JP2017200986A - 熱可塑性樹脂組成物、成形品および成形品の製造方法 - Google Patents

熱可塑性樹脂組成物、成形品および成形品の製造方法 Download PDF

Info

Publication number
JP2017200986A
JP2017200986A JP2016093454A JP2016093454A JP2017200986A JP 2017200986 A JP2017200986 A JP 2017200986A JP 2016093454 A JP2016093454 A JP 2016093454A JP 2016093454 A JP2016093454 A JP 2016093454A JP 2017200986 A JP2017200986 A JP 2017200986A
Authority
JP
Japan
Prior art keywords
filler
resin composition
thermoplastic resin
thermal conductivity
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016093454A
Other languages
English (en)
Inventor
浩介 西野
Kosuke Nishino
浩介 西野
貴博 小嶋
Takahiro Kojima
貴博 小嶋
大輔 栗原
Daisuke Kurihara
大輔 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016093454A priority Critical patent/JP2017200986A/ja
Publication of JP2017200986A publication Critical patent/JP2017200986A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】スチレン系樹脂において熱伝導性と耐衝撃性とを向上させる。
【解決手段】スチレン系樹脂を主成分とするベース樹脂10と、窒化ホウ素、窒化アルミ、炭化ケイ素、リン化ホウ素、二酸化チタン、二酸化ケイ素、硫化バリウム、アルミナ及び黒鉛のうちの1種又は2種以上の第1のフィラー11と、タルク、クレー、マイカ、ウォラストナイト及び炭酸カルシウムのうちの1種又は2種以上からなり、第1のフィラー11よりも粒子径が小さい第2のフィラー12と、を含有する。
【選択図】図1

Description

本発明は、熱可塑性樹脂を含有する熱可塑性樹脂組成物、成形品および成形品の製造方法に関する。
高分子樹脂材料である熱可塑性樹脂は、加熱することで溶融状態となり、金型内で流動させることで複雑な形状の部品でも成形可能である。中でもスチレン系樹脂は安価で流動性、機械物性に優れることから、OA機器などの電子機器を構成する多くの部品に用いられる。
しかしながら高分子樹脂材料であるスチレン系樹脂は熱伝導率が低いため、部品の肉厚が厚いと溶融状態から冷却固化させるために時間を要し、成形サイクルが長くなるので生産性が低いものであった。また部品の肉厚に差があると金型から離型した際に温度分布が生じ、成形品の収縮率分布が大きくなり、寸法精度が低下する要因となっていた。
高分子樹脂材料の熱伝導率を向上させるためには、高分子樹脂材料自体の熱伝導率を向上させる方法と熱伝導率の高いフィラーを添加する方法の2種の方法が考えられる。
高分子樹脂材料自体の熱伝導率を向上させる方法では、分子構造を変えることで可能となり熱伝導率を数倍にすることができる。しかしながら、この方法はエポキシやシリコンなど一部の樹脂に限られており、スチレン系樹脂では実現できていない。
熱伝導率の高いフィラーを添加する方法は、多くの樹脂で行われている方法である。熱伝導率の高いフィラーとしては、例えば金属系やカーボン系のフィラーが用いられ、さらに電気絶縁性が必要な場合は、窒化物、酸化物などのセラミック系のフィラーが用いられている。
しかし、これらのフィラーを用いた場合、フィラーとベース樹脂との界面に隙間が生じるため、この隙間により熱抵抗が高くなり、少ない添加量では熱伝導率の向上効果が小さく、所望の熱伝導率まで向上させるには多くの添加量を必要とする。
また、フィラーの多くは扁平状であるため、添加量を多くするとベース樹脂の溶融時に流動性が低下したり、成形品において応力の集中箇所となったりする。これにより、耐衝撃性の低下といった、熱可塑性樹脂組成物としての物性が低下するという問題が発生していた。
上述の問題を解決するために、添加量の少ないフィラーで熱伝導率を向上させることが求められる。少ないフィラーで熱伝導率を向上させる手段として、形や大きさの異なる2種類以上のフィラーを用いる方法が提案されている(特許文献1参照)。特許文献1では、扁平状の第1のフィラーと、第1のフィラーよりも粒径の小さい粒子状の第2のフィラーとを組合せ、第1のフィラーの間を第2のフィラーで埋めることで、熱伝導率の向上を図っている。
特許第4709795号公報
しかしながら、特許文献1には、ベース樹脂として、エポキシ樹脂またはポリエチレンの場合について記載されているものであり、スチレン系樹脂を想定したものではない。したがって、スチレン系樹脂において、特許文献1に記載の材料の第1及び第2のフィラーを添加しても、熱伝導性のみならず耐衝撃性が向上するかどうかは不明である。
そこで、本発明は、スチレン系樹脂において熱伝導性と耐衝撃性とを向上させることを目的とする。
本発明の熱可塑性樹脂組成物は、スチレン系樹脂を主成分とする熱可塑性樹脂と、窒化ホウ素、窒化アルミ、炭化ケイ素、リン化ホウ素、二酸化チタン、二酸化ケイ素、硫化バリウム、アルミナ及び黒鉛のうちの1種又は2種以上の第1のフィラーと、タルク、クレー、マイカ、ウォラストナイト及び炭酸カルシウムのうちの1種又は2種以上からなり、前記第1のフィラーよりも粒子径が小さい第2のフィラーと、を含有することを特徴とする。
また、本発明の熱可塑性樹脂組成物は、スチレン系樹脂を主成分とする熱可塑性樹脂と、前記スチレン系樹脂よりも熱伝導率が高い第1のフィラーと、前記スチレン系樹脂よりも熱伝導率が高く、前記第1のフィラーよりも粒子径が小さい、前記第1のフィラーとは異なる種類の第2のフィラーと、を含有することを特徴とする。
本発明によれば、スチレン系樹脂において第1及び第2のフィラーが良分散し、これにより第1のフィラーの間に第2のフィラーが入り込み、第1のフィラーと第2のフィラーとが接触しやすくなり、熱伝導性及び耐衝撃性が向上する。
実施形態に係る熱可塑性樹脂組成物で成形された成形品の断面を示す拡大模式図である。 冷却時間と取出温度との関係を示すグラフである。
以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。図1は、実施形態に係る熱可塑性樹脂組成物で成形された成形品の断面を示す拡大模式図である。ここで、成形品は、OA機器その他の電子機器の部品、又は電子機器の付属品の部品として適用される。また、成形品は、自動車や航空機等の構造部材、建築部材、食品容器等にも適用可能である。
図1に示す複合材料である、成形品の材料である熱可塑性樹脂組成物100は、熱可塑性樹脂であるベース樹脂10と、ベース樹脂10に添加された、充填剤である第1のフィラー11および第2のフィラー12と、を含有している。ベース樹脂10中に、第1のフィラー11および第2のフィラー12がそれぞれ分散している。
ベース樹脂10は、非晶性樹脂であることが望ましい。結晶性樹脂の場合、溶融状態から冷却固化して結晶化する際に潜熱を放出するため、フィラーを添加しても冷却効率が低い。非晶性樹脂のうち、フィラーを添加した際の流動性およびコストの観点から、スチレン系樹脂が最も適している。したがって、ベース樹脂10は、スチレン系樹脂を主成分としている。本実施形態では、スチレン系樹脂の熱伝導率は、0.16W/(m・K)である。
スチレン系樹脂としては特に限定されないが、ポリスチレン、ハイインパクト−ポリスチレン、アクリロニトリル−ブタジエン−スチレン及びアクリロニトリル−スチレンが挙げられ、これら樹脂のうちの1種又は2種以上を含んだ樹脂を用いることができる。
またスチレン系樹脂として、ポリスチレン、ハイインパクト−ポリスチレン、アクリロニトリル−ブタジエン−スチレン及びアクリロニトリル−スチレンのうち1種又は2種以上からなる樹脂とアロイ化した樹脂を用いることもできる。特に、スチレン系樹脂として、ポリスチレン又はハイインパクト−ポリスチレンと、ポリフェニレンエーテル又はポリフェニレンオキシドとのアロイである樹脂を用いるのが好ましい。
即ち、スチレン系樹脂は、ポリフェニレンエーテルとハイインパクト−ポリスチレン又はポリスチレンとをアロイ化した変性ポリフェニレンエーテルを含んでいるのが好ましい。特に、スチレン系樹脂は、ポリフェニレンエーテルとハイインパクト−ポリスチレンとをアロイ化した変性ポリフェニレンエーテルを含んでいるのがより好ましい。また、スチレン系樹脂として、変性ポリフェニレンエーテルに限らず、ポリフェニレンオキシドとハイインパクト−ポリスチレン又はポリスチレンをアロイ化した変性ポリフェニレンオキシドを用いてもよい。
ハイインパクト−ポリスチレンは、ポリスチレンを主成分とし、ポリスチレン中にゴム状弾性体を重合または分散させることにより形成される分散ゴム相を含んで構成される。ゴム状弾性体は特に限定されないが、例えばブタジエンゴム、スチレンブタジエンゴム、アクリルゴム、アクリロニトリルブタジエンゴム、天然ゴム等が挙げられる。ポリスチレンとの親和性から、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴムが好適である。
第1のフィラー11及び第2のフィラー12は、無機フィラーである。第1のフィラー11は第2のフィラー12よりも粒子径が大きい、第2のフィラー12とは異なる種類のフィラーである。換言すると、第2のフィラー12は第1のフィラー11よりも粒子径が小さい、第1のフィラー11とは異なる種類のフィラーである。この場合、粒子径とは、平均径、モード径、メディアン径のいずれであってもよい。第2のフィラー12は、第1のフィラー11,11同士の間に存在することで、第1のフィラー11と接触しやすくなっている。
第1のフィラー11とベース樹脂10との接触界面には、隙間14が存在し、隙間14に存在する空気は、ベース樹脂10の熱伝導率よりも遥かに低い。このことから、第2のフィラー12が存在しないと、第1のフィラー11とベース樹脂10との間の熱抵抗が大きい。
一方、フィラー11,12同士の接触界面は空気を介さずに接触可能なため、第1のフィラー11とベース樹脂10との間の熱抵抗よりも小さい。したがって、第1のフィラー11,11の間に第2のフィラー12が存在することで、複合材料である熱可塑性樹脂組成物100の熱伝導率が高くなる。即ち、熱可塑性樹脂組成物100の熱伝導性が向上する。
第1のフィラー11は、ベース樹脂10、即ちスチレン系樹脂よりも熱伝導率が高いことが求められる。本実施形態では、第1のフィラー11の熱伝導率は、50W/(m・K)以上である。
具体的には、第1のフィラー11は、窒化ホウ素、窒化アルミ、炭化ケイ素、リン化ホウ素、二酸化チタン、二酸化ケイ素、硫化バリウム、アルミナ及び黒鉛のうちの1種又は2種以上のフィラーからなる。これらの種類のフィラーのうち、熱伝導率やコストの観点から、黒鉛が最も適している。
第1のフィラー11の粒子径は、30μm以上130μm以下が好ましい。この場合の粒子径は、レーザー回折・散乱法により測定した体積分布のメディアン径である。粒子径が30μm未満では、熱可塑性樹脂組成物の熱伝導率の向上が不十分である。また、粒子径が130μmを超えると、成形時に部品の表面への露出が顕著となり、部品の品質や平面度が低下する。
第1のフィラー11の添加量は、複合材料である熱可塑性樹脂組成物100全体に対して3体積%以上10体積%以下が好ましい。添加量が3体積%未満だと、熱可塑性樹脂組成物の熱伝導率の向上が不十分であり、10体積%を超えると衝撃値の低下が顕著となる。
第2のフィラー12は、ベース樹脂10、即ちスチレン系樹脂よりも熱伝導率が高いことが求められる。具体的には、第2のフィラー12は、タルク、クレー、マイカ、ウォラストナイト及び炭酸カルシウムのうちの1種又は2種以上のフィラーである。これらの種類のフィラーのうち、熱伝導率やコストの観点から、炭酸カルシウムが最も適している。
第2のフィラー12は、第1のフィラー11と第1のフィラー11との間を埋める役割を担う。第2のフィラー12の熱伝導率は、ベース樹脂10、即ちスチレン系樹脂よりも高ければよく、第1のフィラー11よりも低いのが好ましい。本実施形態では、第2のフィラー12の熱伝導率は、スチレン系樹脂よりも高く、第1のフィラー11よりも低い値である1〜5W/(m・K)である。
第2のフィラー12の添加量は、第1のフィラー11と第2のフィラー12との合計量が複合材料である熱可塑性樹脂組成物100の全体に対して12体積%以上20体積%以下が好ましい。12体積%未満だと熱伝導率の向上が不十分であり、20体積%を超えると衝撃値の低下が顕著となる。
スチレン系樹脂であるベース樹脂10に第1のフィラー11と第2のフィラー12とを添加し溶融混練することで複合材料である熱可塑性樹脂組成物100を得る。溶融混練は例えば2軸押出し機を使用する。スチレン系樹脂であるベース樹脂10、第1のフィラー11、第2のフィラー12をそれぞれフィーダーで定量送り出しホッパに投入して溶融混練後、冷却、切断して熱可塑性樹脂組成物100のペレットを得る。なお、第1のフィラー11と第2のフィラー12はフィーダーに投入前にタンブラなどを用いて混ぜ合わせて混合フィラーとし、ベース樹脂10とは別の1つのフィーダーから定量送り出すこともできる。さらに、ベース樹脂10、第1のフィラー11及び第2のフィラー12を同様に混ぜ合わせておき、1つのフィーダーから送りだすこともできる。
以上の製造過程で得られた熱可塑性樹脂組成物100は、押出成形、射出成形、圧縮成形等の一般に用いられている成形方法で成形品の成形が可能であり、ブロー成形、真空成形、二色成形等にも適用可能である。即ち、型を用いて熱可塑性樹脂組成物100を成形して成形品を製造する種々の製造方法に適用可能である。
以上、スチレン系樹脂を主成分とするベース樹脂10に第1のフィラー11及び第2のフィラー12を添加したことにより、熱伝導性と耐衝撃性が向上する。そして、射出成形等により成形される成形品の製造過程では、溶融状態から冷却固化させるための時間が短縮されることで成形サイクルが短縮され、生産性が向上する。また、熱伝導性が向上するので、温度分布も均一となり、離型後の成形品の寸法精度も向上する。
[実施例]
本実施例を比較例とともに示す。
(実施例1)
ベース樹脂10としてポリフェニレンエーテル(PPE)とハイインパクト−ポリスチレン(HIPS)とをアロイ化した変性ポリフェニレンエーテルを選定した。第1のフィラー11として粒子径が30μmの黒鉛、第2のフィラー12として粒子径が2μmの炭酸カルシウムを選定した。
ここで、第1のフィラー11および第2のフィラー12の粒子径は、島津製作所製のレーザー回析式粒度分布測定器SALD−2200で測定を行った。粒子径の測定は、積算の分布曲線が50%となる粒子径(メディアン径)を用いた。つまり、粒子径は、レーザー回折・散乱法により測定した体積分布のメディアン径である。
変性ポリフェニレンエーテル3.0kg、黒鉛0.2kg、炭酸カルシウム0.8kg、合計4kg計量した。重量添加量は、それぞれ75重量%、5重量%、20重量%である。重量添加量を比重で除することで体積添加量に換算できる。それぞれの比重は、変性ポリフェニレンエーテル1.08、黒鉛2.0、炭酸カルシウム2.87であるから、体積添加量に換算すると85体積%、3体積%、9体積%となる。第1のフィラー11と第2のフィラー12の合計添加量は12体積%である。
計量した第1のフィラー11である黒鉛と、第2のフィラー12である炭酸カルシウムとをビニル袋で混合してよく撹拌し、混合フィラーとした。ベース樹脂10である変性ポリフェニレンエーテルと混合フィラーとを別々のフィーダーに投入し、パーカーコーポレーション製の2軸混練機HK−25Dで溶融混練した。混練した材料はストランド状で2軸混練機から吐出され、水冷を経てペレット状に切断した。ペレットは最初の1kgは捨て、残りの3kgを実施例1の熱可塑性樹脂組成物(複合材料)として得た。得られた熱可塑性樹脂組成物で熱伝導率、冷却時間短縮効果およびシャルピー衝撃値を評価した。その結果を以下の表1に示す。
なお、熱伝導率は、ASTM E 1530に準じて円板熱流計法にて測定した。得られた熱可塑性樹脂組成物のペレットから、日精樹脂工業製の射出成形機FNX140にて直径5mm、厚さ3.1mmの試験片を作成した。得られた試験片をアンター社製のユニサーモ2021にて熱伝導率を測定した。試験温度は23℃である。n=1である。
また、冷却時間短縮効果として、得られた熱可塑性樹脂組成物のペレットから、住友重機械工業製の射出成形機SE100Dにて長さ80mm、幅10mm、厚み2mmの試験片を成形した。成形して金型から取出して15s後に、成形品の取出後の温度(取出温度)の変化を測定した。測定は赤外線放射温度計を使用して撮影し、放射率は0.98に設定した。
図2は、冷却時間と取出温度との関係を示すグラフである。フィラー無添加の変性ポリフェニレンエーテルのみの熱可塑性樹脂組成物の取出温度とフィラーを添加した熱可塑性樹脂組成物の取出温度を冷却時間変化させて取得し、データは対数関数で近似した。
フィラー無添加の熱可塑性樹脂組成物の温度(取出温度)が40℃に低下した時間を基準冷却時間T1として計測し、フィラーを添加した熱可塑性樹脂組成物の温度(取出温度)が同じ40℃に低下した時間を冷却時間T2として計測した。そして、基準冷却時間T1と冷却時間T2との差である冷却時間短縮効果T3を算出した。
衝撃値は、JIS K 71111−1に準じてシャルピー衝撃試験により測定したシャルピー衝撃値である。得られた熱可塑性樹脂組成物のペレットから、住友重機械工業製の射出成形機SE100Dにて長さ80mm幅10mm厚み4mmの試験片を作成し、センターにVノッチを切削加工にて施した。得られた試験片を安田精機製のシャルピー衝撃試験機no.141でシャルピー衝撃試験を行った。用いたハンマーの重量は0.5Jで、試験温度は23℃である。n=5の平均値で算出した。フィラー無添加の変性ポリフェニレンエーテルのみの衝撃値も同様に測定して、その値を100とした際の熱可塑性樹脂組成物の衝撃値を算出した。
(実施例2〜6)
実施例1と同じベース樹脂10、第1のフィラー11、第2のフィラー12を選定し、添加量を変化させた。これらを実施例1と同様に混練して実施例2〜5の熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物で実施例1と同様な方法で評価した。その結果を表1に示す。
(実施例7,8)
実施例3の第1のフィラーの粒子径を変更した。これらを実施例1と同様に混練して実施例6,7の熱可塑性樹脂組成物を3kg得た。得られた熱可塑性樹脂組成物で実施例1と同様な方法で評価した。その結果を表1に示す。
(比較例1)
ベース樹脂として変性ポリフェニレンエーテル、第1のフィラーとして粒子径30μm黒鉛を選定した。これらを実施例1と同様に混練して比較例1の熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物で実施例1と同様な方法で評価した。その結果を表2に示す。
(比較例2)
ベース樹脂として変性ポリフェニレンエーテル、第2のフィラーとして粒子径2μm炭酸カルシウムを選定した。これらを実施例1と同様に混練して比較例1の熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物で実施例1と同様な方法で評価した。その結果を表2に示す。
(比較例3)
実施例1と同じベース樹脂、第1のフィラー、第2のフィラーを選定し、添加量を変化させた。これらを実施例1と同様に混練して比較例3の熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物で実施例1と同様な方法で評価した。その結果を表2に示す。
(比較例4,5)
実施例3の第1のフィラーの粒子径を変更した。これらを実施例1と同様に混練して比較例4,5の熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物で実施例1と同様な方法で熱伝導率およびシャルピー衝撃値を評価した。その結果を表2に示す。
(比較例6)
実施例3のベース樹脂を低密度ポリエチレン(LDPE)に変更した。これらを実施例1と同様に混練して比較例6の熱可塑性樹脂組成物を得た。得られた熱可塑性樹脂組成物で実施例1と同様な方法で評価した。その結果を表2に示す。
Figure 2017200986
Figure 2017200986
本実施例では、熱伝導率の目標値を0.25W/(m・K)、冷却時間短縮効果の目標値を2.0s、衝撃値の目標値を20とした。
表1より、実施例1〜3では、黒鉛と炭酸カルシウムを添加しているが、組成物全体に対する黒鉛の添加量を3体積%、組成物全体に対する黒鉛と炭酸カルシウムとを合計した添加量を12体積%以上とした。実験の結果、実施例1〜3では、熱伝導率、冷却時間短縮効果及び衝撃値がいずれも目標値以上を満足している。
実施例4,5では、黒鉛と炭酸カルシウムの合計の添加量を20体積%とし、黒鉛と炭酸カルシウムの比率を変えたが、熱伝導率、冷却時間短縮効果及び衝撃値がいずれも目標値以上を満足している。
実施例6では、実施例3の黒鉛の粒子径を30μmに代えて130μmに変更したが、熱伝導率と冷却時間短縮効果は同等で、衝撃値はさらに高くなった。
表2より、比較例1では、添加したフィラーを黒鉛のみとした。実験の結果、熱伝導率は高くなったが、成形して離型する際に崩れて、安定した成形品を得ることができなかったため、衝撃値の測定は不可能であった。
比較例2では、添加したフィラーを炭酸カルシウムのみとした。実験の結果、衝撃値は目標値以上を満足したものの、熱伝導率と冷却時間短縮効果が不十分であった。
比較例3では、黒鉛と炭酸カルシウムを添加し、衝撃値は目標値以上を満足したものの、熱伝導率と冷却時間短縮効果が不十分であった。黒鉛と炭酸カルシウムの合計の添加量が、実施例1〜6よりも小さい7体積%であったため、十分な熱伝導率と冷却時間短縮効果が得られなかったと考えられる。
比較例4では、黒鉛の粒子径を10μmとしたところ、熱伝導率と冷却時間短縮効果が不十分であった。黒鉛の粒子径を実施例3よりも小さくしたため、十分な熱伝導率と冷却時間短縮効果が得られなかったと考えられる。
比較例5では、黒鉛の粒子径を150μmとしたところ、衝撃値、熱伝導率及び冷却時間短縮効果がいずれも目標値以上を満足しているが、成形品の表面に黒鉛が露出し、凹凸が顕著であった。
比較例6では、ベース樹脂を変性ポリフェニレンエーテルの代わりにポリエチレンに変更したところ、熱伝導率は目標値以上を満足したが、冷却時間短縮効果が得られなかった。これは、ポリエチレンが結晶性樹脂であったためと考えられる。
以上の実験の結果、第1のフィラーである黒鉛の粒子径が、30μm以上130μm以下である場合に、熱伝導率、衝撃値及び冷却時間短縮効果のいずれも目標値以上となった。また、全体に対する黒鉛の添加量が3体積%以上10体積%以下であり、全体に対する黒鉛と炭酸カルシウムとの合計の添加量が12体積%以上20体積%以下である場合に、熱伝導率、衝撃値及び冷却時間短縮効果のいずれも目標値以上となった。これにより、熱可塑性樹脂組成物の熱伝導性及び耐衝撃性が効果的に向上し、成形品の冷却時間も効果的に短縮される。また、スチレン系樹脂の中でも変性ポリフェニレンエーテルを用いたので、熱伝導性及び耐衝撃性が効果的に向上し、成形品の冷却時間も効果的に短縮される。
なお、本発明は、以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で多くの変形が可能である。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されない。
10 ベース樹脂
11 第1のフィラー
12 第2のフィラー
100 熱可塑性樹脂組成物

Claims (10)

  1. スチレン系樹脂を主成分とする熱可塑性樹脂と、
    窒化ホウ素、窒化アルミ、炭化ケイ素、リン化ホウ素、二酸化チタン、二酸化ケイ素、硫化バリウム、アルミナ及び黒鉛のうちの1種又は2種以上の第1のフィラーと、
    タルク、クレー、マイカ、ウォラストナイト及び炭酸カルシウムのうちの1種又は2種以上からなり、前記第1のフィラーよりも粒子径が小さい第2のフィラーと、を含有することを特徴とする熱可塑性樹脂組成物。
  2. スチレン系樹脂を主成分とする熱可塑性樹脂と、
    前記スチレン系樹脂よりも熱伝導率が高い第1のフィラーと、
    前記スチレン系樹脂よりも熱伝導率が高く、前記第1のフィラーよりも粒子径が小さい、前記第1のフィラーとは異なる種類の第2のフィラーと、を含有することを特徴とする熱可塑性樹脂組成物。
  3. 前記第1のフィラーの粒子径が、体積分布のメディアン径で、30μm以上130μm以下であることを特徴とする請求項1又は2に記載の熱可塑性樹脂組成物。
  4. 前記第1のフィラーが黒鉛であることを特徴とする請求項1乃至3のいずれか1項に記載の熱可塑性樹脂組成物。
  5. 前記第2のフィラーが炭酸カルシウムであることを特徴とする請求項1乃至4のいずれか1項に記載の熱可塑性樹脂組成物。
  6. 前記スチレン系樹脂は、ポリスチレン、ハイインパクト−ポリスチレン、アクリロニトリル−ブタジエン−スチレン及びアクリロニトリル−スチレンのうちの1種又は2種以上を含むことを特徴とする請求項1乃至5のいずれか1項に記載の熱可塑性樹脂組成物。
  7. 前記スチレン系樹脂は、前記ポリスチレン又は前記ハイインパクト−ポリスチレンと、ポリフェニレンエーテル又はポリフェニレンオキシドとのアロイを含むことを特徴とする請求項6に記載の熱可塑性樹脂組成物。
  8. 全体に対する前記第1のフィラーの添加量が、3体積%以上10体積%以下であり、
    全体に対する前記第1のフィラーと前記第2のフィラーとの合計の添加量が、12体積%以上20体積%以下であることを特徴とする請求項1乃至7のいずれか1項に記載の熱可塑性樹脂組成物。
  9. 請求項1乃至8のいずれか1項に記載の熱可塑性樹脂組成物からなる成形品。
  10. 請求項1乃至8のいずれか1項に記載の熱可塑性樹脂組成物を、型を用いて成形する成形品の製造方法。
JP2016093454A 2016-05-06 2016-05-06 熱可塑性樹脂組成物、成形品および成形品の製造方法 Pending JP2017200986A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016093454A JP2017200986A (ja) 2016-05-06 2016-05-06 熱可塑性樹脂組成物、成形品および成形品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016093454A JP2017200986A (ja) 2016-05-06 2016-05-06 熱可塑性樹脂組成物、成形品および成形品の製造方法

Publications (1)

Publication Number Publication Date
JP2017200986A true JP2017200986A (ja) 2017-11-09

Family

ID=60264769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016093454A Pending JP2017200986A (ja) 2016-05-06 2016-05-06 熱可塑性樹脂組成物、成形品および成形品の製造方法

Country Status (1)

Country Link
JP (1) JP2017200986A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109456560A (zh) * 2018-11-18 2019-03-12 成都其其小数科技有限公司 一种用于家用电器外壳的阻燃高抗冲聚苯乙烯及制备方法
JP2020193284A (ja) * 2019-05-29 2020-12-03 コニカミノルタ株式会社 樹脂組成物、樹脂組成物の製造方法および情報処理装置
CN115427505A (zh) * 2020-03-30 2022-12-02 东洋纺株式会社 导热性树脂组合物及由其形成的成形品

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109456560A (zh) * 2018-11-18 2019-03-12 成都其其小数科技有限公司 一种用于家用电器外壳的阻燃高抗冲聚苯乙烯及制备方法
JP2020193284A (ja) * 2019-05-29 2020-12-03 コニカミノルタ株式会社 樹脂組成物、樹脂組成物の製造方法および情報処理装置
JP7379868B2 (ja) 2019-05-29 2023-11-15 コニカミノルタ株式会社 樹脂組成物、樹脂組成物の製造方法および情報処理装置
CN115427505A (zh) * 2020-03-30 2022-12-02 东洋纺株式会社 导热性树脂组合物及由其形成的成形品

Similar Documents

Publication Publication Date Title
TWI726144B (zh) 樹脂組合物、三維列印機用絲及樹脂粉末、與造形物及其製造方法
KR100706653B1 (ko) 열전도성 수지 조성물 및 플라스틱 성형품
TW201033279A (en) Granular epoxy resin composition for encapsulation of semiconductor and, semiconductor device made with the same and process for manufacturing semiconductor device
JP2012072363A (ja) 熱伝導性樹脂組成物およびそれを含む放熱材
JP2017200986A (ja) 熱可塑性樹脂組成物、成形品および成形品の製造方法
CN107383615A (zh) 一种改性聚丙烯材料及其制备方法
CN108164960A (zh) 一种高耐热、高熔体强度吹塑pc/abs复合材料及其制备方法
JP6705881B2 (ja) 導電性樹脂組成物およびその製造方法
KR20130088223A (ko) 칩 온 보드 led pcb 기판용 열전도성 폴리머 레진
CN104080847B (zh) 发泡性聚苯乙烯系树脂颗粒与其制造方法及发泡成型体
CN104559023B (zh) 一种用于3d打印的高强度光洁型abs/pc合金材料及其制备方法和应用
JP2003049081A (ja) 熱放散性に優れた熱可塑性樹脂組成物
JP2010285581A (ja) 絶縁樹脂組成物
US20220168948A1 (en) Method for selective laser sintering, using thermoplastic polymer powders
US20220033593A1 (en) Thermoplastic polymer powders and use thereof for selective laser sintering
JP2020169340A (ja) メタリック調熱可塑性樹脂ペレット
JP2013203869A (ja) ポリアミド樹脂組成物
Hopmann et al. Experimental investigation on the influence of the composition on the morphology and the mechanical properties of short glass fiber‐reinforced polypropylene nanocomposites
KR101307989B1 (ko) 성형가공성이 우수한 열전도성 수지 조성물
KR20160117652A (ko) 열전도성 폴리아미드 수지 조성물 및 이를 이용한 성형품
KR102384315B1 (ko) 열가소성수지 기반 열전도성 마스터배치의 제조방법 및 그를 이용한 방열복합소재
Costantino et al. Characterization of PP/TPV/MMT ternary nanocomposites produced by injection molding
US20060135655A1 (en) Method for improving filler dispersal and reducing tensile modulus in a thermally conductive polymer composition
JP5916532B2 (ja) ポリフェニレンサルファイド樹脂/ポリアミド46樹脂複合材料
JP6816489B2 (ja) 射出成形品およびその製造方法