.

Claims (3)

メカニカルスタック型太陽電池の太陽電池セル間を接続するための導電性接着フィルムであって、
絶縁性接着剤と導電性粒子とを含有し、
前記導電性粒子が、Ti/Inの原子比で0.003〜0.120のTiを含むTi添加酸化インジウムを少なくとも表層に備える粒子、及び/又は、W/Inの原子比で0.001〜0.17のWを含むW添加酸化インジウムを少なくとも表層に備える粒子であることを特徴とする導電性接着フィルム。
A conductive adhesive film for connecting between solar cells of a mechanical stack type solar cell,
Containing an insulating adhesive and conductive particles;
The conductive particles are particles having at least a Ti-added indium oxide containing Ti of 0.003 to 0.120 in Ti / In atomic ratio and / or 0.001 in W / In atomic ratio. A conductive adhesive film, wherein the conductive adhesive film is a particle having at least a surface layer of W-added indium oxide containing 0.17 W.
前記絶縁性接着剤は、アクリルゴムを含有する請求項1に記載の導電性接着フィルム。The conductive adhesive film according to claim 1, wherein the insulating adhesive contains acrylic rubber. 分光感度の異なる複数の太陽電池セルを積層してなるメカニカルスタック型の多接合型太陽電池であって、
隣接する前記太陽電池セル間の少なくとも1箇所以上には、請求項1又は2に記載の導電性接着フィルムが配置されていることを特徴とする多接合型太陽電池。
A mechanical stack type multi-junction solar cell in which a plurality of solar cells having different spectral sensitivities are stacked,
The multi-junction solar cell, wherein the conductive adhesive film according to claim 1 or 2 is disposed at least at one or more locations between the adjacent solar cells.
JP2013211255A 2013-10-08 2013-10-08 Conductive adhesive film and multi-junction solar cell using the same Expired - Fee Related JP6044503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211255A JP6044503B2 (en) 2013-10-08 2013-10-08 Conductive adhesive film and multi-junction solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211255A JP6044503B2 (en) 2013-10-08 2013-10-08 Conductive adhesive film and multi-junction solar cell using the same

Publications (2)

Publication Number Publication Date
JP2015074708A JP2015074708A (en) 2015-04-20
JP6044503B2 true JP6044503B2 (en) 2016-12-14

Family

ID=52999833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211255A Expired - Fee Related JP6044503B2 (en) 2013-10-08 2013-10-08 Conductive adhesive film and multi-junction solar cell using the same

Country Status (1)

Country Link
JP (1) JP6044503B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3906766B2 (en) * 2002-08-30 2007-04-18 住友金属鉱山株式会社 Oxide sintered body
JP4556407B2 (en) * 2002-10-04 2010-10-06 住友金属鉱山株式会社 Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and photodetector
JP2011049612A (en) * 2006-01-16 2011-03-10 Hitachi Chem Co Ltd Method of manufacturing solar cell module
CN103360977B (en) * 2006-04-26 2015-07-22 日立化成株式会社 Adhesive tape and solar cell module using the same
JP2008115024A (en) * 2006-11-01 2008-05-22 Idemitsu Kosan Co Ltd Conductive oxide powder and method of manufacturing conductive oxide powder
JP5285412B2 (en) * 2008-03-11 2013-09-11 三井金属鉱業株式会社 Tin-doped indium oxide particles and method for producing the same
KR101732397B1 (en) * 2009-06-05 2017-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Photoelectric conversion device and manufacturing method thereof
TW201133899A (en) * 2010-03-17 2011-10-01 Auria Solar Co Ltd Thin film solar cell and manufacturing method thereof
US20120073635A1 (en) * 2010-09-28 2012-03-29 Jong-Jan Lee Tandem Dye-Sensitized Solar Cell and Method for Making Same
JP2012119441A (en) * 2010-11-30 2012-06-21 Sony Chemical & Information Device Corp Solar cell module and method for manufacturing the same
JP2013038168A (en) * 2011-08-05 2013-02-21 Three M Innovative Properties Co Manufacturing method of solar cell module
JP5886588B2 (en) * 2011-10-18 2016-03-16 デクセリアルズ株式会社 Conductive adhesive, solar cell module using the same, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2015074708A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
TWI576861B (en) Conductive aluminum pastes and the fabrication method thereof, the solar cell and the module thereof
CN102800727B (en) Solar cell module
US20080121265A1 (en) Solar cell module
KR102100105B1 (en) Hetero junction tandem solar cell and manufacturing method
JP2014007384A (en) Solar cell module and ribbon assembly applied to the same
US20130081675A1 (en) Solar cell module
JP2008135654A (en) Solar battery module
JP2007103473A (en) Solar cell device and solar cell module
US9917223B2 (en) Solar cell panel
JP2014531774A (en) Photovoltaic cell interconnection
CN111554763B (en) High-pressure high-efficiency perovskite/crystalline silicon laminated battery
US20120260965A1 (en) Solar cell module
JP2014531775A (en) Photovoltaic cell interconnection
CN106098816A (en) A kind of cadmium telluride diaphragm solar battery and preparation method thereof
TWI488318B (en) Thin film solar cell module
JP2013033819A (en) Solar cell module and method for manufacturing the same
CN102244111A (en) Thin film solar cell
CN108172640A (en) A kind of cadmium telluride diaphragm solar battery of generating electricity on two sides and preparation method thereof
CN203423207U (en) Solar cell module
Feleki et al. p–i–n perovskite solar cells on steel substrates
JP2015228457A (en) Conductive adhesive for solar cell, solar cell module, and manufacturing method of solar cell module
CN109087961A (en) A kind of photovoltaic module and preparation method thereof
US8975507B2 (en) Solar cell module
JP6044503B2 (en) Conductive adhesive film and multi-junction solar cell using the same
CN208284489U (en) A kind of lamination solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6044503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees