JP2017212291A - 固体撮像素子および電子機器 - Google Patents

固体撮像素子および電子機器 Download PDF

Info

Publication number
JP2017212291A
JP2017212291A JP2016103468A JP2016103468A JP2017212291A JP 2017212291 A JP2017212291 A JP 2017212291A JP 2016103468 A JP2016103468 A JP 2016103468A JP 2016103468 A JP2016103468 A JP 2016103468A JP 2017212291 A JP2017212291 A JP 2017212291A
Authority
JP
Japan
Prior art keywords
filter
microlens
light
lens
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016103468A
Other languages
English (en)
Other versions
JP6801230B2 (ja
Inventor
優 大久保
Masaru Okubo
優 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2016103468A priority Critical patent/JP6801230B2/ja
Publication of JP2017212291A publication Critical patent/JP2017212291A/ja
Application granted granted Critical
Publication of JP6801230B2 publication Critical patent/JP6801230B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】1画素あたりの感度を向上させることが可能な固体撮像素子および電子機器を提供する。【解決手段】光電変換領域と、光電変換領域の光入射面側に設けられ、赤色光を透過するRフィルタと、青色光を透過するBフィルタと、緑色光を透過するGフィルタとをそれぞれ有するカラーフィルタと、カラーフィルタと一対一で向かい合う複数のマイクロレンズ5Aを有するマイクロレンズ群と、を備える。マイクロレンズ群は、レンズ間のレンズ境界部5aの断面が凹形状であり、かつ、画素中央部の断面が凸形状である。マイクロレンズ5Aの高さをH、レンズ境界部5aの曲率半径をr、画素ピッチをPとしたとき、0.05<r/P<0.24 かつ、0.36<H/P<0.5を満たす。【選択図】図1

Description

本発明は、固体撮像素子および電子機器に関する。
近年では、ビデオカメラ、デジタルカメラ、カメラ付き携帯電話に搭載される撮像装置の高画素化、つまり画素微細化が進められている。しかし、撮像装置に組み込まれるCCDやCMOSセンサー等の固体撮像素子の画素微細化に伴い、1画素あたりに入射する光量減少による感度低下が問題となっている。
一般的なCCD、CMOSセンサーには、画素ごとに特定の波長の光を透過するためのカラーフィルタが形成される。最も一般的な構成では、赤色の光を通すRフィルタ、青色の光を通すBフィルタ、及び緑色の光を通すGフィルタの三種類のフィルタが、市松模様状に配置される。固体撮像装置に入射した光は、カラーフィルタによって画素ごとに特定の色に選別されて、受光素子で光を検出する。
カラーフィルタに一対一で対向するように配置される各マイクロレンズは、入射した光を画素の中央部に導き、受光感度の向上に寄与する。マイクロレンズ群は、略球面状の複数のマイクロレンズを画素毎に隙間無く配列することで、センサーの感度を効率的に高めることが出来る(特許文献1参照)。ここで、画素にマイクロレンズの形成されない平坦面が存在する場合、平坦面から入射した光が、カラーフィルタの隣接画素との境界面付近を通過することで、カラーフィルタの屈折率差による回折光が発生し、感度の低下、あるいは混色が発生する場合がある。そのため、マイクロレンズを配置する場合は、画素に隙間無く配置するのが望ましい。
センサーの感度を高めるために、例えばマイクロレンズの曲率半径を小さくすることで集光性を高める方法がある。曲率半径を小さくする場合には、レンズの底面の面積を小さくするか、レンズの底面の面積を変えずにレンズ高さを上げる方法が一般に採用される。しかし、レンズの底面の面積を小さくすると、画素に平坦面が形成されるため、感度の低下や混色が発生しやすい。一方、レンズの高さを上げる場合、焦点位置のずれにより、フォトダイオードへの集光性が悪化し、感度の低下と混色が発生する場合がある。
特開2000−332226公報
本発明は、上記のような問題に鑑みてなされたものであり、1画素あたりの感度を向上させることが可能な固体撮像素子および電子機器を提供することを目的とする。
上記の課題を解決するために、本発明の一態様に係る固体撮像素子は、複数の画素に区画され、各画素のそれぞれに光電変換領域が配置された半導体基板と、上記光電変換領域の光入射面側に設けられ、入射光を上記光電変換領域のそれぞれに集光させる複数のマイクロレンズが配列してなるマイクロレンズ群と、上記半導体基板と上記マイクロレンズ群との間に配置され、各画素に対応させて複数色を予め設定した規則パターンで配置したカラーフィルタと、を備え、上記マイクロレンズ群は、隣り合うマイクロレンズ間であるレンズ境界部の断面が、上記カラーフィルタ側に凹の凹形状であり、かつ、各マイクロレンズは、レンズ中央部の断面が上記カラーフィルタから離れる方向に凸の凸形状であり、上記マイクロレンズの高さをH、上記レンズ境界部における画素境界部上方での曲率半径をr、画素ピッチをPとしたとき、下記(1)式を満たすことを特徴とする。
0.05<r/P<0.24 かつ、0.36<H/P<0.5 ・・・(1)
本発明の態様によれば、マイクロレンズ群のレンズ形状を工夫することで、1画素あたりの感度を向上させることが可能となる。
本発明の実施形態に係るカラーフィルタを備えた固体撮像素子の一例を示し、(a)は平面図であり、(b)および(c)は、(a)をV1若しくはV2で切断した模式的断面を例示する図である。 マイクロレンズの3次元的な図の一例である。 マイクロレンズの光学的作用を説明する図である。 マイクロレンズの光学的作用を説明する図である。
以下、本発明の実施形態について図面を参照して説明する。
ただし、以下に説明する各図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適宜省略する。また、本発明の実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、各部の材質、形状、構造、配置、寸法等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
<構成>
本実施形態の固体撮像素子10は、図1に示すように、半導体基板1の上に、第1の平坦化層3a、カラーフィルタ4、第2の平坦化層3b、マイクロレンズ群5がこの順番で積層されて構成される。図1では、各画素の境界部位置には、遮光膜2が立設されている。
半導体基板1の光入射側の面は、複数の画素に区画され、各画素のそれぞれに光電変換領域1aが配置されている。光電変換領域1aには例えば光電素子が配置される。本実施形態では、図1(a)のように、各画素が矩形の場合であって、直交する2方向に沿って画素が配列する場合を例示している。画素の2次元の配列方向は、互いに直交していなくても良い。
マイクロレンズ群5は、光電変換領域1aの光入射面側に設けられ、入射光を光電変換領域1aのそれぞれに集光させる複数のマイクロレンズ5Aが配列することで構成される。即ち、画素単位に、各マイクロレンズ5Aは、画素の直上に配置される。
カラーフィルタ4は、半導体基板1とマイクロレンズ群5との間に配置され、複数の上記光電変換領域1aの各々に対応させて複数色を予め設定した規則パターンで配置される。本実施形態のカラーフィルタ4は、赤色光を透過するRフィルタと、青色光を透過するBフィルタと、緑色光を透過するGフィルタとが予め設定した規則パターンで配置されて構成される。
すなわち、本実施形態の固体撮像素子10のカラーフィルタ4は、図1に示すように、光電変換領域1aの光入射面側(図1(b)、(c)では、上面)に設けられ、赤色光を透過するRフィルタ(図1(a)で「R」と記載)、青色光を透過するBフィルタ(図1(a)で「B」と記載)、緑色光を透過するGフィルタ(図1(a)で「G」と記載)とをそれぞれ有するカラーフィルタ4と、カラーフィルタ4の光入射面側に設けられ、カラーフィルタの表面を平坦化する第2の平坦化層3bと、第2の平坦化層3bを介してカラーフィルタ4の光入射面側に設けられ、Rフィルタ、Bフィルタ及びGフィルタと一対一で向かい合う複数のマイクロレンズ5Aを有するマイクロレンズ群5と、を備える。
また、マイクロレンズ群5は、隣り合うマイクロレンズ5A間であるレンズ境界部5aの断面が、カラーフィルタ4側に凹に湾曲した谷状の凹形状であり、かつ、各マイクロレンズ5Aは、レンズ中央部の断面がカラーフィルタ4から離れる方向に凸の凸形状である。マイクロレンズ5Aの高さをH、レンズ境界部5aにおける画素境界部上方での曲率半径をr、画素ピッチをPとしたとき、マイクロレンズ群5は、0.05<r/P<0.24 かつ、0.36<H/P<0.5を満たすように形成される。
すなわち、マイクロレンズ群5は、画素境界部の直上に位置するレンズ境界部5aの断面が、谷を形成するように滑らかに湾曲した形状をなす。ここで、図1(a)に示すV1、V2は互いに直交する画素配列方向を表す。マイクロレンズ群5を断面V1、V2で切断したとき、図1(b)及び(c)に示すように、画素境界部の直上におけるレンズ境界部5aの谷を円でフィッティングした場合、その円をC1、C2とする。それぞれの円C1、C2の曲率半径rを、r1、r2とする。r1とr2は等しくても良いし、異なっていても良い。
ここで、円C1、C2と接触するマイクロレンズ群5の位置がレンズ境界部5aである。
また、r1とr2が異なっている場合には、断面V1方向と断面V2方向でマイクロレンズ5Aのレンズ中央部の曲率半径の違いにより、V1方向とV2方向でマイクロレンズ5Aの集光特性が異なる。そのため、例えばフォトダイオードがV1方向とV2方向で寸法が異なる非対称形状の場合に、フォトダイオードの形状に合わせて光を集光させることが出来、感度を効率的に高められるという効果を奏する。
各マイクロレンズ5Aの立体的な形状の例を図2に示す。図2(a)は本発明に基づくマイクロレンズ5Aの形状を、(b)は、レンズ境界部5aの谷を形成する部分を丸めない従来のマイクロレンズ5Aの形状の一例を表す。
画素ピッチをP、マイクロレンズ5Aの高さをHと定義する。このとき、マイクロレンズ群5の各マイクロレンズ5Aの集光性を高めるには、0.05<ri/P<0.24 (i=1,2)かつ、0.36<H/P<0.5を満たす範囲に設定するのが望ましい。
次に、図3を参照して、0.05<ri/P<0.24 (i=1,2)の範囲に曲率半径riを設定する理由を述べる。
図3(a)は、ri/Pが0.24よりも大きい場合、図3(b)は、ri/Pが0.05よりも小さい場合、図3(c)は、0.05<ri/P<0.24を満たす場合の、各入射光の振る舞いを模式的に示したものである。
図3(a)では、レンズ境界部5a付近のマイクロレンズ5Aが平坦に近いため、平坦面を直進した光がカラーフィルタの境界部付近へ侵入する。カラーフィルタは、各色で異なる屈折率材料で形成されるため、カラーフィルタ境界部での屈折率差により光が回折して、一部の光は隣接画素へ散乱される。そのため、センサーの混色や感度低下を引き起こす。また、図3(b)では、レンズ境界部5a付近のマイクロレンズ5Aは傾斜しているため、マイクロレンズ5Aで光が屈折され、画素中央部に光が集められる。この場合、カラーフィルタの境界部付近へ侵入する光が少ないため、回折光による混色や感度低下は発生しにくい。しかしこの場合、マイクロレンズ5Aの頂部(中央部)の曲率半径が、図3(a)と比べて大きいため、光電変換領域1a内部に光を集める能力が劣る。一方、図3(c)では、レンズ境界部5a付近のマイクロレンズ5Aは傾斜しているため、マイクロレンズ5Aで光が屈折され、画素中央部に光が集められる。また、カラーフィルタの境界部付近へ侵入する光が少ないため、回折光による混色や感度低下は発生しにくい。さらに、図3(c)は、図3(b)と比べるとマイクロレンズ5Aの頂部(中央部)の曲率半径が小さいため、光電変換領域1aの内部に光を集める能力が図3(c)と比べて改善される。このように、レンズ境界部5aの曲率半径riを0.05<ri/P<0.24を満たす範囲に設定することで、マイクロレンズ5Aの集光性を犠牲にせず、混色や感度低下を抑えることが出来る。なお、詳細は実施例に記述する。
次に、0.36<H/P<0.5を満たす範囲にレンズ高さHを設定することが望ましい理由を、図4を用いて述べる。
図4(a)はH/Pが0.5よりも大きい場合、図4(b)はH/Pが0.36よりも小さい場合、図4(c)は0.36<H/P<0.5を満たす場合の、各入射光の振る舞いを模式的に示したものである。
図4(a)の場合、レンズ頂部の曲率半径が図4(b)や図4(c)と比べて小さいため、図4(b)や図4(c)と比べるとマイクロレンズ5Aの集光性が高い。しかし、マイクロレンズ5Aの高さが上昇するに従い、マイクロレンズ5Aの焦点位置が光入射側にシフトするため、光電変換領域1aに広がった光が入射し、隣接画素への光入射による混色や感度低下が発生する。また図4(b)の場合、レンズ頂部(レンズ中央部)の曲率半径が図4(a)や図4(c)と比べて大きいため、図4(a)や図4(c)と比べるとマイクロレンズ5Aの集光性が低くなる。そのため、光電変換領域1aに集光できない光が発生し、感度低下を引き起こす。レンズ高さHを図4(c)のような範囲に設定することで、光電変換領域1aに光を効果的に集めることができる。
固体撮像素子10に入射した光は、マイクロレンズ群5の各マイクロレンズ5Aで屈折し、さらに、カラーフィルタ4を透過して、画素ごとの色に応じた光が光電変換領域1aに集光する。光電変換領域1aは、画素ごとに分離されており、光電変換領域1aに光が照射されることで発生した電荷が電子回路に流れ、信号として読み出される。
基板1および光電変換領域1aは例えばシリコンで構成される。画素間の混色を防ぐため、必要に応じて遮光膜2をアルミニウム、銀、クロム、タングステンなどの金属で形成する。第1の平坦化層3aは、基板1上に形成されており、光電変換領域1aと遮光膜2とを覆っている。第1の平坦化層3aの表面は、基板1の表面に平行な平坦面である。この第1の平坦化層3a及び第2の平坦化層3bは、酸化シリコンや窒化シリコン等で形成する。
カラーフィルタ4は、第1の平坦化層3a上に形成されている。カラーフィルタ4は、例えば、G(緑)、B(青)、R(赤)の色に対応する波長を選択的に透過する顔料や染料を含んだ有機材料により構成される。マイクロレンズ群5の各マイクロレンズ5Aは、例えば屈折率が1.4以上1.7以下程度の透明樹脂により構成される。
カラーフィルタ4の代表的な配列方式は、図1(a)に示したような緑市松(べイヤー(Bayer)配列)である。色再現性が高く、デジタルカメラを中心に多く採用されている配列方式である。
R、G、Bの各フィルタの波長450nmの屈折率をそれぞれ、Nr、Ng、Nbとし、R画素とG画素の境界部におけるレンズ境界部5aの曲率半径rをrgr、B画素とG画素の境界部におけるレンズ境界部5aの曲率半径rをrgbとすると、
|Ng−Nr|>|Ng−Nb|である場合には、rgr<rgbを満たし、
|Ng−Nr|<|Ng−Nb|である場合には、rgr>rgbを満たすように、マイクロレンズ群5の各マイクロレンズ5Aを形成することが好ましい。
このように、カラーフィルタ4の屈折率差に応じて、マイクロレンズ群5のレンズ境界部5aでの曲率半径riを境界面で異なる値としても良い。カラーフィルタ4の屈折率差が大きい境界面で回折光が発生しやすくなるため、マイクロレンズ群5の谷部を形成するレンズ境界部5aでの曲率半径riは、カラーフィルタの屈折率差の大きな画素境界部で小さくするように設計するのが好ましい。
ここで、波長450nmの屈折率で規定している理由は、BLUE画素からGREEN画素方向への混色を抑制するためである。フォトダイオードの一般的な特性として、シリコンフォトダイオードの最表面における電子とホールの再結合等により短波長の光は感度が低下しやすい。そのため、混色によりBLUE画素からGREEN画素方向へ光が流れると、もともと低くなる傾向のあるBLUE画素の感度をさらに低下させることになり好ましくないためである。
上記マイクロレンズ5Aは、例えば、画素中央部の直上に位置するレンズ中央部の形状が球面や楕円体若しくはそれに近似する曲面の一部とする。このような形状とすることで、他の形状と比べてマイクロレンズ5Aの焦点の収差を低減し、効率的に光電変換領域1aに光を集光することが出来る。あるいは、放物面形状若しくはそれに近似する曲面の一部としても良い。放物面形状の一部とする場合、球面や楕円体の一部と比べてマイクロレンズ5Aの頂部の曲率半径が小さくなるため、マイクロレンズ5Aの高さが低い場合に効率的に光を光電変換領域1aに光を集光することが出来る。
固体撮像素子10に入射した光Lは、マイクロレンズ5Aにより集光され、カラーフィルタ4に入射する。カラーフィルタ4では、画素に応じて必要な波長の光が透過し、不要な波長の光は吸収される。
カラーフィルタ4を透過した光は、第1の平坦化層3aを透過し、光電変換領域1aに集光される。光電変換領域1aに光が照射されると、光強度に比例して電荷が発生し、発生した電荷は電子回路に転送されて信号が読み出される。
<製造方法>
マイクロレンズ群5の作製方法の一例は、以下の通りである。
上記説明してきたマイクロレンズ群5は、光リソグラフィを利用することで作製できる。光リソグラフィを利用する方法として、熱フローを利用する方法と、グレースケールマスクを利用する方法が知られている。前者の方法では、マイクロレンズ群5に対応するパターンが形成されたフォトマスクを用いて基材上に塗布された感光性レジストを露光し、現像することで立体形状の矩形パターンを作製する。その後、熱フローによりレジストを曲面形状に変形させることで、マイクロレンズ群5を形成する。さらに、必要に応じ、レジストを基材とともにエッチングすることで、基材にマイクロレンズ群5のパターンを転写する。
後者の方法では、光透過率が段階的に変化するマスクを使用してレジストを露光、現像し、立体的なレジストパターンを得る。さらに、必要に応じ、レジストパターンを基材に転写することで、基材のマイクロレンズパターンを作製する。本発明におけるマイクロレンズ群5の各マイクロレンズ5Aは、形状が複雑であるため、後者の方法を用いるのが理想的である。
<実施形態の効果>
本発明の実施形態に係るマイクロレンズ群5は、レンズ間のレンズ境界部5aの断面が凹形状であり、かつ、レンズ中央部の断面が凸形状である。また、各マイクロレンズ5Aの高さをH、マイクロレンズ群5のレンズ境界部5aの曲率半径をri、画素ピッチをPとしたとき、0.05<ri/P<0.2(i=1、2) かつ、0.36<H/P<0.5とする。
この構成によれば、マイクロレンズ5Aの集光性を高めつつ、カラーフィルタ4の屈折率差による散乱を抑えることが出来る。この結果、センサーの感度を従来のマイクロレンズ5Aを使用した場合と比べて高めることが出来る。
以上説明したように、本発明の実施形態によれば、固体撮像素子の1画素あたりの感度を向上させることが可能である。この固体撮像素子を例えばデジタルカメラやビデオカメラ、カメラ付き携帯電話等に代表される電子機器に適用することで、これらの電子機器の感度と画質の均一性を高めることができる。
次に、本発明の実施例と比較例とについて説明する。
マイクロレンズ群5の各マイクロレンズ5Aは、放物面形状をベースに、レンズ間のレンズ境界部5aの谷部分に所定の曲率半径rで凹形状の丸みが形成されるように、マイクロレンズ群の各マイクロレンズ5Aの形状を設計した。カラーフィルタ4はベイヤー配列とした。感度シミュレーションは、波長オーダーの構造の光学解析で一般的に用いられる時間領域差分法(FDTD法)を用いて実施した。
計算条件は次の通りである。
〔計算条件〕
・画素ピッチ:1200nm(1.2μm)
・マイクロレンズ5Aの高さ:350nm〜600nm(50nm刻み)
・マイクロレンズ5Aの屈折率:1.6(全波長)
・カラーフィルタ4:700nm厚、RGB3色のベイヤー配列
・Rフィルタの屈折率:1.75(波長450nm)
・Gフィルタの屈折率:1.74(波長450nm)
・Bフィルタの屈折率:1.45(波長450nm)
・遮光膜2:なし
・第1の平坦化層3aの厚み:500nm
・第2の平坦化層3bの厚み:100nm
・入射波長:400nm〜700nm(10nm刻み)
・入射角:0°、15°
・偏光:TE波、TM波
・受光面:平坦化層3と光電変換領域1aとの界面に設定(受光面は画素面積の80%に設定)
マイクロレンズ群5のレンズ境界部5aの曲率半径ri(i=1,2)を以下のように設定した(riの値はマイクロレンズ5Aの高さに関わらず、r1=r2とした)。
(実施例1)88nm(ri/P=0.07)
(実施例2)135nm(ri/P=0.11)
(実施例3)185nm(ri/P=0.15)
(比較例1)60nm(ri/P=0.05)
(比較例2)240nm(ri/P=0.20)
(比較例3)293nm(ri/P=0.24)
(比較例4)377nm(ri/P=0.31)
以上の実施例・比較例の条件において、R画素、G画素、B画素の感度シミュレーションを実施した。
ここで、R画素の感度は波長600nm〜700nmの平均値、G画素の感度は波長510nm〜570nmの平均値、B画素の感度は波長420nm〜470nmの平均値で計算を行った。シミュレーションでは、入射光量に対する光電変換領域1aへ入射した光量のTE波とTM波の平均を計算し、図2(b)に示すリファレンス(放物面形状・高さ450nm)の光量との比を計算した。
結果を表1、表2に示す。
表1は、(a)GREEN画素、(b)BLUE画素、(c)RED画素の、垂直入射における感度の値である。表2は、(a)GREEN画素、(b)BLUE画素、(c)RED画素の、斜め15°入射における感度の値である。
Figure 2017212291
Figure 2017212291
表1、表2における、灰色で塗り撫したセルは、感度がリファレンスに対して1%以上低下した条件を表す。マイクロレンズ5Aの高さが400nm以下の場合、或いはri/Pが0.24以上の場合、BLUE画素の感度がリファレンスと比べて大きく低下する結果となった。一方、マイクロレンズ5Aの高さが550nm以上の場合、斜め15°の条件においてRED画素の感度が大きく低下する結果となった。ri/Pが0.05以下の場合、マイクロレンズ5Aの高さを変えてもリファレンスとの感度差が±1%未満と微小であり、シミュレーションの誤差以上の有意な感度上昇が得られなかった。リファレンスとの有意な感度差1%以上を得るためには、ri/Pは0.05よりも大きく、0.24未満であることが望ましい。さらに、H/Pは0.36よりも大きく、0.5未満であることが望ましい。
ri/Pが0.24以上でBLUE画素の感度低下が大きくなるのは、BLUEフィルタの屈折率が、GREENフィルタの屈折率と比べて大きな差があるため、BLUE画素方向からGREEN画素方向へ回折光が発生し、BLUE画素の光電変換領域1aに入射する光量が減少するためである。一方、REDフィルタとGREENフィルタの屈折率は差が小さいため、回折光が発生せず、BLUE画素に見られるような感度低下は発生しない。従って、GREEN画素とRED画素の境界部におけるレンズ境界部5aの谷部曲率半径rgrは、GREEN画素とBLUE画素の境界部における谷部曲率半径rgbと比べて小さくなるように設定しても、問題はない。
1 基板
1a 光電変換領域
2 遮光膜
3a 第1の平坦化層
3b 第2の平坦化層
4 カラーフィルタ
5 マイクロレンズ群
5A マイクロレンズ
5a レンズ境界部
10 固体撮像素子

Claims (6)

  1. 複数の画素に区画され、各画素のそれぞれに光電変換領域が配置された半導体基板と、
    上記光電変換領域の光入射面側に設けられ、入射光を上記光電変換領域のそれぞれに集光させる複数のマイクロレンズが配列してなるマイクロレンズ群と、
    上記半導体基板と上記マイクロレンズ群との間に配置され、各画素に対応させて複数色を予め設定した規則パターンで配置したカラーフィルタと、を備え、
    上記マイクロレンズ群は、隣り合うマイクロレンズ間であるレンズ境界部の断面が、上記カラーフィルタ側に凹の凹形状であり、かつ、各マイクロレンズは、レンズ中央部の断面が上記カラーフィルタから離れる方向に凸の凸形状であり、
    上記マイクロレンズの高さをH、上記レンズ境界部における画素境界部上方での曲率半径をr、画素ピッチをPとしたとき、下記(1)式を満たすことを特徴とする固体撮像素子。
    0.05<r/P<0.24 かつ、0.36<H/P<0.5 ・・・(1)
  2. 上記マイクロレンズ群において、互いに交差する2つの画素配列方向に切断したときの上記レンズ境界部の曲率半径rをそれぞれr1及びr2としたとき、r1とr2が異なる値であることを特徴とする請求項1に記載の固体撮像素子。
  3. 上記カラーフィルタは、赤色光を透過するRフィルタと、青色光を透過するBフィルタと、緑色光を透過するGフィルタとが予め設定した規則パターンで配置されて構成され、
    上記Rフィルタ、Gフィルタ及びBフィルタの波長450nmの各屈折率をそれぞれ、Nr、Ng、Nbとし、上記Rフィルタと上記Gフィルタの境界部の鉛直上における上記レンズ境界部の曲率半径をrgr、上記Bフィルタと上記Gフィルタの境界部の鉛直上における上記レンズ境界部の曲率半径をrgbと定義した場合、
    上記マイクロレンズ群は、
    |Ng−Nr|>|Ng−Nb|である場合、rgr<rgbを満たし、
    |Ng−Nr|<|Ng−Nb|である場合、rgr>rgbを満たすことを特徴とする請求項2に記載の固体撮像素子。
  4. 上記レンズ中央部の形状が楕円体形状の一部からなることを特徴とする請求項1〜請求項3のいずれか一項に記載の固体撮像素子。
  5. 上記レンズ中央部の形状が放物面形状の一部からなることを特徴とする請求項1〜請求項3のいずれか一項に記載の固体撮像素子。
  6. 請求項1〜請求項5のいずれか一項に記載の固体撮像素子を備えたことを特徴とする電子機器。
JP2016103468A 2016-05-24 2016-05-24 固体撮像素子および電子機器 Active JP6801230B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016103468A JP6801230B2 (ja) 2016-05-24 2016-05-24 固体撮像素子および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016103468A JP6801230B2 (ja) 2016-05-24 2016-05-24 固体撮像素子および電子機器

Publications (2)

Publication Number Publication Date
JP2017212291A true JP2017212291A (ja) 2017-11-30
JP6801230B2 JP6801230B2 (ja) 2020-12-16

Family

ID=60474910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016103468A Active JP6801230B2 (ja) 2016-05-24 2016-05-24 固体撮像素子および電子機器

Country Status (1)

Country Link
JP (1) JP6801230B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100772A1 (ja) * 2019-11-20 2021-05-27 凸版印刷株式会社 固体撮像素子及びその製造方法
WO2021210445A1 (ja) * 2020-04-15 2021-10-21 パナソニックIpマネジメント株式会社 撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100772A1 (ja) * 2019-11-20 2021-05-27 凸版印刷株式会社 固体撮像素子及びその製造方法
WO2021210445A1 (ja) * 2020-04-15 2021-10-21 パナソニックIpマネジメント株式会社 撮像装置

Also Published As

Publication number Publication date
JP6801230B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
US20090250594A1 (en) Solid-state image sensor and manufacturing method thereof
KR102626696B1 (ko) 고체 촬상 소자 및 그의 제조 방법
US9274254B2 (en) Optical element array, photoelectric conversion apparatus, and image pickup system
JP6035744B2 (ja) 固体撮像素子
TW201608712A (zh) 影像感測裝置及其製造方法
JP6613648B2 (ja) 固体撮像素子および電子機器
JP4941233B2 (ja) 固体撮像素子およびそれを用いた撮像装置
JP6801230B2 (ja) 固体撮像素子および電子機器
US20160247854A1 (en) Color filter array and micro-lens structure for imaging system
JP4998310B2 (ja) 固体撮像素子およびそれを用いた撮像装置
JP6638347B2 (ja) 固体撮像素子および電子機器
JP2011243885A (ja) 固体撮像装置及びその製造方法
JP2018082002A (ja) 固体撮像素子および電子機器
JP2011243749A (ja) 固体撮像装置及びその製造方法
JP2010245202A (ja) 固体撮像装置およびその製造方法
JP2009124053A (ja) 光電変換装置及びその製造方法
JP2008244225A (ja) 固体撮像装置,グレースケールマスクおよびカラーフィルタならびにマイクロレンズ
JP2009170562A (ja) 固体撮像装置及び固体撮像装置の製造方法
JP6911353B2 (ja) 固体撮像素子の製造方法
JP6520400B2 (ja) 固体撮像素子用マイクロレンズおよび固体撮像素子用マイクロレンズの形成方法
JP5408216B2 (ja) 固体撮像素子の製造方法
JP5326390B2 (ja) 固体撮像素子およびそれを用いた撮像装置
JP2007019424A (ja) 固体撮像素子
JP6311771B2 (ja) 固体撮像素子
JP2019204932A (ja) 固体撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250