JP2017223197A - Hydraulic device - Google Patents

Hydraulic device Download PDF

Info

Publication number
JP2017223197A
JP2017223197A JP2016120773A JP2016120773A JP2017223197A JP 2017223197 A JP2017223197 A JP 2017223197A JP 2016120773 A JP2016120773 A JP 2016120773A JP 2016120773 A JP2016120773 A JP 2016120773A JP 2017223197 A JP2017223197 A JP 2017223197A
Authority
JP
Japan
Prior art keywords
groove
hydraulic
gears
pressure side
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016120773A
Other languages
Japanese (ja)
Inventor
啓 吉田
Hiroshi Yoshida
啓 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2016120773A priority Critical patent/JP2017223197A/en
Priority to CN201710452432.XA priority patent/CN107524595A/en
Publication of JP2017223197A publication Critical patent/JP2017223197A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydraulic device which can excellently secure a large seal region and makes flow of working fluid in a low pressure side channel unlikely to be disordered.SOLUTION: A hydraulic device comprises: a pair of helical gears; and a housing 2 including a hydraulic chamber 6 in which the gears are accommodated in a meshed state of the gears. With a meshing part of the gears defined as a boundary, one side of the hydraulic chamber 6 is set to a low pressure side and the other side is set to a high pressure side. The housing 2 includes: a low pressure side channel which is opened in the hydraulic chamber 6 at the low pressure side; and a high pressure side channel which is opened in the hydraulic chamber 6 at the high pressure side. The low pressure side channel is formed as a groove-like channel 31 in which a portion formed in a region where the gear is projected in a radial direction is opened on an inner face of the hydraulic chamber 6. An edge of an opening 32 of the groove-like channel 31 is made narrower gradually in a direction in which a tooth interval between the pair of gears becomes narrower gradually. In the low pressure side channel, working fluid flows into the groove-like channel 31 in a direction from a wider opening to a narrower opening of the groove-like channel 31 or flows out of the groove-like channel 31 in a direction from the narrower opening to the wider opening of the groove-like channel 31.SELECTED DRAWING: Figure 3

Description

本発明は、歯部が相互に噛合する一対の歯車を備えた液圧装置に関し、更に詳しくは、前記一対の歯車として、はすば歯車を用いた液圧装置に関する。   The present invention relates to a hydraulic device including a pair of gears whose tooth portions mesh with each other, and more particularly, to a hydraulic device using a helical gear as the pair of gears.

前記液圧装置として、従来、一対の歯車を適宜駆動モータによって回転させ、この歯車の回転動作により作動液体を加圧して吐出する液圧ポンプや、予め加圧した作動液体を導入して前記歯車を回転させ、その回転軸の回転力を動力として使用する液圧モータなどが知られている。   Conventionally, as the hydraulic device, a pair of gears is appropriately rotated by a drive motor, and a hydraulic pump that pressurizes and discharges the working liquid by a rotating operation of the gears, or a pre-pressurized working liquid is introduced to the gears. There is known a hydraulic motor that rotates the rotating shaft and uses the rotational force of the rotating shaft as power.

このような液圧装置は、一般的に、相互に噛合する一対の歯車がハウジング内に収納されるとともに、該各歯車の両端面からそれぞれ外方に延設された各回転軸が、同ハウジング内に収納され且つ前記各歯車の両側に配設された軸受部材によって回転自在に支持された構造を備えている。そして、従来、下記特許文献1に開示されるように、前記一対の歯車として、はすば歯車を用いた液圧装置が知られている。   In such a hydraulic apparatus, generally, a pair of gears meshing with each other is housed in a housing, and each rotating shaft extending outward from both end faces of each gear is provided with the housing. And a structure that is rotatably supported by bearing members that are housed inside and disposed on both sides of each gear. Conventionally, as disclosed in Patent Document 1 below, a hydraulic device using a helical gear as the pair of gears is known.

この液圧装置は、同特許文献1に記載されるように、メガネ穴を有するケーシングと、このメガネ穴に収容されるとともに、このメガネ穴の内周面にそれぞれ当接して当該メガネ穴を高圧空間と低圧空間とに区画する一対のはすば歯車と、前記メガネ穴の低圧空間に連通する連通路とを備え、この連通路は、前記ケーシングの外部に開口する第1流路と、前記メガネ穴の低圧空間と前記第1流路との間において前記はすば歯車の軸方向に沿って延在し、前記第1流路よりも流路が大きい第2流路とを有している。   As described in Patent Document 1, the hydraulic device is accommodated in a casing having a spectacle hole and the spectacle hole, and abuts on the inner peripheral surface of the spectacle hole so that the spectacle hole is high-pressured. A pair of helical gears partitioned into a space and a low-pressure space, and a communication path communicating with the low-pressure space of the eyeglass hole, the communication path including a first flow path that opens to the outside of the casing; A second passage that extends along the axial direction of the helical gear between the low pressure space of the spectacle hole and the first passage, and has a larger passage than the first passage; Yes.

そして、前記メガネ穴の低圧空間と前記第2流路との境界には、前記はすば歯車の軸方向に沿って延在する開口が形成されており、この開口は、前記メガネ穴から前記第1流路側を見たときに、前記一対のはすば歯車の歯すじが遠のく側の開口幅が、前記一対のはすば歯車の歯すじが近付く側の開口幅よりも広い幅を有している。   An opening extending along the axial direction of the helical gear is formed at the boundary between the low pressure space of the spectacle hole and the second flow path, and the opening extends from the spectacle hole to the spectacle hole. When the first flow path side is viewed, the opening width of the pair of helical gears on the far side has a wider width than the opening width on the side of the pair of helical gears on which the tooth lines approach. doing.

この液圧装置によれば、一対のはすば歯車の歯すじが遠のく側の開口幅を、一対のはすば歯車の歯すじが近付く側の開口幅よりも広くしているので、一対のはすば歯車の歯すじが遠のく側の、シールに用いられない領域を活用するとともに、一対のはすば歯車の歯すじが近づく側のシール領域を、できるだけメガネ穴側から見て第1流路(吸込流路)側に寄せることで、メガネ穴の内周面とはすば歯車とによってシールされる領域(シール領域)を良好に大きな領域とすることができ、また、第2流路の開口面積を大きくすることができるとのことである。   According to this hydraulic device, since the opening width of the pair of helical gears on the far side is wider than the opening width of the pair of helical gears on the side where the pair of helical gears approaches, Utilizing the area where the helical gear teeth are far away and not used for sealing, the seal area where the helical gear teeth of the pair of helical gears approach is viewed from the eyeglass hole side as much as possible. The area sealed by the inner peripheral surface of the spectacle hole and the helical gear (seal area) can be made a large area by moving to the path (suction flow path) side, and the second flow path It is said that the opening area can be increased.

そして、このようにすることで、例えば液圧ポンプとして用いられる場合には、はすば歯車の歯面とメガネ穴の内周面とで囲まれた空間から作動液体が第1流路(吸込流路)側に漏れるのを防止しつつ、キャビテーションが発生するのを防止でき、また、液圧モータとして用いられる場合には、はすば歯車の歯面とメガネ穴の内周面とで囲まれた空間から作動液体が第1流路(吸込流路)側に漏れるのを防止しつつ、かつ第2流路(拡散流路)における圧力損失が増大するのを防止できるとのことである。   In this way, for example, when used as a hydraulic pump, the working liquid is drawn from the space surrounded by the tooth surface of the helical gear and the inner peripheral surface of the eyeglass hole. Cavitation can be prevented while preventing leakage to the flow path) side, and when used as a hydraulic motor, it is surrounded by the tooth surface of the helical gear and the inner peripheral surface of the eyeglass hole. It is possible to prevent an increase in pressure loss in the second flow path (diffusion flow path) while preventing the working liquid from leaking from the created space to the first flow path (suction flow path) side. .

特開2016−70209号公報Japanese Patent Laid-Open No. 2006-70209

ところで、上記特許文献1に開示された液圧装置における前記第1流路(吸込流路)は、前記一対のはすば歯車の外周面をその半径方向に投影した領域内において、その一方がハウジングの外面に開口し、他方が前記第2流路(拡散流路)に開口するように形成された、断面が円形をした丸穴となっている。一方、前記第2流路は、前記メガネ穴の内周面に開口するように、前記はすば歯車の軸方向に沿って形成された溝状の流路となっている。   By the way, the first flow path (suction flow path) in the hydraulic device disclosed in Patent Document 1 is in a region where the outer peripheral surfaces of the pair of helical gears are projected in the radial direction. It is a round hole with a circular cross section formed so as to open to the outer surface of the housing and the other to open to the second flow path (diffusion flow path). On the other hand, the second flow path is a groove-shaped flow path formed along the axial direction of the helical gear so as to open to the inner peripheral surface of the eyeglass hole.

したがって、丸穴の前記第1流路から溝状の第2流路に流入する作動液体は、第1流路と第2流路の接続部において、当該第1流路を中心として第2流路内に拡散するように流通することになるが、その際、流路断面積が第1流路から第2流路に移行する際に急激に増大(階段状に増大)しているため、作動液体の流れに乱れ(ムラ)が生じ易くなり、この結果、一対のはすば歯車を高速で回転させる場合にはキャビテーショを生じ易くなるという問題があった。そして、作動液体に流れのムラやキャビテーションを生じると、液圧装置の性能が低下し、所定の性能が発揮されないという問題につながる。   Therefore, the working liquid that flows into the groove-shaped second flow path from the first flow path having a round hole flows into the second flow centering on the first flow path at the connection portion between the first flow path and the second flow path. It will circulate so as to diffuse in the path, but at that time, the flow path cross-sectional area suddenly increases (increases stepwise) when moving from the first flow path to the second flow path, The flow of the working liquid is likely to be disturbed (unevenness). As a result, there is a problem that cavitation is likely to occur when the pair of helical gears are rotated at high speed. If the flow unevenness or cavitation occurs in the working liquid, the performance of the hydraulic device is lowered, leading to a problem that the predetermined performance is not exhibited.

このように、特許文献1の液圧装置では、上述したような、メガネ穴の内周面とはすば歯車とによってシールされる領域を良好に大きな領域とすることができ、また、第2流路の開口面積を大きくすることができるという効果が奏される反面、低圧側の吸込流路における作動液体の流れに乱れ(ムラ)を生じ易く、また、キャビテーションを生じ易いという問題があった。   Thus, in the hydraulic device of Patent Document 1, the region sealed by the inner peripheral surface of the spectacle hole and the helical gear as described above can be a large region, and the second While there is an effect that the opening area of the flow path can be increased, there is a problem that the flow of the working liquid in the suction flow path on the low pressure side is likely to be disturbed (unevenness) and cavitation is likely to occur. .

本発明は、以上の実情に鑑みなされたものであって、従来と同様に上述した大きなシール領域を確保することができるとともに、従来に比べて、低圧側の流路における作動液体の流れに乱れを生じ難い液圧装置の提供を、その目的とする。   The present invention has been made in view of the above circumstances, and can ensure the large sealing area described above as in the conventional case, and is more disturbed by the flow of the working liquid in the low-pressure side channel than in the conventional case. It is an object of the present invention to provide a hydraulic device that is less likely to cause the problem.

上記課題を解決するための本発明は、
両端面からそれぞれ外方に延出するように設けられた回転軸を有し、且つ歯部が相互に噛合する一対のはすば歯車と、
前記一対の歯車が噛合状態で収納される液圧室を有するハウジングと、
前記ハウジング内で前記各歯車の両側にそれぞれ配設され、前記各歯車の回転軸を回転自在に支持する軸受部材と、
前記液圧室は、噛合状態の前記歯車の外周面に沿った2つの円弧状をした内周面を有し、前記一対の歯車の噛合部を境に一方が低圧側に、他方が高圧側に設定されるとともに、前記ハウジングは、前記低圧側の液圧室の内面に開口する低圧側流路、並びに前記高圧側の液圧室の内面に開口する高圧側流路を備えてなり、
前記各歯車は、低圧側の液圧室内でその内周面に摺接して回転するように構成された液圧装置において、
前記低圧側流路は、前記歯車の外周面をその半径方向に投影した領域に形成される部分が、前記一対の歯車の軸間中間位置に対応する液圧室内面に前記歯車の軸線方向に沿って開口する一方、前記ハウジングの前記半径方向の外面には開口しない溝状の流路として形成され、
前記溝状流路の開口部は、その少なくとも一部において、前記歯車の軸線と直交する方向の開口幅が、前記低圧側の液圧室内周面に摺接する前記一対の歯車間の歯すじ間隔が徐々に狭くなる方向に向けて、徐々に狭くなっており、
前記低圧側流路は、作動液体が、前記溝状流路の開口幅の広い方から狭い方に向けて該溝状流路に流入し、又は溝状流路の開口幅の狭い方から広い方に向けて該溝状流路から流出するように形成された液圧装置に係る。
The present invention for solving the above problems is as follows.
A pair of helical gears each having a rotation shaft provided so as to extend outward from both end faces and meshing teeth with each other;
A housing having a hydraulic chamber in which the pair of gears are housed in mesh;
A bearing member disposed on each side of each gear in the housing, and rotatably supporting the rotation shaft of each gear;
The hydraulic chamber has two arcuate inner circumferential surfaces along the outer circumferential surface of the meshed gear, one on the low pressure side and the other on the high pressure side with the meshing portion of the pair of gears as a boundary And the housing includes a low-pressure channel that opens to the inner surface of the low-pressure hydraulic chamber, and a high-pressure channel that opens to the inner surface of the high-pressure hydraulic chamber,
Each of the gears is a hydraulic device configured to rotate in sliding contact with its inner peripheral surface in a hydraulic chamber on the low pressure side,
In the low-pressure side flow path, a portion formed in a region obtained by projecting the outer peripheral surface of the gear in the radial direction is in a hydraulic pressure chamber inner surface corresponding to an intermediate position between the shafts of the pair of gears in the axial direction of the gear. Formed as a groove-like flow path that does not open on the outer surface in the radial direction of the housing, while opening along
At least a part of the opening of the groove-shaped flow path has an opening width in a direction perpendicular to the axis of the gear, and a tooth space between the pair of gears in sliding contact with the peripheral surface of the hydraulic chamber on the low pressure side. Toward the direction of gradually narrowing, gradually narrowing,
In the low-pressure side flow channel, the working liquid flows into the groove-shaped flow channel from the wide opening width of the groove-shaped flow channel toward the narrower side, or wider from the narrower opening width of the groove-shaped flow channel. The present invention relates to a hydraulic device formed so as to flow out from the groove-shaped channel toward the direction.

この液圧装置によれば、前記一対の歯車の噛合部を境に一方の液圧室内が低圧側に、他方の液圧室内が高圧側に設定され、前記各歯車は、低圧側の液圧室内においてその内周面に摺接して回転する。   According to this hydraulic device, one hydraulic chamber is set to the low pressure side and the other hydraulic chamber is set to the high pressure side with the meshing portion of the pair of gears as a boundary, and each gear is set to the low pressure side hydraulic pressure. Rotates while sliding in contact with its inner peripheral surface in the room.

そして、低圧側の液圧室内面には、前記一対の歯車の軸間中間位置に対応する部分に、低圧側流路を形成する溝状流路が前記歯車の軸線方向に沿って開口しており、この溝状流路の開口部は、その少なくとも一部において、前記歯車の軸線と直交する方向の開口幅が、前記低圧側の液圧室内周面に摺接する前記一対の歯車間の歯すじ間隔が徐々に狭くなる方向に向けて、徐々に狭くなっている。尚、徐々に狭くなる概念には、連続的に狭くなる場合のみならず、段階的に狭くなる場合も含まれる。また、開口部の縁部は滑らかな直線若しくは曲線、又は階段状、ジグザグ状若しくは波形に形成されていても良い。   A groove-like flow path that forms a low-pressure side flow path is opened along the axial direction of the gear at a portion corresponding to the intermediate position between the shafts of the pair of gears on the low-pressure side hydraulic pressure chamber surface. And at least a part of the opening of the groove-like channel has an opening width in a direction perpendicular to the axis of the gear, and the teeth between the pair of gears slidably contact the peripheral surface of the hydraulic chamber on the low pressure side. The streak interval gradually narrows in the direction of gradually narrowing. The concept of gradually narrowing includes not only the case of narrowing continuously but also the case of narrowing in stages. Further, the edge of the opening may be formed in a smooth straight line or curved line, or a stepped, zigzag or corrugated shape.

また、前記低圧側流路は、作動液体が、前記溝状流路の開口幅の広い方から狭い方に向けて該溝状流路に流入し、又は溝状流路の開口幅の狭い方から広い方に向けて該溝状流路から流出するように形成される。即ち、液圧装置がポンプである場合には、低圧側流路は、作動液体が、溝状流路の開口幅の広い方から狭い方に向けて当該溝状流路に流入するように構成され、一方、液圧装置がモータである場合には、低圧側流路は、作動液体が、溝状流路の開口幅の狭い方から広い方に向けて当該溝状流路から流出するように形成される。   In the low-pressure channel, the working liquid flows into the groove-shaped channel from the wider opening width of the groove-shaped channel toward the narrower one, or the groove-shaped channel having the smaller opening width. It is formed so as to flow out from the groove-like channel toward the wider side. That is, when the hydraulic device is a pump, the low-pressure side channel is configured such that the working liquid flows into the grooved channel from the wider opening width of the grooved channel toward the narrower side. On the other hand, when the hydraulic device is a motor, the low-pressure side flow path causes the working liquid to flow out from the groove-shaped flow path from the narrowest opening width of the groove-shaped flow path. Formed.

斯くして、本発明の液圧装置によれば、低圧側の液圧室内面に開口する溝状流路の開口部の少なくとも一部は、その前記開口幅が、前記一対の歯車間の歯すじ間隔が徐々に狭くなる方向に向けて、徐々に狭くなっているので、低圧側の液圧室内周面に摺接する各歯車の歯すじを可能な限り溝状流路の開口縁部に近づけた状態に設定することができ、低圧側の液圧室内周面とはすば歯車とによってシールされる領域(シール領域)を可及的に大きな領域とすることができる。そして、このように大きなシール領域を確保することで、高圧側から低圧側に作動液体が漏出するのを防止することができる、言わばシール性をより高めることができる。   Thus, according to the hydraulic device of the present invention, at least a part of the opening of the groove-like channel that opens to the low pressure side hydraulic pressure chamber inner surface has a width between the teeth of the pair of gears. Since the streak interval is gradually narrowed in the direction of gradually narrowing, the tooth streaks of the gears that are in sliding contact with the peripheral surface of the hydraulic chamber on the low pressure side are as close as possible to the opening edge of the groove-like flow path. The region sealed (sealed region) by the low pressure side hydraulic pressure chamber peripheral surface and the helical gear can be made as large as possible. And by ensuring such a large sealing area, it is possible to prevent the working liquid from leaking from the high pressure side to the low pressure side, so that the sealing performance can be further improved.

また、前記溝状流路は、液圧室内面には開口するものの、前記ハウジングの前記半径方向の外面には開口しない溝状の流路となっており、更に、前記低圧側流路が、前記溝状流路の開口幅の広い方から狭い方に向けて、作動液体が当該溝状流路に流入し、又は溝状流路の開口幅の狭い方から広い方に向けて、当該溝状流路から作動液体が流出するように形成されているので、本発明に係る液圧装置では、溝状流路内における作動液体の流れがほぼ一様で、大きな乱れを生じ難く、このため、前記一対の歯車を高速で回転させてもキャビテーション等の不具合が生じ難いものとなっている。   Further, the groove-shaped flow path is a groove-shaped flow path that opens to the inner surface of the hydraulic pressure chamber, but does not open to the outer surface in the radial direction of the housing. The working liquid flows into the groove-shaped channel from the wide opening width of the groove-shaped channel toward the narrower side, or the groove-shaped channel opens toward the wider side from the narrower opening width of the groove-shaped channel. In the hydraulic device according to the present invention, the flow of the working liquid in the groove-like flow path is almost uniform and does not easily cause a large turbulence. Even if the pair of gears are rotated at a high speed, problems such as cavitation hardly occur.

本発明において、前記溝状流路の開口縁部は、その少なくとも一部において、前記低圧側の液圧室内周面に摺接する前記一対の歯車の歯すじに沿っているのが好ましい。このようにすれば、低圧側の液圧室内周面に摺接する各歯車の歯すじを、より溝状流路の開口縁部に近づけた状態に設定することができ、低圧側の液圧室内周面とはすば歯車とによってシールされるシール領域をより大きな領域とすることができる。   In this invention, it is preferable that the opening edge part of the said groove-shaped flow path is along the tooth trace of a pair of said gears which slidably contacts the hydraulic chamber surrounding surface of the said low voltage | pressure side in at least one part. In this way, the tooth streaks of the gears that are in sliding contact with the peripheral surface of the hydraulic chamber on the low pressure side can be set closer to the opening edge of the groove-like flow path, and the hydraulic chamber on the low pressure side can be set. The seal area sealed by the peripheral surface and the helical gear can be a larger area.

そして、このような溝状流路の開口部は、前記液圧室内から見た縁部の全体形状(輪郭形状)がV字状、U字状又は放物線状であることができる。   And the opening part of such a groove-shaped flow path can be V-shaped, U-shaped, or parabolic in the whole edge shape (contour shape) seen from the said hydraulic pressure chamber.

更に、本発明において、前記溝状流路の開口縁部は、その全体が、前記低圧側の液圧室内周面に摺接する前記一対の歯車の歯すじに沿っているのがより好ましい。このようにすれば、低圧側の液圧室内周面に摺接する各歯車の歯すじを、更に溝状流路の開口縁部に近づけた状態に設定することができ、低圧側の液圧室内周面とはすば歯車とによってシールされるシール領域を更に大きな領域とすることができる。   Furthermore, in the present invention, it is more preferable that the opening edge of the groove-like channel is entirely along the tooth traces of the pair of gears that are in sliding contact with the peripheral surface of the hydraulic chamber on the low pressure side. In this way, the tooth streaks of the gears that are in sliding contact with the peripheral surface of the hydraulic chamber on the low pressure side can be set closer to the opening edge of the groove-like flow path, and the hydraulic chamber on the low pressure side can be set. The sealing area sealed by the peripheral surface and the helical gear can be made larger.

また、本発明において、前記溝状流路の溝深さは、前記低圧側の液圧室内周面に摺接する前記一対の歯車間の歯すじ間隔が徐々に狭くなる方向に向けて、徐々に浅くなっているのが好ましい。   Further, in the present invention, the groove depth of the groove-like flow path is gradually increased in a direction in which a tooth space between the pair of gears slidably contacting the low pressure side hydraulic chamber circumferential surface is gradually reduced. Preferably it is shallow.

以上のように、本発明に係る液圧装置によれば、低圧側の液圧室内面に開口する溝状流路の開口部の少なくとも一部において、その前記開口幅が、前記一対の歯車間の歯すじ間隔が徐々に狭くなる方向に向けて、徐々に狭くなっているので、低圧側の液圧室内周面に摺接する各歯車の歯すじを可能な限り溝状流路の開口縁部に近づけた状態に設定することができ、低圧側の液圧室内周面とはすば歯車とによってシールされるシール領域を可及的に大きな領域とすることができる。そして、このように大きなシール領域を確保することで、高圧側から低圧側に作動液体が漏出するのを防止することができる、言わばシール性をより高めることができる。   As described above, according to the hydraulic device according to the present invention, the opening width of at least a part of the opening portion of the groove-like channel that opens to the low pressure side hydraulic chamber inner surface is between the pair of gears. As the tooth trace interval of the gear is gradually narrowed in the direction of gradually narrowing, the tooth trace of each gear slidingly contacting the peripheral surface of the hydraulic pressure chamber on the low pressure side is as much as possible at the opening edge of the groove-like flow path The seal area sealed by the low pressure side hydraulic chamber inner circumferential surface and the helical gear can be made as large as possible. And by ensuring such a large sealing area, it is possible to prevent the working liquid from leaking from the high pressure side to the low pressure side, so that the sealing performance can be further improved.

また、前記溝状流路は、液圧室内面には開口するものの、前記ハウジングの前記半径方向の外面には開口しない溝状の流路となっており、更に、前記低圧側流路が、前記溝状流路の開口幅の広い方から狭い方に向けて、作動液体が当該溝状流路に流入し、又は溝状流路の開口幅の狭い方から広い方に向けて、当該溝状流路から作動液体が流出するように形成されているので、本発明に係る液圧装置では、溝状流路内における作動液体の流れがほぼ一様で、大きな乱れを生じ難く、このため、前記一対の歯車を高速で回転させてもキャビテーション等の不具合が生じ難いものとなっている。   Further, the groove-shaped flow path is a groove-shaped flow path that opens to the inner surface of the hydraulic pressure chamber, but does not open to the outer surface in the radial direction of the housing. The working liquid flows into the groove-shaped channel from the wide opening width of the groove-shaped channel toward the narrower side, or the groove-shaped channel opens toward the wider side from the narrower opening width of the groove-shaped channel. In the hydraulic device according to the present invention, the flow of the working liquid in the groove-like flow path is almost uniform and does not easily cause a large turbulence. Even if the pair of gears are rotated at a high speed, problems such as cavitation hardly occur.

本発明の一実施形態に係る油圧ポンプを示した平断面図であり、図4における矢視C−C方向の断面図である。It is the plane sectional view showing the hydraulic pump concerning one embodiment of the present invention, and is a sectional view of an arrow CC direction in Drawing 4. 本実施形態に係る油圧ポンプを示した正断面図であり、図1における矢視A−A方向の断面図である。It is the front sectional view showing the hydraulic pump concerning this embodiment, and is a sectional view of an arrow AA direction in Drawing 1. 図1に示した平断面図において、一対のはすば歯車を省略して示した平断面図である。In the plane sectional view shown in FIG. 1, a pair of helical gears are omitted from the plane sectional view. 本実施形態に係る油圧ポンプの第2ハウジングを示した側面図であり、図1における矢視B−B方向の側面図である。It is the side view which showed the 2nd housing of the hydraulic pump which concerns on this embodiment, and is the side view of the arrow BB direction in FIG. 本発明の他の実施形態に係る油圧ポンプを示した平断面図であり、図3と同様に、一対のはすば歯車を省略して示した平断面図である。FIG. 4 is a plan sectional view showing a hydraulic pump according to another embodiment of the present invention, and is a plan sectional view showing a pair of helical gears omitted as in FIG. 3. 本発明の更に他の実施形態に係る油圧ポンプを示した平断面図であり、図3と同様に、一対のはすば歯車を省略して示した平断面図である。FIG. 5 is a plan sectional view showing a hydraulic pump according to still another embodiment of the present invention, and is a plan sectional view showing a pair of helical gears omitted as in FIG. 3.

以下、本発明の具体的な実施の形態について、図面を参照しながら説明する。本例の装置は油圧ポンプ1であり、図1〜図4に示すように、ハウジング2と、このハウジング2内に設けられる一対のはすば歯車(以下、単に「歯車」という)10,20と、歯車10の両端面から軸線方向に沿って延設された回転軸11,12と、同じく歯車20の両端面から軸線方向に沿って延設された回転軸21,22と、歯車10の両側に設けられて、回転軸11,12をそれぞれ回転自在に支持する軸受部材たるブッシュ13,14と、同じく歯車20の両側に設けられて、回転軸21,22をそれぞれ回転自在に支持するブッシュ23,24とを備えている。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The apparatus of this example is a hydraulic pump 1, and as shown in FIGS. 1 to 4, a housing 2 and a pair of helical gears (hereinafter simply referred to as “gears”) 10, 20 provided in the housing 2. Rotation shafts 11 and 12 extending along the axial direction from both end faces of the gear 10, rotation shafts 21 and 22 similarly extending along the axial direction from both end faces of the gear 20, and Bushings 13 and 14 as bearing members that are provided on both sides and rotatably support the rotating shafts 11 and 12, respectively, and bushes that are also provided on both sides of the gear 20 and rotatably support the rotating shafts 21 and 22 respectively. 23, 24.

前記ハウジング2は、第1ハウジング3、第2ハウジング4及び第3ハウジング5の3つの部材から成り、図1に示すように、第1ハウジング3は左側に位置し、第2ハウジング4は中央に位置し、第3ハウジング5は右側に位置した状態で連設され、取付ボルト等によって一体的に締結されている。尚、第1ハウジング3と第2ハウジング4との間、及び第2ハウジング4と第3ハウジング5との間は、それぞれシール7,8によって液密状にシールされている。   The housing 2 includes three members, a first housing 3, a second housing 4, and a third housing 5. As shown in FIG. 1, the first housing 3 is located on the left side, and the second housing 4 is located in the center. The third housing 5 is continuously provided in a state of being positioned on the right side, and is integrally fastened by a mounting bolt or the like. It should be noted that the space between the first housing 3 and the second housing 4 and the space between the second housing 4 and the third housing 5 are sealed in a liquid-tight manner by seals 7 and 8, respectively.

前記第2ハウジング4は、前記一対の歯車10,20が相互に噛合した状態で配設される液圧室6を備えている。この液圧室6は、噛合状態の歯車10,20の外周面に沿った2つの円弧状をした内周面を有する、歯車10,20の軸線と直交する方向の横断面形状がほぼ数字の8の字状をした形状を備えており、第2ハウジング4の両端面に開口している。   The second housing 4 includes a hydraulic chamber 6 disposed in a state where the pair of gears 10 and 20 mesh with each other. The hydraulic chamber 6 has two arc-shaped inner peripheral surfaces along the outer peripheral surfaces of the meshed gears 10 and 20, and the cross-sectional shape in the direction orthogonal to the axis of the gears 10 and 20 is substantially numeric. 8 has a shape of a letter “8”, and is open to both end faces of the second housing 4.

また、第1ハウジング3には、前記ブッシュ14,24がそれぞれ挿入される支持穴16,26が形成され、第3ハウジング5には、前記ブッシュ13が挿入される貫通穴15及び前記ブッシュ23が挿入される支持穴25が形成されている。貫通穴15及び支持穴16は、それぞれ前記回転軸11,12に対応する位置に同軸上に形成され、同様に、支持穴25,26は、それぞれ前記回転軸21,22に対応する位置に同軸上に形成されている。   The first housing 3 is formed with support holes 16 and 26 into which the bushes 14 and 24 are inserted, respectively, and the third housing 5 is provided with a through hole 15 and the bush 23 into which the bush 13 is inserted. A support hole 25 to be inserted is formed. The through hole 15 and the support hole 16 are coaxially formed at positions corresponding to the rotary shafts 11 and 12, respectively. Similarly, the support holes 25 and 26 are coaxial at positions corresponding to the rotary shafts 21 and 22, respectively. Formed on top.

斯くして、上述したように、回転軸11,12はブッシュ13,14によって回転自在に支持され、回転軸21,22はブッシュ23,24によって回転自在に支持される。尚、回転軸11は貫通穴15を通じて外方に延出しており、前記貫通穴15の開口側の大径部に嵌め込まれたオイルシール17によって、回転軸11の外周面と貫通穴15との間がシールされている。   Thus, as described above, the rotary shafts 11 and 12 are rotatably supported by the bushes 13 and 14, and the rotary shafts 21 and 22 are rotatably supported by the bushes 23 and 24. The rotating shaft 11 extends outward through the through hole 15, and an oil seal 17 fitted into the large-diameter portion on the opening side of the through hole 15 connects the outer peripheral surface of the rotating shaft 11 and the through hole 15. The space is sealed.

前記一対の歯車10,20は、一方が駆動歯車10、他方が従動歯車20であり、前記回転軸11に、例えば電動モータの出力軸が連結されて、当該電動モータによって矢示D方向に回転される。尚、本例では、駆動歯車10の歯部は左ねじれとなり、従動歯車20の歯部は右ねじれとなっている。   One of the pair of gears 10 and 20 is a drive gear 10 and the other is a driven gear 20. The output shaft of an electric motor, for example, is connected to the rotary shaft 11, and is rotated in the direction indicated by arrow D by the electric motor. Is done. In this example, the tooth portion of the drive gear 10 is left-handed and the tooth portion of the driven gear 20 is right-handed.

この一対の歯車10,20は、上述したように、相互に噛合した状態で液圧室6内に配設されており、液圧室6は歯車10,20の噛合部を境に高圧側と低圧側とに二分される。また、各歯車10,20は液圧室6の低圧側の内周面に摺接して回転するようになっており、その回転方向において、各歯車10,20の歯部が噛合している噛合部から、液圧室6の内周面に摺接している間の領域が低圧側の領域となり、各歯車10,20の歯部が液圧室6の内周面から離れる部位から前記噛合部までの間の領域が高圧側の領域となる。尚、実際には、低圧側の領域において、歯車10,20の歯部が液圧室6の内周面に摺接した段階から作動油の昇圧が始まっている。   As described above, the pair of gears 10 and 20 are disposed in the hydraulic chamber 6 in a state of being engaged with each other. The hydraulic chamber 6 is connected to the high pressure side with the meshing portion of the gears 10 and 20 as a boundary. Divided into low pressure side. Further, the gears 10 and 20 are configured to slide in contact with the inner peripheral surface on the low pressure side of the hydraulic chamber 6 and rotate in the rotation direction. The region between the contact portion and the inner peripheral surface of the hydraulic chamber 6 is the low pressure side region, and the meshing portion from the portion where the tooth portions of the gears 10 and 20 are separated from the inner peripheral surface of the hydraulic chamber 6. The region up to is the high pressure side region. Actually, in the region on the low pressure side, the pressurization of the hydraulic oil starts when the teeth of the gears 10 and 20 are in sliding contact with the inner peripheral surface of the hydraulic chamber 6.

前記ハウジング2には、前記低圧側の液圧室6の内面に開口する低圧側の流路である吸込流路30、並びに前記高圧側の液圧室6の内面に開口する高圧側の流路である吐出流路40が形成されている。吸込流路30は、第1ハウジング3に形成された連通路33及び第2ハウジング4に形成された溝状流路31から構成される。溝状流路31は、図2において、第2ハウジング4の左側の端面に開口するとともに、前記一対の歯車10,20の軸間であるその中間位置に対応する液圧室6の内面に、歯車10,20の軸線方向に沿って開口するように形成された溝状の流路であり、歯車10,20の半径方向における前記第2ハウジング4の外面には開口していない。尚、上述のように、この溝状流路31は第2ハウジング4に形成された流路であるが、歯車10,20の外周面をその半径方向に投影した領域に形成された流路であると言い換えることができる。   The housing 2 includes a suction flow path 30 that is a low-pressure-side flow path that opens to the inner surface of the low-pressure side hydraulic chamber 6, and a high-pressure-side flow path that opens to the inner surface of the high-pressure side hydraulic chamber 6. The discharge flow path 40 is formed. The suction flow path 30 includes a communication path 33 formed in the first housing 3 and a groove-shaped flow path 31 formed in the second housing 4. In FIG. 2, the groove-like flow path 31 opens on the left end face of the second housing 4, and on the inner surface of the hydraulic chamber 6 corresponding to the intermediate position between the pair of gears 10 and 20. It is a groove-shaped channel formed so as to open along the axial direction of the gears 10 and 20, and is not open on the outer surface of the second housing 4 in the radial direction of the gears 10 and 20. As described above, the groove-like flow path 31 is a flow path formed in the second housing 4, but is a flow path formed in a region in which the outer peripheral surfaces of the gears 10 and 20 are projected in the radial direction. In other words.

また、図3に示すように、この溝状流路31の開口部32において、前記歯車10,20の軸線と平行な仮想の中心軸線Lを挟んだ両側の縁部の一部は、低圧側の液圧室6の内周面に摺接する前記一対の歯車10,20の歯すじに沿っており、言い換えれば、前記仮想の中心軸線L(歯車10,20の軸線に同じ)と直交する方向の幅(開口幅)が、前記液圧室6の内周面に摺接する一対の歯車10,20間の歯すじ間隔が徐々に狭くなる方向に向けて、徐々に狭くなっており、前記液圧室6内から見た開口部32の形状はV字状、U字状、或いは放物線状になっている。尚、図3において示した2点鎖線は各歯車10,20の歯すじを表している。   Further, as shown in FIG. 3, in the opening 32 of the groove-shaped channel 31, a part of the edge on both sides sandwiching the virtual central axis L parallel to the axis of the gears 10 and 20 is on the low pressure side. Along the tooth traces of the pair of gears 10 and 20 that are in sliding contact with the inner peripheral surface of the hydraulic pressure chamber 6, in other words, the direction orthogonal to the virtual central axis L (same as the axis of the gears 10 and 20). The width (opening width) of the liquid pressure chamber 6 is gradually narrowed in a direction in which the tooth gap between the pair of gears 10 and 20 slidably contacting the inner peripheral surface of the hydraulic pressure chamber 6 is gradually narrowed. The shape of the opening 32 viewed from the inside of the pressure chamber 6 is V-shaped, U-shaped, or parabolic. In addition, the two-dot chain line shown in FIG. 3 represents the tooth trace of each gear 10 and 20.

また、図2に示すように、前記溝状流路31の溝深さは、低圧側の前記液圧室6の内周面に摺接する一対の歯車10,20間の歯すじ間隔が徐々に狭くなる方向に向けて、徐々に浅くなっている。   In addition, as shown in FIG. 2, the groove depth of the groove-like flow path 31 is such that the interval between the pair of gears 10 and 20 slidably contacting the inner peripheral surface of the hydraulic chamber 6 on the low pressure side is gradually increased. It gradually becomes shallower in the direction of narrowing.

一方、前記連通路33は、その一方側が第1ハウジング3の右側の端面に開口して前記溝状流路31の開口部に接続し、その他方側が第1ハウジング3の外面(前記半径方向の外面)に開口している。この第1ハウジング3の外面に形成された開口(供給口)34は適宜配管を介して作動油の供給源に接続される。斯くして、前記供給口34から連通路33に供給された作動油は、前記溝状流路31内に流入するが、その際、作動油は、前記溝状流路31の開口幅の広い方から狭い方に向けて当該溝状流路31内に流入する。   On the other hand, one side of the communication path 33 opens to the right end surface of the first housing 3 and is connected to the opening of the groove-shaped flow path 31, and the other side is the outer surface of the first housing 3 (in the radial direction). Open to the outer surface. An opening (supply port) 34 formed on the outer surface of the first housing 3 is connected to a hydraulic oil supply source through a pipe as appropriate. Thus, the hydraulic oil supplied to the communication path 33 from the supply port 34 flows into the groove-like flow path 31, and at this time, the hydraulic oil has a wide opening width in the groove-like flow path 31. It flows into the groove-shaped channel 31 from one side toward the narrower side.

また、前記吐出流路40は、その一方が前記一対の歯車10,20の軸間であるその中間位置に対応する液圧室6の内面に開口するとともに、その他方が第2ハウジング4の外面に開口するように形成された流路であり、この第2ハウジング4の外面に形成された開口(吐出口)41は、適宜配管を介して油圧機器に接続される。   Further, one of the discharge passages 40 opens on the inner surface of the hydraulic chamber 6 corresponding to the intermediate position between the shafts of the pair of gears 10 and 20, and the other is the outer surface of the second housing 4. The opening (discharge port) 41 formed on the outer surface of the second housing 4 is connected to a hydraulic device through piping as appropriate.

以上の構成を備えた本例の油圧ポンプ1によれば、前記第1ハウジング3の供給口34を、適宜配管を介して作動油供給源に接続するとともに、前記吐出口41を、適宜配管を介して適宜油圧機器に接続し、また、前記駆動歯車10の回転軸11に電動モータを接続した後、当該電動モータにより駆動歯車10を前記矢示D方向に回転させる。   According to the hydraulic pump 1 of the present example having the above configuration, the supply port 34 of the first housing 3 is connected to a hydraulic oil supply source through an appropriate pipe, and the discharge port 41 is connected to an appropriate pipe. Then, the electric gear is connected to the hydraulic equipment as appropriate, and an electric motor is connected to the rotating shaft 11 of the driving gear 10, and then the driving gear 10 is rotated in the arrow D direction by the electric motor.

これにより、駆動歯車10に噛合した従動歯車20が駆動歯車10とともに回転し、この歯車10,20の回転により前記連通路33及び溝状流路31から液圧室6内に作動油が流入して、前記液圧室6の内周面と各歯車10,20の歯部によって挟まれた領域の作動油が、各歯車10,20の回転によって吐出流路40側に移送され、液圧室6内は、歯車10,20の回転方向において、歯車10,20の歯部が相互に噛合した噛合部から、当該歯部が液圧室6の内周面に摺接した状態にあるまでの間の領域が低圧領域(低圧側)となり、各歯車10,20の歯部が液圧室6の内周面から離れる部位から前記噛合部までの間の領域が高圧領域(高圧側)となる。そして、高圧に加圧された作動油が前記吐出口41から上記配管を介して油圧機器に供給される。   As a result, the driven gear 20 meshed with the drive gear 10 rotates together with the drive gear 10, and hydraulic oil flows into the hydraulic chamber 6 from the communication path 33 and the groove-shaped flow path 31 by the rotation of the gears 10 and 20. The hydraulic oil in the region sandwiched between the inner peripheral surface of the hydraulic chamber 6 and the tooth portions of the gears 10 and 20 is transferred to the discharge flow path 40 side by the rotation of the gears 10 and 20, and the hydraulic chamber 6 is from the meshing portion where the tooth portions of the gears 10 and 20 mesh with each other in the rotational direction of the gears 10 and 20 until the tooth portions are in sliding contact with the inner peripheral surface of the hydraulic chamber 6. The region between them is the low pressure region (low pressure side), and the region between the part where the teeth of the gears 10, 20 are separated from the inner peripheral surface of the hydraulic chamber 6 and the meshing portion is the high pressure region (high pressure side). . Then, the hydraulic oil pressurized to a high pressure is supplied from the discharge port 41 to the hydraulic equipment through the pipe.

そして、本例の油圧ポンプ1では、吸込流路30を形成する溝状流路31が、一対の歯車10,20の軸間であるその中間位置に対応する液圧室6の内面に開口しており、この溝状流路31の開口部32は、歯車10,20の軸線と平行な仮想の中心軸線Lを挟んだ両側の縁部の少なくとも一部が、低圧側の液圧室6の内周面に摺接する一対の歯車10,20の歯すじに沿って設けられているので、低圧側の液圧室6の内周面に摺接する各歯車10,20の歯すじを可能な限り、即ち、可及的に溝状流路31の開口部32の縁部に近づけた状態に設定することができ、低圧側の液圧室6の内周面と歯車10,20の歯部とによってシールされるシール領域を良好に大きな領域とすることができる。斯くして、このように大きなシール領域を確保することで、高圧側から低圧側に作動油が漏出するのを防止することができ、そのシール性をより高めることができる。   In the hydraulic pump 1 of this example, the groove-like flow path 31 forming the suction flow path 30 opens to the inner surface of the hydraulic chamber 6 corresponding to the intermediate position between the pair of gears 10 and 20. The opening 32 of the groove-like flow path 31 is such that at least a part of both side edges sandwiching a virtual center axis L parallel to the axis of the gears 10 and 20 is in the low pressure side hydraulic chamber 6. Since it is provided along the tooth traces of the pair of gears 10 and 20 that are in sliding contact with the inner peripheral surface, the tooth traces of the gears 10 and 20 that are in sliding contact with the inner peripheral surface of the low pressure side hydraulic chamber 6 are as much as possible. That is, it can be set as close as possible to the edge of the opening 32 of the groove-shaped flow path 31, and the inner peripheral surface of the low-pressure side hydraulic chamber 6 and the teeth of the gears 10, 20 The sealing area sealed by can be a large area. Thus, by ensuring such a large sealing area, it is possible to prevent the hydraulic oil from leaking from the high pressure side to the low pressure side, and the sealing performance can be further improved.

また、前記溝状流路31は、液圧室6の内面には開口するものの、前記第2ハウジング4の半径方向の外面には開口しない溝状の流路となっており、更に、連通路33は、当該連通路33から溝状流路31に流入する作動油が、溝状流路31の開口幅の広い方から狭い方に向けた方向に流入するように形成され、また、溝状流路31の溝深さが同方向に向けて徐々に浅くなっているので、本例の油圧ポンプ1では、溝状流路31内における作動油の流れが大きな乱れを生じ難い、淀みのないほぼ一様なものとなっている。このため、本例の油圧ポンプ1では、その吐出圧(出力)を高めるべく、前記歯車10,20を高速で回転させてもキャビテーション等の不具合が生じ難いものとなっている。   The groove-like channel 31 is a groove-like channel that opens to the inner surface of the hydraulic chamber 6 but does not open to the outer surface of the second housing 4 in the radial direction. 33 is formed so that the hydraulic oil flowing into the groove-like channel 31 from the communication passage 33 flows in a direction from the wider opening width of the groove-like channel 31 toward the narrower one. Since the groove depth of the flow path 31 is gradually shallower in the same direction, in the hydraulic pump 1 of this example, the flow of hydraulic oil in the groove-shaped flow path 31 is unlikely to be greatly disturbed and free from stagnation. It is almost uniform. For this reason, in the hydraulic pump 1 of this example, in order to increase the discharge pressure (output), even if the gears 10 and 20 are rotated at a high speed, problems such as cavitation hardly occur.

以上、本発明の一具体的な実施の形態について説明したが、本発明が採り得る具体的な態様は、何らこの態様に限定されるものではない。   As mentioned above, although one specific embodiment of this invention was described, the specific aspect which this invention can take is not limited to this aspect at all.

例えば、上例では、溝状流路31の開口部32において、前記仮想の中心軸線Lを挟んだ両側の縁部の一部を、低圧側の液圧室6の内周面に摺接する前記一対の歯車10,20の歯すじに沿ったものとしたが、このような態様に限られるものではなく、前記縁部の一部を、前記中心軸線Lと直交する方向の幅が、前記液圧室6の内周面に摺接する一対の歯車10,20間の歯すじ間隔が徐々に狭くなる方向に向けて、徐々に狭くなったものとしても良い。このような態様は、より好ましい態様であるとまでは言えないが、低圧側の液圧室6の内周面に摺接する各歯車10,20の歯すじを、溝状流路31の開口部32の縁部に相応に近づけた状態に設定することができ、低圧側の液圧室6の内周面と歯車10,20の歯部とによってシールされるシール領域を相応に大きな領域とすることができる。   For example, in the above example, in the opening portion 32 of the groove-like channel 31, a part of the edge portions on both sides of the virtual center axis L is slidably contacted with the inner peripheral surface of the low-pressure side hydraulic chamber 6. Although it was along the tooth traces of the pair of gears 10 and 20, it is not limited to such a mode, and a width of a part of the edge portion in a direction orthogonal to the central axis L is the liquid. It is good also as what was gradually narrowed toward the direction where the tooth-gap space | interval between a pair of gearwheels 10 and 20 which slidably contacts with the internal peripheral surface of the pressure chamber 6 becomes narrow gradually. Although such an aspect cannot be said to be a more preferable aspect, the tooth streaks of the gears 10 and 20 that are in sliding contact with the inner peripheral surface of the low-pressure side hydraulic chamber 6 are replaced with the openings of the groove-like flow path 31. Therefore, the seal area sealed by the inner peripheral surface of the low-pressure side hydraulic chamber 6 and the teeth of the gears 10 and 20 can be made a correspondingly large area. be able to.

一方、より好ましい態様としては、図5に示すように、溝状流路31’の開口部32’において、前記仮想の中心軸線Lを挟んだ両側の縁部は、それぞれその全体が、摺接する歯車10,20の歯すじ方向に沿ったものを挙げることができる。この態様によれば、上例のものに比べて、溝状流路31内における作動油の流れをより一層淀みのない一様なものとすることができる。   On the other hand, as a more preferable aspect, as shown in FIG. 5, in the opening portion 32 ′ of the groove-shaped channel 31 ′, the entire edge portions on both sides of the virtual center axis L are in sliding contact with each other. The thing along the tooth trace direction of the gearwheels 10 and 20 can be mentioned. According to this aspect, compared with the above example, the flow of the hydraulic oil in the groove-like flow path 31 can be made even more uniform without any stagnation.

更に、図6に示すように、溝状流路31”の開口部32”は、その縁部が階段状に形成されるとともに、当該縁部の全体形状(輪郭形状)がV字状(U字状又は放物線状であっても良い)に形成されていても良い。或いは、開口部32”の縁部は、かかる階段状に代えて、ジグザグ状や波状に形成されていても良い。   Furthermore, as shown in FIG. 6, the opening 32 ″ of the groove-shaped channel 31 ″ has an edge formed in a step shape, and the entire shape (contour shape) of the edge is V-shaped (U It may be formed in a letter shape or a parabolic shape). Alternatively, the edge of the opening 32 ″ may be formed in a zigzag shape or a wave shape instead of the step shape.

同様に、図5に示した溝状流路31’の開口部32’において、その縁部が階段状、ジグザグ状又は波形に形成されていても良い。   Similarly, in the opening portion 32 ′ of the groove-like channel 31 ′ shown in FIG. 5, the edge portion may be formed in a stepped shape, a zigzag shape, or a corrugated shape.

また、上例では、溝状流路31の溝深さを、低圧側の前記液圧室6の内周面に摺接する一対の歯車10,20間の歯すじ間隔が徐々に狭くなる方向に向けて、徐々に浅くなるようにしたが、このような態様に限られるものではなく、図2において1点鎖線で示すように、溝状流路31の溝深さをほぼ一定にしても良い。この態様においては、上例の油圧ポンプ1に比べて、溝状流路31内における作動油の流れに淀みが生じ易くなるものの、本発明の目的については、これを十分に達成することができる。   Further, in the above example, the groove depth of the groove-like flow path 31 is set in such a direction that the interval between the pair of gears 10 and 20 slidably contacting the inner peripheral surface of the low-pressure side hydraulic chamber 6 is gradually reduced. However, the present invention is not limited to such a mode, and the groove depth of the groove-like channel 31 may be made substantially constant as shown by a one-dot chain line in FIG. . In this aspect, the hydraulic oil flow in the channel 31 is more likely to stagnate than the hydraulic pump 1 in the above example, but this can be sufficiently achieved for the purpose of the present invention. .

また、上例では、前記連通路33を、その前記他方側が前記第1ハウジング3の前記半径方向の外面に開口するように構成したが、このような態様に限られるものではなく、図2において、2点鎖線で示すように、第1ハウジング3の左側の端面に開口するように構成しても良い。このような態様によっても、連通路33から溝状流路32に流入する作動油の流れを、溝状流路31の開口幅の広い方から狭い方に向けた流れにすることができ、溝状流路31内における作動油の流れをスムーズなものとすることができる。   In the above example, the communication passage 33 is configured such that the other side opens to the outer surface of the first housing 3 in the radial direction. However, the present invention is not limited to this mode. You may comprise so that it may open to the left end surface of the 1st housing 3, as shown with a dashed-two dotted line. Also according to such an aspect, the flow of the hydraulic oil flowing into the groove-like flow path 32 from the communication path 33 can be changed from a wider opening width of the groove-like flow path 31 to a narrower one. The flow of hydraulic oil in the channel 31 can be made smooth.

また、上例では、高圧側流路である吐出流路40を、その一方が前記一対の歯車10,20の軸間であるその中間位置に対応する液圧室6の内面に開口するとともに、その他方が第2ハウジング4の外面に開口するように構成したが、このような態様に限られるものではなく、当該吐出流路40は、前記吸込流路30と同様に、これを第1ハウジング33に形成される連通路と第2ハウジング4に形成される溝状流路とから構成し、溝状流路内の作動油が当該溝状流路の開口幅の狭い方から広い方に向けて流出するように構成しても良い。このような構成とすることによって、高圧側流路においても、溝状流路から連通路に流出する作動油の流れを、当該溝状流路の開口幅の狭い方から広い方に向けた流れにすることができ、当該溝状流路内における作動油の流れをスムーズなものにすることができる。   In the above example, the discharge passage 40 that is the high-pressure side passage opens on the inner surface of the hydraulic chamber 6 corresponding to the intermediate position, one of which is between the shafts of the pair of gears 10 and 20. Although the other side is configured to open to the outer surface of the second housing 4, the present invention is not limited to such an embodiment, and the discharge channel 40 is similar to the suction channel 30 in the first housing. 33 and a groove-like channel formed in the second housing 4, and the hydraulic oil in the groove-like channel is directed from the narrower opening width of the groove-like channel to the wider one. It may be configured to flow out. By adopting such a configuration, even in the high-pressure side flow channel, the flow of the hydraulic oil flowing out from the groove-shaped flow channel to the communication channel flows from the narrower opening width of the groove-shaped flow channel to the wider one. It is possible to make the flow of hydraulic oil in the groove-like flow path smooth.

また、上例では、ハウジング2を第1ハウジング3、第2ハウジング4及び第3ハウジング5から構成し、ブッシュ14,24を第1ハウジング3に設け、ブッシュ13,23を第3ハウジングに設けた構成としたが、ハウジング2の構成としては、このような態様に限られるものではない。一例を挙げるとすれば、第2ハウジング4にブッシュ13,23を設けた構成としても良い。   In the above example, the housing 2 is composed of the first housing 3, the second housing 4, and the third housing 5, the bushes 14 and 24 are provided in the first housing 3, and the bushes 13 and 23 are provided in the third housing. Although the configuration is adopted, the configuration of the housing 2 is not limited to such a mode. As an example, the second housing 4 may be provided with bushes 13 and 23.

また、上例では、作動液体として油を用いる油圧ポンプとして本発明を具現化したが、本発明が採り得る態様は、このような油圧ポンプに限られるものではなく、本発明は、クーラントポンプ等、水を主成分とする液体を作動液体とした液圧ポンプとして具現化することができる。また、本発明は液圧ポンプではなく、液圧モータとして具現化することができる。   In the above example, the present invention is embodied as a hydraulic pump that uses oil as the working liquid. However, the aspects that the present invention can take are not limited to such a hydraulic pump, and the present invention includes a coolant pump and the like. In addition, it can be embodied as a hydraulic pump using a liquid mainly composed of water as a working liquid. Further, the present invention can be embodied not as a hydraulic pump but as a hydraulic motor.

1 油圧ポンプ
2 ハウジング
3 第1ハウジング
4 第2ハウジング
5 第3ハウジング
6 液圧室
10,20 (はすば)歯車
11,12,21,22 回転軸
13,14、23,24 ブッシュ
30 低圧側流路
31 溝状流路
32 開口部
33 連通路
40 高圧側流路
DESCRIPTION OF SYMBOLS 1 Hydraulic pump 2 Housing 3 1st housing 4 2nd housing 5 3rd housing 6 Hydraulic chamber 10, 20 (helical) gear 11, 12, 21, 22, Rotating shaft 13, 14, 23, 24 Bush 30 Low pressure side Channel 31 Groove-shaped channel 32 Opening 33 Communication channel 40 High-pressure side channel

Claims (5)

両端面からそれぞれ外方に延出するように設けられた回転軸を有し、且つ歯部が相互に噛合する一対のはすば歯車と、
前記一対の歯車が噛合状態で収納される液圧室を有するハウジングと、
前記ハウジング内で前記各歯車の両側にそれぞれ配設され、前記各歯車の回転軸を回転自在に支持する軸受部材と、
前記液圧室は、噛合状態の前記歯車の外周面に沿った2つの円弧状をした内周面を有し、前記一対の歯車の噛合部を境に一方が低圧側に、他方が高圧側に設定されるとともに、前記ハウジングは、前記低圧側の液圧室の内面に開口する低圧側流路、並びに前記高圧側の液圧室の内面に開口する高圧側流路を備えてなり、
前記各歯車は、低圧側の液圧室内でその内周面に摺接して回転するように構成された液圧装置において、
前記低圧側流路は、前記歯車の外周面をその半径方向に投影した領域に形成される部分が、前記一対の歯車の軸間中間位置に対応する液圧室内面に前記歯車の軸線方向に沿って開口する一方、前記ハウジングの前記半径方向の外面には開口しない溝状の流路として形成され、
前記溝状流路の開口部は、その少なくとも一部において、前記歯車の軸線と直交する方向の開口幅が、前記低圧側の液圧室内周面に摺接する前記一対の歯車間の歯すじ間隔が徐々に狭くなる方向に向けて、徐々に狭くなっており、
前記低圧側流路は、作動液体が、前記溝状流路の開口幅の広い方から狭い方に向けて該溝状流路に流入し、又は溝状流路の開口幅の狭い方から広い方に向けて該溝状流路から流出するように形成されていることを特徴とする液圧装置。
A pair of helical gears each having a rotation shaft provided so as to extend outward from both end faces and meshing teeth with each other;
A housing having a hydraulic chamber in which the pair of gears are housed in mesh;
A bearing member disposed on each side of each gear in the housing, and rotatably supporting the rotation shaft of each gear;
The hydraulic chamber has two arcuate inner circumferential surfaces along the outer circumferential surface of the meshed gear, one on the low pressure side and the other on the high pressure side with the meshing portion of the pair of gears as a boundary And the housing includes a low-pressure channel that opens to the inner surface of the low-pressure hydraulic chamber, and a high-pressure channel that opens to the inner surface of the high-pressure hydraulic chamber,
Each of the gears is a hydraulic device configured to rotate in sliding contact with its inner peripheral surface in a hydraulic chamber on the low pressure side,
In the low-pressure side flow path, a portion formed in a region obtained by projecting the outer peripheral surface of the gear in the radial direction is in a hydraulic pressure chamber inner surface corresponding to an intermediate position between the shafts of the pair of gears in the axial direction of the gear. Formed as a groove-like flow path that does not open on the outer surface in the radial direction of the housing, while opening along
At least a part of the opening of the groove-shaped flow path has an opening width in a direction perpendicular to the axis of the gear, and a tooth space between the pair of gears in sliding contact with the peripheral surface of the hydraulic chamber on the low pressure side. Toward the direction of gradually narrowing, gradually narrowing,
In the low-pressure side flow channel, the working liquid flows into the groove-shaped flow channel from the wide opening width of the groove-shaped flow channel toward the narrower side, or wider from the narrower opening width of the groove-shaped flow channel. A hydraulic apparatus, wherein the hydraulic apparatus is formed so as to flow out from the groove-shaped channel toward the direction.
前記溝状流路の開口縁部は、その少なくとも一部において、前記低圧側の液圧室内周面に摺接する前記一対の歯車の歯すじに沿っていることを特徴とする請求項1記載の液圧装置。   The opening edge portion of the groove-shaped flow path is along at least a part of the pair of gear teeth slidingly contacting the peripheral surface of the hydraulic chamber on the low pressure side. Hydraulic device. 前記溝状流路の開口縁部は、前記液圧室内から見たその全体形状がV字状、U字状又は放物線状に形成されていることを特徴とする請求項1記載の液圧装置。   2. The hydraulic device according to claim 1, wherein the opening edge of the groove-like channel is formed in a V shape, a U shape, or a parabolic shape when viewed from the hydraulic pressure chamber. . 前記溝状流路の開口縁部は、その全体が、前記低圧側の液圧室内周面に摺接する前記一対の歯車の歯すじに沿っていることを特徴とする請求項1記載の液圧装置。   2. The hydraulic pressure according to claim 1, wherein the opening edge portion of the groove-like flow passage is entirely along the tooth traces of the pair of gears that are in sliding contact with the peripheral surface of the hydraulic pressure chamber on the low pressure side. apparatus. 前記溝状流路の溝深さは、前記低圧側の液圧室内周面に摺接する前記一対の歯車間の歯すじ間隔が徐々に狭くなる方向に向けて、徐々に浅くなっていることを特徴とする請求項1乃至4記載のいずれかの液圧装置。
The groove depth of the groove-like flow path is gradually shallower in a direction in which the tooth space between the pair of gears slidably contacting the low pressure side hydraulic chamber circumferential surface is gradually narrowed. The hydraulic apparatus according to claim 1, wherein the hydraulic apparatus is one of the first to fourth aspects.
JP2016120773A 2016-06-17 2016-06-17 Hydraulic device Withdrawn JP2017223197A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016120773A JP2017223197A (en) 2016-06-17 2016-06-17 Hydraulic device
CN201710452432.XA CN107524595A (en) 2016-06-17 2017-06-15 Hydraulic means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016120773A JP2017223197A (en) 2016-06-17 2016-06-17 Hydraulic device

Publications (1)

Publication Number Publication Date
JP2017223197A true JP2017223197A (en) 2017-12-21

Family

ID=60685958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016120773A Withdrawn JP2017223197A (en) 2016-06-17 2016-06-17 Hydraulic device

Country Status (2)

Country Link
JP (1) JP2017223197A (en)
CN (1) CN107524595A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026757A (en) * 2018-08-10 2020-02-20 株式会社島津製作所 Gear pump or motor
WO2021044570A1 (en) * 2019-09-05 2021-03-11 株式会社島津製作所 Helical gear pump, or helical gear motor
US11378076B1 (en) 2021-01-28 2022-07-05 Shimadzu Corporation Gear pump or motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195413U1 (en) * 2019-09-18 2020-01-28 Сергей Иванович Никитин GEAR PUMP

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2227119A1 (en) * 1972-06-03 1973-12-13 Daimler Benz Ag GEAR OIL PUMP, ESPECIALLY FOR MOTOR VEHICLE COMBUSTION MACHINES
US5108275A (en) * 1990-12-17 1992-04-28 Sager William F Rotary pump having helical gear teeth with a small angle of wrap
JPH0791378A (en) * 1993-09-28 1995-04-04 Mitsubishi Rayon Co Ltd Gear pump
AU2892895A (en) * 1994-07-07 1996-02-09 David Brown Hydraulics Limited Helical gear pump or motor
JP3451741B2 (en) * 1994-09-27 2003-09-29 株式会社島津製作所 Gear pump or motor
JP2989796B2 (en) * 1998-03-24 1999-12-13 株式会社山田製作所 Gear pump
JP5361074B2 (en) * 2009-11-20 2013-12-04 ジヤトコ株式会社 Helical gear pump
DE102012217115A1 (en) * 2012-09-24 2014-03-27 Robert Bosch Gmbh Gear machine with deviating from the circular low pressure port
US9366250B1 (en) * 2013-06-27 2016-06-14 Sumitomo Precision Products Co., Ltd. Hydraulic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026757A (en) * 2018-08-10 2020-02-20 株式会社島津製作所 Gear pump or motor
JP7014093B2 (en) 2018-08-10 2022-02-01 株式会社島津製作所 Gear pump or motor
WO2021044570A1 (en) * 2019-09-05 2021-03-11 株式会社島津製作所 Helical gear pump, or helical gear motor
US11378076B1 (en) 2021-01-28 2022-07-05 Shimadzu Corporation Gear pump or motor

Also Published As

Publication number Publication date
CN107524595A (en) 2017-12-29

Similar Documents

Publication Publication Date Title
JP2017223197A (en) Hydraulic device
JP6796135B2 (en) Sealing device
JP2019007622A (en) Sliding component
JPWO2020027102A1 (en) Sliding parts
US9309885B2 (en) Gear ring pump including housing containing port support therein with the port support formed of a material having a greater heat expansion coefficient than a material of the housing
JP5783305B2 (en) Gear fluid device
JP6633901B2 (en) Oil pump system
JP6220837B2 (en) Vane pump
JP5993138B2 (en) Hydraulic device
JP2016023581A (en) Gear pump and motor
JP3189138U (en) Hydraulic device
JP6464640B2 (en) Gear pump or motor
JP6589225B2 (en) Sealing device and rotating machine
JP2022120971A (en) Gear bearing structure of external gear pump
JP2020122455A (en) Geared pump or geared motor
JP2013181446A (en) Hydraulic device
JP3180128U (en) Internal gear pump
KR100744044B1 (en) oil-gear pump having a structure of Magnetic sealant
JP7014093B2 (en) Gear pump or motor
WO2024070140A1 (en) Gear pump or gear motor
KR101925793B1 (en) Rotary vane motor with circulating flow path
KR101687333B1 (en) Gear pump assembly
JP2019218939A (en) Vane pump
JP2014148907A (en) Internal gear pump
JP2010265797A (en) Gear pump or motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190305

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20190927