JP2017187471A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2017187471A
JP2017187471A JP2017013192A JP2017013192A JP2017187471A JP 2017187471 A JP2017187471 A JP 2017187471A JP 2017013192 A JP2017013192 A JP 2017013192A JP 2017013192 A JP2017013192 A JP 2017013192A JP 2017187471 A JP2017187471 A JP 2017187471A
Authority
JP
Japan
Prior art keywords
light
time
light source
signal charge
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017013192A
Other languages
English (en)
Inventor
藤井 俊哉
Toshiya Fujii
俊哉 藤井
貴真 安藤
Takamasa Ando
貴真 安藤
中村 達也
Tatsuya Nakamura
達也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2017187471A publication Critical patent/JP2017187471A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/18Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein range gates are used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal

Abstract

【課題】被検体の浅部及び深部における生体成分の分布を高精度化、高密度化および高速化が可能な撮像装置を提供する。【解決手段】本開示の一態様に係る撮像装置は、第1のパルス光を発光して被写体の所定の領域内に第1のパターンの第1の像を投影し、かつ第2のパルス光を発光して前記被写体の前記所定の領域内の、前記第1の像の位置と異なる位置に第2のパターンの第2の像を投影する第1の光源と、複数の画素を含み、前記複数の画素の各々は、受けた光を信号電荷に変換する光検出器と、前記信号電荷を蓄積する第1の蓄積部および第2の蓄積部とを含むイメージセンサと、前記第1の光源および前記イメージセンサを制御する制御回路と、を備える。【選択図】図1

Description

本開示は、非接触で測定対象の内部情報を取得する技術に関する。たとえば本開示は、被写体である光散乱体の表面近傍からの反射光に基づく画像と、光散乱体の内部まで到達して、再び表面まで戻ってきた光に基づく画像とを分離する技術に関する。
生体計測および材料分析の分野では、対象物に光を照射し対象物内部を透過した光の情報から対象物の内部情報を取得する方法が用いられる。この方法において、対象物表面からの反射成分がノイズとなり問題となることがある。これら表面反射成分によるノイズを取り除き所望の内部情報のみを取得する方法として、たとえば生体計測の分野では、特許文献1に記載の方法が知られている。特許文献1では、光源と光検出器のどちらかを非接触にすることで、制御部は照射点もしくは検出点を随時変化させる。これにより、光検出器は被験者内の異なる経路を透過した光による複数の信号を検出し、解析部は、光検出器で得られる複数の信号のうち所定の信号を選択し、選択した信号を用いて被験者内の光吸収特性を算出することができる。
また、特許文献2には明暗パターンの照射光を、1回の露光期間内での切り替えと照射輝度の変調を行う手段と、被検査面における欠陥を検出する処理部とを有することを特徴とする欠陥検査装置を開示している。
特開2012−125370号公報 特開2012−230005号公報
しかしながら、上述した従来の技術では、さらなる高精度化、高密度化および高速化が求められていた。
本願の、限定的ではない例示的なある実施形態は、高精度化、高密度化および高速化が可能な撮像装置を提供する。
本開示の一態様に係る撮像装置は、第1のパルス光を発光して被写体の所定の領域内に第1のパターンの第1の像を投影し、かつ第2のパルス光を発光して前記被写体の前記所定の領域内の、前記第1の像の位置と異なる位置に第2のパターンの第2の像を投影する第1の光源と、複数の画素を含み、前記複数の画素の各々は、受けた光を信号電荷に変換する光検出器と、前記信号電荷を蓄積する第1の蓄積部および第2の蓄積部とを含むイメージセンサと、前記第1の光源および前記イメージセンサを制御する制御回路と、を備える。前記制御回路は、前記第1の光源に前記第1のパルス光を発光させ、前記第1のパルス光の発光に対応して前記光検出器で生じた第1の信号電荷を前記第1の蓄積部に蓄積させ、前記第1の光源に前記第2のパルス光を前記第1のパルス光の発光と異なる時刻に発光させ、前記第2のパルス光の発光に対応して前記光検出器で生じた第2の信号電荷を前記第2の蓄積部に蓄積させる。
上述の一般的かつ特定の態様は、システム、方法およびコンピュータプログラムを用いて実装され、またはシステム、方法およびコンピュータプログラムの組み合わせを用いて実現され得る。
本発明の一態様にかかる撮像装置によれば、被検体と非接触でありながら、被検体の浅部及び深部における生体成分の分布を高速・高精度な撮像装置を提供することが可能になる。
撮像装置1001の構成を示す図である。 撮像装置1001を含む撮像システム図である。 本実施形態の撮像装置1001の利用シーン200を示す図である。 頭部102(額)に照射される光照射パターン202の例を示す図である。 750nmと850nmの光を透過し、それ以外の波長の光成分は遮光するための光学ダブルバンドパスフィルター112の分光透過率を表すグラフである。 時間分解イメージセンサ113の1つの画素401の構成図である。 本実施形態による時間分解イメージセンサ113の構成図である。 実施形態1の撮像装置の動作を示すタイミング図である。 実施形態1の撮像装置の動作を示すタイミング図である。 実施形態1の撮像装置の詳細な動作を示すタイミング図である リング状の照射パターンの例を示す図である。 ライン状の照射パターンの例を示す図である。 実施形態1による、時間分解イメージセンサ113上のドット照射パターンと画素位置との関係を示す図である。 撮像装置1001の処理の手順を示すフローチャートである。 実施形態2の撮像装置1002を含む撮像システム図である。 実施形態2の撮像装置1002の利用シーン1200を示す図である。 頭部102(額)に照射される光照射パターン1102の例を示す図である。 実施形態2の撮像装置の動作を示すタイミング図である。 実施形態2の撮像装置の動作を示すタイミング図である。 実施形態2の撮像装置の詳細な動作を示すタイミング図である。 実施形態2の撮像装置の詳細な動作を示すタイミング図である。 実施形態2による、時間分解イメージセンサ113上のドット照射パターンと画素位置との関係を示す図である。 実施形態3の撮像装置の動作を示すタイミング図である。 実施形態3の撮像装置の動作を示すタイミング図である。 実施形態3の撮像装置の詳細な動作を示すタイミング図である。 実施形態3の撮像装置の詳細な動作を示すタイミング図である。 実施形態4の撮像装置1003を含む撮像システム図である。 実施形態4の撮像装置1003の利用シーン2200を示す図である。 頭部102(額)に照射される光照射パターン2102の例を示す図である。 時間分解イメージセンサ201の1つの画素301の構成図である。
本願発明者らの鋭意研究の結果、上述の特許文献1および2では、高精度化、高密度化および高速化に限界があることが分かった。
本開示の実施の形態を説明する前に、以下に、対象物の内部情報を浅部と深部を分離観測する従来技術として、特許文献1に記載の方法を説明する。
特許文献1は、可視光または近赤外光を用いた生体光計測装置において、信号成分に混合する皮膚血流成分等の表層成分の影響を分離、除去するための技術を開示する。この文献の目的は、大きく3つ存在する。1つ目は、NIRS信号に含まれる、局所的な皮膚血流を含む脳以外の組織由来成分の影響を除去し、脳もしくは大脳皮質由来の信号のみを分離、抽出することである。2つ目は、より汎用的に脳由来および皮膚由来成分、および脳・皮膚に共通に含まれる成分を分離、抽出することである。3つ目は、脳由来信号と皮膚由来信号の寄与率の個人差を考慮した上で両信号を分離することである。
脳由来の信号と皮膚由来の信号を分離するために、特許文献1では、複数の送光器−受光器間距離による計測を実現するよう、かつ、各受光器が受光する光が灰白質および頭皮をともに伝播するよう、各々の送光器および受光器が配置される。計測時には、信号検出の際に複数の光源からの信号が互いに干渉しないよう、かつ、各々の受光器が適正な強度レベルの光を受光するよう、必要に応じて各光源パワーのON・OFFまたは強弱、あるいは検出器のON・OFFまたはゲイン強弱等を切り換えて計測を実施する。さらに解析時には、各計測点におけるデータを使用して独立成分分析等の信号分離手法を実施し、得られた1つまたは複数の分離成分の、各計測点における重み値の送光器−受光器間距離依存性を用いて、各々の分離成分が脳由来の信号成分か皮膚由来の信号成分かを判定する。そして、使用する1つあるいは複数の分離成分のみを用いて、各々の送光器−受光器間距離における計測信号を再構成する。
制御部は、照射点もしくは検出点を随時変化させることにより、光検出器は被験者内の異なる経路を透過した光による複数の信号を検出する。解析部は、光検出器で得られる複数の信号のうち所定の信号を選択し、選択した信号を用いて被験者内の光吸収特性を算出する。
本願発明者らの検討によれば、特許文献1に記載された方法は、照射点もしくは検出点の位置を随時変化させて、計測する必要がある。同時に一つの送光器−受光器間距離のデータしか検出できないため、高速性と解像度の両立が困難であるという課題を有することが分かった。
また、特許文献2には、1回の露光期間内での照明パターンの切り替えを行うことが記載されている。しかしながらこの方法では、イメージセンサの各画素は照明光のパターン変化の積分値を検出することになる。被検体の深部・浅部の演算を行うためには、複数のフレーム間の演算処理が必要となる。
本願発明者らは、被検体表面の複数の位置への光照射を行うとともに、多数のポイントの時間分解イメージセンサ出力を用いる撮像装置を実現するに至った。この撮像装置は1フレーム内の演算処理により被検体の浅部及び深部における生体成分の分布を高精度・高密度・高速にイメージング可能である。
本開示の一態様の概要は以下のとおりである。
本開示の一態様に係る撮像装置は、第1のパルス光を発光して被写体の所定の領域内に第1のパターンの第1の像を投影し、かつ第2のパルス光を発光して前記被写体の前記所定の領域内の、前記第1の像の位置と異なる位置に第2のパターンの第2の像を投影する第1の光源と、複数の画素を含み、前記複数の画素の各々は、受けた光を信号電荷に変換する光検出器と、前記信号電荷を蓄積する第1の蓄積部および第2の蓄積部とを含むイメージセンサと、前記第1の光源および前記イメージセンサを制御する制御回路と、を備える。前記制御回路は、前記第1の光源に前記第1のパルス光を発光させ、前記第1のパルス光の発光に対応して前記光検出器で生じた第1の信号電荷を前記第1の蓄積部に蓄積させ、前記第1の光源に前記第2のパルス光を前記第1のパルス光の発光と異なる時刻に発光させ、前記第2のパルス光の発光に対応して前記光検出器で生じた第2の信号電荷を前記第2の蓄積部に蓄積させる。
前記撮像装置は、前記第1の信号電荷、および前記第2の信号電荷に基づいて、画像情報を生成する信号処理回路をさらに備えていてもよい。
前記第1パターン及び前記第2のパターンは、例えば、複数の点を含むパターンである。
前記第1パターン及び前記第2のパターンは、例えば、複数のリングを含むパターンである。
前記第1パターン及び前記第2のパターンは、例えば、複数の直線を含むパターンである。
前記制御回路は、前記第1の光源に、複数の第1のパルス光を発光させ、前記複数の第1のパルス光の各々は前記第1のパルス光であり、前記第1の光源に、複数の第2のパルス光を発光させ、前記複数の第1のパルス光の各々は前記第1のパルス光であってもよい。
前記撮像装置は、第3のパルス光を発光して前記被写体の前記所定の領域内の、前記第1および第2の像の位置と異なる位置に第3のパターンの第3の像を投影し、かつ第4のパルス光を発光して前記被写体の前記所定の領域内の、前記第1、第2および第3の像の位置と異なる位置に第4のパターンの像を投影する第2の光源をさらに備え、前記イメージセンサにおける前記複数の画素の各々は、前記信号電荷を蓄積する第3の蓄積部および第4の蓄積部をさらに含み、前記第1の光源は第1の波長範囲の光を発光し、前記第2の光源は前記第1の波長範囲と異なる第2の波長範囲の光を発光し、前記制御回路は前記第2の光源をさらに制御し、前記制御回路は、前記第2の光源に前記第3のパルス光を発光させ、前記第3のパルス光の発光に対応して前記光検出器で生じた第3の信号電荷を前記第3の蓄積部に蓄積させ、前記第2の光源に前記第4のパルス光を前記第3のパルス光の発光と異なる時刻に発光させ、前記第4のパルス光の発光に対応して前記光検出器で生じた第4の信号電荷を前記第4の蓄積部に蓄積させてもよい。
前記信号処理回路は、前記第1から第4の信号電荷に基づいて前記画像情報を生成してもよい。
前記撮像装置において、前記被写体は光学的散乱体であり、前記第1の信号電荷は、前記被写体から到達した、前記第1のパルス光に由来する内部散乱光成分であり、前記第2の信号電荷は、前記被写体から到達した、前記第2のパルス光に由来する内部散乱光成分であってもよい。
前記撮像装置において、前記イメージセンサにおける前記複数の画素の各々は、前記信号電荷を蓄積する第3の蓄積部および第4の蓄積部をさらに含み、前記制御回路は、第1の時刻および第2の時刻のそれぞれにおいて前記第1のパルス光を発光させ、前記第1の時刻から第1の時間が経過した後から、前記第1の蓄積部に前記第1の信号電荷を蓄積させ、前記第2の時刻から前記第1の時間よりも長い第2の時間が経過した後から、前記第3の蓄積部に前記第1の信号電荷を蓄積させ、第3の時刻および第4の時刻のそれぞれにおいて前記第2のパルス光を発光させ、前記第3の時刻から第3の時間が経過した後から、前記第2の蓄積部に前記第2の信号電荷を蓄積させ、前記第4の時刻から前記第3の時間よりも長い第4の時間が経過した後から、前記第4の蓄積部に前記第2の信号電荷を蓄積させてもよい。
本開示の他の一態様に係る撮像装置は、第1のパルス光を発光して被写体の所定の領域に所定パターンの像を投影する光源と、複数の画素を含み、前記複数の画素の各々は、受けた光を信号電荷に変換する光検出器と、前記信号電荷を蓄積する第1の蓄積部および第2の蓄積部とを含むイメージセンサと、前記光源および前記イメージセンサを制御する制御回路とを備え、前記制御回路は、第1の時刻において前記光源に前記第1のパルス光を発光させ、前記第1の時刻の後で、かつ第2の時刻までは、前記第1の蓄積部に前記信号電荷を蓄積させ、前記第2の時刻を超えてからは前記第2の蓄積部に前記信号電荷を蓄積させる。
以下、添付の図面を参照しながら、本開示による撮像装置の実施形態を説明する。
撮像装置の各実施形態の説明に先立って、当該撮像装置の動作の概要を説明する。
図1は、撮像装置1001の構成を示す。撮像装置1001は、制御回路114と、制御回路114によって制御される光源600およびイメージセンサ602と、イメージセンサ602の出力信号を処理する信号処理回路604とを備える。なお、撮像装置1001がその内部に光源600を有することは必須ではなく、制御回路114によって制御ができるのであれば、光源600は外付けでもよい。以下、本明細書において同様である。
光源600から出射された光は被検者の額を含む頭部102で反射され、イメージセンサ602に入射する。イメージセンサ602は、入射した光を電気信号に変換して出力する。制御回路114は、イメージセンサ602から出力された信号に基づいて、光源600による光の照射位置およびパワーを調整する。
制御回路114は、2つの初期動作を行う。すなわち、頭部102までの距離測定動作、および照射調整動作である。
まず、制御回路114が行う距離測定動作について説明する。制御回路114は、光源600の発光中にイメージセンサ602から出力された電気信号(たとえば画像を示す信号)に基づいて、頭部102の位置、および頭部102までの距離を特定する。たとえば制御回路114は、TOF(Time−of−Flight)技術を用いて頭部102までの距離を計測できる。TOF技術では、照射光(たとえばパルス光)が頭部102で反射され、その反射光がイメージセンサ602に到達するまでに要する時間、すなわち飛行時間が計測される。制御回路114は、光源600がパルス光を出射してからイメージセンサ602が当該パルス光を検出するまでの時間に基づいて頭部102までの距離を検出できる。飛行時間は、イメージセンサ602の各検出素子で検出される光の位相と、光源600における光の位相との差に基づいて計測できる。イメージセンサ602として、複眼カメラを用いてもよい。複眼カメラは、複数のイメージセンサを有し、取得した複数の画像間の視差に基づいて、距離を計測できる。このように、イメージセンサ602は、画像情報と距離情報の両方を取得可能なデバイスであってもよい。
次に、制御回路114が行う照射調整動作について説明する。制御回路114は、特定した頭部102の位置および距離に基づいて、頭部102において光が照射される位置および光のパワーを決定する。たとえば、頭部102の位置に光が正しく照射されるように、不図示のMEMSミラーなどの光学素子を制御する。そして、イメージセンサ602に到達する光のパワーがほぼ規定値になるように光源600を発光させる。たとえば、頭部102までの距離が大きいほど光源600が発する光のパワーを高くし、当該距離が小さいほど光源600が発する光のパワーを低くする。
制御回路114は、上記の動作を、たとえば生体情報の検出を開始する時(初期動作時)にまず行う。これにより、頭部102に適切なパワーで光が照射され、生体情報の検出を高い精度で行うことができる。
上述の初期動作の後、制御回路114は生体情報の計測動作を行う。
制御回路114は光源600から光を頭部102に光を照射する。光121が照射された頭部102において反射および散乱した光(「戻り光」と表記する。)はイメージセンサ602に到達する。戻り光は、頭部102の表面で反射する成分(表面反射成分606)と、頭部102の内部で1回反射(拡散反射含む)、散乱、または多重散乱する成分(内部散乱成分608)とを含む。このうち、検出したい成分は内部散乱成分608である。
しかし、一般に、内部散乱成分608の信号強度は小さい。これは、レーザ安全基準を満たす非常に小さな光量の光が照射されることに加えて、頭皮、脳髄液、頭蓋骨、灰白質、白質および血流による光の散乱および吸収が大きいためである。さらに、脳活動時の血流量または血流内成分の変化による信号強度の変化は、内部散乱成分608の信号強度の数十分の1の大きさに相当し、非常に小さい。したがって、検出したい信号成分の数千〜数万倍である表面反射成分606をできるだけ混入させずに内部散乱成分608を検出することが望ましい。
そこで、電子シャッタの機能を有するイメージセンサ602を利用する。制御回路114がシャッタタイミングを適切に制御することにより、内部散乱成分608のみを検出するようにすることができる。そのような構成は、たとえば特願2015−122390号の明細書に開示されている。特願2015−122390号の開示内容全体を本願に援用する。
信号処理回路604は、イメージセンサ602から出力された内部散乱成分608に関する信号を受け取り、被検体の浅部からの反射成分および深部からの反射成分の分離を行う。さらに信号処理回路604は、得られた明暗情報から酸素化ヘモグロビンと脱酸素化ヘモグロビンの濃度変化を得て、得られた酸素化ヘモグロビンと脱酸素化ヘモグロビンの濃度変化から脳活動を演算によりイメージングデータとして出力する。
(実施形態1)
本実施形態1の撮像装置1001は被検体として生体等の光散乱体を対象とする。具体的には、撮像装置1001は、観測すべき脳内の酸素化ヘモグロビン、脱酸素化ヘモグロビンの濃度分布とその時間変化を検出し、前記濃度分布を2D画像として構築する。本撮像装置1001は非接触でありながらアーチファクトである頭皮血流の除去軽減を高速かつ高精度に実行する。
図2は本実施形態の撮像装置1001を含む撮像システムを示す図である。脳内の酸素化ヘモグロビン、脱酸素化ヘモグロビンの濃度を計測する場合には、700〜950nmの近赤外光を使用することが提案されている。その理由は、生体内では、これらの波長は水分とヘモグロビンの双方共に比較的吸収されにくいからである。これらの波長帯域は「生体の窓」と呼ばれている。そこで本実施形態の撮像装置1001は、光源600(図1)として、波長750nmのレーザーパルス光を出射する4つの第1の光源103、104、105、106、および波長850nmのレーザーパルス光を出射する4つの第2の光源107、108、109、110を用いる。
第1の光源103、104、105、106および第2の光源107、108、109、110の各々は、短パルスで高速で繰り返し決められた後述のパターンでレーザ光の照射を行う。詳細は後述する。
撮像装置1001はさらに、結像光学系111と、光学ダブルバンドパスフィルター112と、時間分解イメージセンサ113と、制御回路114と、第1信号処理回路115と、第2信号処理回路116とを有している。
結像光学系111は、いわゆるカメラレンズである。
光学ダブルバンドパスフィルター112は、750nmと850nmの二波長の光を透過させるフィルタである。光学ダブルバンドパスフィルター112は、レンズの結像面に設置される。
制御回路114は、たとえば演算プロセッサであり、撮像装置1001における、第1の光源103、104、105、106および第2の光源107、108、109、110のパルス発光と、時間分解イメージセンサ113での受光の露光期間とを制御する。また、制御回路114は、受光によって蓄積された信号電荷をデジタル変換し、得られた画像データの処理を第1信号処理回路115および第2信号処理回路116に命令する。
第1信号処理回路115および第2信号処理回路116は、図1における信号処理回路604に対応する。すなわち信号処理回路604は、第1信号処理回路115および第2信号処理回路116として実現されている。ただしこれは一例である。図1のように、1つの回路によって実現してもよい。
第1信号処理回路115は、頭部102内の浅部である頭皮血流からの反射光の特徴と深部である大脳皮質の脳血流からの反射光の特徴とを分離する演算を行う。演算の結果、第1信号処理回路115は、脳血流から得られた明暗情報を出力する。
第2信号処理回路116は、得られた明暗情報から酸素化ヘモグロビンと脱酸素化ヘモグロビンの濃度変化から脳活動を演算によりイメージングデータとして出力する。
図3Aは本実施形態の撮像装置1001の利用シーン200を示す。撮像装置1001はタブレット端末201に組み込まれている。撮像装置1001は、たとえば異なる時刻1、2、3、4において第1〜第4照射光をそれぞれ放射する。第1〜第4照射光として、まず波長750nmの光が第1の光源103、104、105、106から放射される。その放射が終わると、続いて波長850nmの光が第2の光源107、108、109、110から放射される。第1〜第4照射光は、各々が頭部102(額)の複数の特定の位置に入射して光の像を形成するよう、その位置が予め決められている。照射によって形成される像のパターンを、本明細書では「光照射パターン」と呼ぶ。
図3Bは、頭部102(額)に照射される光照射パターン202の例を示す。
図3Bに示される丸数字1、2,3、4で示される複数の位置203、204、205、206は、それぞれ、額上に形成される、第1の光源103、104、105、106および第2の光源107、108、109、110から放射されたレーザ光の光点の位置を示す。同じ丸数字によって形成される光点の配列を「光ドットパターン」と呼ぶ。光ドットパターンは光照射パターンの一例である。例えば、位置203には、第1の光源103から照射されたレーザ光の光点が形成され、さらに位置203には、第1の光源103から照射とは異なるタイミングで、第2の光源107から照射されたレーザ光の光点も形成される。位置204、205、206もそれぞれ同様である。これらは後述する動作タイミングで、1フレーム内で時分割して照射される。第1の光源103および第2の光源107は、同じ光ドットパターンを形成する。第1の光源104および第2の光源108は、同じ光ドットパターンを形成する。第1の光源105および第2の光源109は、同じ光ドットパターンを形成する。第1の光源106および第2の光源110は、同じ光ドットパターンを形成する。
なお「フレーム」とは、イメージセンサからの出力単位であり、ある出力動作によって得られる信号またはデータは、1つのフレームを構成する信号またはデータである。
図4は750nmと850nmの光を透過し、それ以外の波長の光成分は遮光するための光学ダブルバンドパスフィルター112の分光透過率を表すグラフである。光学ダブルバンドパスフィルター112を設けることにより、第1の光源103、104、105、106および第2の光源107、108、109、110から放射されたレーザ光の反射光を、時間分解イメージセンサ113において効果的に取得することができる。
図5は、時間分解イメージセンサ113の1つの画素401の構成図である。1つの画素401は、電荷排出部であるドレイン402と、光電変換部である光検出器(PD)403と、信号電荷を蓄積する蓄積部である8つの浮遊拡散層(FD)404、405、406、407、408、409、410、411と、高速タイミング制御回路412とを有している。
光検出器403は、入射フォトンを信号エレクトロン(信号電荷)に変換する。高速タイミング制御回路412は、制御信号を出力して、信号電荷をドレイン402に排出するか、浮遊拡散層404、405、406、407、408、409、410、411のいずれかに蓄積するかを切り換える。浮遊拡散層404、405、406、407、408、409、410、411のいずれに振り分けるかは後述するタイミングに依存する。当該タイミングに必要とされる動作速度はナノ秒オーダである。このような高速動作を実現するため、高速タイミング制御回路412は、たとえばCMOSロジック回路で形成されている。
図6は本実施形態による時間分解イメージセンサ113の構成図である。1画素領域501は二点鎖線の円で示した領域で、8つの浮遊拡散層404、405、406、407、408、409、410、411を含む。1画素領域501では、蓄えられた電荷は、あたかも一般的なCMOSイメージセンサの8画素(2行4列)の信号のように取り扱われて時間分解イメージセンサ113から出力される。
実際の時間分解イメージセンサ113は二点鎖線の円領域が水平垂直にm行n列配置されて構成されるが図面説明の関係上、本例では2行1列の簡単な例で説明する。
以下に簡単な本イメージセンサ113の基本動作を説明する。記載の便宜上、「浮遊拡散層」という表記を省略して、単に「FD」と記述する場合がある。
なお、図6では、図5に記載のドレイン402、光検出器403、高速タイミング制御回路412の記載は省略されている。これらは、各浮遊拡散層に信号電荷の蓄積が完了してから、FD内の信号電荷を時間分解イメージセンサ113から出力する低速読み出し動作には直接関係しないからである。
行選択回路502が信号読み出しトランジスタ508をONすると、各浮遊拡散層に蓄積された信号電荷は、ソースフォロワトランジスタ509とソースフォロワ負荷506を介して増幅されて、垂直信号線504に読み出される。その後、浮遊拡散層の列毎に設置されたAD変換器507は、読み出された信号を、デジタル信号データに変換する。列選択回路503は、デジタル信号を時間分解イメージセンサ113から出力する。時間分解イメージセンサ113は、同一行の信号を出力した後、次の行の読み出しを行い、同様の手順で全ての浮遊拡散層の情報を読み出し、読み出し後にリセットトランジスタ510をオンする。これにより、全ての浮遊拡散層はセットされる。次のフレームの高速繰り返し撮像が始まるタイミングで、イメージセンサの一連のフレーム動作が完結する。
本実施の形態ではCMOS型のイメージセンサの例を挙げたが、イメージセンサはCCD型であっても、単一光子計数型素子であっても、増幅型イメージセンサ(EMCCD、ICCD)であっても構わない。
続いて、図1のシステム構成図、図7Aのタイミング図、図7Bのタイミング図、および図8のタイミング図を参照しながら本実施形態1の撮像装置の詳細動作を説明する。
図7Aおよび図7Bにおいて、信号A1、A2、A3、A4、A5、A6、A7、A8はそれぞれ第1の光源103、104、105、106、第2の光源107、108、109、110の発光のタイミングを示し、信号Bは電子シャッタのOPEN、CLOSEのタイミングを示し、信号C1、C2、C3、C4、C5、C6、C7、C8はそれぞれ浮遊拡散層404、405、406、407、408、409、410、411のON(すなわち浮遊拡散層に電荷が蓄積される状態)、OFF(すなわち浮遊拡散層に電荷が蓄積されない状態)のタイミングを示す。また、図8において、信号Aは光源の発光のタイミングを示し、信号Bは電子シャッタのOPEN、CLOSEのタイミングを示し、信号Dは時間分解イメージセンサ113に到達した表面反射成分の強度を示し、信号Eは時間分解イメージセンサ113に到達した内部散乱光成分の強度を示し、信号Fは信号Dと信号Eとの和を示す。
図2及び図1の制御回路114は、約10nsパルス幅で約10MHzの周波数にて、第1の光源103を図7Aに示すように複数回発光させる。通常は、例えば約1000回、約100μsec程度の期間、繰り返し照射を行う。たとえば、図7Aでは、第1の光源103は3つのパルス発光を行っているかのように記載されているが、このパルス発光が、約100μsec程度の期間内に約1000回行われることを意味している。各発光により、頭部102(額)には、所定の光の像(照射ドットパターン)が形成される。この照射ドットパターンは、図3Bの丸数字1の頭部額上の位置に形成される。丸数字1の位置の間隔は、例えば約6cmに設定される。
頭部額上の丸数字1の位置に照射された波長750nmの光成分の大部分は、図1に示す通り、頭部102の表面で反射される。反射光は、戻り光としてカメラレンズである結像光学系111に入射する。頭部102の表面で反射しなかった一部の光成分は頭部102の内部を散乱しながらの大脳皮質に到達する。そして、大脳皮質に到達した当該一部の光成分はさらに散乱を継続し、そのうちの少量の光成分が内部散乱光成分として、再び頭部102の額表面に到達する。頭部102の額表面から対外に放射された光成分のさらに一部は、結像光学系111に入射し、時間分解イメージセンサ113に到達して光電変換が行われる。結像光学系111に入射する光成分は、表面反射成分606(図1)、内部散乱光成分608(図1)および750nm,850nm以外の波長の外乱光成分である。このうち750nm,850nm以外の波長の外乱光成分は、光学ダブルバンドパスフィルター112によってカットされる。
この結果、時間分解イメージセンサ113に到達する内部散乱光のエネルギーは時間分解イメージセンサ113に到達する表面反射光のエネルギーの1万分の1程度に減衰する。この減衰した光には脳活動の情報が含まれる。よって、如何にエネルギーの高いノイズである表面反射光を除去して、内部散乱光を検出するかが重要な要件となる。
以下、図8を参照しながらそのメカニズムを説明する。
図8は、図7Aおよび図7Bのa−b区間のタイミングの詳細を示す。
図8に示す通り、高速タイミング制御回路412(図5)によるドレイン402への不要電荷の排出制御により、時間分解イメージセンサ113は、ドレイン排出期間中に電子シャッタがクローズ(CLOSE)、ドレインに排出しない期間中は電子シャッタがオープン(OPEN)として制御される。高速タイミング制御回路412は、表面反射成分が消失する時刻近傍に電子シャッタOPENの開始の時刻を設定する。その理由は、表面反射成分を排除して内部散乱光を多く検出するためである。表面反射成分と比較すると、内部散乱光は散乱する時間分、時間分解イメージセンサ113に入射する時刻が遅れる。表面反射成分が消失する時刻近傍以降に内部散乱光が検出可能になる。
表面反射成分が消失する時刻は、レーザーパルス光源の発光から若干の時間が経過した後である。具体的には、表面反射成分が消失する時刻は、レーザーパルス光源が発光した時刻を起点として、レーザ光が頭部102の額表面に到達し、額表面で反射した表面反射成分606が時間分解イメージセンサ113に入射するまでの時間経過後である。本実施形態では、表面反射成分が消失する時刻から約100ピコ秒経過以降に電子シャッタをOPENする。高速タイミング制御回路412は、発光パルス幅相当の期間、電子シャッタOPEN期間を維持し、その直後に電子シャッタがCLOSEとなるように制御する。
第1の光源103(図2)は繰り返しパルス発光するので、電子シャッタも図7Aに示す通り第1の光源103の発光に対応して、動作する。
第1の光源103の発光期間中は、高速タイミング制御回路412により、信号電荷を蓄積する図5の浮遊拡散層404、405、406、407、408、409、410、411のうちの浮遊拡散層404のみがアクティブにされ、他の浮遊拡散層はOFFにされる。よって、電子シャッタ開の有効期間の信号電荷は浮遊拡散層404のみに蓄積されることになる。なお、本デバイスは、ドレイン排出がアクティブの際には光検出器内の電荷は全てドレインに排出されるように設計されている。
制御回路114は、表面反射光成分がイメージセンサ結像面上から消失し、かつ、内部散乱光のみがイメージセンサ結像面上に存在するようになった後の時刻から電子シャッタをOPENにし、生じた信号電荷を浮遊拡散層に蓄積する。これにより、効率良く表面反射光を除去して、脳活動の情報を含んだ内部散乱光のみを検出することが可能となる。
被検体が人体頭部102であり脳血流などの情報を検出する際には、内部での光の減衰率が非常に大きい。上述のとおり、内部散乱光のエネルギーは表面反射光のエネルギーの1万分の1程度に減衰する。内部散乱光のみを検出するには、1パルスの照射だけでは光量が不足する。そこで本実施形態では、パルス光源を複数回発光させ、それに応じてイメージセンサも電子シャッタによって複数回露光することで検出信号を積算して感度を向上させている。これにより、初めて非接触で脳血流などの情報を検出することが可能となる。
次に同様に図1および図2の制御回路114により、約10nsパルス幅で約10MHzの周波数にて、第1の光源104を図7Aに示すように複数回発光させる。本実施形態では、例えば、約100μsec程度の期間中に、約1000回、繰り返し照射を行う。この照射ドットパターンは図3Bに示す丸数字2の頭部額上の位置に形成される。丸数字2の位置の間隔は、例えば約6cmで丸数字1の位置の中間点に設定される。
第1の光源104を発光させた後、内部散乱光が時間分解イメージセンサ113に到達するまでの挙動は先の例と同じであるから説明を省略する。
第1の光源104は繰り返しパルス発光するので、電子シャッタも図7Aに示す通り、第1の光源104の発光に対応して、動作することになる。
この時、信号電荷を蓄積する図5の浮遊拡散層404、405、406、407、408、409、410、411は、高速タイミング制御回路412により、浮遊拡散層405のみがアクティブになり、他の浮遊拡散層はOFFにされる。よって、電子シャッタ開の有効期間の信号電荷は浮遊拡散層405のみに蓄積されることになる。
以下、図7Aに示すように、第1の光源105、第1の光源106についても同様に動作をさせる。
そうすることにより、信号電荷は独立して以下のように蓄積される。
第1の光源103が、丸数字1の照射パターンでパルス発光を行うことにより、内部散乱光の信号電荷は浮遊拡散層404に蓄積される。
第1の光源104が、丸数字2の照射パターンでパルス発光を行うことにより、内部散乱光の信号電荷は浮遊拡散層405に蓄積される。
第1の光源105が、丸数字3の照射パターンでパルス発光を行うことにより、内部散乱光の信号電荷は浮遊拡散層406に蓄積される。
第1の光源106が、丸数字4の照射パターンでパルス発光を行うことにより、内部散乱光の信号電荷は浮遊拡散層407に蓄積される。
次に、図7Bに示すように、引き続き第2の光源107、108、109、110についても同様に動作させることにより、信号電荷は独立して以下のように蓄積される。
第2の光源107が、丸数字1の照射パターンでパルス発光を行うことにより、内部散乱光の信号電荷は浮遊拡散層408に蓄積される。
第2の光源108が、丸数字2の照射パターンでパルス発光を行うことにより、内部散乱光の信号電荷は浮遊拡散層409に蓄積される。
第2の光源109が、丸数字3の照射パターンでパルス発光を行うことにより、内部散乱光の信号電荷は浮遊拡散層410に蓄積される。
第2の光源110が、丸数字4の照射パターンでパルス発光を行うことにより、内部散乱光の信号電荷は浮遊拡散層411に蓄積される。
これらの動作を1セットとして、必要な信号電荷が蓄積されるまで、1フレーム内に複数セット繰り返し動作をさせる。1セット分のデータの蓄積に要する時間は、約800μsec程度であり十分高速である。例えば、これらの動作を数十セット程度繰り返す場合であっても数十ミリ秒程度要するだけである。
この繰り返し動作により、1フレームを信号電荷の蓄積期間とみなすと、第1の光源103、104、105、106および第2の光源107、108、109、110の照射の擬似同時化が可能となる。
次に、時間分解イメージセンサ113は、浮遊拡散層404、405、406、407、408、409、410、411に蓄積された信号電荷を読み出す動作を行う。読み出し動作のタイミングでは、第1及び第2の光源は、基本的に消灯する。読み出し動作の内容は、図6を参照しながら上述したとおりである。
本願発明者らが上述の2種類の波長を用いた理由は、脳血流において、酸素化ヘモグロビンと脱酸素化ヘモグロビンの光吸収係数が805nmを境に逆転しているからである。そのため、酸素化ヘモグロビン、脱酸素化ヘモグロビンの各々の濃度変化を単波長に比べて精度良く検出することが可能となる。
なお、これまで説明しているレーザーパルス光源の二種類の波長(750nmおよび850nm)は一例である。700〜950nmの波長帯域で、805nmを境界としてそれよりも短い波長と、長い波長とを選択すればよい。
本例では光照射パターンは光ドットパターンの例で説明したが、リング状またはライン状のパターンを採用しても構わない。たとえば図9Aは、リング状の照射パターンの例を示し、図9Bは、ライン状の照射パターンの例を示す。丸数字1から4の各照射パターンが、第1の光源103、104、105、106および第2の光源107、108、109、110によって形成される像である。図9Aに示す各リングの直径は、たとえば約6cmである。また、連続する2つの丸数字に対応する2つのリングの中心間隔は、たとえば約3cmである。図9Bに示す各ラインの間隔は、たとえば約3cmである。
次に、第1信号処理回路115は、時間分解イメージセンサ113から出力された8枚の画像のデータを用いて浅部と深部の分離を行う。8枚の画像の各々は、浮遊拡散層404、405、406、407、408、409、410、411の各々に蓄積されていた、二波長の各照射パターンに応じて取得された信号電荷に対応する。分離法については、特許文献1にも記載されているマルチSD(Source Detector・送光−受光)間距離の受光データから連立方程式を用いて解く手法、適応フィルタを用いた引き算方式の手法等が知られている。
本実施形態では、図10に示すように、時分割光パターン照射と時間分解イメージセンサを用いることにより、イメージセンサ全画素と各ドットパターンの光照射点間の距離の組み合わせが使用可能となるため、多数のSD間距離データを取得することが可能となる。
図10は、時間分解イメージセンサ113上のドット照射パターンと画素位置との関係を示す。図10の各方眼状の升目が被検体の額表面に相当するイメージセンサの画素位置、丸数字1〜4は各レーザーパルスの照射パターン位置を表している。たとえば丸数字1から伸びる矢印の先は、丸数字1の位置に入射したレーザーパルスが、内部散乱光成分として再び額表面に現れたときの位置を示している。ただしこれは一例を示したに過ぎない。内部散乱光成分は丸数字1の位置を中心として種々の方向に現れ得る。レーザーパルスの照射位置から離れた画素においても、内部散乱光成分は検出され得る。なお、2つの丸数字1から、その間に位置する丸数字2の位置に内部散乱光成分が別個に到達することがある。その位置の画素の浮遊拡散層404または浮遊拡散層408には、その両方の内部散乱光成分の情報が含まれることになる。なお図10には、丸数字2および4に関連する内部散乱光成分の矢印は示されていないが、これは記載の簡単化のためである。
各画素の浮遊拡散層404、405、406、407、408、409、410、411から得られた情報によれば、4つの異なる位置の光照射ドットパターンに起因する内部散乱光成分の情報と(被検体の長さ/イメージセンサ画素数)に相当する距離のステップでの信号の取得が可能となる。たとえば水平200画素のイメージセンサを水平20cmの被検体長の場合は1mmステップで各ドットパターンのSD間距離の信号の取得が可能となるため、浅部・深部の分離精度を向上することが可能となる。また高速な時間分解イメージセンサを用いていることで、1フレームでの高速な撮像が可能となる。
第1信号処理回路115が750nmと850nmの各々の浅部深部の分離を行った後、第2信号処理回路116は、2波長の深部分離画像から、酸素化ヘモグロビン及び脱酸素化ヘモグロビンの各波長の光吸収係数を用いて、酸素化ヘモグロビン及び脱酸素化ヘモグロビンの各画素における相対変化を演算する。これにより、高速且つ高精度な脳機能のイメージングの提供が可能となる。
本実施例の時間分解イメージセンサは1画素あたり8つの浮遊拡散層を備える。よって、被検体が光散乱体の場合は得られる光学解像度の空間周波数は低いため、画素数は通常のカメラに比べ少なくても十分である。同じイメージエリアを想定すると、画素サイズは大きく設計することが可能となるため、合理性が高い。
図11は、撮像装置1001の処理の手順を示すフローチャートである。動作の主体を制御回路114(図1、2)とし、制御回路114が他の構成要素に命令を出力するとして説明する。なお、図11の処理は1セット分のデータを取得する例である。
まず、制御回路114は、被検者の頭部102(たとえば額)の位置および第1の光源103、104、105、106または第2の光源107、108、109、110と額との間の距離を検出する(ステップS1)。具体的には、制御回路114は、時間分解イメージセンサ113から出力され、複数のフレーム画像から構成された動画像を利用して、フレーム画像中の額の位置情報を画像認識によって取得する。このとき時間分解イメージセンサ113は一般的な撮像動作を行えばよく、遊拡散層404、405、406、407、408、409、410、411に順次信号電荷を蓄積する必要はない。
額の位置は、たとえば、人の額に関連付けられたテンプレートを用いたパターンマッチングによって特定される。位置情報とは、たとえば、検出されたパターンにおける画像中の中心の位置を示す情報などであり得る。テンプレートは、図示しないメモリに予め格納されている。画像認識には、公知の手法を広く用いることができ、特定の方法に限定されない。また、制御回路114は、時間分解イメージセンサ113から出力された光のパワーの位相差を示す情報を含む信号に基づいて被検者までの距離を計算する。
測距は、TOF技術を用いて行うこともできる。たとえば光のパルスを複数回の照射し、各反射光を、時間分解イメージセンサの複数の浮遊拡散層の各々で順次受ける。パルス発光時から反射光受光時までの光の飛行時間を計測することにより、直接的に頭部までの距離を測距しても構わない。
制御回路114は、第1の光源103、104、105、106または第2の光源107、108、109、110を制御する。
撮像装置1001で生体情報の計測を開始するとき、制御回路114は第1の光源103、104、105、106または第2の光源107、108、109、110に発光のための制御信号を出力する。この際の光のパワーおよび出射方向は、予め設定された初期値に設定される。制御回路114は、初期動作を実行し、被検部の位置および距離を示す初期情報を取得する。
次に、制御回路114は、初期情報に基づいて、光源から出射される光の出射方向およびパワーの初期値を設定する(ステップS2)。各光源は、初期値に応じたパワーを有する光を被検者に出射する。以上の動作により、撮像装置1001に対面する被検者の位置に関わらず、その位置に応じた適切な方向に適切なパワーで光を出射させることができる。
さらに制御回路114は、変数としてM、Nおよびkにそれぞれ1を設定する。「M」は1または2であり、「第Mの光源」のように表現されて光源の波長に対応する値を示す。「N」は、1以上、4以下の整数であり、「第1の光源N」のように表現されて光源を特定する値を示す。ここで、第1の光源103が「第1の光源1」、第1の光源104が「第1の光源2」、第1の光源105が「第1の光源3」、第1の光源106が「第1の光源4」、第2の光源107が「第2の光源1」、第2の光源108が「第2の光源2」、第2の光源109が「第2の光源3」、第2の光源110が「第2の光源4」にそれぞれ相当する。「k」は1以上、8以下の整数であり、「浮遊拡散層k」のように表現されて、信号電荷を蓄積する浮遊拡散層を特定する値を示す。ここで、浮遊拡散層404が「浮遊拡散層1」、浮遊拡散層405が「浮遊拡散層2」、浮遊拡散層406が「浮遊拡散層3」、浮遊拡散層407が「浮遊拡散層4」、浮遊拡散層408が「浮遊拡散層5」、浮遊拡散層409が「浮遊拡散層6」、浮遊拡散層410が「浮遊拡散層7」、浮遊拡散層411が「浮遊拡散層8」にそれぞれ対応する。
次に、制御回路114は、制御信号を出力して第Mの光源Nを発光させ、被検者の頭部102の領域に所定パターンの像を投影させる(ステップS3)。
次に、制御回路114は、高速タイミング制御回路412に制御信号を送り、表面反射成分が消失する時刻近傍で電子シャッタをOPENにして、内部散乱光成分を浮遊拡散層kで受光させる(ステップS4)。電子シャッタをOPENさせる期間は、発光パルス幅相当の期間である。
次に、制御回路114は、所定回数だけ、第Mの光源Nを発光させたか否かを判定する(ステップS5)。所定回数は、たとえば1000回である。発光回数が条件を満たしていれば処理はステップS6に進む。満たしていなければ処理はステップS3に戻り、制御回路114は再度、発光と内部散乱光成分の受光とを行わせる。
次に、制御回路114は、Nが4か否かを判定する(ステップS6)。つまり、制御回路114は、第1の光源4の発光まで完了したか否かを判定する。Nが4であれば処理はステップS7に進む。一方、Nが4未満であれば処理はステップS3に戻る。このときNおよびkは1つインクリメントされる。これにより、次に発光する光源を変更し、受光時に動作する浮遊拡散層を変更することができる。
次に、制御回路114は、Mが2か否かを判定する(ステップS7)。つまり、制御回路114は、第2の光源4の発光まで完了したか否かを判定する。Mが2であれば処理はステップS8に進む。一方、Mが2未満(つまりM=1)であれば処理はステップS3に戻る。このときMには2が代入され、Nには1が代入され、kは1つインクリメントされる。これにより、第2の光源1を発光させることができる。
次に、制御回路114は、各画素401の浮遊拡散層404、405、406、407、408、409、410、411に蓄積された信号電荷を読み出すための制御信号を生成して時間分解イメージセンサ113に送る。これにより、浮遊拡散層404、405、406、407、408、409、410、411に蓄積された信号電荷の各々がアナログ信号として読み出される。併せて制御回路114は、AD変換器507に命令して、読み出されたアナログ信号をデジタルデータに変換して画像データを取得する(ステップS8)。
最後に、制御回路114は、第1信号処理回路115および第2信号処理回路116に命令して、頭部102内の浅部である頭皮血流からの反射光の特徴と深部である大脳皮質の脳血流からの反射光の特徴とを分離して脳血流から得られた明暗情報を生成させ、得られた明暗情報から酸素化ヘモグロビンと脱酸素化ヘモグロビンの濃度変化から脳活動を演算し、イメージングデータを得て出力させる(ステップS9)。
(実施形態2)
次に、本開示の実施形態2について説明する。本実施の形態による撮像装置は被検体として生体等の光散乱体を対象とする。具体的には、撮像装置は、観測すべき脳内の酸素化ヘモグロビン、脱酸素化ヘモグロビンの濃度分布とその時間変化を検出し、前記濃度分布を2D画像として構築する。
本実施形態の目的と実施形態1の目的とは同じであるが、浅部の頭皮血流と深部の脳血流とを分離する手法が異なっている。具体的には、本実施形態では、同一発光パターン、同一波長において、異なる2位相の電子シャッタ期間を利用する。マルチSD手法に時間分解手法を加えることで、浅部の頭皮血流と深部の脳血流とをより精度良く分離することが可能となる。
以下実施形態1との差異のある部分を中心に説明する。特に説明しない構成要素の構造および/または機能は実施形態1の撮像装置1001の構成と同じである。
図12は本実施形態の撮像装置1002を含む撮像システム図である。
撮像装置1002が、実施形態1の撮像装置1001と相違する点は、光源の数、および、時間分解イメージセンサ113の動作である。これらの相違に伴って制御回路114の動作も相違する。ただし、ハードウェアとしては同じであるため、同じ名称および参照符号を付すことにする。以下、制御回路114の動作を含む撮像装置1002の動作を詳細に説明する。
撮像装置1002は、波長750nmのレーザーパルス光を出射する2つの第1の光源103、104、および波長850nm波長のレーザーパルス光を出射する2つの第2の光源107、108を有している。各々の光源は短パルスで高速で繰り返し決められた後述のパターンで照射を行う。
図13Aは本実施形態の撮像装置1002の利用シーン1200を示す。撮像装置1002はタブレット端末1201に組み込まれている。撮像装置1002は、たとえば異なる時刻1および2において第1および第2照射光をそれぞれ放射する。第1および第2照射光として、まず波長750nmの光が第1の光源103、104から放射される。その放射が終わると、続いて波長850nmの光が第2の光源107、108から放射される。いずれの照射光も、頭部102の特定の位置に入射するよう、その位置が予め決められている。つまり、照射によって形成される像のパターンである光照射パターンは予め決められている。
図13Bは、頭部102に照射される光照射パターン1102の例を示す。
図13Bに示される丸数字1、2で示される複数の位置1103、1104は、それぞれ、第1の光源103,104、および第2の光源107、108から放射されたレーザ光によって形成される光ドットパターンの位置を示す。これらは後述する動作タイミングで1フレーム内の各々異なる時刻で時分割して照射される。
本実施形態では、光学ダブルバンドパスフィルター112の特性、時間分解イメージセンサ113の各画素の構成、および全体構成は、それぞれ図4〜図6に記載された通りである。よってそれらの再度の説明は省略する。
なお、本実施形態においても、時間分解イメージセンサ113としてCMOS型のイメージセンサの例を挙げたが、イメージセンサは他にCCD型であっても、単一光子計数型素子であってもよいし、増幅型イメージセンサ(EMCCD、ICCD)であっても構わない。
以下、図12のシステム構成図、図14Aのタイミング図、図14Bのタイミング図、図15Aのタイミング図、および図15Bのタイミング図を参照しながら本開示の実施形態2の撮像装置の詳細動作を説明する。
図14Aおよび図14Bにおいて、信号A1、A2、A5、A6はそれぞれ第1の光源103、104、第2の光源107、108の発光のタイミングを示し、信号Bは電子シャッタのOPEN、CLOSEのタイミングを示し、信号C1、C2、C3、C4、C5、C6、C7、C8はそれぞれ浮遊拡散層404、405、406、407、408、409、410、411のON(すなわち浮遊拡散層に電荷が蓄積される状態)、OFF(すなわち浮遊拡散層に電荷が蓄積されない状態)のタイミングを示す。また、図15Aおよび図15Bにおいて、信号Aは光源の発光のタイミングを示し、信号B1は時刻aからbの間での電子シャッタのOPEN、CLOSEのタイミングを示し、信号B2は時刻cからdの間での電子シャッタのOPEN、CLOSEのタイミングを示し、信号Dは時間分解イメージセンサ113に到達した表面反射成分の強度を示し、信号Eは時間分解イメージセンサ113に到達した内部散乱光成分の強度を示し、信号Fは信号Dと信号Eとの和を示す。
図1及び図12の制御回路114により、約10nsパルス幅で約10MHzの周波数にて、第1の光源103を図14Aに示すように複数回発光させる。通常は、例えば約1000回、約100μsec程度の期間、繰り返し照射を行う。この時、照射ドットパターンは図13Bの丸数字1の頭部額上の位置に照射される。例えば、丸数字1の位置の間隔は水平垂直に約6cmに、斜め方向には、その間隔の「2の平方根」倍である8.49cmに設定される。
額に入射した各波長の光成分の挙動、および内部散乱光成分の検出原理は実施形態1と同じである。内部散乱光成分の減衰の程度も同じである。
以下、本実施形態による内部散乱光成分の検出メカニズムを説明する。
図15Aは、図14Aおよび図14Bのa−b区間の時刻の詳細を示す。
図15Aに示す通り、高速タイミング制御回路412(図5)によるドレインへの不要電荷の排出制御により、時間分解イメージセンサ113は、ドレイン排出期間中に電子シャッタがCLOSE、ドレインに排出しない期間中は電子シャッタがOPENとして制御する。
ここで、図15Bは、図15Aのタイミング図中の時刻fから時刻ge付近を拡大して示すタイミング図である。制御回路114からの命令に基づいて、高速タイミング制御回路412は、表面反射成分が消失した直後の時刻fに電子シャッタOPENの開始の時刻を設定する。時刻fは、たとえば、表面反射光成分が消失してから約100ピコ秒である。さらに高速タイミング制御回路412は、発光パルス幅相当の期間、電子シャッタOPEN期間を維持し、その直後に電子シャッタをCLOSEにする。
第1の光源103は繰り返しパルス発光するので、電子シャッタも図14Aに示す通り第1の光源103の発光に対応して、動作する。
第1の光源103の発光期間中は、高速タイミング制御回路412により、信号電荷を蓄積する図5の浮遊拡散層404、405、406、407、408、409、410、411のうちの浮遊拡散層404のみがアクティブにされ、他の浮遊拡散層はOFFにされる。よって、電子シャッタ開の有効期間の信号電荷は浮遊拡散層404のみに蓄積されることになる。なお、本デバイスは、ドレイン排出がアクティブの際には光検出器内の電荷は全てドレインに排出されるように設計されている。
制御回路114は、表面反射光成分がイメージセンサ結像面上から消失し、かつ、内部散乱光のみがイメージセンサ結像面上に存在するようになった後の時刻において電子シャッタをOPENにし、生じた信号電荷を浮遊拡散層に蓄積する。これにより、効率良く表面反射光を除去することが可能となる。
上述のとおり、被検体が人の額であり脳血流などの情報を検出する際には、内部での光の減衰率が非常に大きい(1万分の1程度)。このため、内部散乱光のみを検出するには、1パルスの照射だけでは光量が不足する。このためパルス光源を複数回発光し、それに応じてイメージセンサも電子シャッタによって複数回露光することで検出信号を積算して感度を向上することで初めて非接触で脳血流などの情報を検出することが可能となる。
次に、図1および図12の制御回路114により、約10nsパルス幅で約10MHzの周波数にて、第1の光源104を図14Aに示すように複数回発光させる。本実施形態では、例えば約100μsec程度の期間に、約1000回、繰り返し照射を行う。この時照射ドットパターンは図13Bの丸数字2の頭部額上の位置に形成される。丸数字2の位置の間隔は、例えば約6cmで丸数字1の位置の中間点に設定される。
電子シャッタの動作タイミングは図15Aに示す先述のa−b間と同様である。
第1の光源104は繰り返しパルス発光するので、電子シャッタも図14Aに示す通り、第1の光源104の発光に対応して、動作することになる。
この時、図5の浮遊拡散層404、405、406、407、408、409、410、411は、高速タイミング制御回路412により、浮遊拡散層405のみがアクティブになり、他の浮遊拡散層はOFFにされる。よって、電子シャッタ開の有効期間の信号電荷は浮遊拡散層405のみに蓄積されることになる。
制御回路114は、表面反射光成分がイメージセンサ結像面上で消失した後の時刻で電子シャッタをOPENにし、生じた信号電荷を浮遊拡散層に蓄積する。これにより、効率良く表面反射光を除去して脳活動の情報を含んだ内部散乱光のみを検出することが可能となる。なお、第1の光源104も複数回発光させて、それに応じてイメージセンサも電子シャッタによって複数回露光することで検出信号を積算して感度を向上することが可能である。
次に、第1の光源104の2回目の発光について説明する。
図1および図12の制御回路114により、約10nsパルス幅で約10MHzの周波数にて、第1の光源104を図14Aに示すように複数回発光させる。本実施形態では、例えば約100μsec程度の期間中に、約1000回、繰り返し照射を行う。この時照射ドットパターンは図13Bに示す丸数字1の頭部額上の位置に形成される。
電子シャッタの動作タイミングは図15Aに示す先述のa−b間と同様である。
図15Aに示す通り、高速タイミング制御回路412(図5)によるドレインへの不要電荷の排出制御により、時間分解イメージセンサ113は、ドレイン排出期間中に電子シャッタがCLOSE、ドレインに排出しない期間中は電子シャッタがOPENとして制御される。
図15Aは、図14Aおよび図14Bのc−d間の詳細なタイミングも示している。具体的には、制御回路114からの命令に基づいて、高速タイミング制御回路412は、表面反射成分が消失して、さらに数ナノ秒(ns)後のe部を拡大して示した時刻gで、電子シャッタOPENの開始の時刻を設定する。時刻gは、たとえば表面反射成分が消失した後、約2〜3ns後の時刻である。さらに高速タイミング制御回路412は、発光パルス幅相当の期間、電子シャッタOPEN期間を維持し、その直後に電子シャッタをCLOSEにする。この数ns期間(f−g期間、たとえば3ns)に戻ってくる内部散乱光成分は、光路長が短いために深部より浅部の情報が多く含まれる。つまりgの時刻より後にイメージセンサに到達する光成分の比率は、散乱光路長の長い成分となるため、深部の情報の比率が高まることになる。
第1の光源104は繰り返しパルス発光するので、電子シャッタも図14Aに示す通り、第1の光源104の発光に対応して、動作する。
第1の光源104の2回目の発光期間中は、高速タイミング制御回路412により、信号電荷を蓄積する図5の浮遊拡散層404、405、406、407、408、409、410、411のうちの浮遊拡散層406のみがアクティブにされ、他の浮遊拡散層はOFFにされる。よって、電子シャッタ開の有効期間の信号電荷は浮遊拡散層406のみに蓄積されることになる。
時刻fから電子シャッタをOPENにして得られた信号電荷成分には、浅部情報の方が深部情報よりも十分多く、その結果、頭皮血流成分の方が脳血流成分よりも十分多く含まれている。
一方、時刻gから電子シャッタをOPENにした信号電荷成分には、時刻fから取得した信号電荷成分と比較すると、深部情報の割合が増え、その結果、脳血流成分の情報の割合が増えている。
本願発明者らは、電子シャッタのオープンおよびクローズの時刻で上記比率が変化することが重要であることに着眼した。
制御回路114は、表面反射光成分がイメージセンサ結像面上から消失し、かつ、内部散乱光のみがイメージセンサ結像面上に存在するようになった後の時刻で、電子シャッタをOPENにし、生じた信号電荷を浮遊拡散層に蓄積することで、効率良く表面反射光を除去することが可能となる。内部散乱光の中でも先述の通り、浮遊拡散層404に蓄積された信号電荷より、浮遊拡散層406に蓄積された信号電荷の方が深部の脳血流成分比率が高まる。
次に、第1の光源104の2回目の発光について説明する。
図1および図12の制御回路114により、約10nsパルス幅で約10MHzの周波数にて、第1の光源104を図14Aに示すように複数回発光させる。本実施形態では、例えば約100μsec程度の期間中に、約1000回、繰り返し照射を行う。この時照射ドットパターンは図13Bに示す丸数字2の頭部額上の位置に形成される。
図15Aに示す通り、高速タイミング制御回路412(図5)によるドレインへの不要電荷の排出制御により、時間分解イメージセンサ113は、ドレイン排出期間中に電子シャッタがCLOSE、ドレインに排出しない期間中は電子シャッタがOPENとして制御する。
図15Aは、図14Aおよび図14Bのc−d間の詳細なタイミングも示している。具体的には、制御回路114からの命令に基づいて、高速タイミング制御回路412は、表面反射成分が消失して、さらに数ナノ秒(ns)後の時刻gで、電子シャッタOPENの開始の時刻を設定する。さらに高速タイミング制御回路412は、発光パルス幅相当の期間、シャッタOPEN期間を維持し、その直後に電子シャッタをCLOSEにする。この数ns期間(f−g期間)に戻ってくる内部散乱光成分は、光路長が短いために深部より浅部の情報が多く含まれる。つまりgの時刻より後にイメージセンサ113に到達する光成分では、深部の情報の比率が高まることになる。
第1の光源104は繰り返しパルス発光するので、電子シャッタも図14Aに示す通り、第1の光源104の発光に対応して、動作する。
第1の光源104の2回目の発光期間中は、高速タイミング制御回路412により、信号電荷を蓄積する図5の浮遊拡散層404、405、406、407、408、409、410、411のうちの浮遊拡散層407のみがアクティブになり、他の浮遊拡散層はOFFにされる。よって、電子シャッタ開の有効期間の信号電荷は浮遊拡散層407のみに蓄積されることになる。
よって時刻fから電子シャッタをOPENにした信号電荷成分には、浅部情報の方が深部情報よりも十分多く、その結果、頭皮血流成分の方が脳血流成分よりも十分多く含まれている。
時刻gから電子シャッタをOPENにした信号電荷成分には、時刻fから取得した信号電荷成分と比較すると、深部情報の割合が増え、その結果、脳血流成分の情報の割合が増えている。
制御回路114は、表面反射光成分がイメージセンサ結像面上から消失し、かつ、内部散乱光のみがイメージセンサ結像面上に存在するようになった後の時刻で電子シャッタをOPENにし、生じた信号電荷を浮遊拡散層に蓄積することで、効率良く表面反射光を除去することが可能となる。内部散乱光の中でも先述の通り、浮遊拡散層405に蓄積された信号電荷より、浮遊拡散層407に蓄積された信号電荷の方が深部の脳血流成分比率が高まることになる。
以上説明した動作により、以下のように独立して信号電荷が蓄積される。
第1の光源103が、丸数字1の照射パターンでパルス発光を行うことにより、電子シャッタOPENの位相時刻fの信号電荷は浮遊拡散層404に蓄積される。
第1の光源104が、丸数字2の照射パターンでパルス発光を行うことにより、電子シャッタOPENの位相時刻fの信号電荷は浮遊拡散層405に蓄積される。
第1の光源103が、丸数字1の照射パターンでパルス発光を行うことにより、電子シャッタOPENの位相時刻gの信号電荷は浮遊拡散層406に蓄積される。
第1の光源104が、丸数字2の照射パターンでパルス発光を行うことにより、電子シャッタOPENの位相時刻gの信号電荷は浮遊拡散層407に蓄積される。
次に、図14Bに示すように、引き続き第2の光源107、108についても同様に動作させることで、第2の光源107が、丸数字1の照射パターンでパルス発光を行うことにより、電子シャッタOPENの位相時刻fの信号電荷は浮遊拡散層408に蓄積される。
第2の光源108が、丸数字2の照射パターンでパルス発光を行うことにより、電子シャッタOPENの位相時刻fの信号電荷は浮遊拡散層409に蓄積される。
第2の光源107が、丸数字1の照射パターンでパルス発光を行うことにより、電子シャッタOPENの位相時刻gの信号電荷は浮遊拡散層410に蓄積される。
第2の光源108が、丸数字2の照射パターンでパルス発光を行うことにより、電子シャッタOPENの位相時刻gの信号電荷は浮遊拡散層411に蓄積される。
これらの動作を1セットとして、必要な信号電荷が蓄積されるまで、1フレーム内に複数セット繰り返し動作をさせる。数十セット程度繰り返してもよい。
この繰り返し動作で、1フレームを信号電荷の蓄積期間とみなすと、第1の光源103、104および第2の光源107、108の照射の擬似同時化が可能となる。
次に浮遊拡散層404、405、406、407、408、409、410、411に蓄積した信号電荷を実施形態1と同様にイメージセンサ出力からの読み出し動作を行う。
イメージセンサの信号読み出しは実施形態1と同様なため、説明を割愛する。
本例では光照射パターンは2種類のドットパターンの例で説明したが、光源の照射パターン数も必要に応じて増加させれば良く、パターン形状としてもリング状またはライン状のパターンであっても構わない。
このとき必要に応じてイメージセンサの浮遊拡散層の数を増加する設計を行えば良い。
次に、第1信号処理回路115は、時間分解イメージセンサ113から出力された8枚の画像データを用いて浅部と深部の分離を行う。8枚の画像の各々は、浮遊拡散層404、405、406、407、408、409、410、411の各々に蓄積されていた、二波長の各照射パターンに応じて取得された信号電荷に対応する。分離法については、特許文献1にも記載されているマルチSD(Source Detector・送光−受光)間距離の受光データから連立方程式を用いて解く手法および適応フィルタを用いた引き算方式の手法等が知られている。
これに加えて、電子シャッタOPENの位相時刻f、gの違いによる、浅部深部比率の変化から、正規化による差分手法、さらに連立方程式を加えることで、求める解の精度・信頼度を向上させることが可能となる。
なお、上述したとおり、位相時刻fでは、表面反射が収まった直後の光の成分、および頭部の浅い部分で内部散乱した光の成分が多く得られる。一方、位相時刻gでは、表面反射からさらに遅延した分、散乱光路長の長い光の成分が多く検出される。相対的に浅い位置の信号成分の比率が減少するため、時刻に応じて浅部深部比率が変化し得る。
本開示の形態では、図16に示すように、時分割光パターン照射と時間分解イメージセンサを用いることにより、イメージセンサ全画素と各ドットパターンの光照射点間の距離の組み合わせが使用可能となるため、多数のSD間距離データを取得することが可能となる。
図16の各方眼状の升目が被検体の額表面に相当するイメージセンサの画素位置、丸数字1および2は各レーザーパルスの照射パターン位置を表している。矢印の意味は、図10と同じである。
2つの異なる位置の光照射ドットパターンと(被検体の長さ/イメージセンサ画素数)に相当する距離のステップでの信号の取得が可能となる。たとえば水平200画素のイメージセンサを水平20cmの被検体長の場合は1mmステップで各ドットパターンのSD間距離の取得が可能となるため、浅部・深部の分離精度を向上することが可能となる。また高速な時間分解イメージセンサを用いていることで、1フレームでの高速な撮像が可能となる。
第1信号処理回路115が750nmと850nmの各々の浅部深部の分離を行った後、第2信号処理回路116は、2波長の深部分離画像から、酸素化ヘモグロビン及び脱酸素化ヘモグロビンの各波長の光吸収係数を用いて、酸素化ヘモグロビン及び脱酸素化ヘモグロビンの各画素における相対変化を演算する。これにより、高速且つ高精度な脳機能のイメージングの提供が可能となる。
なお、計測対象によっては、上述した2種類の波長の光の吸収率が異なる場合があり得る。そこで、吸収率が既知であれば、その吸収率に応じて、波長750nmの光と波長850nmの光とで、時刻fから時刻gまでの時間間隔および時刻fから時刻iまでの時間間隔を変更してもよい。
(実施形態3)
次に、本開示の実施形態3について説明する。実施形態2にかかる撮像装置1002と比較すると、本実施形態にかかる撮像装置は、1発光パルスの反射光を2位相に分割して光電変換する機能を備える点で相違する。ハードウェアとしての構成は実施形態2と同じであるので、本実施形態では図12を参照する。
以下、実施形態2からの相違点を中心に説明する。
図13Bは本実施形態3の光照射パターンを示す図であり、実施形態2と同じであるので、説明は省略する。
以下、図17Aのタイミング図、図17Bのタイミング図、図1および図12の全体システムを示す模式図、図18Aのタイミング図、および図18Bのタイミング図を参照しながら本実施形態3の撮像装置の詳細動作を説明する。
図17Aおよび図17Bにおいて、信号A1、A2、A5、A6はそれぞれ第1の光源103、104、第2の光源107、108の発光のタイミングを示し、信号Bは電子シャッタのOPEN、CLOSEのタイミングを示し、信号C1、C2、C3、C4、C5、C6、C7、C8はそれぞれ浮遊拡散層404、405、406、407、408、409、410、411のON(すなわち浮遊拡散層に電荷が蓄積される状態)、OFF(すなわち浮遊拡散層に電荷が蓄積されない状態)のタイミングを示す。また、図18Aおよび図18Bにおいて、信号Aは光源の発光のタイミングを示し、信号Bは時刻aからbの間での電子シャッタのOPEN、CLOSEのタイミングを示し、信号C1、C3、C5、C7は浮遊拡散層404、406、408、410のON、OFFのタイミングを示し、信号C2、C4、C6、C8は浮遊拡散層405、407、409、411のON、OFFのタイミングを示し、信号Dは時間分解イメージセンサ113に到達した表面反射成分の強度を示し、信号Eは時間分解イメージセンサ113に到達した内部散乱光成分の強度を示し、信号Fは信号Dと信号Eとの和を示す。
図1および図12の制御回路114により、約10nsパルス幅で約10MHzの周波数にて、第1の光源103を図17Aに示すように複数回発光させる。通常は、例えば約1000回、約100μsec程度の期間、繰り返し照射を行ってもよい。
図18Aに示す通り、高速タイミング制御回路412(図5)によるドレインへの不要電荷の排出制御により、時間分解イメージセンサ113は、ドレイン排出期間中に電子シャッタがCLOSE、ドレインに排出しない期間中は電子シャッタがOPENとして制御する。
ここで、図18Bは、図18Aのタイミング図中の時刻fから時刻i付近を拡大して示すタイミング図である。制御回路114からの命令に基づいて、高速タイミング制御回路412は、表面反射成分が消失する時刻fに電子シャッタOPENの開始の時刻を設定する。さらに高速タイミング制御回路412は、発光パルス幅相当の期間、電子シャッタOPEN期間を維持し、その直後に電子シャッタをCLOSEにする。
この時、高速タイミング制御回路412により、浮遊拡散層404は電子シャッタOPEN時には既にアクティブであり、電子シャッタOPENの途中である図18Bの時刻iでoffにされる。同時に、高速タイミング制御回路412により、時刻iにおいて浮遊拡散層405がアクティブとされ、電子シャッタCLOSEのタイミングまで浮遊拡散層405はアクティブを継続し、その後OFFにされる。
第1の光源103は繰り返しパルス発光するので、電子シャッタと浮遊拡散層404、405の制御も図17Aに示す通り、第1の光源103の発光に対応して、動作する。
高速タイミング制御回路412の制御により、電子シャッタ開の有効期間の前半(時刻iまで)の信号電荷は浮遊拡散層404に蓄積され、電子シャッタ開の有効期間の後半(時刻iから後)の信号電荷は浮遊拡散層405に蓄積されることになる。この間、他の浮遊拡散層はOFFである。なお、本デバイスは、ドレイン排出がアクティブの際には光検出器内の電荷は全てドレインに排出されるように設計されている。
実施形態2と同様、浮遊拡散層404の信号電荷成分には、浅部情報の方が深部情報よりも十分多く、その結果、頭皮血流成分の方が脳血流成分よりも十分多く含まれている。
一方、浮遊拡散層405の信号電荷成分には、時刻fから取得した信号電荷成分と比較すると、深部情報の割合が増え、その結果、脳血流成分の情報の割合が増えている。
電子シャッタの動作タイミングを前半後半に分割して浮遊拡散層404と浮遊拡散層405に信号電荷を蓄積することで上記比率が変化する。
次に図1および図12の制御回路114により、約10nsパルス幅で約10MHzの周波数にて、第1の光源104を図17Aに示すように複数回発光させる。
図18Aに示す通り、高速タイミング制御回路412(図5)によるドレインへの不要電荷の排出制御により、時間分解イメージセンサ113は、ドレイン排出期間中に電子シャッタがCLOSE、ドレインに排出しない期間中は電子シャッタがOPENとして制御する。
制御回路114からの命令に基づいて、高速タイミング制御回路412は、表面反射成分が消失する時刻fで、電子シャッタOPENの開始の時刻を設定する。さらに高速タイミング制御回路412は、発光パルス幅相当の期間、電子シャッタOPEN期間を維持し、その直後に電子シャッタをCLOSEにする。
高速タイミング制御回路412により、浮遊拡散層406は電子シャッタOPEN時には既にアクティブであり、電子シャッタOPENの途中である図18Bの時刻iでoffにされる。同時に、高速タイミング制御回路412により、時刻iにおいて浮遊拡散層407がアクティブとされ、電子シャッタCLOSEのタイミングまで浮遊拡散層407はアクティブを継続し、その後OFFにされる。
第1の光源104は繰り返しパルス発光するので、電子シャッタと浮遊拡散層406、407の制御も図17Aに示す通り、第1の光源104の発光に対応して、動作する。
高速タイミング制御回路412の制御により、電子シャッタ開の有効期間の前半(時刻iまで)の信号電荷は浮遊拡散層406に蓄積され、電子シャッタ開の有効期間の後半(時刻iから後)の信号電荷は浮遊拡散層407に蓄積されることになる。この間、他の浮遊拡散層はOFFである。なお、本デバイスは、ドレイン排出がアクティブの際には光検出器内の電荷は全てドレインに排出されるように設計されている。
以上の動作により、以下のように独立して信号電荷が蓄積される。
第1の光源103が、丸数字1の照射パターンでパルス発光を行うことにより、電子シャッタ開の前半の時刻iまでの信号電荷は浮遊拡散層404に蓄積され、電子シャッタ開の後半の時刻iからの信号電荷は浮遊拡散層405に蓄積される。
第1の光源104が、丸数字2の照射パターンでパルス発光を行うことにより、電子シャッタ開の前半の時刻iまでの信号電荷は浮遊拡散層406に蓄積され、電子シャッタ開の後半の時刻iからの信号電荷は浮遊拡散層407に蓄積される。
次に、図17Bに示すように、引き続き850nmのレーザーパルス光源1および2を同様に動作させることで、以下のように独立して信号電荷が蓄積される。
第2の光源107が、丸数字1の照射パターンでパルス発光を行うことにより、電子シャッタ開の前半の時刻iまでの信号電荷は浮遊拡散層408に蓄積され、電子シャッタ開の後半の時刻iからの信号電荷は浮遊拡散層409に蓄積される。
第2の光源108が、丸数字2の照射パターンでパルス発光を行うことにより、電子シャッタ開の前半の時刻iまでの信号電荷は浮遊拡散層410に蓄積され、電子シャッタ開の後半の時刻iからの信号電荷は浮遊拡散層411に蓄積される。
これらの動作を1セットとして、必要な信号電荷が蓄積されるまで、1フレーム内に複数セット繰り返し動作をさせる。数十セット程度繰り返してもよい。
次に、時間分解イメージセンサ113から出力された各々の浮遊拡散層404、405、406、407、408、409、410、411に相当する二波長の各照射パターン毎の8枚の画像データを用いて第1信号処理回路115にて浅部と深部の分離を行う。分離法については、基本的に実施形態2と同じ原理なので説明を省略する。
実施形態2と比較して1パルスの発光で、2位相の信号電荷を検出可能となるので、更に高速な撮像装置を提供することが可能となる。
(実施形態4)
次に、本開示の実施形態4について説明する。本実施の形態による撮像装置は被検体として生体等の光散乱体を対象とする。具体的には、撮像装置は、観測すべき脳内の酸素化ヘモグロビン、脱酸素化ヘモグロビンの濃度分布とその時間変化を検出し、前記濃度分布を2D画像として構築する。
本実施形態の目的と実施形態1の目的とは同じであるが、波長750nmのレーザーパルス光を出射する1つの第1の光源103、および波長850nmのレーザーパルス光源を出射する1つの第2の光源107を備えている点で、実施形態1と異なる。
以下実施形態1との差異のある部分を中心に説明する。特に説明しない構成要素の構造および/または機能は実施形態1の撮像装置1001の構成と同じである。
図19は本実施形態の撮像装置1003を含む撮像システム図である。
撮像装置1003が、実施形態1の撮像装置1001と相違する点は、光源の数、および、時間分解イメージセンサ213の構成および動作である。これらの相違に伴って制御回路114の動作も相違する。時間分解イメージセンサ213の構成以外はハードウェアとしては同じであるため、同じ名称および参照符号を付すことにする。以下、制御回路114の動作を含む撮像装置1003の動作を詳細に説明する。
撮像装置1003は、波長750nmのレーザーパルス光を出射する1つの第1の光源103、および波長850nm波長のレーザーパルス光を出射する1つの第2の光源107を有している。各々の光源は短パルスで高速で繰り返し決められた後述のパターンで照射を行う。
図20Aは本実施形態の撮像装置1003の利用シーン2200を示す。撮像装置1003はタブレット端末2201に組み込まれている。撮像装置1003は、たとえば異なる時刻1および2において第1および第2照射光をそれぞれ放射する。第1および第2照射光として、まず波長750nmの光が第1の光源103から放射される。その放射が終わると、続いて波長850nmの光が第2の光源107から放射される。いずれの照射光も、頭部102の特定の位置に入射するよう、その位置が予め決められている。つまり、照射によって形成される像のパターンである光照射パターンは予め決められている。
図20Bは、頭部102に照射される光照射パターン2102の例を示す。
図20Bに示される丸数字1で示される複数の位置2103は、第1の光源103および第2の光源107から放射されたレーザ光によって形成される光ドットパターンの位置を示す。第1の光源103と第2の光源107は、後述する動作タイミングで1フレーム内の各々異なる時刻で時分割して照射される。本実施形態において、第1の光源103と第2の光源107から放射されたレーザ光によって形成される光ドットパターンの位置は同じである。
本実施形態では、光学ダブルバンドパスフィルター112の特性は図4に記載された通りであるため、再度の説明は省略する。
本実施形態における時間分解イメージセンサ213の各画素の構成は実施形態1とは異なるため、この点を説明する。
図21は、時間分解イメージセンサ213の1つの画素301の構成図である。1つの画素301は、電荷排出部であるドレイン302と、光電変換部である光検出器(PD)303と、信号電荷を蓄積する蓄積部である2つの浮遊拡散層(FD)304、305と高速タイミング制御回路212とを有している。
光検出器303は、入射フォトンを信号エレクトロン(信号電荷)に変換する。高速タイミング制御回路212は、制御信号を出力して、信号電荷をドレイン302に排出するか、浮遊拡散層304、305のどちらに蓄積するかを切り換える。浮遊拡散層304、305のどちらに振り分けるかは後述するタイミングに依存する。当該タイミングに必要とされる動作速度はナノ秒オーダである。このような高速動作を実現するため、高速タイミング制御回路212は、たとえばCMOSロジック回路で形成されている。
本実施形態による時間分解イメージセンサ213の構成において、実施形態1の時間分解イメージセンサ113と異なるのは、1画素領域に2つの浮遊拡散層304、305を含む点である。これによって、1画素領域では、蓄えられた電荷は、あたかも一般的なCMOSイメージセンサの2画素(1行2列または2行1列)の信号のように取り扱われて時間分解イメージセンサ213から出力される。
以下、図19のシステム構成図を参照しながら本開示の実施形態4の撮像装置の詳細動作を説明する。
図19の制御回路114により、約10nsパルス幅で約10MHzの周波数にて、第1の光源103を、例えば、図7Aに示すように複数回発光させる。通常は、例えば約1000回、約100μsec程度の期間、繰り返し照射を行う。この時、照射ドットパターンは図20Bの丸数字1の頭部額上の位置に照射される。例えば、丸数字1の位置の間隔は水平垂直に約3cmに、斜め方向には、その間隔の「2の平方根」倍である4.24cmに設定される。
額に入射した各波長の光成分の挙動、および内部散乱光成分の検出原理は実施形態1と同じである。内部散乱光成分の減衰の程度も同じである。
また、第1の光源103および第2の光源107の動作については、実施形態1、2、3のいずれかと同様に動作させても良く、これらに対応する電子シャッタのOPENおよび/またはCLOSEの動作、並びに浮遊拡散層304、305のONおよび/またはOFF動作についても同様に動作させても良いため、説明を省略する。
次に、本実施形態における信号電荷の蓄積について説明する。
第1の光源103が、図20Bにおける丸数字1の照射パターンでパルス発光を行うことにより、図15Aにおける電子シャッタOPENの位相時刻fまたはgの信号電荷は浮遊拡散層304に蓄積される。
また、第2の光源107が、図20Bにおける丸数字1の照射パターンでパルス発光を行なうことにより、図15Aにおける電子シャッタOPENの位相時刻fまたはgの信号電荷は浮遊拡散層305に蓄積される。
このとき、電子シャッタOPENの位相時刻は、浮遊拡散層304、305に蓄積される信号電荷の両者で合わせることが好ましい。
これらの動作を1セットとして、必要な信号電荷が蓄積されるまで、1フレーム内に複数セット繰り返し動作をさせる。数十セット程度繰り返してもよい。
この繰り返し動作で、1フレームを信号電荷の蓄積期間とみなすと、第1の光源103、および第2の光源107の照射の擬似同時化が可能となる。
次に浮遊拡散層304、305に蓄積した信号電荷を実施形態1と同様にイメージセンサ出力からの読み出し動作を行う。
イメージセンサの信号読み出しは実施形態1と同様なため、説明を割愛する。
本例では光照射パターンは1種類のドットパターンの例で説明したが、光源の照射パターン数も必要に応じて増加させれば良く、パターン形状としてもリング状またはライン状のパターンであっても構わない。
このとき必要に応じてイメージセンサの浮遊拡散層の数を増加する設計を行えば良い。
次に、第1信号処理回路115は、時間分解イメージセンサ213から出力された2枚の画像データを用いて浅部と深部の分離を行う。2枚の画像の各々は、浮遊拡散層304、305の各々に蓄積されていた、二波長の照射パターンに応じて取得された信号電荷に対応する。分離法については、特開2012−125370号公報にも記載されているマルチSD(Source Detector・送光−受光)間距離の受光データから連立方程式を用いて解く手法および適応フィルタを用いた引き算方式の手法等が知られている。
なお、上述したとおり、位相時刻fでは、表面反射が収まった直後の光の成分、および頭部の浅い部分で内部散乱した光の成分が多く得られる。一方、位相時刻gでは、表面反射からさらに遅延した分、散乱光路長の長い光の成分が多く検出される。相対的に浅い位置の信号成分の比率が減少するため、時刻に応じて浅部深部比率が変化し得る。
第1信号処理回路115が750nmと850nmの各々の浅部深部の分離を行った後、第2信号処理回路116は、2波長の深部分離画像から、酸素化ヘモグロビン及び脱酸素化ヘモグロビンの各波長の光吸収係数を用いて、酸素化ヘモグロビン及び脱酸素化ヘモグロビンの各画素における相対変化を演算する。これにより、高速且つ高精度な脳機能のイメージングの提供が可能となる。
以上、本開示の例示的な各実施形態を説明した。
上述の各実施形態によれば、撮像装置には、画素ごとに、独立した信号電荷を蓄積する蓄積部である浮遊拡散層を有しているイメージセンサが設けられる。このイメージセンサは電子シャッタ機能を有している。パルス光源による照射光パターンを1フレーム内で時分割に位置を変化させながら発光させ、各々の照射パターン毎の信号を各パルス光照射の度に同位相の高速電子シャッタ機能で繰り返し蓄積部に蓄積する。その結果、被検体の浅部と深部の演算分離が高精度に可能となり、たとえば従来困難であった頭部深部の脳血流イメージングに際し、頭皮血流によるアーチファクトを高速且つ高精度に取り除くことが可能となる。
上述の実施形態では、2種類の波長の光源を利用する例を説明した。しかしながら、本開示は、1種類の波長の光源を用いて撮像を行う撮像装置であっても適用可能である。
さらに、実施形態の説明では、8つの浮遊拡散層が設けられている時間分解イメージセンサ113を挙げたが、これも一例である。浮遊拡散層の数は少なくとも2つ設けられていればよい。1フレーム内で、複数の照射パターンの各々について、信号電荷を各パルス光照射の度に高速シャッタ機能で繰り返し蓄積することができれば、浮遊拡散層の数は2つであってもよいし、3つ以上であってもよい。
なお、以上の実施の形態では、本開示の一態様に係る撮像装置を生体計測に用いる例について示したが、これに限定されない。本開示の一態様に係る撮像装置を、例えば、ピッキングロボット等に用いてもよい。さらに、例えば、材料分析装置、および食品分析装置等に用いても良い。
また、以上の実施の形態では、1つの光源から出射される光照射パターンが1種類である例について示したが、これに限定されない。1つの光源から出射される光照射パターンを切り替えることにより、1つの光源から複数の光照射パターンが出射可能であってもよい。
本発明の一態様にかかる撮像装置は、例えば、非接触で測定対象の内部情報を取得するカメラや測定機器として利用することができる。当該撮像装置は、たとえば生体・医療センシング、材料分析、および食品分析等に応用できる。生体・医療センシングに利用した場合、撮像装置は、たとえば人体の頭皮血流と頭部内部の脳血流を非接触で精度良く分離して、映像として出力することに利用できる。
1001、1002 撮像装置
103、104、105、106 第1の光源
107、108、109、110 第2の光源
111 結像光学系
112 光学ダブルバンドパスフィルター
113 時間分解イメージセンサ
114 制御回路
115 第1信号処理回路
116 第2信号処理回路
600 光源
602 イメージセンサ
604 信号処理回路
606 表面反射成分
608 内部散乱成分

Claims (11)

  1. 第1のパルス光を発光して被写体の所定の領域内に第1のパターンの第1の像を投影し、かつ第2のパルス光を発光して前記被写体の前記所定の領域内の、前記第1の像の位置と異なる位置に第2のパターンの第2の像を投影する第1の光源と、
    複数の画素を含み、前記複数の画素の各々は、受けた光を信号電荷に変換する光検出器と、前記信号電荷を蓄積する第1の蓄積部および第2の蓄積部とを含む、イメージセンサと、
    前記第1の光源および前記イメージセンサを制御する制御回路と
    を備え、 前記制御回路は、
    前記第1の光源に前記第1のパルス光を発光させ、
    前記第1のパルス光の発光に対応して前記光検出器で生じた第1の信号電荷を前記第1の蓄積部に蓄積させ、
    前記第1の光源に前記第2のパルス光を前記第1のパルス光の発光と異なる時刻に発光させ、
    前記第2のパルス光の発光に対応して前記光検出器で生じた第2の信号電荷を前記第2の蓄積部に蓄積させる、
    撮像装置。
  2. 前記第1の信号電荷および前記第2の信号電荷に基づいて画像情報を生成する信号処理回路をさらに備える、
    請求項1に記載の撮像装置。
  3. 前記第1パターン及び前記第2のパターンは、複数の点を含むパターンである、
    請求項1または2に記載の撮像装置。
  4. 前記第1パターン及び前記第2のパターンは、複数のリングを含むパターンである、
    請求項1または2に記載の撮像装置。
  5. 前記第1パターン及び前記第2のパターンは、複数の直線を含むパターンである、
    請求項1または2に記載の撮像装置。
  6. 前記制御回路は、
    前記第1の光源に、複数の第1のパルス光を発光させ、前記複数の第1のパルス光の各々は前記第1のパルス光であり、
    前記第1の光源に、複数の第2のパルス光を発光させ、前記複数の第1のパルス光の各々は前記第1のパルス光である、
    請求項1から5のいずれかに記載の撮像装置。
  7. 第3のパルス光を発光して前記被写体の前記所定の領域内の、前記第1および第2の像の位置と異なる位置に第3のパターンの第3の像を投影し、かつ第4のパルス光を発光して前記被写体の前記所定の領域内の、前記第1、第2および第3の像の位置と異なる位置に第4のパターンの像を投影する第2の光源をさらに備え、
    前記イメージセンサにおける前記複数の画素の各々は、前記信号電荷を蓄積する第3の蓄積部および第4の蓄積部をさらに含み、
    前記第1の光源は第1の波長範囲の光を発光し、
    前記第2の光源は前記第1の波長範囲と異なる第2の波長範囲の光を発光し、
    前記制御回路は前記第2の光源をさらに制御し、
    前記制御回路は、
    前記第2の光源に前記第3のパルス光を発光させ、
    前記第3のパルス光の発光に対応して前記光検出器で生じた第3の信号電荷を前記第3の蓄積部に蓄積させ、
    前記第2の光源に前記第4のパルス光を前記第3のパルス光の発光と異なる時刻に発光させ、
    前記第4のパルス光の発光に対応して前記光検出器で生じた第4の信号電荷を前記第4の蓄積部に蓄積させる、
    請求項1から6のいずれかに記載の撮像装置。
  8. 前記第1から第4の信号電荷に基づいて画像情報を生成する信号処理回路をさらに備える、
    請求項7に記載の撮像装置。
  9. 前記被写体は光学的散乱体であり、
    前記第1の信号電荷は、前記被写体から到達した、前記第1のパルス光に由来する内部散乱光成分であり、
    前記第2の信号電荷は、前記被写体から到達した、前記第2のパルス光に由来する内部散乱光成分である、
    請求項1から6のいずれかに記載の撮像装置。
  10. 前記イメージセンサにおける前記複数の画素の各々は、前記信号電荷を蓄積する第3の蓄積部および第4の蓄積部をさらに含み、
    前記制御回路は、
    第1の時刻および第2の時刻のそれぞれにおいて前記第1のパルス光を発光させ、
    前記第1の時刻から第1の時間が経過した後から、前記第1の蓄積部に前記第1の信号電荷を蓄積させ、
    前記第2の時刻から前記第1の時間よりも長い第2の時間が経過した後から、前記第3の蓄積部に前記第1の信号電荷を蓄積させ、
    第3の時刻および第4の時刻のそれぞれにおいて前記第2のパルス光を発光させ、
    前記第3の時刻から第3の時間が経過した後から、前記第2の蓄積部に前記第2の信号電荷を蓄積させ、
    前記第4の時刻から前記第3の時間よりも長い第4の時間が経過した後から、前記第4の蓄積部に前記第2の信号電荷を蓄積させる、
    請求項1に記載の撮像装置。
  11. 第1のパルス光を発光して被写体の所定の領域に所定パターンの像を投影する光源と、
    複数の画素を含み、前記複数の画素の各々は、受けた光を信号電荷に変換する光検出器と、前記信号電荷を蓄積する第1の蓄積部および第2の蓄積部とを含むイメージセンサと、
    前記光源および前記イメージセンサを制御する制御回路と
    を備え、
    前記制御回路は、
    第1の時刻において前記光源に前記第1のパルス光を発光させ、
    前記第1の時刻の後で、かつ第2の時刻までは、前記第1の蓄積部に前記信号電荷を蓄積させ、
    前記第2の時刻を超えてからは前記第2の蓄積部に前記信号電荷を蓄積させる、
    撮像装置。
JP2017013192A 2016-03-31 2017-01-27 撮像装置 Pending JP2017187471A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016072346 2016-03-31
JP2016072346 2016-03-31

Publications (1)

Publication Number Publication Date
JP2017187471A true JP2017187471A (ja) 2017-10-12

Family

ID=59959941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013192A Pending JP2017187471A (ja) 2016-03-31 2017-01-27 撮像装置

Country Status (3)

Country Link
US (1) US10200637B2 (ja)
JP (1) JP2017187471A (ja)
CN (1) CN107277303B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124153A (ja) * 2016-01-07 2017-07-20 パナソニックIpマネジメント株式会社 生体情報計測装置
WO2019082686A1 (ja) * 2017-10-27 2019-05-02 ソニーセミコンダクタソリューションズ株式会社 撮像装置
CN112188867A (zh) * 2018-12-20 2021-01-05 松下知识产权经营株式会社 生物体计测装置、生物体计测方法、计算机可读取的记录介质及程序
US11372200B2 (en) 2017-10-27 2022-06-28 Sony Semiconductor Solutions Corporation Imaging device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6500849B2 (ja) * 2016-06-23 2019-04-17 カシオ計算機株式会社 撮像装置、撮像方法及びプログラム
EP3480571B1 (de) * 2017-10-10 2023-04-05 PÖTTINGER Landtechnik GmbH Vorrichtung zum optischen erkennen von objekten
WO2019230306A1 (ja) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 識別装置および識別方法
WO2020122628A1 (ko) * 2018-12-13 2020-06-18 엘지이노텍 주식회사 카메라 장치
CN112270693B (zh) * 2020-11-11 2022-10-11 杭州蓝芯科技有限公司 一种飞行时间深度相机运动伪差检测方法和装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283472A (ja) * 2004-03-30 2005-10-13 Topcon Corp 光画像計測装置
JP2006314557A (ja) * 2005-05-12 2006-11-24 Olympus Medical Systems Corp 生体観測装置
JP2007260123A (ja) * 2006-03-28 2007-10-11 Olympus Medical Systems Corp 撮像システムおよび撮像方法
JP2009008537A (ja) * 2007-06-28 2009-01-15 Fujifilm Corp 距離画像装置及び撮像装置
JP2010098260A (ja) * 2008-10-20 2010-04-30 Honda Motor Co Ltd 発光装置、受光システム及び撮像システム
JP2010194291A (ja) * 2009-01-30 2010-09-09 Fujifilm Corp 内視鏡装置及びその駆動方法
JP2011013138A (ja) * 2009-07-03 2011-01-20 Toyota Central R&D Labs Inc 画像センサとその画像センサに用いられる受光装置
JP2012125370A (ja) * 2010-12-15 2012-07-05 Hitachi Ltd 生体計測装置
WO2012143977A1 (ja) * 2011-04-22 2012-10-26 株式会社日立製作所 血管画像撮影装置及び生体認証装置
US20130148326A1 (en) * 2011-12-13 2013-06-13 Welch Allyn, Inc. Method and apparatus for observing subsurfaces of a target material
JP2013224838A (ja) * 2012-04-20 2013-10-31 Seiko Epson Corp 成分濃度測定装置及び成分濃度測定方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261107A (ja) 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd 携帯無線電話装置
JP3954300B2 (ja) 2000-11-24 2007-08-08 ペンタックス株式会社 3次元画像検出装置
JP5744557B2 (ja) 2011-02-10 2015-07-08 キヤノン株式会社 音響波取得装置
JP5741186B2 (ja) 2011-04-26 2015-07-01 富士通株式会社 欠陥検査装置及び欠陥検査方法
JP5623348B2 (ja) * 2011-07-06 2014-11-12 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法
US9807322B2 (en) * 2013-03-15 2017-10-31 Duelight Llc Systems and methods for a digital image sensor
JP6245863B2 (ja) 2013-07-01 2017-12-13 キヤノン株式会社 被検体情報取得装置、被検体情報取得装置の制御方法
KR20160023441A (ko) * 2014-08-22 2016-03-03 서울바이오시스 주식회사 발광소자가 구비된 카메라와, 이를 이용한 피부 촬영 방법 및 피부 상태 측정 방법
US20180070830A1 (en) * 2015-04-09 2018-03-15 The General Hospital Corporation Systems and methods for time-resolved diffuse correlation spectroscopy
KR101716663B1 (ko) * 2015-12-09 2017-03-15 (주)아이에스엠아이엔씨 무채혈 혈당 측정 보정 방법 및 장치

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283472A (ja) * 2004-03-30 2005-10-13 Topcon Corp 光画像計測装置
JP2006314557A (ja) * 2005-05-12 2006-11-24 Olympus Medical Systems Corp 生体観測装置
JP2007260123A (ja) * 2006-03-28 2007-10-11 Olympus Medical Systems Corp 撮像システムおよび撮像方法
JP2009008537A (ja) * 2007-06-28 2009-01-15 Fujifilm Corp 距離画像装置及び撮像装置
JP2010098260A (ja) * 2008-10-20 2010-04-30 Honda Motor Co Ltd 発光装置、受光システム及び撮像システム
JP2010194291A (ja) * 2009-01-30 2010-09-09 Fujifilm Corp 内視鏡装置及びその駆動方法
JP2011013138A (ja) * 2009-07-03 2011-01-20 Toyota Central R&D Labs Inc 画像センサとその画像センサに用いられる受光装置
JP2012125370A (ja) * 2010-12-15 2012-07-05 Hitachi Ltd 生体計測装置
WO2012143977A1 (ja) * 2011-04-22 2012-10-26 株式会社日立製作所 血管画像撮影装置及び生体認証装置
US20130148326A1 (en) * 2011-12-13 2013-06-13 Welch Allyn, Inc. Method and apparatus for observing subsurfaces of a target material
JP2013224838A (ja) * 2012-04-20 2013-10-31 Seiko Epson Corp 成分濃度測定装置及び成分濃度測定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124153A (ja) * 2016-01-07 2017-07-20 パナソニックIpマネジメント株式会社 生体情報計測装置
WO2019082686A1 (ja) * 2017-10-27 2019-05-02 ソニーセミコンダクタソリューションズ株式会社 撮像装置
US11372200B2 (en) 2017-10-27 2022-06-28 Sony Semiconductor Solutions Corporation Imaging device
CN112188867A (zh) * 2018-12-20 2021-01-05 松下知识产权经营株式会社 生物体计测装置、生物体计测方法、计算机可读取的记录介质及程序

Also Published As

Publication number Publication date
US20170289468A1 (en) 2017-10-05
CN107277303A (zh) 2017-10-20
US10200637B2 (en) 2019-02-05
CN107277303B (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
US11303828B2 (en) Imaging apparatus including light source that emits pulsed light, image sensor, and control circuit
JP2017187471A (ja) 撮像装置
JP7065421B2 (ja) 撮像装置および対象物の内部の情報を取得する方法
US10352853B2 (en) Measuring device including light source that emits at least one light pulse group, photodetector, and control circuit
US10397496B2 (en) Imaging device provided with light source, image sensor including first accumulator and second accumulator, and controller
JPWO2020121705A1 (ja) 撮像装置
CN108926340B (zh) 计测装置
US10257397B2 (en) Imaging apparatus including light source, photodetector, and control circuit
US20190014994A1 (en) Measuring device including light source that emits light pulse groups, photodetector, and control circuit
CN110891481B (zh) 生物体计测装置及头戴式显示器装置
CN112236084A (zh) 光计测装置
US20230301536A1 (en) Biological measurement device, biological measurement method, and non-transitory computer-readable recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210316