JP2017223873A - 紫外線照射装置および光ファイバの製造方法 - Google Patents

紫外線照射装置および光ファイバの製造方法 Download PDF

Info

Publication number
JP2017223873A
JP2017223873A JP2016120217A JP2016120217A JP2017223873A JP 2017223873 A JP2017223873 A JP 2017223873A JP 2016120217 A JP2016120217 A JP 2016120217A JP 2016120217 A JP2016120217 A JP 2016120217A JP 2017223873 A JP2017223873 A JP 2017223873A
Authority
JP
Japan
Prior art keywords
glass fiber
ultraviolet
light
ultraviolet light
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016120217A
Other languages
English (en)
Other versions
JP6729036B2 (ja
Inventor
健一郎 高橋
Kenichiro Takahashi
健一郎 高橋
耕田 浩
Hiroshi Kouda
浩 耕田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016120217A priority Critical patent/JP6729036B2/ja
Publication of JP2017223873A publication Critical patent/JP2017223873A/ja
Application granted granted Critical
Publication of JP6729036B2 publication Critical patent/JP6729036B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

【課題】光ファイバの走行経路が動いた場合でも光ファイバを被覆する紫外線硬化型樹脂を均一に硬化可能な光ファイバの製造方法および紫外線照射装置を提供する。【解決手段】光ファイバ1の製造方法は、発光素子42から紫外線を出射するステップと、発光素子42から出射された出射紫外線UV1を集光レンズ43により集光してガラスファイバに向けて照射するステップと、発光素子42とは反対側に配置されたミラー44により出射紫外線UV1を反射させるステップと、ミラー44により反射された反射紫外線UV2をプリズム45に透過させることで屈折させるステップと、を含む。【選択図】図3

Description

本発明は、紫外線照射装置、および光ファイバの製造方法に関する。
特許文献1は、光ファイバの走行経路に沿って、線引炉および塗布装置の下流に配置される紫外線照射装置であって、線引炉内でプリフォーム(母材)から線引きされた光ファイバの表面に塗布装置内で塗布された紫外線硬化型樹脂に紫外線を照射して紫外線硬化型樹脂を硬化させる装置を開示している。特許文献1の紫外線照射装置は、紫外線硬化型樹脂に紫外線を照射可能な位置に設けられた半導体発光素子と、半導体発光素子から出射された紫外線を集光する集光レンズと、紫外線の集光位置を移動させる移動手段とを備えている。
特開2010−117530号公報
線引炉では、吊り下げられた母材の端部がヒータにより加熱されて溶融し、線引きされて光ファイバとなる。このとき、母材が傾いていると、ヒータに対する母材の位置が変わるため、母材の端部において光ファイバが引き出される点が動く。その結果、線引きされる光ファイバの位置が変化し、光ファイバの走行経路が設計上の位置からずれてしまう場合がある。このように光ファイバの走行経路が想定位置からずれた場合に、特許文献1のような紫外線照射装置では光ファイバの表面に塗布された紫外線硬化型樹脂に均一に紫外線を照射することができず、硬化ムラが発生するおそれがある。
本発明は、光ファイバの走行経路が動いた場合でも光ファイバを被覆する紫外線硬化型樹脂を均一に硬化可能な光ファイバの製造方法および紫外線照射装置を提供することを目的とする。
本発明による光ファイバの製造方法は、
紫外線硬化型樹脂が塗布されたガラスファイバに対して紫外線を照射して前記紫外線硬化型樹脂を硬化させて被覆層を形成する光ファイバの製造方法であって、
半導体発光素子から前記紫外線を出射するステップと、
前記半導体発光素子から出射された出射紫外線を、前記半導体発光素子と前記ガラスファイバとの間に配置された集光レンズにより集光して前記ガラスファイバに向かう方向に照射するステップと、
前記ガラスファイバを挟んで前記半導体発光素子とは反対側に配置された反射手段により前記出射紫外線を前記ガラスファイバ側に反射させるステップと、
前記反射手段により反射された反射紫外線を、前記反射手段と前記ガラスファイバとの間に配置された集光方向変更手段に透過させることで所定方向に屈折させるステップと、
を含み、
前記半導体発光素子から前記ガラスファイバに向かう方向に垂直であって前記ガラスファイバの設計上の位置であるゼロ位置を含む面において、前記出射紫外線と前記反射紫外線との光強度の合計値が前記ゼロ位置を含む5mm以上の幅の範囲で前記合計値のピーク強度の80%以上の光強度を維持するように、前記集光レンズにおける前記出射紫外線の集光方向、前記反射手段における前記反射紫外線の反射方向、および前記集光方向変更手段における前記反射紫外線の屈折方向を調整する。
本発明による紫外線照射装置は、
ガラスファイバの表面に塗布された紫外線硬化型樹脂に紫外線を照射して前記紫外線硬化型樹脂を硬化させる紫外線照射装置であって、
前記ガラスファイバに向けて前記紫外線を出射する半導体発光素子と、
前記半導体発光素子と前記ガラスファイバとの間に配置されて、前記半導体発光素子から出射された出射紫外線を集光する集光レンズと、
前記ガラスファイバを挟んで前記半導体発光素子とは反対側に配置されて、前記出射紫外線を前記ガラスファイバ側に反射する反射手段と、
前記反射手段と前記ガラスファイバとの間に配置されて、前記反射手段により反射された反射紫外線を所定方向に屈折する集光方向変更手段と、を備え、
前記半導体発光素子から前記ガラスファイバに向かう方向に垂直であって前記ガラスファイバの設計上のゼロ位置を含む面において、前記出射紫外線と前記反射紫外線との光強度の合計値が前記ゼロ位置を含む5mmの幅の範囲でピーク強度の80%以上の光強度となるように、前記集光レンズにおける前記出射紫外線の集光方向、前記反射手段における前記反射紫外線の反射方向、および前記集光方向変更手段における前記反射紫外線の屈折方向が調整される。
本発明によれば、光ファイバの走行経路が動いた場合でも光ファイバを被覆する紫外線硬化型樹脂を均一に硬化可能な光ファイバの製造方法および紫外線照射装置を提供することができる。
光ファイバを製造する製造装置を示す図である。 本実施形態の紫外線照射装置の一例を示す断面図である。 図2に示す紫外線照射装置のIII−III線水平断面図である。 本実施形態の紫外線照射装置における出射紫外線および反射紫外線の各照射強度の強度分布を示すグラフである。 図4に示される各照射強度の合計値の強度分布を示すグラフである。 実施例にかかる出射紫外線および反射紫外線の各照射強度の強度分布、および各照射強度の合計値の強度分布を示すグラフである。
[本願発明の実施形態の説明]
最初に本願発明の実施形態の内容を列記して説明する。
本願発明の実施形態に係る光ファイバの製造方法は、
(1)紫外線硬化型樹脂が塗布されたガラスファイバに対して紫外線を照射して前記紫外線硬化型樹脂を硬化させて被覆層を形成する光ファイバの製造方法であって、
半導体発光素子から前記紫外線を出射するステップと、
前記半導体発光素子から出射された出射紫外線を、前記半導体発光素子と前記ガラスファイバとの間に配置された集光レンズにより集光して前記ガラスファイバに向かう方向に照射するステップと、
前記ガラスファイバを挟んで前記半導体発光素子とは反対側に配置された反射手段により前記出射紫外線を前記ガラスファイバ側に反射させるステップと、
前記反射手段により反射された反射紫外線を、前記反射手段と前記ガラスファイバとの間に配置された集光方向変更手段に透過させることで所定方向に屈折させるステップと、
を含み、
前記半導体発光素子から前記ガラスファイバに向かう方向に垂直であって前記ガラスファイバの設計上の位置であるゼロ位置を含む面において、前記出射紫外線と前記反射紫外線との照射強度の合計値が前記ゼロ位置を含む5mm以上の幅の範囲で前記合計値の最大紫外線強度の80%以上の強度を維持するように、前記集光レンズにおける前記出射紫外線の集光方向、前記反射手段における前記反射紫外線の反射方向、および前記集光方向変更手段における前記反射紫外線の屈折方向を調整する。
この構成によれば、光ファイバの走行経路が動いた場合でも光ファイバを被覆する紫外線硬化型樹脂を均一に硬化可能な光ファイバの製造方法を提供することができる。
(2)前記面において、前記出射紫外線は、その光強度が前記ゼロ位置から遠ざかるにつれて弱くなるとともに、その光強度分布が一つのピークを有し、
前記面において、前記反射紫外線は、その光強度が前記ゼロ位置から遠ざかるにつれて強くなるとともに、その光強度分布が二つのピークを有していても良い。
この構成によれば、ゼロ位置を含む一定範囲内で一定以上の光強度を有する紫外線を照射させることができるため、光ファイバの走行経路がずれたとしても当該光ファイバに適切に紫外線を照射することができる。
また、本願発明の実施形態に係る紫外線照射装置は、
(3)ガラスファイバの表面に塗布された紫外線硬化型樹脂に紫外線を照射して前記紫外線硬化型樹脂を硬化させる紫外線照射装置であって、
前記ガラスファイバに向けて前記紫外線を出射する半導体発光素子と、
前記半導体発光素子と前記ガラスファイバとの間に配置されて、前記半導体発光素子から出射された出射紫外線を集光する集光レンズと、
前記ガラスファイバを挟んで前記半導体発光素子とは反対側に配置されて、前記出射紫外線を前記ガラスファイバ側に反射する反射手段と、
前記反射手段と前記ガラスファイバとの間に配置されて、前記反射手段により反射された反射紫外線を所定方向に屈折する集光方向変更手段と、を備え、
前記半導体発光素子から前記ガラスファイバに向かう方向に垂直であって前記ガラスファイバの設計上のゼロ位置を含む面において、前記出射紫外線と前記反射紫外線との光強度の合計値が前記ゼロ位置を含む5mmの幅の範囲でピーク強度の80%以上の光強度となるように、前記集光レンズにおける前記出射紫外線の集光方向、前記反射手段における前記反射紫外線の反射方向、および前記集光方向変更手段における前記反射紫外線の屈折方向が調整される。
この構成によれば、光ファイバの走行経路が動いた場合でも光ファイバを被覆する紫外線硬化型樹脂を均一に硬化可能な紫外線照射装置を提供することができる。
(4)前記集光レンズは、ロッドレンズまたはシリンドリカルレンズであっても良い。
この構成によれば、半導体発光素子から出射された光を効率的に光ファイバに向かう方向に集光することができる。
(5)前記反射手段は凹面鏡であり、
前記集光方向変更手段はプリズムであり、
前記プリズムは、前記ガラスファイバ側には一つの平面から構成された第一の面を有するとともに、前記凹面鏡側には二つの平面が前記凹面鏡に向かって凸状となるように合わさるように構成された第二の面を有している。
この構成によれば、反射紫外線を所望の位置に簡便且つ適切に集光させることができる。
[本願発明の実施形態の詳細]
以下、実施の形態に係る紫外線照射装置および光ファイバの製造方法について説明する。
まず、本実施形態に係る紫外線照射装置を含む製造装置により製造される光ファイバに
ついて説明する。
本実施形態において、光ファイバは、ガラスファイバと、ガラスファイバの表面を被覆する被覆層とから構成されている。ガラスファイバは、石英ガラスを主成分とする光ファイバ母材(プリフォーム)を線引きして形成されたファイバである。被覆層は、紫外線が照射されると硬化する紫外線硬化型樹脂からなり、ガラスファイバの表面を保護する機能を有している。なお、被覆層は、ガラスファイバの周囲に直接被覆された内層(プライマリ樹脂層)と、その内層の周囲に被覆された外層(セカンダリ樹脂層)の二層または三層以上から構成されていてもよい。
図1は、光ファイバを製造するための製造装置10を説明する図である。
まず、石英ガラスを主成分とする光ファイバ母材4が線引炉20にセットされる。光ファイバ母材4の一方の端部(本例においては下端部)が、線引炉20が有するヒータ21により加熱・溶融され、光ファイバ母材4は線引きされる。
光ファイバ母材4が線引きされて形成されたガラスファイバ2は、ガラスファイバ2の走行方向(図1中の矢印Aの方向)において線引炉20の下流に設けられた冷却装置25を通過する。冷却装置25は、ガラスファイバ2を充分に冷却するためにガラスファイバ2の走行方向Aに沿って所定の長さを備えている。
次に、冷却されたガラスファイバ2は、冷却装置25の下流に設けられた塗布器(ダイス)30を通過する。塗布器30には、液状の紫外線硬化型樹脂Rが溜められている。そのため、ガラスファイバ2が塗布器30を通過することにより、ガラスファイバ2の外周に紫外線硬化型の樹脂が塗布される。なお、図1には1つの塗布器30が示されているが、被覆層を内層および外層の2層構造とする場合には、塗布器30を2つ備えるか、または2層を同時に塗布する機能を有する塗布器を備えるとよい。
次に、樹脂が塗布されたガラスファイバ2は、走行方向Aにおいて塗布器30の下流に設けられている紫外線照射装置40を通過する。紫外線照射装置40は、ガラスファイバ2の表面に塗布された樹脂に紫外線を照射して樹脂を硬化させ、光ファイバ1を形成する。紫外線照射装置40の詳細は後述する。
紫外線照射装置40を通過することによって形成された光ファイバ1は、ガイドローラ50および引取り手段51を経て巻取りドラム52に巻き取られる。
次に、紫外線照射装置40についてより詳細に説明する。
図2は、線引き時のガラスファイバ2の走行方向に沿った紫外線照射装置40の縦断面図であり、図3は図2に示した紫外線照射装置40のIII−III線水平断面図である。
図2に示すように、紫外線照射装置40は、透明管41、複数の発光素子42(半導体発光素子の一例)、集光レンズ43、ミラー44(反射手段の一例)、およびプリズム45(集光方向変更手段の一例)を備えている。複数の発光素子42は基台46に固定されている。以下の説明では、図3において、ミラー44側を前方(F方向)とし、発光素子42側を後方(B方向)とする。また、発光素子42側から見てガラスファイバ2の左側を左方向(L方向)、ガラスファイバ2の右側を右方向(R方向)とする。なお、図3においては、透明管41の図示は省略している。
透明管41は、その長手方向がガラスファイバ2の走行方向(図1のA方向)に一致するように配置されている。そして、紫外線硬化型樹脂が塗布されたガラスファイバ2が透明管41の中心または中心近傍に通され、透明管41の中心軸に沿って移動する。
透明管41は、紫外線に対して透光性を有していれば、特に限定されないが、例えば石英管が好適に用いられる。透明管41内には不活性ガス(使用温度でほぼ不活性なガス)が矢印GINで示すように導入され、透明管41内を通って、矢印GOUTで示されるように透明管41から排気される。透明管41の上部に位置する塗布器30側の端部には、不活性ガスを矢印GINの方向に導入するためのガス導入管47が接続されている。また、ガス導入管47が接続されている端部と反対側の透明管41の端部には、不活性ガスを矢印GOUTの方向に排気するためのガス排出管48が接続されている。なお、ガス導入管47およびガス排出管48の周囲は封止されていても良いが、封止されていなくても良い。
不活性ガスとしては、例えば窒素ガスが用いられる。紫外線硬化型樹脂が硬化するときに雰囲気中の酸素濃度が一定量以上となると、紫外線硬化型樹脂の硬化が不十分となる。また、紫外線を照射すると紫外線硬化型樹脂に含まれる低分子量成分が硬化時の熱で揮発する。この揮発成分が透明管の内面に付着して硬化すると、透明管の内面が曇り、紫外線が遮られてしまう傾向がある。したがって、樹脂表面の硬化阻害作用を抑制するために、ガラスファイバ2の周囲が石英ガラス等からなる透明管41で覆われるとともに、透明管41内に窒素ガスなどの不活性ガスが導入される。
複数の発光素子42は、ガラスファイバ2の走行方向(透明管41の長手方向)に沿って透明管41の外部に並列配置され、基台46に固定されている。各発光素子42は、その出射面がガラスファイバ2と対向しており、ガラスファイバ2に向かう方向に紫外線(以下、出射紫外線UV1とする)を出射する。発光素子42としては、例えば、紫外線発光ダイオード(UV−LED)や紫外線レーザダイオード(UV−LD)が用いられる。発光素子42から出射された紫外線UV1は、進行方向に対して±60度(円錐の頂角では120度)程度までに広がって照射される。
集光レンズ43は、発光素子42と透明管41との間に配置されている。本例において、集光レンズ43は、円柱状のレンズ(いわゆる、ロッドレンズ)であり、その長手方向が透明管41の長手方向と略平行となるように配置されている。なお、集光レンズ43として、ロッドレンズに代えて、シリンドリカルレンズを用いても良い。図3に示すように、紫外線照射装置40の水平断面図において、集光レンズ43に入射した出射紫外線UV1は集束方向に屈折される。これにより、集光レンズ43から出射する出射紫外線UV1は、透明管41内のガラスファイバ2に向かう方向に略平行光として照射される。このように、集光レンズ43を用いることで、発光素子42から120度程度までに広がって出射される出射紫外線UV1を有効利用することができる。
ミラー44は、透明管41の外部において、透明管41(およびガラスファイバ2)を挟んで発光素子42と反対側に配置されている。図3に示すように、ミラー44は、例えば、所望の曲率半径を有する2つのシリンドリカルミラー44a,44bから形成されている。すなわち、ミラー44は、透明管41に対して凹むように湾曲された凹面鏡として構成されている。ミラー44は、透明管41および後述のプリズム45を透過した出射紫外線UV1を、反射紫外線UV2としてガラスファイバ2側に反射する。各シリンドリカルミラー44a,44bは、発光素子42からガラスファイバ2に向かう所定方向に紫外線を反射可能となるように、その曲率半径が調整されている。
プリズム45は、ミラー44と透明管41との間に配置されている。プリズム45は、透明管41側に第一の面45aを有するとともに、ミラー44側に第二の面45bを有している。第一の面45aは、平行光である出射紫外線UV1に対して略直交する方向に沿った一つの平面から構成されている。第二の面45bは、二つの平面45b1,45b2から構成されている。この二つの平面45b1,45b2は、第二の面45bの両端に向かうにつれて第一の面45aに近づくようにそれぞれ形成された面である。すなわち、第二の面45bを構成する平面45b1,45b2は、ミラー44に対して凸状となるように合わさっている。この二つの平面45b1,45b2により形成される頂角は、本例では、例えば160°である。これにより、ミラー44により反射されてプリズム45を透過する反射紫外線UV2は、集光レンズ43を介した出射紫外線UV1の出射方向に垂直であってガラスファイバ2の設計上の位置を含む面Dの所定の位置に集光される。
次に、光ファイバ1の製造方法について説明する。
塗布器30により紫外線硬化型樹脂が塗布されたガラスファイバ2を、紫外線照射装置40の透明管41に通す。そして、各発光素子42から紫外線UV1を出射する。各発光素子42から出射された出射紫外線UV1は、集光レンズ43により集束方向に屈折されることで、集光レンズ43から平行光としてガラスファイバ2に向かう方向に照射される。平行光となった出射紫外線UV1は、その一部がガラスファイバ2(の表面に被覆された紫外線硬化型樹脂)に直接照射される。これにより、紫外線硬化型樹脂を硬化させ、ガラスファイバ2の表面に紫外線硬化型樹脂の被覆層が形成された光ファイバ1を製造する。
一方、ガラスファイバ2に照射される以外の出射紫外線UV1は、透明管41およびプリズム45を通過する。このとき、プリズム45は第一の面45aが出射紫外線UV1に対して略直交するように形成されているため、第一の面45aにおいて出射紫外線UV1が屈折されることは殆どない。また、プリズム45の第二の面45bは、160°の頂角を有するように出射紫外線UV1に対して傾斜して形成されているため、第二の面45bにおいて出射紫外線UV1は集束方向にやや屈折される。
このように屈折された出射紫外線UV1は、ミラー44によりガラスファイバ2側に反射される。ミラー44で反射された反射紫外線UV2は、プリズム45の第二の面45bおよび第一の面45aにおいて屈折され、ガラスファイバ2を含む面Dにおいてガラスファイバ2から所定距離離れた位置に集光される。上述の通り、各プリズム45は、反射紫外線UV2がガラスファイバ2を含む面Dの位置に集光するように、その第二の面45bの頂角の角度が調整されている。すなわち、図3に示すように、右側のシリンドリカルミラー44aによってガラスファイバ2側に反射された反射紫外線UV2は、プリズム45を透過することにより、ガラスファイバ2を含む面Dにおいてガラスファイバ2よりも左側の位置(例えば、光ファイバ1から左側に約2mm離れた位置)に集光される。一方、左側のシリンドリカルミラー44bによりガラスファイバ2側に反射された反射紫外線UV2は、プリズム45を透過することにより、ガラスファイバ2を含む面Dにおいてガラスファイバ2よりも右側の位置(例えば、光ファイバ1から右側に2mm離れた位置)に集光される。
図4は、ガラスファイバ2を含む面Dにおける出射紫外線UV1および反射紫外線UV2の光強度分布を示すグラフである。なお、図4において、縦軸は光強度(任意単位)を表し、横軸はガラスファイバ2を含む面D内の位置を表す。また、横軸の0mmは、面Dにおいてガラスファイバ2の中心点が通過すると想定される設計上の位置(ゼロ位置)を示している。
図4に示すように、ガラスファイバ2を含む面Dにおいて、出射紫外線UV1は、その光強度S1がゼロ位置から遠ざかるにつれて弱くなるとともに、その光強度分布が一つのピークを有している。具体的には、出射紫外線UV1は、ゼロ位置およびその周囲に最も光強度の高いピーク強度を持ち、且つ、ゼロ位置から左右それぞれに約1.5mm(全体で約3mm)の幅で照射される。一方、ガラスファイバ2を含む面Dにおいて、反射紫外線UV2は、その光強度S2がゼロ位置から遠ざかるにつれて強くなるとともに、その光強度分布が二つのピークを有している。具体的には、反射紫外線UV2は、ゼロ位置から左右それぞれに約2mm離れた位置にピーク強度を持ち、且つ、それぞれに約2mmの幅で照射される。
図5は、図4に示される出射紫外線UV1の光強度S1と反射紫外線UV2の光強度S2との合計値である合成光強度S3を示すグラフである。なお、図5には、出射紫外線UV1および反射紫外線UV2の各光強度S1,S2が破線で示されている。
図5に示すように、合成光強度S3は、ゼロ位置を中心に左右それぞれに約3mm(全体で約6mm)の幅を有している。合成光強度S3は、そのピーク強度を1とした場合に、ゼロ位置を中心に左右それぞれに約2.5mm(合わせて約5mm)の幅の範囲において0.8以上の光強度を保っている。すなわち、本例においては、出射紫外線UV1と反射紫外線UV2とにより、面Dにおける5mmの幅の範囲で、ピーク強度(最大紫外線強度)の80%以上の光強度を維持することができる。
(実施例)
実施例として、以下の構成を有する紫外線照射装置により波長365nmの紫外線を紫外線硬化型樹脂が塗布されたガラスファイバに照射した場合の、ガラスファイバに照射される直射光(出射紫外線)の光強度および反射光(反射紫外線)の光強度を計算した。
実施例に係る装置は、径1.2mmのUV−LED光源と、半径6mmのロッドレンズと、曲率半径45mmのシリンドリカルミラーと、厚さ4mmで頂角160°のプリズムとを有しているものとする。直射光の光強度、反射光の光強度、およびこれらの合計値を計算した結果を図6に示す。図6において、縦軸は光強度(任意単位)を表し、横軸はガラスファイバ2を含む面D内の位置を表す。
図6に示すように、直射光は、ゼロ位置およびその周囲にピーク強度を持ち、ゼロ位置を含む範囲であってピーク強度の80%以上の光強度を有する範囲(照射幅)が約3.8mmである。また、反射光は、ゼロ位置から左右にそれぞれ約2mm離れた位置にピーク強度を持ち、当該ピーク強度を有する位置から左右に離れるにつれて光強度が徐々に低下する。このような直射光と反射光の合成光(各光強度の合計値)は、ゼロ位置を含む範囲であってピーク強度の80%以上の光強度を有する照射幅が約5.8mmとなる。
このように、本実施形態に係る構成によれば、ピーク強度またはピーク強度に近い光強度で紫外線を照射可能な照射幅を、直射光のみの従来構成の場合よりも広げることができることが確認できた。
以上説明したように、本実施形態に係る紫外線照射装置40は、ガラスファイバ2に向けて紫外線(出射紫外線)UV1を出射する発光素子42と、発光素子42とガラスファイバ2との間に配置されて出射紫外線UV1を集光する集光レンズ43と、ガラスファイバ2を挟んで発光素子42とは反対側に配置されて出射紫外線UV1を反射するミラー44と、ミラー44とガラスファイバ2との間に配置されてミラー44により反射された反射紫外線UV2を屈折するプリズム45と、を備えている。そして、当該紫外線照射装置40においては、発光素子42からガラスファイバ2に向かう方向に垂直であってガラスファイバ2の設計上の位置(ゼロ位置)を含む面Dにおいて、出射紫外線UV1と反射紫外線UV2との光強度S1,S2の合計値S3が、ゼロ位置を含む5mmの幅の範囲でピーク強度の80%以上の光強度となるように、集光レンズ43における出射紫外線UV1の集光方向、ミラー44における反射紫外線UV2の反射方向、およびプリズム45における反射紫外線UV2の屈折方向が調整される。これにより、本実施形態によれば、従来のように直射光のみでガラスファイバに塗布された紫外線硬化型樹脂を照射する構成よりも、ピーク強度またはそれに近い光強度で紫外線が照射可能な幅を広げることができる。したがって、ガラスファイバ2が想定される走行経路からずれた場合であっても、一定の範囲内(例えば、ゼロ位置を含む5mmの幅の範囲内)であれば、ガラスファイバ2に対して均一に紫外線を照射することができ、紫外線硬化型樹脂の硬化ムラを防止することができる。
以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。
1:光ファイバ
2:ガラスファイバ
4:光ファイバ母材
10:光ファイバ製造装置
20:線引炉
21:ヒータ
30:塗布器(ダイス)
40:紫外線照射装置
41:透明管
42:半導体発光素子
43:集光レンズ
44:ミラー
45:プリズム
45a:第一の面
45b:第二の面
46:基台
47:ガス導入管
48:ガス排出管
50:ガイドローラ
51:引取り手段
52:巻取りドラム
D:光ファイバの設計上の位置を含む面
R:紫外線硬化型樹脂

Claims (5)

  1. 紫外線硬化型樹脂が塗布されたガラスファイバに対して紫外線を照射して前記紫外線硬化型樹脂を硬化させて被覆層を形成する光ファイバの製造方法であって、
    半導体発光素子から前記紫外線を出射するステップと、
    前記半導体発光素子から出射された出射紫外線を、前記半導体発光素子と前記ガラスファイバとの間に配置された集光レンズにより集光して前記ガラスファイバに向かう方向に照射するステップと、
    前記ガラスファイバを挟んで前記半導体発光素子とは反対側に配置された反射手段により前記出射紫外線を前記ガラスファイバ側に反射させるステップと、
    前記反射手段により反射された反射紫外線を、前記反射手段と前記ガラスファイバとの間に配置された集光方向変更手段に透過させることで所定方向に屈折させるステップと、
    を含み、
    前記半導体発光素子から前記ガラスファイバに向かう方向に垂直であって前記ガラスファイバの設計上の位置であるゼロ位置を含む面において、前記出射紫外線と前記反射紫外線との光強度の合計値が前記ゼロ位置を含む5mm以上の幅の範囲で前記合計値のピーク強度の80%以上の光強度を維持するように、前記集光レンズにおける前記出射紫外線の集光方向、前記反射手段における前記反射紫外線の反射方向、および前記集光方向変更手段における前記反射紫外線の屈折方向を調整する、光ファイバの製造方法。
  2. 前記面において、前記出射紫外線は、その光強度が前記ゼロ位置から遠ざかるにつれて弱くなるとともに、その光強度分布が一つのピークを有し、
    前記面において、前記反射紫外線は、その光強度が前記ゼロ位置から遠ざかるにつれて強くなるとともに、その光強度分布が二つのピークを有している、請求項1に記載の光ファイバの製造方法。
  3. ガラスファイバの表面に塗布された紫外線硬化型樹脂に紫外線を照射して前記紫外線硬化型樹脂を硬化させる紫外線照射装置であって、
    前記ガラスファイバに向けて前記紫外線を出射する半導体発光素子と、
    前記半導体発光素子と前記ガラスファイバとの間に配置されて、前記半導体発光素子から出射された出射紫外線を集光する集光レンズと、
    前記ガラスファイバを挟んで前記半導体発光素子とは反対側に配置されて、前記出射紫外線を前記ガラスファイバ側に反射する反射手段と、
    前記反射手段と前記ガラスファイバとの間に配置されて、前記反射手段により反射された反射紫外線を所定方向に屈折する集光方向変更手段と、を備え、
    前記半導体発光素子から前記ガラスファイバに向かう方向に垂直であって前記ガラスファイバの設計上のゼロ位置を含む面において、前記出射紫外線と前記反射紫外線との光強度の合計値が前記ゼロ位置を含む5mmの幅の範囲でピーク強度の80%以上の光強度となるように、前記集光レンズにおける前記出射紫外線の集光方向、前記反射手段における前記反射紫外線の反射方向、および前記集光方向変更手段における前記反射紫外線の屈折方向が調整される、紫外線照射装置。
  4. 前記集光レンズは、ロッドレンズまたはシリンドリカルレンズである、請求項3に記載の紫外線照射装置。
  5. 前記反射手段は凹面鏡であり、
    前記集光方向変更手段はプリズムであり、
    前記プリズムは、前記ガラスファイバ側には一つの平面から構成された第一の面を有するとともに、前記凹面鏡側には二つの平面が前記凹面鏡に向かって凸状となるように合わさるように構成された第二の面を有している、請求項3または請求項4に記載の紫外線照射装置。
JP2016120217A 2016-06-16 2016-06-16 光ファイバの製造方法 Active JP6729036B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016120217A JP6729036B2 (ja) 2016-06-16 2016-06-16 光ファイバの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120217A JP6729036B2 (ja) 2016-06-16 2016-06-16 光ファイバの製造方法

Publications (2)

Publication Number Publication Date
JP2017223873A true JP2017223873A (ja) 2017-12-21
JP6729036B2 JP6729036B2 (ja) 2020-07-22

Family

ID=60688257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120217A Active JP6729036B2 (ja) 2016-06-16 2016-06-16 光ファイバの製造方法

Country Status (1)

Country Link
JP (1) JP6729036B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229202A (ja) * 1986-02-10 1987-10-08 フュージョン・システムズ・コーポレーション 集中したエネルギ−を用いて材料を処理する装置
JP2003535806A (ja) * 2000-06-16 2003-12-02 アルカテル レーザを使用する光ファイバコーティングのuv硬化
JP2004506932A (ja) * 2000-06-22 2004-03-04 フュージョン・ユーヴィー・システムズ・インコーポレイテッド 光ファイバー表面を均一に照射するための楕円形反射器を備えるランプ構造及びその使用方法
CN102854564A (zh) * 2012-09-11 2013-01-02 华中科技大学 一种具有对称结构的四端口光环行器
WO2015161452A1 (zh) * 2014-04-22 2015-10-29 华为技术有限公司 光通信的装置和方法
WO2015199199A1 (ja) * 2014-06-27 2015-12-30 古河電気工業株式会社 光ファイバの製造方法および光ファイバの製造装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62229202A (ja) * 1986-02-10 1987-10-08 フュージョン・システムズ・コーポレーション 集中したエネルギ−を用いて材料を処理する装置
JP2003535806A (ja) * 2000-06-16 2003-12-02 アルカテル レーザを使用する光ファイバコーティングのuv硬化
JP2004506932A (ja) * 2000-06-22 2004-03-04 フュージョン・ユーヴィー・システムズ・インコーポレイテッド 光ファイバー表面を均一に照射するための楕円形反射器を備えるランプ構造及びその使用方法
CN102854564A (zh) * 2012-09-11 2013-01-02 华中科技大学 一种具有对称结构的四端口光环行器
WO2015161452A1 (zh) * 2014-04-22 2015-10-29 华为技术有限公司 光通信的装置和方法
WO2015199199A1 (ja) * 2014-06-27 2015-12-30 古河電気工業株式会社 光ファイバの製造方法および光ファイバの製造装置

Also Published As

Publication number Publication date
JP6729036B2 (ja) 2020-07-22

Similar Documents

Publication Publication Date Title
TWI453356B (zh) 用於小型紫外線固化燈總成之紫外線發光二極體燈
WO2009087728A1 (ja) 光ファイバ及びその製造方法
CN103827718B (zh) 用于固化光纤的具有共定位焦点的双椭圆反射器
KR101890938B1 (ko) 각이 형성된 uvled를 채용한 경화 장치
JP6017573B2 (ja) 光ファイバーを硬化するための共同設置焦点を有する多重光収集とレンズの組合せ
EP3060844B1 (en) Apparatus for radiant energy curing of coating
TW201617659A (zh) 光學組件及其製造與使用方法
WO2009090712A1 (ja) 光ファイバ
ATE554057T1 (de) Aushärtevorrichtung mit ultraviolett-bestrahlung und verfahren
JP2001316136A (ja) レーザ光硬化システム
JP2010117531A (ja) 紫外線照射装置及び光ファイバの被覆形成方法
JP2007178778A (ja) ライトガイドおよび光照射装置
JP6582815B2 (ja) 光ファイバの製造方法
JP6729036B2 (ja) 光ファイバの製造方法
JP6201707B2 (ja) 紫外線照射装置
JP6248130B2 (ja) 光ファイバ素線の製造方法
JP4380615B2 (ja) ライトガイドおよび光照射装置
JP2017171531A (ja) 線条体の被覆方法および被覆装置
JP3900781B2 (ja) 光照射装置
CN107056090B (zh) 纤维涂层设备以及纤维涂层方法和纤维
JP2016150866A (ja) 紫外線照射装置および光ファイバの製造方法
JP2005162522A (ja) 被覆線条体の製造方法、及び被覆線条体製造装置
JP2023502874A (ja) 低減衰ロール可能な光ファイバリボン
JP2602087Y2 (ja) 紫外線照射装置
JP2010139958A (ja) ライトガイド

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6729036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250