JP2017223604A - 標識抗体、その製造方法及び免疫学的測定法 - Google Patents
標識抗体、その製造方法及び免疫学的測定法 Download PDFInfo
- Publication number
- JP2017223604A JP2017223604A JP2016120536A JP2016120536A JP2017223604A JP 2017223604 A JP2017223604 A JP 2017223604A JP 2016120536 A JP2016120536 A JP 2016120536A JP 2016120536 A JP2016120536 A JP 2016120536A JP 2017223604 A JP2017223604 A JP 2017223604A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- resin
- labeled antibody
- metal
- antibody
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
Description
前記抗体及びpH2〜9の結合用緩衝液の混合物に、樹脂粒子に有機色素又は金属粒子が固定化された構造を有する樹脂複合体粒子を、混合する工程を含むことを特徴とする。
をさらに含んでいてもよい。
前記樹脂粒子外に露出した部位を有する第1の粒子と、
全体が前記樹脂粒子に内包されている第2の粒子と、
を含んでいてもよく、
前記第1の粒子及び前記第2の粒子のうち、少なくとも一部の粒子が、前記樹脂粒子の表層部において三次元的に分布しているものであってもよい。
[標識抗体の製造]
本実施の形態の標識抗体の製造方法は、樹脂複合体粒子で標識された抗体を製造するものである。ここで、「抗体」としては、特に制限はなく、例えば、ポリクローナル抗体、モノクローナル抗体、遺伝子組み換えにより得られた抗体のほか、抗原と結合能を有する抗体断片[例えば、H鎖、L鎖、Fab、F(ab’)2等]などを用いることができる。また、免疫グロブリンとして、IgG、IgM、IgA、IgE、IgDのいずれでもよい。抗体の産生動物種としては、ヒトをはじめ、ヒト以外の動物(例えばマウス、ラット、ウサギ、ヤギ、ウマ等)でもよい。抗体の具体例としては、抗PSA抗体、抗AFP抗体、抗CEA抗体、抗アデノウイルス抗体、抗インフルエンザウィルス抗体、抗HCV抗体、抗IgG抗体、抗ヒトIgE抗体等が挙げられる。
工程A)抗体及びpH2〜9の結合用緩衝液の混合物に、樹脂複合体粒子を混合する工程
を含み、好ましくは、さらに工程B;
工程B)標識抗体をpH2〜9のブロック用緩衝液中に分散させる工程
を含むことができる。
工程Aでは、抗体及びpH2〜9の結合用緩衝液(Binding Buffer)の混合物に、樹脂複合体粒子を混合して標識抗体を得る。予め抗体及びpH2〜9の結合用緩衝液の混合物を調製し、この混合物中に樹脂複合体粒子を混合させることで、樹脂複合体粒子表面に抗体が結合し、抗体が、樹脂複合体粒子の凝集を抑える保護基として作用するため、標識抗体の製造工程における樹脂複合体粒子の凝集が抑えられる。一方、予め抗体及びpH2〜9の結合緩衝液の混合物を調製しない場合、例えば、結合用緩衝液に樹脂複合体粒子を混合して混合液を調製し、該混合液に抗体を混合させた場合は、樹脂複合体粒子が凝集し、感度が低下する傾向にある。特に、pH7を超える結合用緩衝液を使用した際に、感度の低下が顕著である。つまり、標識抗体の製造において前記工程Aを含むことで、広範な種類の結合用緩衝溶液が適用できる。しかも、広範な種類の樹脂粒子、有機色素及び金属粒子が適用できる。その結果、高感度な免疫学的測定が可能な標識抗体を製造できる。本工程Aでは、標識抗体の分散および結合に適したpH3〜9の結合用緩衝液を用いることが好ましく、より好ましくはpH6〜9である。pH2未満では強酸性により抗体が変質し失活する場合があり、pH9を超えると樹脂複合体粒子と抗体を混合した際に凝集し分散が困難となる。ただし、強酸性により抗体が失活しない場合はpH2未満においても処理が可能である。また、pH6〜9では、有機色素の種類や樹脂複合体粒子中の金属粒子の金属種にかかわらず、凝集抑制効果により優れた検出感度が得られる。
工程Bでは、工程Aで得られた標識抗体をpH2〜9のブロック用緩衝液(Blocking Buffer)中に分散させることによって、標識抗体への非特異的な吸着を抑制するブロッキングを行う。この場合、固液分離手段によって分取しておいた標識抗体を、pH2〜9の範囲内の条件で液相中に分散させる。このブロッキングの条件は、抗体の活性を保ちかつ標識抗体の凝集を抑制する観点から、好ましくはpH4〜9の範囲内であり、標識抗体の非特異的な吸着を抑制する観点から、pH5〜9の範囲内が好ましい。ブロッキングの条件が、pH2未満では強酸性により抗体が変質し失活する場合があり、pH9を超えると標識抗体が凝集してしまい分散が困難となる場合がある。
洗浄処理は、固液分離手段によって分取した標識抗体に洗浄用緩衝液を添加し、洗浄用緩衝液中で標識抗体を均一に分散させる。分散には、例えば超音波処理などの分散手段を用いることが好ましい。洗浄用緩衝液としては、特に限定されるものではないが、例えばpH8〜9の範囲内に調整した所定濃度の、トリス(Tris)緩衝液(トリスヒドロキシメチルアミノメタン緩衝液)、グリシンアミド緩衝液、アルギニン緩衝液などを用いることができる。洗浄用緩衝液のpHの調整は、例えば塩酸、水酸化ナトリウムなどを用いて行うことができる。標識抗体の洗浄処理は、必要に応じて複数回を繰り返し行うことができる。
保存処理は、固液分離手段によって分取した標識抗体に保存用緩衝液を添加し、保存用緩衝液中で標識抗体を均一に分散させる。分散には、例えば超音波処理などの分散手段を用いることが好ましい。保存用緩衝液としては、例えば、上記洗浄用緩衝液に、所定濃度の凝集防止剤及び/又は安定剤を添加した溶液を用いることができる。凝集防止剤としては、例えば、スクロース、マルトース、ラクトース、トレハロースに代表される糖類や、グリセリン、ポリビニルアルコールに代表される多価アルコールなどを用いることができる。安定剤としては、特に限定されるものではないが、例えば牛血清アルブミン、卵白アルブミン、カゼイン、ゼラチンなどの蛋白質を用いることができる。このようにして標識抗体の保存処理を行うことができる。
以上のようにして標識抗体が製造することができる。本実施の形態の標識抗体は、従来の標識抗体と同様に、各種の免疫学的測定に利用できる。例えば、アナライトを含む試料と標識抗体とを混合し、反応させ、それによって生じる発色を、肉眼的に、あるいは分析機器を用いて測定することによって免疫学的測定が可能になる。従って、本実施の形態の標識抗体は、フロースルー式測定、ラテラルフロー式測定(イムノクロマトグラフィー)等の免疫学的測定において、標識抗体として好ましく使用することができる。
次に、本実施の形態の標識抗体の製造方法において標識として使用される樹脂複合体粒子について詳細に説明する。
樹脂複合体粒子は、樹脂粒子に有機色素又は金属粒子が固定化された構造を有する。前記有機色素又は金属粒子の構造は限定しないが、樹脂粒子に固定化されることで、樹脂複合体粒子が着色されるものであれば、イムノクロマトグラフィー等の免疫学的測定用途として、目視判定が容易になるので好ましい。
図1は、本実施の形態において標識として好ましく使用可能な、樹脂粒子に複数の金属粒子が固定化された構造を有する樹脂複合体粒子(以下、「樹脂−金属複合体」という。)の断面模式図である。樹脂−金属複合体100は、樹脂粒子10と、金属粒子20と、を備えている。
一方、金属イオンを吸着することが可能な置換基を構造に有する含窒素ポリマー以外の樹脂粒子、例えばポリスチレン等の場合、前記金属イオンを樹脂内部に吸着しにくい。その結果、生成した金属粒子20の大部分は、表面吸着金属粒子50となる。上記のとおり、表面吸着金属粒子50は、樹脂粒子10との接触面積が小さいため、樹脂と金属の接着力が小さく、樹脂粒子10から金属粒子20が脱離する影響が大きい傾向にある。
上記含窒素ポリマーは、主鎖または側鎖に窒素原子を有する樹脂であり、例えば、ポリアミン、ポリアミド、ポリペプチド、ポリウレタン、ポリ尿素、ポリイミド、ポリイミダゾール、ポリオキサゾール、ポリピロール、ポリアニリン等がある。好ましくは、ポリ−2−ビニルピリジン、ポリ−3−ビニルピリジン、ポリ−4−ビニルピリジン等のポリアミンである。また、側鎖に窒素原子を有する場合は、例えば、アクリル樹脂、フェノール樹脂、エポキシ樹脂等幅広く利用することが可能である。
また、金属イオンを含有する溶液の溶媒として、水の代わりに、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、t−ブタノール等の含水アルコール又はアルコール、塩酸、硫酸、硝酸等の酸等を用いても良い。
また、前記溶液に、必要に応じて、例えば、ポリビニルアルコール等の水溶性高分子化合物、界面活性剤、アルコール類;テトラヒドロフラン、ジエチルエーテル、ジイソプロピルエーテル等のエーテル類;アルキレングリコール、ポリアルキレングリコール、これらのモノアルキルエーテル又はジアルキルエーテル、グリセリン等のポリオール類;アセトン、メチルエチルケトン等のケトン類等の各種水混和性有機溶媒等の添加剤を添加してもよい。このような添加剤は、金属イオンの還元反応速度を促進し、また生成される金属粒子20の大きさを制御するのに有効となる。
さらに還元剤溶液の温度により、金属イオンの還元速度を調整することで、形成する金属粒子の粒径をコントロールすることが出来る。
前記有機色素を樹脂粒子に固定化させる方法としては、例えば、樹脂粒子を合成した後に、有機色素を吸着させる方法、有機色素を分散又は溶解させたモノマー溶液を重合する方法が挙げられる。
有機色素を用いる場合、樹脂粒子は公知の樹脂を用いることができる。例えば、セルロース、上記含窒素ポリマー、ポリスチレン、スチレン−スチレンスルホン酸塩共重合体、メタクリル酸重合体、アクリル酸重合体、スチレン−アクリル酸共重合体、スチレン−メタクリル酸共重合体、スチレン−イタコン酸共重合体、アクリロニトリル−ブタジエン−スチレン共重合体、塩化ビニル−アクリル酸エステル共重合体、酢酸ビニル−アクリル酸エステル共重合体が挙げられる。これらの樹脂は、架橋構造を形成するために、更に公知のビニル系モノマーを共重合させたものであっても良い。
樹脂複合体粒子の吸光度は、光学用白板ガラス製セル(光路長10mm)に0.01wt%に調製した樹脂複合体粒子分散液(分散媒:水)を入れ、瞬間マルチ測光システム(大塚電子社製、MCPD−3700)を用いて、金の場合570nm、白金の場合400nmの吸光度を測定した。
磁製るつぼに濃度調整前の分散液1gを入れ、70℃、3時間熱処理を行った。熱処理前後の重量を測定し、下記式により固形分濃度を算出した。
金属担持量(wt%)=
[500℃加熱処理後の重量(g)/500℃加熱処理前の重量(g)]×100
ディスク遠心式粒度分布測定装置(CPS Disc Centrifuge DC24000 UHR、CPS instruments, Inc.社製)を用いて測定した。測定は、樹脂複合体粒子を水に分散させた状態で行った。
樹脂複合体粒子分散液をカーボン支持膜付き金属性メッシュへ滴下して作成した基板を、電界放出形走査電子顕微鏡(FE−SEM;日立ハイテクノロジーズ社製、SU−9000)により観測した画像から、任意の100個の金属粒子の面積平均径を測定した。
各実施例で作製した樹脂複合体粒子標識抗体分散液を用いて、下記に示すイムノクロマト法での測定を行い、樹脂複合体粒子分散液の性能を評価した。
(評価方法)
評価は、インフルエンザA型評価用モノクロスクリーン(アドテック社製)を用い、5分後、10分後、15分後の発色レベルを比較した。性能評価において、抗原はインフルエンザA型陽性コントロール(APC)の2倍希釈列(1倍〜1024倍)を用いた(APC希釈前のウィルスの濃度は5000FFU/ml)。
(評価手順)
96ウェルプレートの各ウェルに、樹脂複合体粒子標識抗体分散液を3μlずつ入れ、APCの2倍希釈列(1倍〜1024倍)及び陰性コントロールを、それぞれ100μl混和した。次に、インフルエンザA型評価用モノクロスクリーンに、この混和した分散液を50μl添加し、5分後、10分後、15分後の発色レベルを評価した。15分後の発色レベルが0.5以上のものを「良好」と判定した。発色レベルは、金コロイド判定用色見本(アドテック社製)を用いて判定した。
<樹脂粒子の合成>
トリオクチルアンモニウムクロリド(1.20g)及びポリエチレングリコールメチルエチルエーテルメタクリレート(10.00g)を300gの純水に溶解した後、2−ビニルピリジン(48.00g)及びジビニルベンゼン(2.00g)を加え、窒素気流下において150rpm、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(0.250g)を約2分かけて滴下し、150rpm、60℃で3.5時間撹拌することで、平均粒子径377nmの樹脂粒子A−1を得た。遠心分離(9000rpm、40分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液B−1を得た。
<樹脂複合体粒子の合成>
作製例1で作製した10wt%樹脂粒子分散液B−1(92.0g)に純水255gを加えた後、400mM塩化金酸水溶液(147g)を加え、室温で3時間撹拌した。この混合液を24時間静置した後、遠心分離(3000rpm、30分)により樹脂粒子A−1を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化金酸を除去した。その後、濃度調整を行い、2.5wt%金イオン吸着樹脂粒子分散液C−1を調製した。
<樹脂粒子の合成>
トリオクチルアンモニウムクロリド(1.00g)及びポリエチレングリコールメチルエチルエーテルメタクリレート(10.00g)を300gの純水に溶解した後、2−ビニルピリジン(48.00g)及びジビニルベンゼン(2.00g)を加え、窒素気流下において150rpm、30℃で50分、次いで60℃で30分間撹拌した。撹拌後、18.00gの純水に溶解した2,2−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(0.50g)を約2分かけて滴下し、150rpm、60℃で3.5時間撹拌することで、平均粒子径433nmの樹脂粒子A−2を得た。遠心分離(9000rpm、40分)により沈殿させ、上澄みを除去した後、純水に再度分散させる操作を3回行った後、透析処理により不純物を除去した。その後、濃度調整を行い10wt%の樹脂粒子分散液B−2を得た。
樹脂粒子分散液B−1の代わりに樹脂粒子分散液B−2を用いる以外は、作製例1と同様にして、金イオン吸着樹脂粒子分散液C−2、樹脂複合体粒子D−2、樹脂複合体粒子分散液E−2および樹脂複合体粒子F−2を作製した。
<樹脂複合体粒子の合成>
作製例1で作製した10wt%樹脂粒子分散液B−1(18.2g)に純水54gを加えた後、400mM塩化白金酸水溶液(20g)を加え、30℃で3時間撹拌した。この混合液を24時間静置した後、遠心分離(3000rpm、30分)により樹脂粒子A−1を沈殿させ、上澄みを除去する作業を3回繰り返すことで余分な塩化白金酸を除去した。その後、濃度調整を行い、5wt%白金イオン吸着樹脂粒子分散液C−3を調製した。
<樹脂複合体粒子の合成>
樹脂粒子分散液B−1の代わりに樹脂粒子分散液B−2を用いる以外は、作製例3と同様にして、白金イオン吸着樹脂粒子分散液C−4、樹脂複合体粒子D−4、樹脂複合体粒子分散液E−4および樹脂複合体粒子F−4を作製した。
実施例、比較例では以下の試薬等を使用した。
抗インフルエンザA型モノクローナル抗体(7.15mg/mL/PBS):アドテック株式会社製
結合用緩衝液a:100mM ホウ酸溶液をHClでpH≒3に調整した。
結合用緩衝液b:100mM ホウ酸溶液をNaOHでpH≒8.5に調整した。
ブロック用緩衝液a:1重量%牛血清アルブミン溶液をHClでpH≒5に調整した。
ブロック用緩衝液b:1重量%牛血清アルブミン溶液をHClでpH≒8.5に調整した。
洗浄用緩衝液:5mMトリス溶液をHClでpH≒8.5に調整した。
保存用緩衝液:洗浄用緩衝液に、スクロースを10重量%濃度になるように添加した。
インフルエンザA型陽性コントロール(APC):インフルエンザA型ウィルス不活化抗原(アドテック株式会社製)を、検体処理液(アドテック株式会社製)を用いて100倍希釈して調製した。APCの抗原濃度は、5000FFU/mlに相当する。
陰性コントロール:検体処理液(アドテック株式会社製)
(結合工程)
マイクロチューブ[アイビス(登録商標;アズワン社製)2mL;以下同様である]に、抗インフルエンザA型モノクローナル抗体100μgを投入し、結合用緩衝液aを0.9mL添加した。転倒混和によって十分に混合した後、樹脂複合体粒子分散液E−1を0.1mL添加し、室温で3時間かけて転倒撹拌を行い、樹脂複合体粒子で標識した抗インフルエンザA型モノクローナル抗体を含む標準抗体分散液G−1を得た。
次に、標準抗体分散液G−1を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣にブロック用緩衝液aを1mL添加し、10〜20秒間かけて超音波分散処理を行い、さらに、室温で2時間かけて転倒撹拌を行い、標準抗体分散液H−1を得た。
次に、標準抗体分散液H−1を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に洗浄用緩衝液1mLを添加し、10〜20秒間かけて超音波分散処理を行った。この操作を3回繰り返し、洗浄処理とした。
次に、氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に保存用緩衝液1mLを添加し、10〜20秒間かけて超音波分散処理を行うことによって、標準抗体分散液I−1を得た。
作製した標識抗体分散液I−1を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表1に示した。
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−2を用いる以外は、実施例1と同様にして、標準抗体分散液G−2,H−2、I−2を得た。
作製した標識抗体分散液I−2を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表2に示した。
結合工程において結合用緩衝液aの代わりに結合用緩衝液bを用い、ブロック工程においてブロック用緩衝液aの代わりにブロック用緩衝液bを用いる以外は、実施例1と同様にして、標準抗体分散液G−3,H−3、I−3を得た。
作製した標識抗体分散液I−3を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表3に示した。
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−2を用い、結合用緩衝液aの代わりに結合用緩衝液bを用い、ブロック工程においてブロック用緩衝液aの代わりにブロック用緩衝液bを用いる以外は、実施例1と同様にして、標準抗体分散液G−4,H−4、I−4を得た。
作製した標識抗体分散液I−4を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表4に示した。
(結合工程)
マイクロチューブに、樹脂複合体粒子分散液E−1を0.1mL投入し、結合用緩衝液aを0.9mL添加した。転倒混和によって十分に混合した後、抗インフルエンザA型モノクローナル抗体100μgを添加し、室温で3時間かけて転倒撹拌を行い、樹脂複合体粒子で標識した抗インフルエンザA型モノクローナル抗体を含む標準抗体分散液G−5を得た。
次に、標準抗体分散液G−5を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣にブロック用緩衝液aを1mL添加し、10〜20秒間かけて超音波分散処理を行い、さらに、室温で2時間かけて転倒撹拌を行い、標準抗体分散液H−5を得た。
次に、標準抗体分散液H−5を氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に洗浄用緩衝液1mLを添加し、10〜20秒間かけて超音波分散処理を行った。この操作を3回繰り返し、洗浄処理とした。
次に、氷冷後、12000rpmで5分間かけて遠心分離を行い、上澄みを除去した後、固形分残渣に保存用緩衝液1mLを添加し、10〜20秒間かけて超音波分散処理を行うことによって、標準抗体分散液I−5を得た。
作製した標識抗体分散液I−5を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表5に示した。
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−2を用いる以外は、比較例1と同様にして、標準抗体分散液G−6,H−6、I−6を得た。
作製した標識抗体分散液I−6を用いて、イムノクロマト法での測定を行い性能を評価した。その結果を表6に示した。
結合工程において結合用緩衝液aの代わりに結合用緩衝液bを用いる以外は、比較例1と同様にして、標準抗体分散液を作製しようとしたところ、結合工程において樹脂複合体粒子が凝集してしまい、標準抗体分散液を得ることが困難であった。
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−2を用い、結合用緩衝液aの代わりに結合用緩衝液bを用いる以外は、比較例1と同様にして、標準抗体分散液を作製しようとしたところ、結合工程において樹脂複合体粒子が凝集してしまうため、標準抗体分散液を得ることが困難であった。
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−3を用い、結合用緩衝液aの代わりに結合用緩衝液bを用い、ブロック工程においてブロック用緩衝液aの代わりにブロック用緩衝液bを用いる以外は、実施例1と同様にして、標準抗体分散液G−7,H−7、I−7を得た。
作製した標識抗体分散液I−7を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表7に示した。
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−4を用い、結合用緩衝液aの代わりに結合用緩衝液bを用い、ブロック工程においてブロック用緩衝液aの代わりにブロック用緩衝液bを用いる以外は、実施例1と同様にして、標準抗体分散液G−8,H−8、I−8を得た。
作製した標識抗体分散液I−8を用いて、イムノクロマト法での測定を行い、性能を評価した。その結果を表8に示した。
結合工程において樹脂複合体粒子分散液E−1の代わりに樹脂複合体粒子分散液E−3を用い、結合用緩衝液aの代わりに結合用緩衝液bを用い、ブロック工程においてブロック用緩衝液aの代わりにブロック用緩衝液bを用いる以外は、比較例1と同様にして、標準抗体分散液G−9,H−9、I−9を得た。
作製した標識抗体分散液I−9を用いて、イムノクロマト法での測定を行い性能を評価した。その結果を表9に示した。
Claims (10)
- 標識された抗体を製造する標識抗体の製造方法であって、
前記抗体及びpH2〜9の結合用緩衝液の混合物に、樹脂粒子に有機色素又は金属粒子が固定化された構造を有する樹脂複合体粒子を、混合する工程を含むことを特徴とする、標識抗体の製造方法。 - 前記標識抗体を、pH2〜9のブロック用緩衝液中に分散させる工程をさらに含む請求項1に記載の標識抗体の製造方法。
- 前記金属粒子が、銀、ニッケル、銅、金、白金、パラジウム又はそれらのうちのいずれかを含む合金である、請求項1又は2に記載の標識抗体の製造方法。
- 前記樹脂複合体粒子における前記金属粒子は、
前記樹脂粒子外に露出した部位を有する第1の粒子と、
全体が前記樹脂粒子に内包されている第2の粒子と、
を含んでおり、
前記第1の粒子及び前記第2の粒子のうち、少なくとも一部の粒子が、前記樹脂粒子の表層部において三次元的に分布しているものである、請求項1から3のいずれか1項に記載の標識抗体の製造方法。 - 前記樹脂粒子が、金属イオンを吸着することが可能な置換基を構造に有するポリマー粒子である、請求項1から4のいずれか1項に記載の標識抗体の製造方法。
- 前記金属粒子の平均粒子径が1〜80nmの範囲内である、請求項1から5のいずれか1項に記載の標識抗体の製造方法。
- 前記樹脂複合体粒子の平均粒子径が100〜1000nmの範囲内である、請求項1から6のいずれか1項に記載の標識抗体の製造方法。
- 前記抗体が、抗インフルエンザウィルス抗体である、請求項1から7のいずれか1項に記載の標識抗体の製造方法。
- 請求項1から8のいずれか1項に記載の標識抗体の製造方法によって製造された標識抗体。
- 請求項9に記載の標識抗体を用いることを特徴とする、免疫学的測定法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016120536A JP6737643B2 (ja) | 2016-06-17 | 2016-06-17 | 標識抗体、その製造方法及び免疫学的測定法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016120536A JP6737643B2 (ja) | 2016-06-17 | 2016-06-17 | 標識抗体、その製造方法及び免疫学的測定法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017223604A true JP2017223604A (ja) | 2017-12-21 |
JP6737643B2 JP6737643B2 (ja) | 2020-08-12 |
Family
ID=60687058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016120536A Active JP6737643B2 (ja) | 2016-06-17 | 2016-06-17 | 標識抗体、その製造方法及び免疫学的測定法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6737643B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019120497A (ja) * | 2017-12-28 | 2019-07-22 | 日鉄ケミカル&マテリアル株式会社 | 免疫学的測定用金属ナノ粒子−セルロース複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ |
WO2020040159A1 (ja) * | 2018-08-21 | 2020-02-27 | デンカ生研株式会社 | 表面プラズモン共鳴を担体粒子を用いて増幅させるイムノクロマト法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06231957A (ja) * | 1992-08-31 | 1994-08-19 | Nippon Paint Co Ltd | フェライト被覆粒子及びその製法 |
JP2004163421A (ja) * | 2002-10-21 | 2004-06-10 | Sekisui Chem Co Ltd | 磁性体内包粒子とその製造方法、及び磁性体内包粒子を用いた免疫測定用粒子 |
JP2004294157A (ja) * | 2003-03-26 | 2004-10-21 | Denka Seiken Co Ltd | 金コロイドと抗体の結合体を製造する方法 |
JP2008014751A (ja) * | 2006-07-05 | 2008-01-24 | Denka Seiken Co Ltd | 着色ラテックス粒子を用いるメンブレンアッセイ法およびキット |
WO2016002742A1 (ja) * | 2014-07-01 | 2016-01-07 | 新日鉄住金化学株式会社 | 樹脂-金属複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ |
WO2016002743A1 (ja) * | 2014-07-01 | 2016-01-07 | 新日鉄住金化学株式会社 | 標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ |
-
2016
- 2016-06-17 JP JP2016120536A patent/JP6737643B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06231957A (ja) * | 1992-08-31 | 1994-08-19 | Nippon Paint Co Ltd | フェライト被覆粒子及びその製法 |
JP2004163421A (ja) * | 2002-10-21 | 2004-06-10 | Sekisui Chem Co Ltd | 磁性体内包粒子とその製造方法、及び磁性体内包粒子を用いた免疫測定用粒子 |
JP2004294157A (ja) * | 2003-03-26 | 2004-10-21 | Denka Seiken Co Ltd | 金コロイドと抗体の結合体を製造する方法 |
JP2008014751A (ja) * | 2006-07-05 | 2008-01-24 | Denka Seiken Co Ltd | 着色ラテックス粒子を用いるメンブレンアッセイ法およびキット |
WO2016002742A1 (ja) * | 2014-07-01 | 2016-01-07 | 新日鉄住金化学株式会社 | 樹脂-金属複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ |
WO2016002743A1 (ja) * | 2014-07-01 | 2016-01-07 | 新日鉄住金化学株式会社 | 標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019120497A (ja) * | 2017-12-28 | 2019-07-22 | 日鉄ケミカル&マテリアル株式会社 | 免疫学的測定用金属ナノ粒子−セルロース複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ |
WO2020040159A1 (ja) * | 2018-08-21 | 2020-02-27 | デンカ生研株式会社 | 表面プラズモン共鳴を担体粒子を用いて増幅させるイムノクロマト法 |
CN112601949A (zh) * | 2018-08-21 | 2021-04-02 | 电化株式会社 | 使用载体粒子增强表面等离子体共振的免疫层析法 |
Also Published As
Publication number | Publication date |
---|---|
JP6737643B2 (ja) | 2020-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6847077B2 (ja) | 標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ | |
JP6800275B2 (ja) | 樹脂−白金複合体及びその利用 | |
TWI694257B (zh) | 樹脂-金屬複合體、標識物質、免疫學的測定法、免疫學的測定用試藥、分析物的測定方法、分析物測定用套組以及側流型層析用測試條 | |
JP7265357B2 (ja) | 金属-樹脂複合体及びその利用 | |
JP6656052B2 (ja) | 免疫測定方法、免疫測定用キット及びラテラルフロー型クロマトテストストリップ | |
JP6737643B2 (ja) | 標識抗体、その製造方法及び免疫学的測定法 | |
JP6614826B2 (ja) | 標識抗体、その製造方法及び免疫学的測定法 | |
JP6761246B2 (ja) | 樹脂−金属複合体、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、アナライト測定用キット、及び、ラテラルフロー型クロマト用テストストリップ | |
JP2019066323A (ja) | 標識抗体、その製造方法及び免疫学的測定法 | |
JP2023140980A (ja) | 標識抗体の製造方法、標識抗体及び免疫学的測定法 | |
JP2022134172A (ja) | ナノ複合体粒子、標識物質、免疫学的測定法、免疫学的測定用試薬、アナライトの測定方法、及び、アナライト測定用キット | |
JP2018169373A (ja) | 免疫測定方法、免疫測定用キット及びラテラルフロー型クロマトテストストリップ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200226 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200421 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200714 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200716 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6737643 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |