JP2017195673A - 定電流制御によるスイッチドリラクタンスモータ装置 - Google Patents

定電流制御によるスイッチドリラクタンスモータ装置 Download PDF

Info

Publication number
JP2017195673A
JP2017195673A JP2016083347A JP2016083347A JP2017195673A JP 2017195673 A JP2017195673 A JP 2017195673A JP 2016083347 A JP2016083347 A JP 2016083347A JP 2016083347 A JP2016083347 A JP 2016083347A JP 2017195673 A JP2017195673 A JP 2017195673A
Authority
JP
Japan
Prior art keywords
phase
coil
constant current
current
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016083347A
Other languages
English (en)
Other versions
JP6060296B1 (ja
Inventor
允 田仲
Makoto Tanaka
允 田仲
千津子 寺内
Chizuko Terauchi
千津子 寺内
美香 田村
Mika Tamura
美香 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaisei
Kaisei Motor Co Ltd
Original Assignee
Kaisei
Kaisei Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57756251&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017195673(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kaisei, Kaisei Motor Co Ltd filed Critical Kaisei
Priority to JP2016083347A priority Critical patent/JP6060296B1/ja
Application granted granted Critical
Publication of JP6060296B1 publication Critical patent/JP6060296B1/ja
Priority to PCT/JP2017/016126 priority patent/WO2017183735A1/ja
Publication of JP2017195673A publication Critical patent/JP2017195673A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】電力の回路損失を少なくして効率改善を図り、また、回転子の回転停止まで回生(発電)できるものとする。
【解決手段】転流回路20は、各相のコイル32に電流を供給、遮断するスイッチSA,SB,SCと、各相のコイル32の負極側とスイッチSA,SB,SCとの接続点から定電流電源10の正極端子側に向けて接続された回収ダイオードD1,D2,D3とを備え、各相のコイル32は、定電流電源10の正極側端子と負極側端子との間にスイッチSA,SB,SCを介して接続され、スイッチSA,SB,SCはコイル32の負極側にのみ備えられ、転流回路20は、モータ30駆動時及び回生時に、コイル32の残留磁気エネルギーを、回収ダイオードD1,D2,D3を通して次に励磁されるコイル32に重畳して回収再利用し、かつ、回生時にはコイル32への供給電流及び残留磁気エネルギーをバッテリー10Bに充電するように、転流動作させる。
【選択図】図1

Description

本発明は、定電流制御によるスイッチドリラクタンスモータ装置に関する。
スイッチドリラクタンスモータ(以下、SRモータという)は、複数の励磁用のコイルを持つ固定子と、固定子に対して相対的に回転可能な磁性体から成る回転子とを備え、固定子のコイルに回転子の位置に応じて電流を供給することで生じる磁気吸引力によって回転子を回転駆動させる。SRモータは、交流モータよりも小型かつ高効率であり、かつ、永久磁石を必要としないことから注目されている。
ところが、SRモータは、1つの相のコイルへの通電を次の相のコイルへの通電に切り換える転流動作時に、残留磁気エネルギーが回転子にブレーキとして作用して、振動、騒音を発生しやすい。こうしたSRモータにおいて、モータの加速、減速時に、一方のコイルに残留している電気エネルギーを回生し、この回生した電気エネルギーを他方のコイルに利用し、電力効率の向上を図ることが知られている(例えば、特許文献1参照)。
また、SRモータにおいて、3相の固定子コイルを各々励磁するための励磁制御用スイッチと、コイル内の電気エネルギーを回生するための回生制御用スイッチと、各相について2つの高速ダイオードとを用いて、回生ループや発電ループを形成して、励磁コイルが有する電気エネルギーを電源に回生することが提案されている(例えば、特許文献2参照)。
特開2014−131465号公報 特許5771857号公報
ところが、特許文献1に示されるSRモータは、定電圧電源によるモータ駆動であって、回生した電気エネルギーを他方のコイルに利用するために、電源と直列関係にある充放電用コンデンサに電気エネルギーを回生している。そのため、コイルへの電流供給を制御するスイッチとは別に、充放電用コンデンサに電気エネルギーを回生するためのスイッチを別個に設けている。このため、電力の回路損失が大きく、更なる効率改善が求められる。
また、特許文献2に示されるSRモータにおいては、回生ループは、励磁制御用スイッチ回生制御用スイッチがともにオフのときに、励磁コイルと2つの高速ダイオードとにより形成される構成であって、回転子の回転数が高くて所定の電流以上が流れている時は回生(発電)できるが、回転子の回転停止まで回生(発電)できるものではない。
本発明は、上記課題を解決するものであり、電力の回路損失を少なくして効率改善を図り、また、回転子の回転停止まで回生(発電)できる、定電流制御によるスイッチドリラクタンスモータ装置を提供することを目的とする。
上記目的を達成するために、本発明は、磁性体から成る回転子、及び前記回転子に周方向に対向して設けられた励磁用の各相のコイルが巻かれた固定子を有したモータと、
バッテリー又はキャパシタから前記モータに定電流を供給する定電流電源と、
各種検出信号や指令信号に基づいて所定のタイミングで前記定電流電源から供給される電流を前記各相のコイルに順次に供給、遮断して転流動作させることによりモータ駆動及び回生させる転流回路と、を備え、
前記転流回路は、前記各相のコイルに電流を供給、遮断するスイッチと、前記各相のコイルの負極側と前記スイッチとの接続点から前記定電流電源の正極端子側に向けて接続された回収ダイオードと、を備え、
前記各相のコイルは、前記定電流電源の正極側端子と負極側端子との間に前記転流回路のスイッチを介して接続され、前記スイッチは前記コイルの負極側にのみ備えられ、
前記転流回路は、モータ駆動時及び回生時に、前記コイルの残留磁気エネルギーを、前記回収ダイオードを通して次に励磁されるコイルに重畳して回収再利用し、かつ、回生時には前記コイルへの供給電流及び速度起電力により増幅された蓄積磁気エネルギーをバッテリー又はキャパシタに充電するように転流動作させる、ことを特徴とする定電流制御によるスイッチドリラクタンスモータ装置である。
本発明によれば、コイルへの電流を供給、遮断する開閉スイッチがコイルの負極側にのみ備えられたローサイド切り構成であるため、開閉スイッチがコイルの両極側に備えられた両切り構成に較べ、転流時に、コイルのインダクタンスによる電流を流せなく現象を回避でき、電流増幅作用が得られ、定電流電源からの供給電流以上の大きな電流がコイルに流れ、モータ出力が得られる。また、電力の回路損失も少なく、効率改善が可能となる。また、構成も簡単で駆動トルクの脈動も少なくなり、振動は低減される。また、モータ停止まで電力回生が可能となる。
本発明の一実施形態に係るSRモータ装置の回路構成図。 (a)は同SRモータ装置のモータの構成を示す図。 (a)は同SRモータ装置における駆動時のスイッチの開閉制御のタイミング図、(b)は回生時のスイッチの開閉制御のタイミング図。 同SRモータ装置における転流回路による転流動作のタイムチャート図。 (a)は同SRモータ装置のモータ駆動時の動作を説明する図、(b)は同モータ駆動時の電流の流れを説明する図。 (a)の同SRモータ装置のモータ回生時の動作を説明する図、(b)は同モータ回生時の電流の流れを説明する図。 ローサイド切り式のモータ装置の具体回路図。
(SRモータ装置)
本発明の一実施形態に係る、定電流制御によるスイッチドリタクタンスモータ(以下、SRモータという)装置について図面を参照して説明する。図1はSRモータ装置100の回路構成を示す。SRモータ装置100は、定電流電源10と、定電流電源10から電力が供給される転流回路20と、SRモータ30(以下、モータという)とを備える。定電流電源10は、定電流制御系を内蔵し、外部から与えられる指令に応じた値の直流定電流を出力する。本実施形態では、直流電源としてのリチウムイオン電池等のバッテリー10B(又はキャパシタ)が定電流電源10に並列に設けられている。
転流回路20は、モータ30の各相のコイル32に電流を供給、遮断するスイッチSA,SB,SCと、各相のコイル32の負極側と各スイッチSA,SB,SCとの接続点から定電流電源10の正極端子側に向けて接続された回収ダイオードD1,D2,D3と、を備える。転流回路20は、スイッチSA,SB,SCを開閉制御する転流制御回路61をも含む。回収ダイオードD1,D2,D3は、励磁コイルの残留磁気エネルギー(詳細は後述)を回収するためのものである。
モータ30は、本例では固定子励磁用の多相コイルとして、3相(A相、B相、C相)のコイル32を持つ。これら各相のコイル32は、複数個が並列関係(直列関係でも可能)に備えられ、固定子の周方向に設けられた複数の凸形状の磁極の3つ毎に順次繰り返し巻回されている。各相のコイル32に所定のタイミングで切換え供給される直流定電流によって固定子磁極が順次励磁され、回転磁界が形成され、それに磁性体で成る回転子が吸引されることで回転する。各相のコイル32は、定電流電源10の正極側端子と負極側端子との間に、負極側に配されたスイッチSA,SB,SCを介して接続されている。これらスイッチSA,SB,SCには、シリコンカーバイト等で成る半導体スイッチング素子を用いればよい。
転流制御回路61は、各種検出信号や指令信号に基づいて所定のタイミングで、転流回路20のスイッチSA,SB,SCの開閉を制御し、モータ30の各相のコイル32に定電流電源10からの直流定電流を直流方形波形に順次に切換え供給、遮断する。それによりモータ30を駆動及び回生させる。スイッチSA,SB,SCはコイル32の負極側にのみ備えられたローサイド切り式の構成とされている。また、転流回路20は、モータ駆動時及び回生時に、励磁コイルの残留磁気エネルギーを、回収ダイオードD1,D2,D3を通して次に励磁されるコイルに重畳して回収再利用し、かつ、回生時には励磁コイルへの供給電流及び残留磁気エネルギーをバッテリー10B又はキャパシタに充電するように転流動作させる。
定電流電源10は、周知の定電流回路(図示省く)を内蔵し、さらに、負極側端子側から正極側端子側に電流を流す充電用ダイオードD4を備えている。定電流電源10は、転流回路10による回生動作時に、充電用ダイオードD4を通して、モータ30のコイルへの供給電流、及び、コイルの残留磁気エネルギーが速度起電力により増幅された蓄積磁気エネルギーによる電流を、バッテリー10を充電する方向に流す。また、本例では、充電用ダイオードD4と直列に、回生時に閉制御される回生スイッチKSを備えている。また、モータ30のコイル32と直列に、コイル電流を検知するための電流センサ7が設けられている。電流センサ7は各相コイルに設けられていてもよい。転流制御回路61は、電流センサ7の検出信号のほか、回転子の角度位置情報、制御指令等が入力され、スイッチの開閉動作指令を出力する。
(SRモータ装置の転流制御について)
転流制御回路61は、回転子33の固定子1に対する相対的な角度位置を表す角度位置情報(モータ30に設けられた角度位置検出器により検出される)に基づいて、転流回路20内の各相に対応するスイッチSA、SB、SCをオン、オフさせるための動作信号を出力する。また、転流制御回路61は、駆動指令に代えて回生・制動指令が入力されると、前記動作信号の出力タイミングを、駆動時のタイミングから、回転子33が電気角120度(3相の場合)に対応する角度を回転する時間だけシフトしたタイミングに切り換える。この電気角は、励磁コイルの相数等に応じて適宜設定される。
転流制御回路61は、入力される動作指令に応じて定電流電源10の内部回路又は転流回路20を切換える。これにより、回生時にコイルの残留磁気エネルギーでもってバッテリー10Bを充電できる。駆動時、バッテリー10Bの正極より定電流電源10及び転流回路20を通してコイルに電流が流れ、この電流はバッテリー10Bの負極に戻る。コイルへの通電により固定子磁極が励磁され、それにより回転子が吸引され回転する。回生制動時には、回転子は外部の力で回転している。スイチングSA〜SCはPWM制御により定電流制御し、バッテリー10Bの正極より定電流電源10を通して位相シフトされた電流を固定子のコイルに流し、コイルを励磁する。それにより固定子31に発生する磁束は、外力で回っている回転子33を後ろに引っ張る。このとき、回転子33が磁束を切ることにより、コイルに速度起電力として蓄積磁気エネルギーが発生する。PWM制御のデユーテイ比を制御することにより、バッテリー10Bに充電制御つまり電力回生の制御が可能となる。電力回生は、モータコイルの内部損出分の電流を流すことでモータ停止まで可能となる。
(モータ構成)
図2は、一実施形態に係るモータ30の構成を示す。モータ30は、固定子31と回転子33とを備え、固定子31は、積層鋼鈑にて形成され、回転子33を囲むように設けられている。回転子33は、積層鋼鈑にて形成され、不図示の回転軸に固定され、回転軸は回転自在に軸受に支持されている。回転子33が固定子31の外周に対向して設けられた構成であってもよい。回転軸の回転角度位置は、不図示の角度位置検出器により検出される。固定子31は、円周上に等角度間隔にて配列された6n個(nは2以上の整数、本例ではn=2)の磁極311〜322を備えている。それら磁極311〜322の各々にはコイルが巻回されている。コイルは図示を省いている。回転子33は、円周上に等間隔に並ぶ2n個(nは2以上の整数、本例ではn=2)の凸極331〜334を備えている。固定子31の磁極311〜322の先端部と回転子33の凸極331〜334の先端との間には所定の磁気ギャップが形成されている。
次に、図3(a)(b)を参照して、定電流制御回路61による転流回路20のスイッチSA,SB,SCの開閉制御を説明する。(a)はモータ駆動時のタイミングを示し、(b)は回生時のタイミングを示す。定電流制御回路61は、回転子の電気角120度幅で各相のコイルに順次、電流が供給されるようにスイッチSA,SB,SCを制御する。駆動時、回生制動時のいずれにおいてもスイッチの開閉動作をA相、B相、C相の順とする。回生時は、駆動時に対して方形波直流定電流波形の電気角を120度シフトさせる。
図4を参照して、転流回路20による転流動作を説明する。図4は、各相のコイルの電流がオンしてからオフになるまでの期間の電流波形を示す。同図において、t1,t2,t3は転流タイミングである。転流回路20におけるスイッチSA,SB,SCの開閉動作により回路が切り換えられ、その結果、各相のコイルに方形波直流定電流が順次流れる。各相のコイルを流れる電流のオン・オフ動作の周期は、方形波基本周波数fで行なわれる。一相のコイルの電流がオンすると共に前の相のコイルの電流がオフする転流過渡期間における電流の立ち上り、立ち下りは、転流等価周波数fで行われる。方形波基本周波数fは、モータ30における励磁コイル極数Pと回転速度N(毎秒)に依存し、f=P/2×Nにより表される。転流等価周波数fは、転流回路20における電流切換の速さに依存した概念であって、f<fの範囲で適値が選択される。
(モータ駆動時の動作)
次に、図5(a)(b)を参照して、SRモータ装置100のモータ駆動時の動作と電流の流れを説明する。モータ駆動時は、固定子31のA相の磁極(1A,2A,3A,4A)、B相の磁極(1B,2B,3B,4B)、C相の磁極(1C,2C,3C,4C)の各々に巻回されたコイル32(各コイル32は各相において直列接続)に定電流制御により順次、適宜のタイミングで通電することにより、A相→B相→C相(1相→2相→3相)の回転磁界が形成され、回転子33は順次、吸引され回転する。詳細には、代表してA相励磁について説明すると、図5(a)に「励磁開始」として指し示す位置は、回転子凸極(1,2,3,4)の回転方向先端が、固定子磁極(1A−4A)の上流側端点に近接した位置である。この時は、C相コイルの励磁状態からA相側への転流が完了した状態であり、スイッチSAはオン、スイッチSB,SCはオフである。次に、回転子凸極の回転方向先端が、固定子の同磁極の下流側端点に近接した位置に来たときは、B相側への転流を開始し、回転子凸極の回転方向先端が、固定子の次の磁極の上流側端点に近接した位置に来たときは、B相側への転流が完了した状態であり、スイッチSBはオン、スイッチSC,SAはオフである。以下、同様である。A相コイルからB相コイルへの転流の切換により、固定子31の1極ピッチ分だけ回転子33は矢印方向に回転する。なお、磁極1Aのコイル32の他は、図示を省いている。
A相コイルの励磁への転流時には、C相コイルの残留磁気エネルギーはダイオードD3を通してA相コイルに流れる。残留磁気エネルギーは、モータ駆動時、回生(発電)時とも、転流時に、次相のコイルに重畳して回収再利用する。また、固定子31の各相の磁極が順次励磁されることにより、回転子31の凸極が吸引され、順方向にトルクを生じる。回転子31の各凸極の回転方向の幅は、固定子33の各磁極の回転方向の幅より大きく設定されており(例えば1.25倍)、励磁極の幅全体が凸極に対向した状態が維持され、回生エネルギーを効率良く回収できる。このため、コイルの残存電流による反抗トルクが生じない。また、転流開始で立ち上がりつつある電流による吸引力は、近傍に回転子33の他の凸極が対向していないので、回転子33の回転に悪影響を及ぼさない。
電流の流れは、A相励磁時の電流流れを図5(b)に矢印で示すように、供給励磁電流と共にA相のコイルを通り定電流電源10の負極側に流れる。B相励磁時は、供給励磁電流と共にB相のコイルを通り定電流電源10の負極側に流れる。このとき、A相の残留磁気エネルギーはB相コイルに流れる。C相励磁時は、供給励磁電流と共にC相のコイルを通り定電流電源10の負極側に流れる。このとき、B相の残留磁気エネルギーはC相コイルに流れる。他の相の励磁時についても同様である。なお、図5(a)において、磁極1A,1B,1C,・・・は、図2に示した磁極311,312,312,・・・に対応する。凸極1−4は、凸極331−334に対応する。
(モータ回生時の動作)
次に、図6(a)(b)を参照して、SRモータ装置100のモータ回生時の動作と電流の流れを説明する。回生(発電)時は、回転子33は外力で回っている。回転子33の凸極(1,2,3,4)は、固定子31の磁極(1A−4A,1B−4B,1C−4C)のコイル32への定電流制御による通電励磁により回転方向と逆に引っ張られる。代表してA相励磁時に、図6(a)に「励磁開始」として指し示すように、回転子33の凸極(1,2,3,4)の回転方向先端が、固定子31の磁極(1A−4A)の下流側端点に近接した位置(励磁開始位置)に来た時に、スイッチSAをオンさせると、C相コイルの残留磁気エネルギーはダイオードD3に流れ、さらにA相コイルに流れる。回生(発電)時の励磁は、駆動時の電気角を120度位相シフトさせたものとする。定電流制御では電流の流れる方向が一定のため、A相励磁時は、供給励磁電流と共に速度起電力により増幅された蓄積磁気エネルギーがA相コイルを通り、定電流電源10内の回生スイッチKS、ダイオードD4を通って、バッテリー10Bに充電される。他の相の励磁時についても同様である。このような動作が得られるのは、SRモータ装置100が、転流回路10による回生動作時には発電機として動作し、残留磁気エネルギーを増幅していることに起因する。
(転流回路の動作)
モータ30が駆動している状態では、モータ30には正の起電力Eaが発生しており、Ea×Iの電力(ワット)と、A相又はB相又はC相の励磁コイル(抵抗R)を通る電流IによってI×Rの電力(ワット)が定電流電源10から供給される。この場合、Ea×Iの電力(ワット)が機械的な出力となり、IRの電力(ワット)が損失分となる。モータ30の回生制動時には、モータ30において負の起電力Eaが発生し、機械的動力が、Ea×Iの電力(ワット)及びIRの電力に変換され、IRの電力(ワット)が損失分となる。Ea×Iの電力(ワット)が定電流電源10に回収される(回生)。モータ30が駆動停止状態で、慣性運転状態にあるときには、起電力Eaの発生はなく、A相又はB相又はC相の励磁コイルでの損失分であるIRの電力(ワット)、すなわち、コイルの内部損失分の電流が、電流センサ7で検出したコイル電流に応じて転流回路20の制御によって定電流電源10から供給される。
このように、本実施形態のSRモータ装置100においては、駆動と回生制動時とで、速度起電力Eaが正負に入れ替わるので、転流回路20は、転流制御回路61の制御によってコイルに流れる直流定電流方形波を120度(電気角)位相シフトさせるだけで、電力の供給及び回生が自動的に行われる。
表1に、定電流制御による駆動時における、各相のスイッチSA,SB,SCの開閉モード及び回収ダイオードD1,D2,D3の状態を示す。駆動時、回生スイッチKSはオフとする。スイッチSA,SB,SCは、電気角120度幅の直流定電流方形波を生成する。
表2に、定電流制御による回生・発電時における、各相のスイッチSA,SB,SCの開閉モード及び回収ダイオードD1,D2,D3の状態を示す。回生・発電時、回生スイッチKSはオンとする。速度起電力による蓄積電磁エネルギーにより充電する。駆動時と回生・発電時とでは、励磁タイミングを120度シフトさせる。
表3に、定電流制御による転流時における、各相のスイッチSA,SB,SCの開閉モード及び回収ダイオードD1,D2,D3の状態を示す。転流時(駆動・回生とも)、残留磁気エネルギーは次相に重畳して回収再利用する。
(ローサイド切り式の増幅作用)
上述した本実施形態によるSRモータ装置100は、定電流制御でのローサイド切り式であるので、コイル電流を制御するスイッチがコイルの正極側及び負極側に設けられた両切り式に較べて、コイルのインダクタンスによる電流が流せない現象を回避できる。そのため、転流時のコイルの残留磁気エネルギーを次の相の励磁コイルに回収再利用でき、増幅作用により大きな駆動電流が得られ、電源からの供給電流は少なくて済み、電力の回路損失を少なくして効率改善が図れる。ちなみに、両切り式の構成では、コイルのインダクタンスによる立ち上がりに時間がかかり、電流を流せない現象が生じる。
また、ローサイド切り式では、転流を繰り返すと、励磁電流は上昇して電流ゼロの状態をなくし、かつ大きい電流レベルに保つことができる。このため、トルクリップルは低減する。電流レベルはスイッチ制御により任意に制御することができる。
また、ローサイド切り式での実測によれば、入力電流が0.5Aのとき、モータコイルへの励磁電流が5Aとなり、出力電流は入力電流の約10倍となった。このように、供給電流以上の駆動電流が得られる理由は、次の通りである。
(1)定電流であること。なお、定電圧では転流毎に電圧が上昇していくので、スイッチ素子の耐圧が問題になる。
(2)定電圧方式のハーフブリッジは、1相毎に(直列関係の)スイッチが2つあるのに対して、本発明の定電流方式のローサイド切り式では、1相毎にスイッチが1つであるので、大きい電流レベルに保つことができる。
(3)モータ駆動時に定電流が固定子コイルに流れると、固定子に回転子が吸引され、回転子が固定子を通過する度に、順次、他の相に励磁電流が切り換る。転流毎に、定電流方形波がコイルに印加され、出力電流が上昇してゆき、大きい電流レベルに保たれる。このことが、急駿なパルス電流を強制的にコイルに流すことなく、転流動作させることで自動的に達成できる。
図7は、ローサイド切り式のモータ装置の具体回路例を示す。この例は、電流センサ7が1つの場合である。このモータ装置は、モータの各相のコイルLA,LB,LCと、各コイルの負極側に接続された転流回路20を成すスイッチSA,SB,SCと、回収ダイオードD1,D2,D3と、定電流電源10と、定電流制御回路61と、を備える。定電流電源10は、+端子、−端子で示し、詳細は省いているが、回生時に、+端子、−端子に接続されたバッテリー10Bを充電する方向に電流を流すための充電用ダイオードを内蔵する。定電流制御回路61は、スイッチSA,SB,SCを転流制御するためのCPUを含み、PWM回路と、励磁相を選択するセレクタとを備える。定電流制御回路61には、回転子の角度位置検出器309からの信号と、アクセル/ブレーキの指令信号が入力される。電流センサ7は、各コイルLA,LB,LCに直列に挿入されてもよい。なお、バッテリー10Bへの過充電を防ぐための回路を設けて、バッテリーが過充電時は充電方向の電流を遮断することが望ましい。
上記構成において、定電流制御回路61は、電流センサ7により検出されたコイル電流(残留磁気エネルギー)に応じて転流回路20のスイッチSA,SB,SCをPWM制御して、定電流電源10からの電流値を定電流制御する。PWM制御の周波数を制御することで、モータの回転数すなわち速度を制御できる。また、角度位置検出器309により検知された回転子の位置に応じて駆動時及び回生時の転流タイミング信号が出力される。かくして、転流時の励磁コイルの残留磁気エネルギーは、回収ダイオードD1,D2,D3を通して次の励磁相のコイルに重畳して流すことで回収再利用される。これにより、コイルには電源からの供給電流以上の駆動電流が得られて、ロスが減り、大きな出力が得られる。また、残留磁気エネルギーが有効に利用されるので、モータの発熱が低減される。また、ローサイド切り式によれば、コイルのインダクタンスによる電流が流せない現象を回避できる。
本発明は、上記実施形態の構成に限られることなく、種々変形することが可能である。例えば、バッテリー10Bに代えてキャパシタを用いてもよいし、両者を並列関係に設けたものであってもよい。また、上記では、充電用ダイオードD4と直列に、回生時に閉制御される回生スイッチKSを備えた例を示したが、定電流電源10の構成によっては回生スイッチKSを省くこともできる。
100 SRモータ装置
1,2,3,4 回転子の凸極
1A−4A 固定子のA相磁極
1B−4B 固定子のB相磁極
1C−4C 固定子のC相磁極
7 電流センサ
10 定電流電源
10B バッテリー
20 転流回路
30 モータ
31 固定子
32 コイル(A相、B相、C相)
33 回転子
61 転流制御回路
SA,SB,SC スイッチ
KS 回生スイッチ
D1〜D3 回収ダイオード
D4 充電用ダイオード

Claims (4)

  1. 磁性体から成る回転子、及び前記回転子に周方向に対向して設けられた励磁用の各相のコイルが巻かれた固定子を有したモータと、
    バッテリー又はキャパシタから前記モータに定電流を供給する定電流電源と、
    各種検出信号や指令信号に基づいて所定のタイミングで前記定電流電源から供給される電流を前記各相のコイルに順次に供給、遮断して転流動作させることによりモータ駆動及び回生させる転流回路と、を備え、
    前記転流回路は、前記各相のコイルに電流を供給、遮断するスイッチと、前記各相のコイルの負極側と前記スイッチとの接続点から前記定電流電源の正極端子側に向けて接続された回収ダイオードと、を備え、
    前記各相のコイルは、前記定電流電源の正極側端子と負極側端子との間に前記転流回路のスイッチを介して接続され、前記スイッチは前記コイルの負極側にのみ備えられ、
    前記転流回路は、モータ駆動時及び回生時に、前記コイルの残留磁気エネルギーを、前記回収ダイオードを通して次に励磁されるコイルに重畳して回収再利用し、かつ、回生時には前記コイルへの供給電流及び速度起電力により増幅された蓄積磁気エネルギーをバッテリー又はキャパシタに充電するように転流動作させる、ことを特徴とする定電流制御によるスイッチドリラクタンスモータ装置。
  2. 前記定電流電源は、回生時に前記コイルへの供給電流及び残留磁気エネルギーによる電流をバッテリー又はキャパシタに充電する方向に流す充電用ダイオードを備える、請求項1に記載の定電流制御によるスイッチドリラクタンスモータ装置。
  3. 前記コイルに流れる電流を検出する電流センサをさらに備え、
    前記転流回路は、少なくともモータ駆動停止時に、前記電流センサにより検出したコイル電流に応じて前記定電流電源より前記コイルの内部損失分の電流を流すことにより慣性運転する、請求項2に記載の定電流制御によるスイッチドリラクタンスモータ装置。
  4. 前記モータは、第1相、第2相、及び第3相から成る3相構成であり、
    前記転流回路は、前記回転子の電気角120度幅で前記各相のコイルに順次供給されるように前記スイッチを制御し、駆動時と回生時とで直流定電流方形波の電気角を120度シフトさせ、さらに、駆動時と回生時のいずれにおいても前記スイッチの開閉動作を第1相、第2相、第3相の順とする、請求項3に記載の定電流制御によるスイッチドリラクタンスモータ装置。
JP2016083347A 2016-04-19 2016-04-19 定電流制御によるスイッチドリラクタンスモータ装置 Expired - Fee Related JP6060296B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016083347A JP6060296B1 (ja) 2016-04-19 2016-04-19 定電流制御によるスイッチドリラクタンスモータ装置
PCT/JP2017/016126 WO2017183735A1 (ja) 2016-04-19 2017-04-19 定電流制御によるスイッチドリラクタンスモータ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016083347A JP6060296B1 (ja) 2016-04-19 2016-04-19 定電流制御によるスイッチドリラクタンスモータ装置

Publications (2)

Publication Number Publication Date
JP6060296B1 JP6060296B1 (ja) 2017-01-11
JP2017195673A true JP2017195673A (ja) 2017-10-26

Family

ID=57756251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016083347A Expired - Fee Related JP6060296B1 (ja) 2016-04-19 2016-04-19 定電流制御によるスイッチドリラクタンスモータ装置

Country Status (2)

Country Link
JP (1) JP6060296B1 (ja)
WO (1) WO2017183735A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492800A (zh) * 2019-07-25 2019-11-22 江苏科技大学 永磁同步电机二极管续流消除剩磁装置及使用方法
WO2024050876A1 (zh) * 2022-09-07 2024-03-14 重庆集极贸易有限公司 一种短磁路开关磁阻电机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067530B (zh) * 2019-12-31 2023-01-06 比亚迪股份有限公司 能量转换装置及车辆

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782578B2 (ja) * 1994-03-30 1998-08-06 エルジー電子株式会社 スイッチドリラクタンスモーターの駆動回路
JPH10285986A (ja) * 1997-04-08 1998-10-23 Meidensha Corp スイッチドリラクタンスモータの制御装置
JPH10337086A (ja) * 1997-05-30 1998-12-18 Aisin Seiki Co Ltd 電気モ−タの駆動回路
JP2014045584A (ja) * 2012-08-27 2014-03-13 Mitsubishi Electric Corp スイッチトリラクタンスモータ駆動回路
JP2017225203A (ja) * 2014-10-31 2017-12-21 Kaiseiモータ株式会社 スイッチドリラクタンスモータ駆動システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492800A (zh) * 2019-07-25 2019-11-22 江苏科技大学 永磁同步电机二极管续流消除剩磁装置及使用方法
CN110492800B (zh) * 2019-07-25 2021-05-11 江苏科技大学 永磁同步电机二极管续流消除剩磁装置及使用方法
WO2024050876A1 (zh) * 2022-09-07 2024-03-14 重庆集极贸易有限公司 一种短磁路开关磁阻电机

Also Published As

Publication number Publication date
JP6060296B1 (ja) 2017-01-11
WO2017183735A1 (ja) 2017-10-26

Similar Documents

Publication Publication Date Title
US8400084B2 (en) Regenerative switched reluctance motor driving system
KR101781382B1 (ko) 개선된 플럭스 스위칭 기계 설계
CN102739138A (zh) 具能量回收的无感测元件马达控制方法
JP2010081782A (ja) スイッチドリラクタンスモータ
US20130342040A1 (en) Switched Reluctance Motor and Switched Reluctance Motor Drive System
JP5543186B2 (ja) スイッチドリラクタンスモータ駆動システム
JP6060296B1 (ja) 定電流制御によるスイッチドリラクタンスモータ装置
JP2010193700A (ja) スイッチドリラクタンスモータ装置
JP5543185B2 (ja) スイッチドリラクタンスモータ駆動システム
Hadke et al. Integrated multilevel converter topology for speed control of SRM drive in plug in-hybrid electric vehicle
WO2016067634A1 (ja) 定電流制御によるモータ駆動システム
JP5771857B1 (ja) モータ及びモータ制御方法
JP4107614B2 (ja) モータ駆動システム
Wahyu et al. PWM Control Strategy of Regenerative Braking to Maximize The Charging Current into The Battery in SRM Drive
US20150155813A1 (en) Motor driving apparatus and motor driving method
Beniwal et al. Speed control of SRM drives using a new power converter configuration in electric vehicles
Setiawan Analysis Performance of Capacitor Voltage in C-Dump Converter for SRM Drive
Sankar et al. Simulation and implementation of sensored control of three-phase BLDC motor using FPGA
JP6086429B2 (ja) Srモータの駆動回路およびその制御方法
Dewi et al. The Impact of SRM Rotor Speed on Regenerative Braking to Optimize the Performance
WO2018074122A1 (ja) Srモータ制御システム及びsrモータ制御方法
RU2802788C1 (ru) Двухфазная синхронная вентильно-индукторная электрическая машина
Abhiseka et al. Implementation of Magnetizing-Freewheeling Control Strategy to Increase SRM Regenerative Braking Performance in a Low-Speed Operation
RU2461117C1 (ru) Пусковое устройство бесконтактных электродвигателей переменного тока
RyanDita et al. Implementation and Comparison Study of Single-Pulse and PWM control Method to Increase Regenerative Braking Efficiency for SRM

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161118

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20161125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R150 Certificate of patent or registration of utility model

Ref document number: 6060296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees