JP2017187652A - 光導波路クラッド材、光導波路クラッド層形成用樹脂フィルム及び光導波路 - Google Patents

光導波路クラッド材、光導波路クラッド層形成用樹脂フィルム及び光導波路 Download PDF

Info

Publication number
JP2017187652A
JP2017187652A JP2016076886A JP2016076886A JP2017187652A JP 2017187652 A JP2017187652 A JP 2017187652A JP 2016076886 A JP2016076886 A JP 2016076886A JP 2016076886 A JP2016076886 A JP 2016076886A JP 2017187652 A JP2017187652 A JP 2017187652A
Authority
JP
Japan
Prior art keywords
optical waveguide
meth
acrylate
component
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016076886A
Other languages
English (en)
Inventor
雅夫 内ヶ崎
Masao Uchigasaki
雅夫 内ヶ崎
山口 正利
Masatoshi Yamaguchi
正利 山口
杉本 靖
Yasushi Sugimoto
靖 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2016076886A priority Critical patent/JP2017187652A/ja
Publication of JP2017187652A publication Critical patent/JP2017187652A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】工業的な製造が簡便であり、かつ光伝搬損失の小さい光導波路を提供すること、並びに、該光導波路を製造し得る光導波路クラッド材及び該光導波路クラッド材を用いた光導波路クラッド層形成用樹脂フィルムを提供すること。
【解決手段】(A)酸性置換基を有するポリマーと、(B)2つ以上のエチレン性不飽和基を有する重合性化合物と、(C)重合開始剤と、を含有し、(B)2つ以上のエチレン性不飽和基を有する重合性化合物として、(B1)ポリエチレングリコールに由来する構造単位を有するポリアルキレングリコールジ(メタ)アクリレートを含有する、光導波路クラッド材。
【選択図】図1

Description

本発明は、光導波路クラッド材、該光導波路クラッド材を用いた光導波路クラッド層形成用樹脂フィルム、及び該光導波路クラッド層形成用樹脂フィルムを用いた光導波路に関するものである。
近年、電子素子間及び配線基板間の高速及び高密度信号伝送において、従来の電気配線による伝送では信号の相互干渉及び減衰が障壁となり、高速及び高密度化の限界が見え始めている。これを打ち破るため、電子素子間及び配線基板間を光で接続する技術、いわゆる光インタコネクションが検討されている。光の伝送路としては、加工が容易であり、低コストであり、さらに配線の自由度が高く、かつ高密度化が可能であるという観点から、ポリマー光導波路が注目を集めている。
ポリマー光導波路の形態としては、光電気混載基板への適用を想定したガラスエポキシ樹脂基板上に作製するタイプ、ボード同士の接続を想定した硬い支持基板を持たないフレキシブルタイプが好適と考えられる。
ポリマー光導波路には、適用される機器の使用環境及び部品実装等の観点から、透明性(低光伝搬損失)と共に高耐熱性も要求される。また、光配線設計の自由度向上、デバイスの高機能化、工程簡略化等の要求に従い、露光及び現像により要求されるパターンを自由に形成可能な材料であることが望まれている。現像方法としては、溶剤現像型とアルカリ現像型が想定されるが、環境負荷及び安全性の観点から、アルカリ現像型が望まれている。
このような要望に対応する光導波路材として、(メタ)アクリル重合体を使用したもの(例えば、特許文献1参照)が知られている。特許文献1に記載の(メタ)アクリル重合体を使用した光導波路用樹脂組成物は、アルカリ現像可能であり、波長850nmにおいて0.3dB/cmの光伝搬損失を有するが、求められる光による高速及び高密度信号伝送において、この数値は必ずしも充分ではない。
そこで、本発明者等は、次のクラッド層とコアパターンとを有する光導波路を開発した(特許文献2参照)。
つまり、第1のクラッド層と、
光信号の光路を形成する前記第1のクラッド層に積層されたコアパターンと、を備え、
前記コアパターンは、前記光路の方向に伸びるコア周面と前記コア周面の内側に形成されたコア本体とを有し、
前記コア周面は、前記第1のクラッド層に接触した接触コア周面と前記接触コア周面以外の非接触コア周面とを有し、
前記コア本体には、前記コア本体のうち前記非接触コア周面から所定の範囲の非接触面近傍コア領域と、前記コア本体のうち前記非接触面近傍コア領域以外のコア中央領域とが有り、
前記非接触面近傍コア領域の屈折率は、前記コア中央領域の屈折率より小さい、光導波路である。
該特許文献2の光導波路により、光伝搬損失のさらなる低減が達成された。
特許第4241874号公報 特開2015−215468号公報
しかしながら、コアパターンの構造が与える光伝搬損失への影響は把握しきれないというのが実情であり、光伝搬損失をさらに低減し得るコアパターンを有する光導波路のさらなる開発が切望されている。
そこで、本発明の課題は、工業的な製造が簡便であり、かつ光伝搬損失の小さい光導波路を提供すること、並びに、該光導波路を製造し得る光導波路クラッド材及び該光導波路クラッド材を用いた光導波路クラッド層形成用樹脂フィルムを提供することにある。
本発明者らは鋭意検討を重ねた結果、(A)酸性置換基を有するポリマーと、(B)2つ以上のエチレン性不飽和基を有する重合性化合物と、(C)重合開始剤と、を含有し、(B)2つ以上のエチレン性不飽和基を有する重合性化合物として、(B1)65℃における粘度が25mPa・s以下である2つ以上のエチレン性不飽和基を有する重合性化合物を含有する光導波路クラッド材、及び該光導波路クラッド材を用いた光導波路クラッド層形成用樹脂フィルムであれば、前記課題を解決し得ることを見出し、本発明に至った。
即ち、本発明は、下記[1]〜[17]に関するものである。
[1](A)酸性置換基を有するポリマーと、(B)2つ以上のエチレン性不飽和基を有する重合性化合物と、(C)重合開始剤と、を含有し、(B)2つ以上のエチレン性不飽和基を有する重合性化合物として、(B1)65℃における粘度が25mPa・s以下である2つ以上のエチレン性不飽和基を有する重合性化合物を含有する、光導波路クラッド材。
[2]前記(B1)成分が、2つ以上のエチレン性不飽和基を有し、かつポリアルキレングリコール骨格を含む重合性化合物である、上記[1]に記載の光導波路クラッド材。
[3]前記2つ以上のエチレン性不飽和基を有し、かつポリアルキレングリコール骨格を含む重合性化合物が、ポリエチレングリコールジ(メタ)アクリレート又はポリプロピレングリコールジ(メタ)アクリレートである、上記[2]に記載の光導波路クラッド材。
[4]前記(B)成分の含有量が、前記(A)成分と前記(B)成分の合計100質量部に対して20〜70質量部である、上記[1]〜[3]のいずれかに記載の光導波路クラッド材。
[5]前記(B)成分中、前記(B1)成分の含有量が、前記(B)成分100質量部に対して30〜95質量部である、上記[1]〜[4]のいずれかに記載の光導波路クラッド材。
[6]前記(B)成分として、さらに、(B2)65℃における粘度が25mPa・sを超える重合性化合物を含有する、上記[1]〜[5]のいずれかに記載の光導波路クラッド材。
[7]前記(B2)成分が、2つ以上のエチレン性不飽和基を有する重合性化合物(但し、(B1)成分は除く。)である、上記[6]に記載の光導波路クラッド材。
[8](C)重合開始剤が、光ラジカル重合開始剤である、上記[1]〜[7]のいずれかに記載の光導波路クラッド材。
[9]さらに、(D)熱硬化性樹脂を含有する、上記[1]〜[8]のいずれかに記載の光導波路クラッド材。
[10](D)熱硬化性樹脂が、分子内に2つ以上のエポキシ基を有する化合物、又は分子内にエポキシ基とエチレン性不飽和基とを有する化合物から選ばれる1種以上である、上記[9]に記載の光導波路クラッド材。
[11]上記[1]〜[10]のいずれかに記載の光導波路クラッド材を含有する光導波路クラッド層形成用樹脂フィルム。
[12]基材フィルムと、上記[1]〜[10]のいずれかに記載の光導波路クラッド材を含有する樹脂層と、保護フィルムとを有する、上記[11]に記載の樹脂フィルム。
[13]コア層と、上記[11]又は[12]に記載の光導波路クラッド層形成用樹脂フィルムを用いて形成したクラッド層とを有する、光導波路。
[14]コア部において、コア部を形成するコア材に、クラッド層を形成するクラッド材が混入して形成されてなる部位を有する、上記[13]に記載の光導波路。
[15]コア部において、前記コア材に前記クラッド材が混入して形成されてなる部位が10〜90体積%を占める、上記[14]に記載の光導波路。
[16]クラッド層において、クラッド層を形成するクラッド材に、コア部を形成するコア材が混入して形成されてなる部位を有する、上記[13]〜[15]のいずれかに記載の光導波路。
[17]波長850nmにおける光伝搬損失が0.25dB/cm以下である、上記[13]〜[16]のいずれかに記載の光導波路。
本発明によれば、工業的な製造が簡便であり、かつ光伝搬損失の小さい光導波路を提供すること、並びに、該光導波路を製造し得る光導波路クラッド材及び該光導波路クラッド材を用いた光導波路クラッド層形成用樹脂フィルムを提供することができる。
本発明の光導波路クラッド材を用いて作製した光導波路の例を示す断面図である。 本発明の光導波路の構成例を示す断面図である。 光導波路クラッド層形成用樹脂フィルムを、下部クラッド層、コア部及び上部クラッド層に用いて形成する光導波路の製造方法を示す断面図である。
本発明者らは、以前、アルカリ現像に用いられる光導波路形成用樹脂組成物において、アルカリ現像のプロセスによってコア部(コアパターンとも称する)を形成したときのコア部の表層にアルカリカチオンが残存し、これに起因して全光線透過率の低下、あるいは黄変を引き起こし、結果として光損失が悪化するという現象を捉えた。そしてその原因を分析し、ポリマーの屈折率に関するLorentz−Lorenzの式の近似式
屈折率n ≒ 定数a×分極(α)×材料密度(V)+b
を想定し、この式において、上記式の材料密度(V)に着目した。そして、アルカリ現像の影響を受ける表層の材料密度(V)が小さくなれば、コア部の表層の屈折率が低下し、屈折率の高いコア内部を光が多く伝搬し、光伝搬損失を向上できるのではないかと想定して、材料全体の特性及び材料の成分面から検討した(特許文献2参照)。
本発明者らは、さらなる検討によって、コアパターンの外周周辺部と中心部との間の屈折率変化を緩やかな分布とすることで光伝搬損失の小さい光導波路を提供できるのではないかと考えた。そこで、光導波路のクラッド層の原料、つまり光導波路クラッド材(以下、単にクラッド材と称することがある)をコア部へ浸透させる方法を検討した。具体的には、コア部を形成する際に架橋反応をさせないか又は架橋反応の程度を抑えておき、且つクラッド層を形成する際に特定のクラッド材(光導波路クラッド層形成用樹脂フィルム)を用いることによって、クラッド層を形成しながらクラッド材をコア部の内部へ浸透させることができた。これにより、コア部のより内部においても大きな屈折率分布を有するコア部を形成することができ、光伝搬損失のより小さい光導波路の製造に成功した。
以下、本発明の実施態様の一つについて詳述する。
本発明では、コアパターンの外周周辺の少なくとも一部の屈折率が、コアパターンの中心の屈折率よりも小さくなっている。より詳細には、コアパターンの中心から外周(後述する上部クラッド層側)へ向けて、屈折率が少しずつ小さくなっている部位を有し、屈折率の高い領域と低い領域との間では、屈折率の変化が連続的になっているため、これは、いわゆるGI型(グレーテッドインデックス型)の屈折率分布に属する。これにより、コアパターンを伝搬する光は、より一層、コアパターン中心寄りで伝搬することとなり、そのためにコアパターンの側壁の荒れの影響を受けにくくなり、さらなる低光伝搬損失化が可能となる。また、コア部の外側に、さらに屈折率の低い下部クラッド層及び/又は上部クラッド層を有することで、さらなる低光伝搬損失化が可能となる。
以上の原理に基づいて、本発明のクラッド材を用いて作製した光導波路の例を図1に示す。図1において、(a)は光導波路の断面図を模式的に表した図であり、(b)は光導波路に形成されたコア部断面の一つ(点線で囲んだ部分)を拡大して撮影した写真である。
図1は、コアパターン中心部3とコアパターン外周周辺部4のおおよその位置を示したコアパターン2を有する光導波路1を示す。上部クラッド層5を形成するクラッド材がコアパターン2内へ浸透していること、並びにコアパターン外周周辺部4の外側にさらに屈折率の低い下部クラッド層6及び下部クラッド層6の上に上部クラッド層5が配置されていることにより、コアパターン2を伝搬する光のうち、コアパターン外周周辺部4の外側に漏れ出そうとする光を、非常に効率的にコアパターン2内に留めることができる。このような光導波路であると、例えば、直線状のコアパターン2を伝搬する光は、コアパターン中心部3を伝搬しやすく、低光伝搬損失となり、コアパターン2の曲げ等によってコアパターン2の外側に漏れ出そうとする光は、屈折率差のより大きい下部クラッド層6又は上部クラッド層5とコアパターン2との間で全反射されるため、光伝搬損失が発生しにくくなる。
[光導波路クラッド材]
前記形態を実現するための本発明のクラッド材は、(A)酸性置換基を有するポリマーと、(B)2つ以上のエチレン性不飽和基を有する重合性化合物と、(C)重合開始剤と、を含有し、(B)2つ以上のエチレン性不飽和基を有する重合性化合物として、(B1)65℃における粘度が25mPa・s以下である2つ以上のエチレン性不飽和基を有する重合性化合物を含有するものである。ここで、光導波路クラッド材又はクラッド材とは、クラッド層の原料の混合物を指す。
このようなクラッド材を用いることにより、クラッド層形成時にクラッド材がコア部へ効率的に浸透するため、コア部が前記の特性を示し、これにより、コアパターンを伝搬する光はコアパターンの比較的中心付近を主に伝搬するようになり、低光伝搬損失化が可能となる。
以下、本発明のクラッド材の各成分について詳述する。
((A)成分:酸性置換基を有するポリマー)
(A)成分の酸性置換基を有するポリマーの酸性置換基としては、例えば、カルボキシル基、スルホン酸基、フェノール性水酸基、アルコール性水酸基、アミノ基等が挙げられ、水酸基、カルボキシル基が好ましい。
(A)成分としては、酸性置換基を有する(メタ)アクリルポリマーが好ましく、水酸基及びカルボキシル基からなる群から選択される少なくとも1つを有する(メタ)アクリルポリマーがより好ましく、水酸基を有する(メタ)アクリルポリマーがさらに好ましい。なお、(メタ)アクリルとは、アクリル及び/又はメタクリルを意味する。
酸性置換基を有する(メタ)アクリルポリマーとしては、例えば、(メタ)アクリル酸、各種(メタ)アクリル酸エステル[(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキルエステル等]、(メタ)アクリルアミド等の(メタ)アクリル系モノマーのホモポリマー又はコポリマー;前記(メタ)アクリル系モノマーと他の重合性不飽和基含有モノマー(例えば、スチレン、α−メチルスチレン、マレイン酸無水物等)等とのコポリマーなどが好ましく挙げられる。
(A)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(A)成分としては、より具体的には、カルボキシル基を有する重合性化合物(A−1)に由来する構造単位を有するポリマーであることが好ましい。(A)成分は、前記(A−1)成分と共に、さらに、水酸基を有する重合性化合物(A−2)に由来する構造単位及び前記(A−1)及び(A−2)成分以外の重合性化合物(A−3)に由来する構造単位からなる群から選択される少なくとも1つの構造単位を有するコポリマーであってもよく、前記(A−1)成分に由来する構造単位と前記(A−3)成分に由来する構造単位とを有するコポリマーであることが好ましい。
(A−1)成分について;
カルボキシル基を有する重合性化合物(A−1)としては、例えば、アクリル酸、メタクリル酸、クロトン酸等のモノカルボン酸;マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸等のジカルボン酸;2−サクシノロイルエチル(メタ)アクリレート、2−マレイノロイルエチル(メタ)アクリレート、2−ヘキサヒドロフタロイルエチル(メタ)アクリレート等の、カルボキシル基及びエステル結合を有する(メタ)アクリル酸誘導体などが挙げられる。これらの中でも、アクリル酸、メタクリル酸、2−ヘキサヒドロフタロイルエチル(メタ)アクリレートが好ましく、アクリル酸、メタクリル酸がより好ましく、メタクリル酸がさらに好ましい。
(A−1)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(A−2)成分について;
水酸基を有する重合性化合物(A−2)としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート等の水酸基含有脂肪族(メタ)アクリレート;2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−(o−フェニルフェノキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(1−ナフトキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(2−ナフトキシ)プロピル(メタ)アクリレート等の水酸基含有芳香族(メタ)アクリレートなどが挙げられる。
但し、カルボキシル基と水酸基との両方を有する重合性化合物である場合は、カルボキシル基を有するものであることを優先し、(A−1)成分として分類される。
これらの中でも、低光伝搬損失の観点から、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート等の脂肪族(メタ)アクリレート;2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−(o−フェニルフェノキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレートが好ましく、脂肪族(メタ)アクリレートがより好ましく、2−ヒドロキシエチル(メタ)アクリレートがさらに好ましい。
(A−2)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(A−3)成分について;
前記(A−1)及び(A−2)成分以外の重合性化合物(A−3)は、主として、(A)成分である酸性置換基を有するポリマーの機械的特性、透明性及び屈折率を制御できる。
このような重合性化合物としては、(メタ)アクリル酸エステルが好ましく、(メタ)アクリルアルキルエステルがより好ましい。該(メタ)アクリルアルキルエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート等が挙げられる。これらの中でも、低光伝搬損失の観点から、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレートが好ましく、メチル(メタ)アクリレート、ブチル(メタ)アクリレートがより好ましい。
(A−3)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。(A−3)成分としては、2種以上を併用することが好ましく、メチル(メタ)アクリレートとブチル(メタ)アクリレートとを併用することがより好ましい。
(A)成分において、カルボキシル基を有する重合性化合物(A−1)に由来する構造単位の含有率は、3〜60モル%であることが好ましい。3モル%以上であるとフィルムが低タック傾向にあり、フィルムの取り扱い性が向上する。60モル%以下であれば、後述する基材へのクラッド材の積層の際、基材に対し、高密着力となる傾向にある。以上の観点から、5〜50モル%であることがより好ましく、10〜40モル%であることがさらに好ましく、20〜40モル%であることが特に好ましい。
(A)成分において、水酸基を有する重合性化合物(A−2)に由来する構造単位の含有率は、0〜50モル%であることが好ましい。50モル%以下であれば、フィルムタックが小さい且つ、基材との密着性が良好となる傾向にある。以上の観点から、0〜35モル%であることがより好ましく、0〜15モル%であることがさらに好ましく、0〜5モル%であることが特に好ましい。
(A)成分において、前記(A−1)成分及び前記(A−2)成分以外の重合性化合物(A−3)に由来する構造単位の含有率は、(A−1)成分に由来する構造単位、(A−2)成分に由来する構造単位、及び(A−3)成分に由来する構造単位の合計が100モル%となる量である。
(A)成分の機械的特性、透明性及び屈折率を制御する観点からは、(A−3)成分に由来する構造単位の含有率は、30〜97モル%であることが好ましい。30モル%以上であると低光伝搬損失が充分となる傾向にあり、97モル%以下であれば、フィルムが低タック傾向にあり、フィルムの取り扱い性が向上する。以上の観点から、30〜90モル%であることがより好ましく、50〜90モル%であることがさらに好ましく、60〜80モル%であることが特に好ましい。
なお、(A)成分において、前記(A−1)〜(A−3)成分に由来する構造単位の含有率は、上記の各構成単位の含有率から、合計が100質量%となるようにそれぞれ選択される。
特に、(A)成分が前記(A−1)成分に由来する構造単位と前記(A−3)成分に由来する構造単位とを有するコポリマーである場合、前記(A−1)成分に由来する構造単位と前記(A−3)成分に由来する構造単位との含有比率[(A−1):(A−3)]に特に制限はないが、モル比で、好ましくは10:90〜50:50、より好ましくは20:80〜50:50である。
(A)成分の製造方法に特に制限はないが、例えば、前記(A−1)〜(A−3)成分を、適切な重合開始剤(好ましくはラジカル重合開始剤)を用いて重合又は共重合させることにより、(A)成分を得ることができる。このとき、必要に応じて、有機溶剤を用いることもできる。
重合開始剤としては、特に制限されるものではないが、例えば、メチルエチルケトンパーオキシド、シクロヘキサノンパーオキシド、メチルシクロヘキサノンパーオキシド等のケトンパーオキシド;1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン等のパーオキシケタール;p−メンタンヒドロパーオキシド等のヒドロパーオキシド;α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキシド、t−ブチルクミルパーオキシド、ジ−t−ブチルパーオキシド等のジアルキルパーオキシド;オクタノイルパーオキシド、ラウロイルパーオキシド、ステアリルパーオキシド、ベンゾイルパーオキシド等のジアシルパーオキシド;ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシエチルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−3−メトキシブチルパーオキシカーボネート等のパーオキシカーボネート;t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ブチルパーオキシベンゾエート、t−ヘキシルパーオキシベンゾエート、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート等のパーオキシエステル;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(4−メトキシ−2’−ジメチルバレロニトリル)等のアゾ化合物などが挙げられる。
有機溶剤としては、重合反応によって得られる(A)成分を溶解し得るものであれば、特に制限はない。例えば、トルエン、キシレン、メシチレン、クメン、p−シメン等の芳香族炭化水素;テトラヒドロフラン、1,4−ジオキサン等の環状エーテル;メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4−ヒドロキシ−4−メチル−2−ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ−ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等の多価アルコールアルキルエーテルアセテート;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミドなどが挙げられる。
有機溶剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
さらに(A)成分は、必要に応じて、側鎖にエチレン性不飽和基を含んでいてもよい。その組成や合成方法に特に制限はないが、例えば、(A)成分としての酸性置換基を有するポリマー、例えば、酸性置換基を有する(メタ)アクリルポリマーに、少なくとも1つのエチレン性不飽和基と、エポキシ基、オキセタニル基、イソシアネート基、ヒドロキシル基及びカルボキシル基からなる群から選択される少なくとも1つの官能基とを有する化合物を付加反応させて側鎖にエチレン性不飽和基を導入することができる。
少なくとも1つのエチレン性不飽和基と、エポキシ基、オキセタニル基、イソシアネート基、ヒドロキシル基及びカルボキシル基からなる群から選択される少なくとも1つの官能基とを有する化合物としては、特に制限されるものではないが、例えば、グリシジル(メタ)アクリレート、α−エチルグリシジル(メタ)アクリレート、α−プロピルグリシジル(メタ)アクリレート、α−ブチルグリシジル(メタ)アクリレート、2−メチルグリシジル(メタ)アクリレート、2−エチルグリシジル(メタ)アクリレート、2−プロピルグリシジル(メタ)アクリレート、3,4−エポキシブチル(メタ)アクリレート、3,4−エポキシヘプチル(メタ)アクリレート、α−エチル−6,7−エポキシヘプチル(メタ)アクリレート、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート、o−ビニルベンジルグリシジルエーテル、m−ビニルベンジルグリシジルエーテル、p−ビニルベンジルグリシジルエーテル等の、エチレン性不飽和基とエポキシ基を有する化合物;(2−エチル−2−オキセタニル)メチル(メタ)アクリレート、(2−メチル−2−オキセタニル)メチル(メタ)アクリレート、2−(2−エチル−2−オキセタニル)エチル(メタ)アクリレート、2−(2−メチル−2−オキセタニル)エチル(メタ)アクリレート、3−(2−エチル−2−オキセタニル)プロピル(メタ)アクリレート、3−(2−メチル−2−オキセタニル)プロピル(メタ)アクリレート等の、エチレン性不飽和基とオキセタニル基を有する化合物;2−(メタ)アクリロイルオキシエチルイソシアネート等の、エチレン性不飽和基とイソシアネート基を有する化合物;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート等の、エチレン性不飽和基とヒドロキシル基を有する化合物;(メタ)アクリル酸、クロトン酸、ケイ皮酸、コハク酸(2−(メタ)アクリロイロキシエチル)、2−フタロイルエチル(メタ)アクリレート、2−テトラヒドロフタロイルエチル(メタ)アクリレート、2−ヘキサヒドロフタロイルエチル(メタ)アクリレート、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレート、3−ビニル安息香酸、4−ビニル安息香酸等の、エチレン性不飽和基とカルボキシル基を有する化合物などが挙げられる。
これらの中でも、透明性及び反応性の観点から、グリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート、2−(メタ)アクリロイルオキシエチルイソシアネート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、(メタ)アクリル酸、クロトン酸、2−ヘキサヒドロフタロイルエチル(メタ)アクリレートが好ましい。これらの化合物は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(A)成分の重量平均分子量(Mw)は、1,000〜3,000,000であることが好ましい。1,000以上であると分子量が大きいため樹脂組成物とした場合の硬化物の強度が十分となる傾向にあり、3,000,000以下であれば、有機溶剤に対する溶解性及び(B)成分との相溶性が良好となる傾向にある。以上の観点から、3,000〜2,000,000がより好ましく、5,000〜1,000,000がさらに好ましく、5,000〜200,000が特に好ましく、5,000〜100,000が最も好ましい。なお、本発明における重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)で測定し、標準ポリスチレン換算した値であり、詳細な測定方法は実施例に記載したとおりである。
((B)成分:2つ以上のエチレン性不飽和基を有する重合性化合物)
本発明の特徴の1つは、(B)成分が、(B1)65℃における粘度が25mPa・s以下である2つ以上のエチレン性不飽和基を有する重合性化合物を含有することである。
すなわち、本発明のクラッド材は、前記特定範囲の粘度を有する(B1)成分を含有しており、該(B1)成分が、光導波路を製造する際に適度にコア部に浸透することにより、コア部内において低光伝搬損失化に有効な屈折率分布が得られ、低光伝搬損失化が達成されるものと考えられる。
(B1)成分の65℃における粘度は、クラッド材のコア部への浸透し易さの観点から、25mPa・s以下であり、好ましくは23mPa・s以下、より好ましくは21mPa・s以下であり、さらに好ましくは20mPa・s以下である。一方、取り扱い性及びクラッド材のコア部への浸透し易さを調整する観点からは、(B1)成分の65℃における粘度は、好ましくは5mPa・s以上、より好ましくは10mPa・s以上である。なお、(B1)成分の65℃における粘度は、実施例に記載の方法により測定することができる。
(B)成分中の該(B1)成分の含有率は、特に制限されるものではないが、低光伝搬損失の観点から、(B)成分の総量100質量部に対して、好ましくは30〜100質量部、より好ましくは30〜95質量部、さらに好ましくは40〜95質量部、特に好ましくは60〜95質量部、最も好ましくは85〜95質量部である。
(B1)成分は、65℃における粘度が25mPa・s以下である2つ以上のエチレン性不飽和基を有する重合性化合物であれば、特に限定されないが、例えば、重合性化合物として、エチレン性不飽和結合を有する化合物が好ましい。
(B1)成分が有するエチレン性不飽和基としては、例えば、ビニル基、(メタ)アクリロイル基、アリル基等が挙げられ、これらの中でも、(メタ)アクリロイル基が好ましい。
(B1)成分が有するエチレン性不飽和基の数は、2以上であることが好ましく、2であることがより好ましい。
(B1)成分は、低光伝搬損失の観点から、(B1−1)2つ以上のエチレン性不飽和基を有し、かつポリアルキレングリコール骨格を含む重合性化合物であることが好ましい。
(B1−1)成分が有するポリアルキレングリコール骨格としては、例えば、ポリエチレングリコール骨格、ポリプロピレングリコール骨格、ポリ(エチレンプロピレン)グリコール骨格等が挙げられ、これらの中でも、ポリエチレングリコール骨格が好ましい。
(B1−1)成分の具体例としては、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリ(エチレンプロピレン)グリコールジ(メタ)アクリレート等が挙げられ、これらの中でも、ポリエチレングリコールジ(メタ)アクリレートがより好ましい。
(B1)成分中の「ポリエチレングリコールに由来する構造単位」の含有率としては、クラッド材のコア部への浸透し易さの観点から、全構造単位に対して、好ましくは5〜100モル%、より好ましくは20〜100モル%、さらに好ましくは40〜100モル%、特に好ましくは50〜100モル%、最も好ましくは80〜100モル%であり、実質的に100モル%であることも好ましい。
(B1)成分の重量平均分子量は、所望の粘度とする観点から、好ましくは170〜1,500、より好ましくは300〜1200、さらに好ましくは400〜900である。
また、(B)成分としては、該(B1)成分以外に、さらに(B2)65℃における粘度が25mPa・sを超える重合性化合物を含有することが好ましい。
(B2)成分の65℃における粘度は、クラッド材の取り扱い性及び光導波路の生産性の観点から、25mPa・s超であり、好ましくは26〜50mPa・s、より好ましくは27〜40mPa・s、さらに好ましくは28〜35mPa・sである。
(B2)成分は、65℃における粘度が25mPa・sを超える重合性化合物であれば、特に限定されないが、例えば、重合性化合物として、エチレン性不飽和基を有する化合物が好ましく、2つ以上のエチレン性不飽和基を有する重合性化合物(但し、(B1)成分は除く)がより好ましい。
(B1)成分が有するエチレン性不飽和基としては、例えば、ビニル基、(メタ)アクリロイル基、アリル基等が挙げられ、これらの中でも、(メタ)アクリロイル基が好ましい。
(B2)成分としては、透明性、耐熱性及び低光伝搬損失の観点から、(B2−1)ジ(メタ)アクリレート、(B2−2)3官能以上のポリ(メタ)アクリレートが好ましく、(B2−2)3官能以上のポリ(メタ)アクリレートがより好ましい。
(B2−1)ジ(メタ)アクリレートとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリ(エチレンプロピレン)グリコールジ(メタ)アクリレート、ポリエチレングリコール型エポキシジ(メタ)アクリレート、ポリプロピレングリコール型エポキシジ(メタ)アクリレート等であって、65℃における粘度が25mPa・sを超えるものが挙げられる。
(B2−1)成分としては、1種を単独で使用してもよいし、2種以上を併用してもよい。
(B2−2)3官能以上のポリ(メタ)アクリレートとしては、例えば、ペンタエリスリトールトリ(メタ)アクリレート等の脂肪族ポリ(メタ)アクリレート;前記脂肪族ポリ(メタ)アクリレートの、エトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体又はカプロラクトン変性体;フェノールノボラック型エポキシポリ(メタ)アクリレート、クレゾールノボラック型エポキシポリ(メタ)アクリレート等の芳香族エポキシポリ(メタ)アクリレート;複素環式ポリ(メタ)アクリレート;前記複素環式ポリ(メタ)アクリレートのエトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体又はカプロラクトン変性体;複素環式エポキシポリ(メタ)アクリレートなどであって、65℃における粘度が25mPa・sを超えるものが挙げられる。
ここで、「エトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体」とは、原料となるアルコール又はフェノール類[例えば、モノ(メタ)アクリレート;CH=C(R)−COO−R(Rは水素原子又はメチル基、Rは1価の有機基)の場合は、HO−Rで示されるもの]の代わりに、前記アルコール又はフェノール類に、それぞれ、1以上のエチレンオキシドを付加した構造のアルコール、1以上のプロピレンオキシドを付加した構造のアルコール、又は1以上のエチレンオキシド及びプロピレンオキシドを付加した構造のアルコールを、原料に用いて得られる(メタ)アクリレートを示し[例えば、エトキシ化体の場合はCH=C(R)−COO−(CHCHO)q−R(qは1以上の整数、R、Rは前記と同様)で示される。]、以下、同様である。例えば、フェノキシエチル(メタ)アクリレートのエトキシ化体とは、フェノキシエチルアルコールにエチレンオキシドを付加したアルコールと、アクリル酸又はメタクリル酸とを反応させて得られる(メタ)アクリレートを意味する。また、カプロラクトン変性体とは、(メタ)アクリレートの原料となるアルコールをカプロラクトンで変性した変性アルコールを原料とする(メタ)アクリレートを示し[例えば、モノ(メタ)アクリレートのε−カプロラクトン変性体の場合、CH=C(R)−COO−((CHCOO)q−R(q、R、Rは前記と同様)で示される。]、以下、同様である。
以上において、ポリ(メタ)アクリレートとしては、いずれも、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレートが好ましく、トリ(メタ)アクリレートがより好ましく、トリアクリレートがさらに好ましい。
これらの中でも、透明性、耐熱性及び低光伝搬損失の観点から、脂肪族ポリ(メタ)アクリレート;芳香族エポキシポリ(メタ)アクリレート;複素環式ポリ(メタ)アクリレート;イソシアヌル酸型エポキシポリ(メタ)アクリレートが好ましく、脂肪族ポリ(メタ)アクリレートがより好ましく、脂肪族トリ(メタ)アクリレートがさらに好ましく、ペンタエリスリトールトリ(メタ)アクリレートが特に好ましく、ペンタエリスリトールトリアクリレートが最も好ましい。
(B2−2)成分としては、1種を単独で使用してもよいし、2種以上を併用してもよい。
(B)成分中の該(B2)成分の含有率は、特に制限されるものではないが、低光伝搬損失の観点から、(B)成分の総量100質量部に対して、好ましくは0〜40質量部、より好ましくは3〜30質量部、さらに好ましくは4〜20質量部、特に好ましくは5〜10質量部である。
前記(B)成分の含有量は、低光伝搬損失の観点から、(A)成分及び(B)成分の総量100質量部に対して、20〜70質量部であることが好ましい。同様の観点から、(B)成分の配合量の下限値は、25質量部であることがより好ましく、35質量部であることがさらに好ましい。また、上限値は、70質量部であることがより好ましく、65質量部であることがさらに好ましい。
((C)成分:重合開始剤)
重合開始剤としては、加熱又は紫外線等の照射によって重合を開始させるものであれば特に制限はなく、例えば、熱ラジカル重合開始剤、光ラジカル重合開始剤等が挙げられるが、硬化速度が速く常温硬化が可能なことから、光ラジカル重合開始剤であることが好ましい。
光ラジカル重合開始剤としては、例えば、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン等のベンゾインケタール;1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン等のα−ヒドロキシケトン;2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、1,2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン等のα−アミノケトン;1−[(4−フェニルチオ)フェニル]−1,2−オクタジオン−2−(ベンゾイル)オキシム等のオキシムエステル;ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキシド、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド等のホスフィンオキシド;2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−クロロフェニル)−4,5−ジ(メトキシフェニル)イミダゾール二量体、2−(o−フルオロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2−(p−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体等の2,4,5−トリアリールイミダゾール二量体;ベンゾフェノン、N,N’−テトラメチル−4,4’−ジアミノベンゾフェノン、N,N’−テトラエチル−4,4’−ジアミノベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン等のベンゾフェノン化合物;2−エチルアントラキノン、フェナントレンキノン、2−tert−ブチルアントラキノン、オクタメチルアントラキノン、1,2−ベンズアントラキノン、2,3−ベンズアントラキノン、2−フェニルアントラキノン、2,3−ジフェニルアントラキノン、1−クロロアントラキノン、2−メチルアントラキノン、1,4−ナフトキノン、9,10−フェナントラキノン、2−メチル−1,4−ナフトキノン、2,3−ジメチルアントラキノン等のキノン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル化合物;9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニルヘプタン)等のアクリジン化合物:N−フェニルグリシン、クマリンなどが挙げられる。
また、前記2,4,5−トリアリールイミダゾール二量体において、2つのトリアリールイミダゾール部位のアリール基の置換基は、同一で対称な化合物を与えてもよく、相違して非対称な化合物を与えてもよい。また、ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン化合物と第三級アミンとを組み合わせてもよい。
これらの中で、硬化性、透明性及び耐熱性の観点から、α−ヒドロキシケトン、ホスフィンオキシドが好ましく、ホスフィンオキシドがより好ましい。
光ラジカル重合開始剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。さらに、適切な増感剤と組み合わせて用いることもできる。
熱ラジカル重合開始剤としては、例えば、メチルエチルケトンパーオキシド、シクロヘキサノンパーオキシド、メチルシクロヘキサノンパーオキシド等のケトンパーオキシド;1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン等のパーオキシケタール;p−メンタンヒドロパーオキシド等のヒドロパーオキシド;α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキシド、t−ブチルクミルパーオキシド、ジ−t−ブチルパーオキシド等のジアルキルパーオキシド;オクタノイルパーオキシド、ラウロイルパーオキシド、ステアリルパーオキシド、ベンゾイルパーオキシド等のジアシルパーオキシド;ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシエチルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−3−メトキシブチルパーオキシカーボネート等のパーオキシカーボネート;t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ブチルパーオキシベンゾエート、t−ヘキシルパーオキシベンゾエート、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート等のパーオキシエステル;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(4−メトキシ−2’−ジメチルバレロニトリル)等のアゾ化合物などが挙げられる。
これらの中で、硬化性、透明性、及び耐熱性の観点から、ジアシルパーオキシド、パーオキシエステル、アゾ化合物が好ましい。
熱ラジカル重合開始剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。また、光ラジカル重合開始剤と熱ラジカル重合開始剤とを組み合わせて用い、光硬化性と熱硬化性とを有するクラッド材とすることもできる。
(C)成分の重合開始剤の含有量は、(A)成分及び(B)成分の総量100質量部に対して、0.3〜10質量部であることが好ましい。0.3質量部以上であると、硬化が十分であり、硬化不足による未反応物の析出を抑制し易い傾向にあり、10質量部以下であると、十分な光透過性が得られる傾向にある。以上の観点から、0.35〜7質量部であることがより好ましく、0.40〜5質量部であることがさらに好ましく、0.45〜3質量部であることが特に好ましい。
((D)成分:熱硬化性樹脂)
本発明のクラッド材は、(D)成分として熱硬化性樹脂を含有していてもよい。
熱硬化性樹脂としては、例えば、分子内に2つ以上のエポキシ基を有する化合物、及び分子内にエポキシ基とエチレン性不飽和基を有する化合物からなる群から選ばれる少なくとも1種が好ましい。
分子内に2つ以上のエポキシ基を有する化合物としては、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールT型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、トリフェニル型エポキシ樹脂、テトラフェニル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフタレンジオールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、エチレン性不飽和基を骨格に有するエポキシ樹脂、脂環式型エポキシ樹脂等のエポキシ樹脂が挙げられる。該エポキシ樹脂のエポキシ当量は、それぞれ、好ましくは50〜3,000g/eq、より好ましくは80〜2,000g/eq、さらに好ましくは100〜1,000g/eqである。ここで、エポキシ当量は、1当量のエポキシ基あたりの樹脂の質量(g/eq)であり、JISK 7236に規定された方法に従って測定することができる。
分子内にエポキシ基とエチレン性不飽和基を有する化合物としては、例えば、グリシジル(メタ)アクリレート、α−エチルグリシジル(メタ)アクリレート、α−プロピルグリシジル(メタ)アクリレート、α−ブチルグリシジル(メタ)アクリレート、2−メチルグリシジル(メタ)アクリレート、2−エチルグリシジル(メタ)アクリレート、2−プロピルグリシジル(メタ)アクリレート、3,4−エポキシブチル(メタ)アクリレート、3,4−エポキシヘプチル(メタ)アクリレート、α−エチル−6,7−エポキシヘプチル(メタ)アクリレート、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート、o−ビニルベンジルグリシジルエーテル、m−ビニルベンジルグリシジルエーテル、p−ビニルベンジルグリシジルエーテル等が挙げられる。
クラッド材が(D)成分を含有する場合、その含有量は、(A)〜(C)成分の総量100質量部に対して、1〜40質量部であることが好ましい。1質量部以上であると、(A)成分と十分な架橋構造を形成するため、耐熱性が良好となる傾向にあり、40質量部以下であると、光伝搬特性が良好となる傾向にある。同様の観点から、(D)成分の含有量は、3〜30質量部であることがより好ましく、5〜20質量部であることがさらに好ましい。
((E)モノ(メタ)アクリレート)
本発明のクラッド材は、(E)成分としてモノ(メタ)アクリレートを含有していてもよい。モノ(メタ)アクリレートとしては、特に制限はなく、例えば、特開2015−215467号公報の段落[0033]に記載の(メタ)アクリレートが挙げられる。
クラッド材に(E)成分を含有させる場合、その含有量は、(A)〜(C)成分の総量100質量部に対して、10質量部以下であることが好ましく、5質量部以下であることがより好ましい。
(添加剤)
また、この他に、本発明のクラッド材は、必要に応じて、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填材等の添加剤を本発明の効果に悪影響を与えない割合で含有していてもよい。
クラッド材に添加剤を含有させる場合、その含有量は、(A)〜(C)成分の総量100質量部に対して、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましい。
[光導波路コア材]
光導波路のコア部の原料、つまり光導波路コア材(以下、単にコア材と称することがある)は、(A’)酸性置換基を有するポリマーと、(B’)2つ以上のエチレン性不飽和基を有する重合性化合物と、(C’)重合開始剤と、を含有するものである。ここで、光導波路コア材又はコア材とは、コア部の原料の混合物を指す。
このようなコア材を用いることにより、コア部(コアパターン)形成時に前記クラッド材がコア部へ効率的に浸透するため、前述の通り、コアパターンを伝搬する光はコアパターンの比較的中心付近を主に伝搬するようになり、低光伝搬損失化が可能となる傾向にある。
以下、コア材の各成分について詳述する。
((A’)成分:酸性置換基を有するポリマー)
(A’)成分の酸性置換基を有するポリマーとしては、アルカリ水溶液に対して溶解し得るポリマーであればよい。該酸性置換基としては、例えば、カルボキシル基、スルホン酸基、フェノール性水酸基、アルコール性水酸基、アミノ基等が挙げられ、水酸基、カルボキシル基が好ましい。
(A’)成分としては、酸性置換基を有する(メタ)アクリルポリマーが好ましく、水酸基及びカルボキシル基からなる群から選択される少なくとも1つを有する(メタ)アクリルポリマーがより好ましく、水酸基を有する(メタ)アクリルポリマーがさらに好ましい。なお、(メタ)アクリルとは、アクリル及び/又はメタクリルを意味する。
酸性置換基を有する(メタ)アクリルポリマーとしては、アルカリ性水溶液からなる現像液に溶解し、目的とする現像処理が遂行される程度に溶解性を有するものであれば特に制限はない。例えば、(メタ)アクリル酸、各種(メタ)アクリル酸エステル[(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキルエステル等]、(メタ)アクリルアミド等の(メタ)アクリル系モノマーのホモポリマー又はコポリマー;前記(メタ)アクリル系モノマーと他の重合性不飽和基含有モノマー(例えば、スチレン、α−メチルスチレン、マレイン酸無水物等)等とのコポリマーなどが好ましく挙げられる。
(A’)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(A’)成分としては、より具体的には、カルボキシル基を有する重合性化合物(A’−1)に由来する構造単位を有するポリマーであることが好ましい。(A’)成分は、前記(A’−1)成分と共に、さらに、水酸基を有する重合性化合物(A’−2)に由来する構造単位、脂肪族環又は芳香族環を有する重合性化合物(A’−3)に由来する構造単位、及び前記(A’−1)〜(A’−3)成分以外の重合性化合物(A’−4)に由来する構造単位からなる群から選択される少なくとも1つの構造単位を有するコポリマーであってもよく、前記(A’−1)成分に由来する構造単位と前記(A’−2)成分に由来する構造単位と前記(A’−3)成分に由来する構造単位と前記(A’−4)成分に由来する構造単位とを全て有するコポリマーであることが好ましい。
(A’−1)成分について;
カルボキシル基を有する重合性化合物(A’−1)としては、前記(A−1)成分と同じものが挙げられる。それらの中でも、アクリル酸、メタクリル酸、2−ヘキサヒドロフタロイルエチル(メタ)アクリレートが好ましく、アクリル酸、メタクリル酸がより好ましく、メタクリル酸がさらに好ましい。
(A’−1)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(A’−2)成分について;
水酸基を有する重合性化合物(A’−2)としては、前記(A−2)成分と同じものが挙げられる。それらの中でも、透明性の観点から、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート等の脂肪族(メタ)アクリレート;2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−(o−フェニルフェノキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレートが好ましく、脂肪族(メタ)アクリレートがより好ましく、2−ヒドロキシエチル(メタ)アクリレートがさらに好ましい。
(A’−2)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(A’−3)成分について;
脂肪族環又は芳香族環を有する重合性化合物(A’−3)としては、例えば、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、モノ(2−(メタ)アクリロイロキシエチル)テトラヒドロフタレート、モノ(2−(メタ)アクリロイロキシエチル)ヘキサヒドロフタレート等の脂環式(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o−ビフェニル(メタ)アクリレート、1−ナフチル(メタ)アクリレート、2−ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p−クミルフェノキシエチル(メタ)アクリレート、o−フェニルフェノキシエチル(メタ)アクリレート、1−ナフトキシエチル(メタ)アクリレート、2−ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−(o−フェニルフェノキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(1−ナフトキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(2−ナフトキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレート;2−テトラヒドロフルフリル(メタ)アクリレート、N−(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド、2−(メタ)アクリロイロキシエチル−N−カルバゾール等の複素環式(メタ)アクリレート、これらのカプロラクトン変性体などが挙げられる。
これらの中でも、透明性及び屈折率の観点から、脂環式(メタ)アクリレート、芳香族(メタ)アクリレートが好ましく、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレートベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o−ビフェニル(メタ)アクリレートがより好ましく、芳香族(メタ)アクリレートがさらに好ましく、フェニル(メタ)アクリレートが特に好ましい。
(A’−3)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
なお、(A’−2)成分に含まれる2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレートのように、水酸基と、脂肪族環又は芳香族環との両方を有する重合性化合物の場合には、この重合性化合物は水酸基を有するものであることを優先し、(A’−2)成分の水酸基を有する重合性化合物として分類される。同様に、(A’−1)成分に含まれる2−ヘキサヒドロフタロイルエチル(メタ)アクリレートのように、カルボキシル基と脂肪族環との両方を有する重合性化合物の場合、あるいは、カルボキシル基と、水酸基と、脂肪族環又は芳香族環とを有する重合性化合物である場合は、カルボキシル基を有するものであることを優先し、(A’−1)成分として分類される。
(A’−4)成分について;
前記(A’−1)〜(A’−3)成分以外の重合性化合物(A’−4)は、主として、(A’)成分である酸性置換基を有するポリマーの機械的特性、透明性及び屈折率を制御できる。
このような重合性化合物としては、(メタ)アクリル酸エステルが好ましく、(メタ)アクリル酸アルキルエステルがより好ましい。該(メタ)アクリル酸アルキルエステルとしては、前記(A−3)成分における例示と同じものが挙げられる。それらの中でも、透明性の観点から、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレートが好ましく、メチル(メタ)アクリレート、ブチル(メタ)アクリレートがより好ましく、メチル(メタ)アクリレートがさらに好ましい。
(A’−4)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(A’)成分において、カルボキシル基を有する重合性化合物(A’−1)に由来する構造単位の含有率は、5〜60モル%であることが好ましい。5モル%以上であるとアルカリ性水溶液等からなる現像液に溶解し易い傾向にあり、60モル%以下であれば、後述する現像により感光性樹脂組成物の層を選択的に除去してパターンを形成する現像工程において、耐現像液性(現像により除去されずにパターンとなる部分が、現像液によって侵されない性質)が良好となる傾向にある。以上の観点から、8〜50モル%であることがより好ましく、10〜45モル%であることがさらに好ましく、15〜40モル%であることが特に好ましい。
(A’)成分において、水酸基を有する重合性化合物(A’−2)に由来する構造単位の含有率は、5〜50モル%であることが好ましい。50モル%以下であれば、後述する現像により感光性樹脂組成物の層を選択的に除去してパターンを形成する現像工程において、耐現像液性が良好となる傾向にある。以上の観点から、5〜35モル%であることがより好ましく、5〜20モル%であることがさらに好ましい。
(A’)成分において、脂肪族環又は芳香族環を有する重合性化合物(A’−3)に由来する構造単位の含有率は、5〜70モル%であることが好ましい。5モル%以上であると屈折率を上昇させるのに充分であり、70モル%以下であれば、より高屈折率となり、現像液への溶解性が低下せずに現像によるパターン形成が容易となる。以上の観点から、10〜60モル%であることがさらに好ましく、15〜40モル%であることが特に好ましい。
(A’)成分において、前記(A’−1)〜(A’−3)成分以外の重合性化合物(A’−4)に由来する構造単位の含有率は、(A’−1)成分に由来する構造単位、(A’−2)成分に由来する構造単位、(A’−3)成分に由来する構造単位及び(A’−4)に由来する構造単位の合計が100モル%となる量である。
(A’)成分の機械的特性、透明性及び屈折率を制御する観点からは、(A’−4)に由来する構造単位の含有率は、10〜80モル%であることが好ましい。10モル%以上であると透明性が充分となる傾向にあり、80モル%以下であれば、より高透明となり、現像液への溶解性が低下せずに現像によるパターン形成が容易となる傾向にある。以上の観点から、20〜70モル%であることがより好ましく、30〜60モル%であることがさらに好ましく、35〜50モル%であることが特に好ましい。
なお、(A’)成分において、前記(A’−1)〜(A’−4)成分に由来する構造単位の含有率は、上記の各構成単位の含有率から、合計が100質量%となるようにそれぞれ選択される。
(A’)成分の製造方法に特に制限はないが、例えば、前記(A’−1)〜(A’−4)成分を、適切な重合開始剤(好ましくはラジカル重合開始剤)を用いて重合又は共重合させることにより、(A’)成分を得ることができる。このとき、必要に応じて、有機溶剤を用いることもできる。
重合開始剤及び有機溶剤について、前記(A)成分における説明と同じように説明される。
さらに(A’)成分は、必要に応じて、側鎖にエチレン性不飽和基を含んでいてもよい。これも、前記(A)成分における説明と同じように説明される。
(A’)成分の重量平均分子量(Mw)は、1,000〜3,000,000であることが好ましい。1,000以上であると分子量が大きいため樹脂組成物とした場合の硬化物の強度が十分となる傾向にあり、3,000,000以下であれば、アルカリ性水溶液からなる現像液に対する溶解性及び(B’)成分との相溶性が良好となる傾向にある。以上の観点から、3,000〜2,000,000がより好ましく、5,000〜1,000,000がさらに好ましく、5,000〜200,000が特に好ましく、5,000〜100,000が最も好ましい。
(A’)成分は、後述する現像により感光性樹脂組成物の層を選択的に除去してパターンを形成する工程において、公知の各種現像液により現像可能となるように酸価を規定することができる。例えば、炭酸ナトリウム、炭酸カリウム、水酸化テトラメチルアンモニウム、トリエタノールアミン等のアルカリ性水溶液を用いて現像する場合には、(A’)成分の酸価は20〜300mgKOH/gであることが好ましい。20mgKOH/g以上であると現像が容易となる傾向にあり、300mgKOH/g以下であると耐現像液性が低下しない傾向にある。以上の観点から、上記アルカリ性水溶液を用いて現像する場合には、(A’)成分の酸価は30〜250mgKOH/gであることがより好ましく、40〜200mgKOH/gであることがさらに好ましい。
また、水又はアルカリ性水溶液と、1種以上の界面活性剤とからなるアルカリ性水溶液を用いて現像する場合には、(A’)成分の酸価は10〜260mgKOH/gであることが好ましい。酸価が10mgKOH/g以上であると現像が容易となる傾向にあり、260mgKOH/g以下であると耐現像液性が低下しない傾向にある。以上の観点から、1種以上の界面活性剤を含有するアルカリ性水溶液を用いて現像する場合には、(A’)成分の酸価は20〜250mgKOH/gであることがより好ましく、30〜200mgKOH/gであることがさらに好ましい。
((B’)成分:2つ以上のエチレン性不飽和基を有する重合性化合物)
(B’)が有するエチレン性不飽和基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等が挙げられ、これらの中でも、(メタ)アクリロイル基、ビニル基が好ましく、(メタ)アクリロイル基がより好ましい。
(B’)成分としては、透明性、耐熱性及び低光伝搬損失の観点から、(B’−1)ジ(メタ)アクリレート、(B’−2)3官能以上のポリ(メタ)アクリレートが好ましく、(B’−1)ジ(メタ)アクリレートがより好ましい。
(B’−1)ジ(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3−プロパンジオールジ(メタ)アクリレート、2−メチル−1,3−プロパンジオールジ(メタ)アクリレート、2−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3−メチル−1,5−ペンタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート;前記脂肪族ジ(メタ)アクリレートの、エトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体又はカプロラクトン変性体;エチレングリコール型エポキシジ(メタ)アクリレート、ジエチレングリコール型エポキシジ(メタ)アクリレート、ポリエチレングリコール型エポキシジ(メタ)アクリレート、プロピレングリコール型エポキシジ(メタ)アクリレート、ジプロピレングリコール型エポキシジ(メタ)アクリレート、ポリプロピレングリコール型エポキシジ(メタ)アクリレート、1,3−プロパンジオール型エポキシジ(メタ)アクリレート、2−メチル−1,3−プロパンジオール型エポキシジ(メタ)アクリレート、2−ブチル−2−エチル−1,3−プロパンジオール型エポキシジ(メタ)アクリレート、1,4−ブタンジオール型エポキシジ(メタ)アクリレート、ネオペンチルグリコール型エポキシジ(メタ)アクリレート、3−メチル−1,5−ペンタンジオール型エポキシジ(メタ)アクリレート、1,6−ヘキサンジオール型エポキシジ(メタ)アクリレート、1,9−ノナンジオール型エポキシジ(メタ)アクリレート、1,10−デカンジオール型エポキシジ(メタ)アクリレート等の脂肪族エポキシジ(メタ)アクリレート;シクロヘキサンジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、水添ビスフェノールAジ(メタ)アクリレート、水添ビスフェノールFジ(メタ)アクリレート等の脂環式ジ(メタ)アクリレート;前記脂環式ジ(メタ)アクリレートの、エトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体又はカプロラクトン変性体;シクロヘキサンジメタノール型エポキシジ(メタ)アクリレート、トリシクロデカンジメタノール型エポキシジ(メタ)アクリレート、水添ビスフェノールA型エポキシジ(メタ)アクリレート、水添ビスフェノールF型エポキシジ(メタ)アクリレート等の脂環式エポキシジ(メタ)アクリレート;ヒドロキノンジ(メタ)アクリレート、レゾルシノールジ(メタ)アクリレート、カテコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ビスフェノールAFジ(メタ)アクリレート、ビフェノールジ(メタ)アクリレート、フルオレンビスフェノールジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート;前記芳香族ジ(メタ)アクリレートの、エトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体又はカプロラクトン変性体;ヒドロキノン型エポキシジ(メタ)アクリレート、レゾルシノール型エポキシジ(メタ)アクリレート、カテコール型エポキシジ(メタ)アクリレート、ビスフェノールA型エポキシジ(メタ)アクリレート、ビスフェノールF型エポキシジ(メタ)アクリレート、ビスフェノールAF型エポキシジ(メタ)アクリレート、ビフェノール型エポキシジ(メタ)アクリレート、フルオレンビスフェノール型エポキシジ(メタ)アクリレート等の芳香族エポキシジ(メタ)アクリレート;イソシアヌル酸ジ(メタ)アクリレート等の複素環式ジ(メタ)アクリレート;前記複素環式ジ(メタ)アクリレートの、エトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体又はカプロラクトン変性体;イソシアヌル酸モノアリル型エポキシジ(メタ)アクリレート等の複素環式ジ(メタ)アクリレートなどが挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、下記一般式(1)で表される芳香族ジ(メタ)アクリレート、下記一般式(2)で表される芳香族ジ(メタ)アクリレートがより好ましく、下記一般式(1)で表される芳香族ジ(メタ)アクリレートがさらに好ましい。
式(1)中、R10は、それぞれ独立して、水素原子又はメチル基を示し、同一でも異なっていてもよい。また、R11は、それぞれ独立して、水素原子、フッ素原子、又は炭素数1〜20の1価の有機基を示し、同一でも異なっていてもよい。
なお、炭素数1〜20の1価の有機基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、アシル基、エステル基(−CO−O−R又は−O−CO−Rを意味する。ただしRは炭化水素基である)、カルバモイル基等の1価の有機基が挙げられ、それらは、さらに水酸基、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、ホルミル基、エステル基、アミド基、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、アミノ基、シリル基、シリロキシ基等で置換されていてもよい。これらの中でも、透明性、及び耐熱性の点から、アルキル基、シクロアルキル基、アリール基、アラルキル基が好ましい。
式(1)中、Zは単結合、酸素原子、硫黄原子、−CH−、−C(CH−、−CF−、−C(CF−、−SO−、及び下記式で示されるいずれかの2価の基を示す。
12は水素原子、フッ素原子、及び炭素数1〜20の1価の有機基のいずれかを示し、同一でも異なっていてもよい。また、fは2〜10の整数を示す。なお、炭素数1〜20の1価の有機基としては、前述のR11で炭素数1〜20の1価の有機基として記載されたものと同様のものを好適に挙げることができ、好ましいものも同じである。
一般式(1)において、Yは酸素原子、硫黄原子、−OCH−、−SCH−、−O(CHCHO)−、−O[CH(CH)CHO]−、−O[CHCH(CH)O]−、及び−O[(CHCO−のいずれかの2価の基を含み、同一でも異なっていてもよい。また、g〜jは各々独立に1〜10の整数を示す。
式(2)中、kは、1〜10の整数を示す。
式(2)中、R13は水素原子又はメチル基を示し、同一でも異なっていてもよい。また、R14は水素原子、フッ素原子、及び炭素数1〜20の1価の有機基のいずれかを示し、同一でも異なっていてもよい。
炭素数1〜20の1価の有機基としては、前述のR11で炭素数1〜20の1価の有機基として記載されたものと同様のものを好適に挙げることができ、好ましいものも同じである。
式(2)中、Zは単結合、酸素原子、硫黄原子、−CH−、−C(CH−、−CF−、−C(CF−、−SO−、及び下記式で示されるいずれかの2価の基を示す。
15は水素原子、フッ素原子、及び炭素数1〜20の1価の有機基のいずれかを示し、同一でも異なっていてもよい。また、lは2〜10の整数を示す。
炭素数1〜20の1価の有機基としては、前記R14と同じものが挙げられる。これらの中でも、透明性、及び耐熱性の点から、アルキル基、シクロアルキル基、アリール基、及びアラルキル基が好ましい。
一般式(2)において、Yは酸素原子、硫黄原子、−O(CHCHO)−、−O[CH(CH)CHO]−、−O[CHCH(CH)O]−、及び−O[(CHCO−のいずれかの2価の基を含み、同一でも異なっていてもよい。また、m〜pは各々独立に1〜10の整数を示す。
(B’−2)3官能以上のポリ(メタ)アクリレートとしては、前記クラッド材の(B2−2)と同じように説明される。
前記(B’)成分の含有量は、(A’)成分及び(B’)成分の総量100質量部に対して、20〜70質量部であることが好ましい。20質量部以上であると、低光伝搬損失が向上し、且つ、光硬化時に(A’)成分を十分に絡め込んで硬化するために耐現像液性が良好となる傾向にあり、70質量部以下であると、アルカリ現像液への溶解性が良好となる傾向にある。以上の観点から、(B’)成分の配合量の下限値は、25質量部であることがより好ましく、35質量部であることがさらに好ましい。また、上限値は、70質量部であることがより好ましく、65質量部であることがさらに好ましい。
((C’)成分:重合開始剤)
重合開始剤としては、加熱又は紫外線等の照射によって重合を開始させるものであれば特に制限はなく、例えば、熱ラジカル重合開始剤、光ラジカル重合開始剤等が挙げられるが、硬化速度が速く常温硬化が可能なことから、光ラジカル重合開始剤であることが好ましい。
熱ラジカル重合開始剤、光ラジカル重合開始剤としては、クラッド材の(C)成分と同じように説明される。
(C’)成分の重合開始剤の含有量は、(A’)成分及び(B’)成分の総量100質量部に対して、0.3〜10質量部であることが好ましい。0.3質量部以上であると、硬化が十分であり、硬化不足による未反応物の析出を抑制し易い傾向にあり、10質量部以下であると、十分な光透過性が得られる傾向にある。以上の観点から、0.35〜7質量部であることがより好ましく、0.40〜5質量部であることがさらに好ましく、0.45〜3質量部であることが特に好ましい。
((D’)成分:熱硬化性樹脂)
コア材は、(D’)成分として熱硬化性樹脂を含有していてもよい。
熱硬化性樹脂としては、分子内に2つ以上のエポキシ基を有する化合物、及び分子内にエポキシ基とエチレン性不飽和基を有する化合物からなる群から選ばれる少なくとも1種が好ましい。
分子内に2つ以上のエポキシ基を有する化合物、分子内にエポキシ基とエチレン性不飽和基を有する化合物としては、前記(D)成分の熱硬化性樹脂と同じものが挙げられる。
コア材が(D’)成分を含有する場合、その含有量は、(A’)〜(C’)成分の総量100質量部に対して、1〜40質量部であることが好ましい。1質量部以上であると、(A’)成分と十分な架橋構造を形成するため、耐熱性が良好となる傾向にあり、40質量部以下であると、アルカリ現像液への溶解性が良好となる傾向にある。同様の観点から、(D’)成分の含有量は、3〜35質量部であることがより好ましく、5〜20質量部であることがさらに好ましい。
((E’)モノ(メタ)アクリレート)
コア材は、(E’)成分としてモノ(メタ)アクリレートを含有していてもよい。モノ(メタ)アクリレートとしては、特に制限はなく、例えば、特開2015−215467号公報の段落[0033]に記載の(メタ)アクリレートが挙げられる。
コア材に(E’)成分を含有させる場合、その含有量は、(A’)〜(C’)成分の総量100質量部に対して、10質量部以下であることが好ましく、5質量部以下であることがより好ましい。
(添加剤)
また、この他に、コア材は、必要に応じて、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填材等の添加剤を本発明の効果に悪影響を与えない割合で含有していてもよい。
コア材に添加剤を含有させる場合、その含有量は、(A’)〜(C’)成分の総量100質量部に対して、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることがさらに好ましい。
〔樹脂ワニス〕
(有機溶剤)
前記クラッド材及びコア材はいずれも、好適な有機溶剤を含有させて希釈した、いわゆる樹脂ワニスであってもよい。該有機溶剤としては、クラッド材及びコア材を溶解し得るものであれば特に制限はない。例えば、トルエン、キシレン、メシチレン、クメン、p−シメン等の芳香族炭化水素;テトラヒドロフラン、1,4−ジオキサン等の環状エーテル;メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4−ヒドロキシ−4−メチル−2−ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ−ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等の多価アルコールアルキルエーテルアセテート;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミドなどが挙げられる。
これらの中でも、溶解性及び沸点の観点から、芳香族炭化水素、アルコール、ケトン、エステル、多価アルコールアルキルエーテルアセテート、アミドが好ましく、トルエン、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、N,N−ジメチルアセトアミドであることがより好ましい。
また、クラッド材及びコア材は、(A)成分及び(A’)成分の製造の際に用いた有機溶剤をそのまま含有していてもよい。
有機溶剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。
樹脂ワニス中の固形分濃度は、塗布容易性の観点から、通常、20〜80質量%であることが好ましい。
クラッド材及びコア材を樹脂ワニスとする際には、撹拌により混合することが好ましい。撹拌方法には特に制限はないが、撹拌効率の観点からプロペラを用いた撹拌が好ましい。撹拌する際のプロペラの回転速度には特に制限はないが、10〜1,000rpm(min−1)であることが好ましい。
特に制限されるわけではないが、樹脂ワニスは、孔径50μm以下のフィルタを用いて濾過することが好ましい。孔径50μm以下であると、大きな異物等が除去されて、ワニス塗布時にはじき等を生じることがなく、またコア部を伝搬する光の散乱が抑制される傾向にある。以上の観点から、孔径30μm以下のフィルタを用いて濾過することがより好ましく、孔径10μm以下のフィルタを用いて濾過することがさらに好ましい。
また、特に制限されるわけではないが、樹脂ワニスは減圧下で脱泡したものを用いることが好ましい。脱泡方法には、特に制限はなく、具体例としては、真空ポンプとベルジャー、真空装置付き脱泡装置を用いる方法が挙げられる。減圧時の圧力には特に制限はないが、樹脂ワニスに含まれる有機溶剤が沸騰しない圧力が好ましい。減圧脱泡時間には特に制限はないが、3〜60分であることが好ましい。3分以上であると、樹脂ワニス内に溶解した気泡を取り除ける傾向にある。60分以下であると、樹脂ワニスに含まれる有機溶剤が揮発しにくい傾向にある。
本発明のクラッド材又はコア材から形成される硬化フィルムの、温度25℃における波長830〜850nmの範囲での屈折率は、1.400〜1.700であることが好ましい。1.400〜1.700であれば、通常の光学樹脂との屈折率が大きく異ならないため、光学材料としての汎用性が損なわれにくい傾向にある。以上の観点から、前記屈折率は、1.425〜1.675であることがより好ましく、1.450〜1.650であることがさらに好ましい。
本発明のクラッド材又はコア材から形成される厚み50μmの硬化フィルムの波長400nmでの透過率は80%以上であることが好ましい。80%以上であると、光の透過量が十分であるといえる。同様の観点から、該透過率は85%以上であることがさらに好ましい。なお、透過率の上限については特に制限はない。
[光導波路クラッド層形成用樹脂フィルム及び光導波路コア部形成用樹脂フィルム]
前記クラッド材及びコア材から、前記クラッド材を含有する光導波路クラッド層形成用樹脂フィルム、及び前記コア材を含有する光導波路コア部形成用樹脂フィルムを形成することができる。以下、本発明の光導波路クラッド層形成用樹脂フィルム及び光導波路コア部形成用樹脂フィルム(以下、光導波路形成用樹脂フィルムと総称することがある)について説明する。
光導波路形成用樹脂フィルムは、前記クラッド材又はコア材を樹脂ワニスの状態で基材(基材フィルム)に塗布し、次いで有機溶剤を除去することにより容易に製造することができる。また、有機溶剤を含有しないクラッド材又はコア材を、直接基材(基材フィルム)に塗布することによってフィルムを製造してもよい。
前記基材フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、液晶ポリマーなどが挙げられる。
これらの中でも、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホンが好ましい。
基材フィルムの厚みは、目的とする柔軟性により適宜選択できるが、通常、3〜250μmであることが好ましい。3μm以上であるとフィルム強度が十分となる傾向にあり、250μm以下であると、十分な柔軟性が得られる傾向にある。以上の観点から、基材フィルムの厚みは5〜200μmであることがより好ましく、7〜150μmであることがさらに好ましい。なお、クラッド材又はコア材との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等により離型処理が施されたフィルムを用いてもよい。
以上のようにして得られる光導波路形成用樹脂フィルムは、必要に応じて保護フィルムを樹脂層(クラッド材又はコア材から形成される層を指し、以下、同様である。)上に貼り付け、基材フィルム、樹脂層及び保護フィルムの順で積層された3層構造としてもよい。これにより、本発明は、基材フィルムと、光導波路クラッド材を含有する樹脂層と、保護フィルムとを有する光導波路クラッド層形成用樹脂フィルムも提供する。
該保護フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィンなどが挙げられる。これらの中でも、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィンであることが好ましい。なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等により離型処理が施されたフィルムを必要に応じて用いてもよい。保護フィルムの厚みは、目的とする柔軟性により適宜変えてよいが、10〜250μmであることが好ましい。10μm以上であるとフィルム強度が十分であり、250μm以下であると十分な柔軟性が得られる。以上の観点から、15〜200μmであることがより好ましく、20〜150μmであることがさらに好ましい。
光導波路クラッド層形成用樹脂フィルム及び光導波路コア部形成用樹脂フィルムの樹脂層の厚みについては特に限定されないが、いずれも、乾燥後の厚みで、通常、5〜500μmであることが好ましい。5μm以上であると、厚みが十分であるため樹脂フィルム又は該フィルムの硬化物の強度が十分となる傾向にあり、500μm以下であると、乾燥を十分に行えるため、樹脂フィルム中の残留溶媒量が増えることなく、該フィルムの硬化物を加熱したときに発泡するのを抑制しやすくなる傾向にある。
このようにして得られた光導波路形成用樹脂フィルムは、例えば、ロール状に巻き取ることによって容易に保存することができる。または、ロール状のフィルムを好適なサイズに切り出して、シート状にして保存することもできる。
[光導波路]
以下、本発明の光導波路について図面を用いて説明する。
図2は、本発明の光導波路の構成例を示す断面図である。
図2の(a)に示すように、光導波路1は基材7上に形成され、高屈折率であるコア材から形成されるコア部2、並びに、低屈折率であるクラッド材から形成される下部クラッド層6及び上部クラッド層5で構成されている。
本発明の光導波路クラッド層形成用樹脂フィルムは、光導波路1の下部クラッド層6及び上部クラッド層5のうち、少なくとも1つの形成に用いることが好ましく、両方に用いることが好ましい。また、前記光導波路コア部形成用樹脂フィルムは、コア部2の形成に用いることが好ましい。このように、本発明は、コア部と、前記光導波路クラッド層形成用樹脂フィルムを用いて形成したクラッド層とを有する光導波路を提供する。
各クラッド層及びコア部の形成に前記光導波路形成用樹脂フィルムを用いることによって、クラッド層とコア部の層間密着性、及びコアパターン形成時のパターン形成性(細線又は狭線間対応性)をより向上させることができ、線幅及び線間の小さい微細パターンの形成が可能となる。加えて、大面積の光導波路を一度に製造できるという生産性に優れたプロセスを提供することが可能となる。
光導波路1において、基材7として、例えば、シリコン基板、ガラス基板、又はFR−4等のガラスエポキシ樹脂基板のような硬い基板を用いることができる。光導波路1は、上記基板の代わりに、柔軟性及び強靭性のある前記基材フィルムを用いて、フレキシブル光導波路としてもよい。
また、柔軟性及び強靭性のある基材フィルムを光導波路1のカバーフィルム8として機能させてもよい。カバーフィルム8を配置することにより、カバーフィルム8の柔軟性及び強靭性を光導波路1に付与することが可能となる。また、光導波路1が汚れ、傷等を受けなくなるため、取り扱いやすさが向上する。
以上の観点から、図2の(b)のように、上部クラッド層5の外側にカバーフィルム8が配置されていたり、図2の(c)のように、下部クラッド層6及び上部クラッド層5の両方の外側にカバーフィルム8が配置されていたりしてもよい。
光導波路1に柔軟性及び強靭性が十分に備わっているならば、図2の(d)のように、カバーフィルム8が配置されていなくてもよい。
下部クラッド層6の厚みに特に制限はないが、2〜200μmであることが好ましい。2μm以上であると、伝搬光をコア内部に閉じ込めやすくなる傾向にあり、200μm以下であると、光導波路1全体の厚みが大き過ぎずに程良くなる傾向にある。なお、下部クラッド層6の厚みとは、コア部2と下部クラッド層6との境界から下部クラッド層6の下面までの最短距離の平均値を指す。
下部クラッド層形成用樹脂フィルムの厚みについては特に制限はなく、硬化後の下部クラッド層6の厚みが上記の範囲となるように厚みが調整される。
コア部2の高さは、特に制限はないが、10〜100μmであることが好ましい。コア部の高さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスが小さくならない傾向にあり、100μm以下であれば、光導波路形成後の受発光素子又は光ファイバとの結合において、結合効率が小さくならない傾向にある。以上の観点から、コア部の高さは、15〜80μmであることがより好ましく、20〜70μmであることがさらに好ましい。なお、光導波路コア部形成用樹脂フィルムの厚みについては特に制限はなく、硬化後のコア部の高さが上記の範囲となるように厚みが調整される。
上部クラッド層5の厚みは、コア部2を埋め込むことができる範囲であれば、特に制限はないが、乾燥後の厚みで、12〜500μmであることが好ましい。上部クラッド層5の厚みとしては、最初に形成される下部クラッド層6の厚みと同一であっても異なってもよいが、コア部2を埋め込むという観点から、下部クラッド層6の厚みよりも厚くすることが好ましい。なお、上部クラッド層5の厚みとは、コア部2と下部クラッド層6との境界から上部クラッド層5の上面までの最短距離の平均値を指す。
以上のようにして製造される本発明の導波路は、コア部において、コア部を形成するコア材に、クラッド層を形成するクラッド材が混入して形成されてなる部位を有する。コア部において、前記コア材に前記クラッド材が混入して形成されてなる部位が10〜90体積%を占めることが好ましく、20〜90体積%を占めることがより好ましく、30〜90体積%を占めることがさらに好ましく、40〜90体積%を占めることが特に好ましく、さらには、50〜90体積%、60〜90体積%、60〜80体積%を占めていることも好ましい。
また、クラッド層において、クラッド層を形成するクラッド材に、コア部を形成するコア材が混入して形成されてなる部位を有していてもよい。
本発明の光導波路は、波長850nmにおける光伝搬損失として0.25dB/cm以下、さらには0.15dB/cm以下を実現することができるため、光の損失が小さくなり、伝送信号の強度が十分である。
以下、前記光導波路形成用樹脂フィルムを用いて光導波路1を製造する方法について説明する。
本発明の光導波路1を製造する方法としては、前述の通り、前記光導波路形成用樹脂フィルムを用いて積層法により製造する方法が好ましい。
以下、光導波路形成用樹脂フィルムを下部クラッド層、コア部及び上部クラッド層に用いて光導波路1を製造する方法について、図3を用いて説明する。
まず、図3の(a)に示すように、第1の工程として光導波路クラッド層形成用樹脂フィルムを基材7上に積層して下部クラッド層6を形成する。第1の工程における積層方式としては、ロールラミネータ、または平板型ラミネータを用いて加熱しながら圧着することにより積層する方法が挙げられるが、密着性及び追従性の観点から、平板型ラミネータを用いて減圧下で下部クラッド層形成用樹脂フィルムを積層することが好ましい。なお、本発明において平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板を加圧することにより圧着させるラミネータのことを指し、例えば、真空加圧式ラミネータを好適に用いることができる。ここでの加熱温度は、40〜130℃であることが好ましく、圧着圧力は、0.1〜1MPaであることが好ましいが、これらの条件には特に制限はない。光導波路クラッド層形成用樹脂フィルムに保護フィルムが存在する場合には、保護フィルムを除去した後に積層する。
なお、真空加圧式ラミネータによる積層の前に、ロールラミネータを用いて、あらかじめ光導波路クラッド層形成用樹脂フィルムを基材7上に仮貼りしておいてもよい。ここで、密着性及び追従性向上の観点から、圧着しながら仮貼りすることが好ましく、圧着する際、ヒートロールを有するラミネータを用いて加熱しながら行ってもよい。ラミネート温度は、20〜130℃であることが好ましい。20℃以上であると、下部クラッド層6を形成するための樹脂フィルムと基材7との密着性が向上する傾向にあり、130℃以下であると、樹脂層がロールラミネート時に流動しすぎることがなく、必要とする膜厚が得られやすい傾向にある。以上の観点から、ラミネート温度は40〜100℃であることがより好ましい。圧力は0.2〜0.9MPaであることが好ましく、ラミネート速度は0.1〜3m/minであることが好ましいが、これらの条件には特に制限はない。
続いて、基材7上に積層された光導波路クラッド層形成用樹脂フィルムを光及び/又は加熱により硬化し、光導波路クラッド層形成用樹脂フィルムの基材フィルムを除去し、下部クラッド層6を形成する。
下部クラッド層6を形成する際の活性光線の照射量は、0.1〜5J/cmとすることが好ましく、加熱温度は50〜200℃とすることが好ましいが、これらの条件には特に制限はない。
次いで、図3の(b)に示すように、第2の工程として光導波路コア部形成用樹脂フィルム9を第1の工程と同様な方法で積層する。ここで、光導波路コア部形成用樹脂フィルム9は下部クラッド層6を形成するための前記樹脂フィルムより高屈折率であるように設計され、活性光線によりコアパターンを形成し得る感光性樹脂組成物からなることが好ましい。
次に、図3の(c)に示すように、第3の工程としてコア部を露光し、光導波路のコアパターン(コア部2)を形成する。具体的には、アートワークと呼ばれるネガ又はポジマスクパターンを有するフォトマスク10を通して活性光線が画像状に照射される。また、レーザ直接描画を用いてフォトマスク10を通さずに直接活性光線を画像上に照射してもよい。活性光線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射する公知の光源が挙げられる。また、他にも写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものが挙げられる。
ここでの活性光線の照射量は、0.01〜10J/cmであることが好ましい。0.01J/cm以上であると、硬化反応が十分に進行し、後述する現像工程によりコア部2が流失しにくくなる傾向にあり、10J/cm以下であると、露光量過多によりコア部2が太るということがなく、微細なパターンを形成しやすい傾向にある。以上の観点から、0.05〜5J/cmであることがより好ましく、0.1〜3J/cmであることがさらに好ましい。
なお、コア部2の解像度及び密着性向上の観点から、露光後に加熱を行ってもよい。紫外線照射から露光後の加熱までの時間は、10分以内であることが好ましい。10分以内であると紫外線照射により発生した活性種が失活しにくい傾向にある。露光後加熱の温度は40〜160℃であることが好ましく、時間は30秒〜10分であることが好ましい。
露光後、図3の(d)に示すように、光導波路コア部形成用樹脂フィルム9の基材フィルムを除去し、アルカリ性水溶液、水系現像液等の前記コア部形成用樹脂フィルムの組成に対応した現像液を用いて、例えば、スプレー、揺動浸漬、ブラッシング、スクラッピング、ディップ及びパドル等の公知の方法により現像する。また、必要に応じて2種類以上の現像方法を併用してもよい。
上記アルカリ性水溶液の塩基としては、特に制限はないが、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ;リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリ;リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩;ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩;ホウ砂、メタケイ酸ナトリウム等のナトリウム塩;水酸化テトラメチルアンモニウム、トリエタノールアミン、エチレンジアミン、ジエチレントリアミン、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール、1,3−ジアミノプロパノール−2−モルホリン等の有機塩基などが挙げられる。現像に用いるアルカリ性水溶液のpHは9〜11であることが好ましく、その温度は光導波路コア部形成用樹脂フィルムの現像性に合わせて調節される。また、アルカリ性水溶液中には、表面活性剤、消泡剤、及び現像を促進させるための少量の有機溶剤等を混入させてもよい。
前記水系現像液としては、水又はアルカリ性水溶液と1種類以上の有機溶剤からなるものであれば特に制限はない。水系現像液のpHは、前記コア部形成用樹脂フィルムの現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8〜12であることが好ましく、pH9〜10であることが特に好ましい。
該有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、4−ヒドロキシ−4−メチル−2−ペンタノン等のケトン;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等の多価アルコールアルキルエーテルなどが挙げられる。
これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。
有機溶剤の濃度は、通常、2〜90質量%であることが好ましく、その温度は光導波路コア部形成用樹脂フィルムの現像性に合わせて調節される。また、水系現像液中には、界面活性剤、消泡剤等を少量混入させてもよい。
現像後の処理として、酸性水溶液等の洗浄液を用いて洗浄処理を行ってもよい。洗浄方法としては、特に制限はないが、例えば、スプレー法、ディップ法、パドル法、スピン法、ブラッシング法、スクラッピング法等が挙げられる。また必要に応じてこれらの洗浄方法を併用してもよい。
前記酸性水溶液の酸としては特に制限はなく、例えば、硫酸、塩酸、硝酸、リン酸等の無機酸;ギ酸、酢酸、マロン酸、コハク酸等のカルボン酸;乳酸、サリチル酸、リンゴ酸、酒石酸、クエン酸等のヒドロキシ酸などが挙げられる。酸は、1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、酸性度が高い、揮発性が低い、酸化力が小さいという観点から、硫酸が好ましい。
洗浄に用いる酸性水溶液のpHは、0を超え5以下であることが好ましい。0を超えるものであれば、酸性度、腐食性が強すぎることがなく、5以下であれば、コアパターン内に残存した不安定な1価の塩を、元の酸性官能基に効果的に変換することができる。以上の観点から、酸性水溶液のpHは0.1〜4であることがより好ましく、0.3〜3であることがさらに好ましい。酸性水溶液の温度はpHに合わせて調節される。また酸性水溶液中には、有機溶剤、表面活性剤、消泡剤等を混入させてもよい。
また、現像後の処理として、必要に応じて、水と前記有機溶剤からなる洗浄液を用いて光導波路のコア部2を洗浄してもよい。該有機溶剤は、1種を単独で使用してもよいし、2種以上を併用してもよい。有機溶剤の濃度は通常、2〜90質量%とすることが好ましく、その温度は光導波路コア部形成用樹脂フィルムの現像性に合わせて調節される。
現像後又は洗浄後の処理として、一般的には60〜250℃程度の加熱又は0.1〜1,000mJ/cm程度の露光を行うことにより、コア部2をさらに硬化することがあるが、本発明においては、当該処理を行なわずに、コア部の硬化を進めない状態で以下の上部クラッド層5を形成することが好ましい。これにより、クラッド材がコア部へ効率的に浸透し易くなる傾向にある。
続いて、図3の(e)に示すように、第4の工程として、光導波路クラッド層形成用樹脂フィルムを第1及び第2の工程と同様の方法で積層して上部クラッド層5を形成する。ここで、光導波路クラッド層形成用樹脂フィルムは、光導波路コア部形成用樹脂フィルムよりも低屈折率である。また、上部クラッド層5の厚みは、コア部2の高さより大きくすることが好ましい。
次いで、第1の工程と同様な方法で光導波路クラッド層形成用樹脂フィルムを光及び/又は熱によって硬化し、上部クラッド層5を形成する。
上記クラッド層形成用樹脂フィルムの基材フィルムがポリエチレンテレフタレート(PET)の場合、活性光線の照射量は、0.1〜5J/cmであることが好ましい。一方、基材フィルムがポリエチレンナフタレート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルスルフィド、ポリエーテルスルホン又はポリスルホン等の場合、PETに比べて紫外線等の短波長の活性光線を通しにくいことから、活性光線の照射量は、0.5〜30J/cmであることが好ましい。0.5J/cm以上であると、硬化反応が十分に進行する傾向にあり、30J/cm以下であると、光照射の時間を低減できる傾向にある。以上の観点から、3〜27J/cmであることがより好ましく、5〜25J/cmであることがさらに好ましい。
なお、より硬化させるために、両面から同時に活性光線を照射することが可能な両面露光機を使用することができる。また、加熱をしながら活性光線を照射してもよい。活性光線照射中及び/又は照射後の加熱温度は50〜200℃であることが好ましいが、これらの条件には特に制限はない。
上部クラッド層5を形成後、必要であれば基材フィルムを除去して、光導波路1を作製することができる。
本発明の光導波路は、透明性及び光伝搬性に優れているため、光モジュールの光伝送路として用いてもよい。光モジュールの形態としては、例えば、光導波路の両端に光ファイバを接続した光ファイバ付き光導波路、光導波路の両端にコネクタを接続したコネクタ付き光導波路、光導波路とプリント配線板と複合化した光電気複合基板、光導波路と光信号と電気信号を相互に変換する光/電気変換素子を組み合わせた光電気変換モジュール、光導波路と波長分割フィルタを組み合わせた波長合分波器等が挙げられる。なお、光電気複合基板において、複合化するプリント配線板としては、特に制限はなくガラスエポキシ基板等のリジッド基板、ポリイミド基板などのフレキシブル基板のどちらを用いてもよい。
次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。
[粘度測定]
クラッド材に用いる成分の65℃における粘度は、以下の条件にて測定した。
装置:レオメータ「Paysica MCR301」(Anton Paar社製)
条件:測定は温度25℃から100℃まで昇温10℃/min、歪み1%、周波数1Hzの条件で複素粘度を測定し、65℃における粘度を得た。
合成例1
[(A)クラッド層形成用ポリマー;(メタ)アクリルポリマー(A−1)の作製]
撹拌機、冷却管、ガス導入管、滴下漏斗、及び温度計を備えたフラスコに、メチルエチルケトン100質量部を投入し、窒素ガスを導入しながら撹拌を行った。液温を65℃に上昇させ、共重合モノマーとして、メタクリル酸30質量部、メタクリル酸メチル35質量部、メタクリル酸n−ブチル35質量部[メタクリル酸:メタクリル酸メチル:メタクリル酸n−ブチル(モル比)=0.35:0.35:0.25]、2,2’−アゾビス(2,4−ジメチルバレロニトリル)3質量部及びメチルエチルケトン85質量部の混合物を、3時間かけて滴下後、65℃で3時間撹拌し、さらに95℃で1時間撹拌を続けて、(メタ)アクリルポリマー(A−1)溶液(固形分濃度:35質量%)を得た。
[重量平均分子量の測定]
(メタ)アクリルポリマー(A−1)の重量平均分子量(標準ポリスチレン換算)をGPC(構成装置:東ソー株式会社製のオンラインデガッサ「SD−8022」、デュアルポンプ「DP−8020」及び示差屈折率検出器「RI−8020」)を用いて測定した結果、80,000であった。なお、カラムは日立化成株式会社製「Gelpack GL−A150−S」及び「Gelpack GL−A160−S」を使用した。溶離液としてはテトラヒドロフランを用い、サンプル濃度0.5mg/mlとし、溶出速度を1ml/分として測定した。
合成例2
[(A’)コア部形成用ポリマー;(メタ)アクリルポリマー(A’−1)の作製]
撹拌機、冷却管、ガス導入管、滴下漏斗、及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート47質量部及び乳酸メチル24質量部を秤量し、窒素ガスを導入しながら撹拌を行った。液温を65℃に上昇させ、メチルメタクリレート34質量部、ベンジルメタクリレート34質量部、2−ヒドロキシエチルメタクリレート14質量部、メタクリル酸18質量部[メチルメタクリレート:ベンジルメタクリレート:2−ヒドロキシエチルメタクリレート:メタクリル酸(モル比)=0.34:0.19:0.11:0.21]、2,2’−アゾビス(2,4−ジメチルバレロニトリル)2.5質量部、プロピレングリコールモノメチルエーテルアセテート43質量部、及び乳酸メチル24質量部の混合物を3時間かけて滴下後、65℃で3時間撹拌し、さらに95℃で1時間撹拌を続けて、(メタ)アクリルポリマー(A’−1)溶液(固形分濃度:43質量%)を得た。
合成例1と同様の方法で、(メタ)アクリルポリマー(A’−1)の重量平均分子量を測定した結果、34,000であった。また、以下の方法に従って測定した酸価は、120mgKOH/gであった。
[酸価の測定]
酸価は(メタ)アクリルポリマー(A’−1)溶液を中和するのに要した0.1mol/L水酸化カリウム水溶液量から算出した。このとき、指示薬として添加したフェノールフタレインが無色からピンク色に変色した点を中和点とした。
実施例1
[光導波路クラッド材1の調合]
(A)成分として、合成例1で得た(メタ)アクリルポリマー(A−1)溶液143質量部(固形分換算で50質量部)、(B)成分として、ポリエチレングリコールジアクリレート(新中村化学工業株式会社製「A−400」、65℃における粘度が11mPa・sであり、(B1)成分に相当する。)45質量部及びペンタエリスリトールトリアクリレート(共栄社化学株式会社製「PE−3A」、65℃における粘度が30mPa・sであり、(B2)成分に相当する。)5質量部、(C)成分として、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(BASFジャパン株式会社製「イルガキュア819」)1質量部を広口のポリ瓶に秤量し、撹拌機を用いて、温度25℃、回転数400rpmの条件で6時間撹拌し、樹脂ワニス状の光導波路クラッド材1を得た。
該光導波路クラッド材1は、孔径2μmのポリフロンフィルタ(アドバンテック東洋株式会社製「PF020」)及び孔径0.5μmのメンブレンフィルタ(アドバンテック東洋株式会社製「J050A」)を用いて、温度25℃、圧力0.4MPaの条件で、得られた樹脂ワニスを加圧濾過し、続いて、真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡してから、後述の樹脂フィルムの製造に用いた。
[光導波路クラッド層形成用樹脂フィルム1の作製]
上記で得られた光導波路クラッド材1を、PETフィルム(東洋紡株式会社製「コスモシャインA4100」、厚み50μm)の非処理面上に、塗工機(株式会社ヒラノテクシード製「マルチコーターTM−MC」)を用いて塗布した。100℃で20分乾燥した後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム株式会社製「ピューレックスA31」、厚み25μm)を貼付け、光導波路クラッド層形成用樹脂フィルム1を得た(以下、光導波路クラッド層形成用樹脂フィルムを「クラッドフィルム」とも称する。)。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であり、本実施例では使用した下部クラッド層の厚みに付いては、実施例中に記載する。また、下部クラッド層の硬化後の膜厚と塗工後の膜厚は同一であった。本実施例で用いた上部クラッド層形成用樹脂フィルムの膜厚についても実施例中に記載する。実施例中に記載する上部クラッド層形成用樹脂フィルムの膜厚は塗工後の膜厚とする。
実施例2及び比較例1
[光導波路クラッド材2及び3の調合]
実施例1において、(B)成分として、ポリエチレングリコールジアクリレート(新中村化学工業株式会社製「A−400」)の代わりに、ポリエチレングリコールジアクリレート(新中村化学工業株式会社製「A−600」、65℃における粘度が18mPa・sであり、(B1)成分に相当する。)、及びトリス−(2−アクリロキシエチル)イソシアヌレート(新中村化学工業株式会社製「A−9300」、65℃における粘度が610mP・s)を用いたこと以外は同様にして、それぞれ光導波路クラッド材2及び3を得た。
[光導波路クラッド層形成用樹脂フィルム2及び3の作製]
実施例1において、光導波路クラッド材1の代わりに光導波路クラッド材2及び3を用いたこと以外は同様にして、光導波路クラッド層形成用樹脂フィルム2及び3を作製した。
参考例1
[光導波路コア材1の調合]
(A’)成分として、合成例2で得た(メタ)アクリルポリマー(A’−1)溶液140質量部(固形分換算で60質量部)、(B’)成分として、下記のエトキシ化ビスフェノールAジアクリレート(日立化成株式会社製「ファンクリルFA−324A」)40質量部、

さらに(C’)成分として、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(BASFジャパン株式会社製「イルガキュア819」)1質量部を広口のポリ瓶に秤量し、撹拌機を用いて、温度25℃、回転数400rpmの条件で、6時間撹拌して、樹脂ワニス状の光導波路コア材1を調合した。
該光導波路コア材1は、孔径2μmのポリフロンフィルタ(アドバンテック東洋株式会社製「PF020」)及び孔径0.5μmのメンブレンフィルタ(アドバンテック東洋株式会社製「J050A」)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、続いて、真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡してから、後述の樹脂フィルムの製造に用いた。
[光導波路コア部形成用樹脂フィルム1の作製]
上記で得られた光導波路コア材1を、PETフィルム(東洋紡株式会社製「コスモシャインA1517」、厚み16μm)の非処理面上に塗工機(株式会社ヒラノテクシード製「マルチコーターTM−MC」)を用いて塗布した。100℃で20分乾燥した後、保護フィルムとして離型PETフィルム(帝人デュポンフィルム株式会社製「ピューレックスA31」、厚み25μm)を貼付け、光導波路コア部形成用樹脂フィルム1を得た(以下、光導波路コア部形成用樹脂フィルムを「コアフィルム」とも称する。)。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であるが、本実施例では硬化後の膜厚が、50μmとなるように調節した。
(波長850nmにおける光線透過率の測定)
保護フィルム(ピューレックスA31)を除去した前記光導波路コア部形成用樹脂フィルム1を、スライドガラス(サイズ:76mm×26mm、厚さ:1mm)上に前記真空ラミネータを用いて、圧力0.4MPa、温度50℃及び加圧時間30秒の条件で積層した。次いで、前記紫外線露光機にて紫外線(波長365nm)を1,000mJ/cm照射し、さらに160℃で1時間加熱し、光線透過率測定用のサンプルを作製した。このサンプルの波長850nmにおける光線透過率を、分光光度計(株式会社日立ハイテクノロージーズ製、「U−3310」)を用いて測定したところ、99.8%であった。
(全光線透過率、YI値、及びヘイズの測定)
前記光線透過率測定用のサンプルを用いて、全光線透過率、YI(Yellowness Index)、及びヘイズを測定した。測定には色度計(日本電飾工業株式会社製「COH−300A」)を使用した。YI値は0.15以下が好ましく、0.1以下がより好ましい。
全光線透過率は99.6%、YI値は0.09、ヘイズは0.1%であった。
実施例3
[光導波路の製造]
真空加圧式ラミネータ(株式会社名機製作所製「MVLP−500/600」)を用い、圧力0.4MPa、温度80℃及び加圧時間30秒の条件で、保護フィルムを除去した実施例1で得た光導波路クラッド層形成用樹脂フィルム1(クラッド層樹脂厚さ:15μm)を、ガラスエポキシ樹脂基板(日立化成株式会社製「MCL−E−679FB」、板厚0.6mm、銅箔はエッチングにより除去)上に積層した。
次に、紫外線露光機(大日本スクリーン株式会社製「MAP−1200−L」)を用い、紫外線(波長365nm)を4,000mJ/cm照射後、基材フィルム(コスモシャインA4100)を除去し、下部クラッド層6を形成した。
続いて、ロールラミネータ(日立化成テクノプラント株式会社製「HLM−1500」)を用い、保護フィルムを除去した参考例1で得た光導波路コア部形成用樹脂フィルム1を、下部クラッド層6上に、圧力0.5MPa、温度50℃、速度0.2m/minの条件で積層した。
次いで、幅35μmの光導波路形成用パターンを有するネガ型フォトマスクを介し、前記紫外線露光機で紫外線(波長365nm)を1,800mJ/cm照射して、コア部2を露光した。基材フィルム(コスモシャインA1517)を除去した後、スプレー式現像装置(株式会社山縣機械製「RX−40D」)を用い、1質量%炭酸ナトリウム水溶液にて温度30℃、スプレー圧0.15MPa、現像時間90秒の条件で現像した。続いて、0.3質量%硫酸水溶液(pH1)を用いて洗浄した後、さらに純水にて洗浄し、コアパターンを形成した。
次に、前記真空加圧式ラミネータを用い、保護フィルムを除去した実施例1で得た光導波路クラッド層形成用樹脂フィルム1(クラッド層樹脂厚さ:70μm)を、コア部2及び下部クラッド層6上に、圧力0.4MPa、温度80℃及び加圧時間30秒の条件で積層した。紫外線(波長365nm)を4,000mJ/cm照射し、基材フィルム(コスモシャインA4100)を除去し、上部クラッド層5を形成し、図1(a)に示す光導波路1を得た。その後、ダイシングソー(株式会社ディスコ製「DAD−341」)を用いて長さ10cmのリジッド光導波路を切り出した。下記測定方法に従って、得られた光導波路の光伝搬損失を測定した。結果を表1に示す。
[光伝搬損失の測定]
光導波路の光伝搬損失を、光源に波長850nmを中心波長とするVCSEL(EXFO社製「FLS−300−01−VCL」)、受光センサ(株式会社アドバンテスト製「Q82214」)、入射ファイバ(SI−10/125シングルモードファイバ、NA=0.14)、及び出射ファイバ(SI−114/125、NA=0.22)を用いて測定した。光伝搬損失は、光損失測定値(dB)を光導波路長(10cm)で割ることにより算出し、以下の基準で評価した。
A:0.10dB/cm以下
B:0.10dB/cmより大きく、0.15dB/cm以下
C:0.15dB/cmより大きい
実施例4及び比較例2
実施例3において、光導波路クラッド層形成用樹脂フィルム1の代わりに、実施例2及び比較例1で得た光導波路クラッド層形成用樹脂フィルム2及び3(厚みは実施例3と同じ)を用いたこと以外は同様にして光導波路を製造し、光伝搬損失を測定した。結果を表1に示す。
[コア部内部の屈折率変化の測定]
実施例5
上記で作製した光導波路における、コア部の内部の屈折率分布を確認するために、下記のようなサンプルを作製し、屈折率を測定し、屈折率分布について評価した。
(サンプルBの作製及び屈折率測定)
(1)コアパターンの形成
ポリイミド基板(東レ・デュポン(株)社製「カプトン200EN」、サイズ:60×20mm、厚さ:50μm)上に、ロールラミネータ(日立化成テクノプラント株式会社製「HLM−1500」)を用い、保護フィルムを除去したコアフィルム1(厚み:5μm)を、圧力0.5MPa、温度50℃、速度0.2m/minの条件で積層した。次いで、紫外線露光機で紫外線(波長365nm)を1000mJ/cm照射して、コアフィルム1を露光した。露光後、コアフィルム1の基材フィルム(コスモシャインA1517)を除去した後、スプレー式現像装置(株式会社山縣機械製「RX−40D」)を用い、1質量%炭酸ナトリウム水溶液にて温度30℃、スプレー圧0.15MPa、現像時間90秒の条件で現像した。続いて、0.3質量%硫酸水溶液(pH1)を用いて洗浄した後、さらに純水にて洗浄した。
(2)上部クラッド層の形成
続いて、クラッドフィルム1(厚み:70μm)を、上記現像後のコアフィルム1上に、ロールラミネータ(日立化成テクノプラント株式会社製「HLM−1500」)を用い、圧力0.5MPa、温度50℃、速度0.2m/minの条件で積層し、紫外線露光機で紫外線(波長365nm)を4000mJ/cm照射した。
(3)屈折率の測定
次いで、樹脂層(すなわち、コアフィルム1由来のコア材及びクラッドフィルム1由来のクラッド材)をポリイミド基板から剥がし、これをサンプルBとした。
サンプルBのポリイミド基板と接していた面(コアフィルム1側)をプリズム結合式屈折率計(Metricon社製「Model2020」)を用いて屈折率を測定し、屈折率Bとした。
(サンプルA、C、Dの作製及び屈折率測定)
サンプルA:上記サンプルBの作製の「(2)上部クラッド層の形成」で使用したクラッドフィルム1(厚み:70μm)を、紫外線露光機で紫外線(波長365nm)を4000mJ/cm照射したものをサンプルAとした。得られたサンプルAについて、サンプルBと同様の条件で屈折率を測定し、屈折率A(クラッド材1の屈折率)とした。
サンプルC及びD:コアフィルム1の厚みを10μm及び15μmに変更したコアフィルム2及び3を準備した。次いで、サンプルBの作製において、コアフィルム1を、各々コアフィルム2及び3に変更したこと以外は、サンプルBと同様にして、サンプルC及びDを作製した。得られたサンプルC及びDについて、サンプルBと同様の条件で屈折率を測定し、屈折率C及びDとした。
実施例6及び比較例3
実施例5において、クラッドフィルム1の代わりに、実施例2及び比較例1で得たクラッドフィルム2及び3(厚みは70μmと同じ)を用いたこと以外は、実施例5と同様にしてサンプルA〜Dを作製し、屈折率A〜Dを測定した。結果を表2に示す。
表2の結果から、本発明のクラッド材を用いた実施例5及び6で作製した光導波路のコア部(コアパターン)の屈折率は、上部クラッド層からの距離が0μmから15μmとなるにしたがい、徐々に(緩やかに)屈折率が変化していることが分かる。すなわち、本発明で得られた光導波路は、コアパターン外周周辺部4からコアパターン中心部へかけて屈折率が徐々に(緩やかに)変化し、そのため、従来の光導波路に比べて、より一層の光伝搬損失の低減が可能となったものと推察する。
本発明の光導波路クラッド材は光伝搬損失の低減が可能であるため、光導波路のクラッド層の材料として有用である。
1 光導波路
2 コア部
3 コアパターン中心部
4 コアパターン外周周辺部
5 上部クラッド層
6 下部クラッド層
7 基材

Claims (17)

  1. (A)酸性置換基を有するポリマーと、(B)2つ以上のエチレン性不飽和基を有する重合性化合物と、(C)重合開始剤と、を含有し、
    (B)2つ以上のエチレン性不飽和基を有する重合性化合物として、(B1)65℃における粘度が25mPa・s以下である2つ以上のエチレン性不飽和基を有する重合性化合物を含有する、光導波路クラッド材。
  2. 前記(B1)成分が、2つ以上のエチレン性不飽和基を有し、かつポリアルキレングリコール骨格を含む重合性化合物である、請求項1に記載の光導波路クラッド材。
  3. 前記2つ以上のエチレン性不飽和基を有し、かつポリアルキレングリコール骨格を含む重合性化合物が、ポリエチレングリコールジ(メタ)アクリレート又はポリプロピレングリコールジ(メタ)アクリレートである、請求項2に記載の光導波路クラッド材。
  4. 前記(B)成分の含有量が、前記(A)成分と前記(B)成分の合計100質量部に対して20〜70質量部である、請求項1〜3のいずれか1項に記載の光導波路クラッド材。
  5. 前記(B)成分中、前記(B1)成分の含有量が、前記(B)成分100質量部に対して30〜95質量部である、請求項1〜4のいずれか1項に記載の光導波路クラッド材。
  6. 前記(B)成分として、さらに、(B2)65℃における粘度が25mPa・sを超える重合性化合物を含有する、請求項1〜5のいずれか1項に記載の光導波路クラッド材。
  7. 前記(B2)成分が、2つ以上のエチレン性不飽和基を有する重合性化合物(但し、(B1)成分は除く。)である、請求項6に記載の光導波路クラッド材。
  8. (C)重合開始剤が、光ラジカル重合開始剤である、請求項1〜7のいずれか1項に記載の光導波路クラッド材。
  9. さらに、(D)熱硬化性樹脂を含有する、請求項1〜8のいずれか1項に記載の光導波路クラッド材。
  10. (D)熱硬化性樹脂が、分子内に2つ以上のエポキシ基を有する化合物、又は分子内にエポキシ基とエチレン性不飽和基とを有する化合物から選ばれる1種以上である、請求項9に記載の光導波路クラッド材。
  11. 請求項1〜10のいずれか1項に記載の光導波路クラッド材を含有する光導波路クラッド層形成用樹脂フィルム。
  12. 基材フィルムと、請求項1〜10のいずれか1項に記載の光導波路クラッド材を含有する樹脂層と、保護フィルムとを有する、請求項11に記載の光導波路クラッド層形成用樹脂フィルム。
  13. コア層と、請求項11又は12に記載の光導波路クラッド層形成用樹脂フィルムを用いて形成したクラッド層とを有する、光導波路。
  14. コア部において、コア部を形成するコア材に、クラッド層を形成するクラッド材が混入して形成されてなる部位を有する、請求項13に記載の光導波路。
  15. コア部において、前記コア材に前記クラッド材が混入して形成されてなる部位が10〜90体積%を占める、請求項14に記載の光導波路。
  16. クラッド層において、クラッド層を形成するクラッド材に、コア部を形成するコア材が混入して形成されてなる部位を有する、請求項13〜15のいずれか1項に記載の光導波路。
  17. 波長850nmにおける光伝搬損失が、0.25dB/cm以下である、請求項13〜16のいずれか1項に記載の光導波路。
JP2016076886A 2016-04-06 2016-04-06 光導波路クラッド材、光導波路クラッド層形成用樹脂フィルム及び光導波路 Pending JP2017187652A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076886A JP2017187652A (ja) 2016-04-06 2016-04-06 光導波路クラッド材、光導波路クラッド層形成用樹脂フィルム及び光導波路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076886A JP2017187652A (ja) 2016-04-06 2016-04-06 光導波路クラッド材、光導波路クラッド層形成用樹脂フィルム及び光導波路

Publications (1)

Publication Number Publication Date
JP2017187652A true JP2017187652A (ja) 2017-10-12

Family

ID=60044005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076886A Pending JP2017187652A (ja) 2016-04-06 2016-04-06 光導波路クラッド材、光導波路クラッド層形成用樹脂フィルム及び光導波路

Country Status (1)

Country Link
JP (1) JP2017187652A (ja)

Similar Documents

Publication Publication Date Title
JP4241875B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
WO2015029261A1 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及びそれらを用いた光導波路
WO2015033893A1 (ja) 曲面形状部材形成用感光性樹脂組成物、及びこれを用いた、曲面形状部材形成用感光性樹脂フィルム、並びにこれらを用いたレンズ部材
JP5526740B2 (ja) 光導波路形成用樹脂組成物及びこれを用いた光導波路形成用樹脂フィルム、並びにこれらを用いた光導波路
JPWO2012026435A1 (ja) 光導波路形成用樹脂組成物、これを用いた光導波路形成用樹脂フィルム、及びこれらを用いた光導波路
WO2010126116A1 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路
JP2011117988A (ja) 光導波路形成用樹脂組成物及びこれを用いた光導波路形成用樹脂フィルム、並びにこれらを用いた光導波路
JP5515219B2 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、及びこれらを用いた光導波路
JP5003506B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP2010091733A (ja) コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2009175244A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP2010091734A (ja) コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2017187654A (ja) 光導波路の製造方法
JP5904362B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
JP2017187652A (ja) 光導波路クラッド材、光導波路クラッド層形成用樹脂フィルム及び光導波路
JP2009167353A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP2017187653A (ja) 光導波路クラッド材、光導波路クラッド層形成用樹脂フィルム及び光導波路
JP2013174776A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及びそれらを用いた光導波路
JP2018048277A (ja) 光学材料用樹脂組成物、それを用いた光学材料用樹脂フィルム及び光導波路とその製造方法
JP2017187655A (ja) 光導波路の製造方法
JP2016199719A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
JP2015146000A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及びそれらを用いた光導波路
WO2017022055A1 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造方法
JP2015215467A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及びそれらを用いた光導波路
JP2015215466A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及びそれらを用いた光導波路