JP2017186522A - 熱可塑性アクリル系樹脂 - Google Patents

熱可塑性アクリル系樹脂 Download PDF

Info

Publication number
JP2017186522A
JP2017186522A JP2017015881A JP2017015881A JP2017186522A JP 2017186522 A JP2017186522 A JP 2017186522A JP 2017015881 A JP2017015881 A JP 2017015881A JP 2017015881 A JP2017015881 A JP 2017015881A JP 2017186522 A JP2017186522 A JP 2017186522A
Authority
JP
Japan
Prior art keywords
acrylic resin
polymerization
mass
molecular weight
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017015881A
Other languages
English (en)
Inventor
俊則 今田
Toshinori Imada
俊則 今田
鈴木 慶一
Keiichi Suzuki
慶一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2017186522A publication Critical patent/JP2017186522A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】主鎖に環構造を有する熱可塑性アクリル系樹脂であって、ガラス転移温度の高さに基づく優れた耐熱性を有しながら、成形時や成形後のフィルムの機械的強度と熱安定性、トリミング性、耐熱時変色性に優れ、フィルム製膜時のロールへの貼りつき性が抑制された樹脂、およびその製造方法を提供することを目的とする。【解決手段】主鎖に環構造を有する熱可塑性アクリル系樹脂であって、ガラス転移温度が115℃以上、重量平均分子量が10万以上、分子量分布が2.5以下、10mmHgに減圧しながら240℃で1時間加熱した前後の重量平均分子量の増加率が5%以下である、アクリル系樹脂。【選択図】なし

Description

本発明は、主鎖に環構造を有する熱可塑性アクリル系樹脂およびその製造方法に関する。
従来から、透明性を有する樹脂として、アクリル系樹脂が知られている。アクリル系樹脂は、透明性だけでなく、表面光沢や耐候性に優れ、しかも、機械的強度、成形加工性、表面硬度のバランスがとれているので、自動車や家電製品などにおける光学関連用途に幅広く使用されている。しかし、アクリル系樹脂のガラス転移温度は100℃前後であることから、耐熱性が要求される分野での使用は困難であった。
透明性と耐熱性とを兼ね備えたアクリル系樹脂として、主鎖に環構造を有する樹脂が知られている。主鎖に環構造を有する樹脂は、主鎖に環構造を有さない樹脂に比べてガラス転移温度(Tg)が高く、例えば、画像表示装置において光源などの発熱部に近接した配置が容易となるなど、実用上の様々な利点を有する。例えば特許文献1、2には、分子鎖内に水酸基とエステル基とを有する重合体を環化縮合反応させて得られた、ラクトン環構造を主鎖に有するアクリル系樹脂が開示されている。特許文献3には、環構造としてグルタルイミド構造を主鎖に有するアクリル系樹脂が開示されており、特許文献4には、環構造としてグルタル酸無水物構造を主鎖に有するアクリル系樹脂が開示されている。これらの主鎖に環構造を有するアクリル系樹脂は、アクリル系樹脂の高い光学特性に加えて、耐熱性も兼ね備えていることから、光学フィルム用途などへの応用が進められている。
特開2006−96960号公報 特開2005−146084号公報 国際公開第05/108438号 国際公開第05/105918号
しかしながら、これらの主鎖に環構造を有する熱可塑性アクリル系樹脂は、アクリル系樹脂の主鎖に環構造を導入したことにより、耐熱性を付与することが出来たが、反面、硬いアクリル系樹脂に更に剛直な環構造を導入したために脆いという欠点を有する。また、アクリル系樹脂の重合後に主鎖の環化反応を行った場合、重合時や環化反応時、高温での成形時に主鎖間で架橋が起きるために、特に光学フィルム用途においては成形時や成形後のフィルムの強度が不足することがあった。
本発明は、主鎖に環構造を有する熱可塑性アクリル系樹脂であって、ガラス転移温度の高さに基づく優れた耐熱性を有しながら、成形時や成形後のフィルムの機械的強度と熱安定性、トリミング性、耐熱時変色性に優れ、フィルム製膜時のロールへの貼りつき性が抑制された樹脂、およびその製造方法を提供することを目的とする。
本発明は、主鎖に環構造を有する熱可塑性アクリル系樹脂であって、ガラス転移温度が115℃以上、重量平均分子量が10万以上、分子量分布が2.5以下、10mmHgに減圧しながら240℃で1時間加熱した前後の重量平均分子量の増加率が5%以下である、アクリル系樹脂である。
ここで、アクリル系樹脂では、GC/MSの測定を実施したときに、保持時間22〜32分に検出される成分の合計の含有量が、前記アクリル系樹脂を100質量%として、0.01〜0.40質量%であることが好ましい。
アクリル系樹脂では、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量が1万以下の成分の含有量が、前記アクリル系樹脂を100質量%として、0.1〜5.0質量%であることが好ましい。
アクリル系樹脂は、紫外線吸収剤及び/又は酸化防止剤を含有することが好ましい。
また、本発明は、上記いずれかのアクリル系樹脂を含む、光学フィルムである。
さらに、本発明は、上記いずれかのアクリル系樹脂を含む、画像表示装置である。
本発明によれば、主鎖に環構造を有する熱可塑性アクリル系樹脂であって、ガラス転移温度の高さに基づく優れた耐熱性を有しながら、成形時や成形後のフィルムの機械的強度と熱安定性、トリミング性、耐熱時変色性に優れ、フィルム製膜時のロールへの貼りつき性が抑制された樹脂、およびその製造方法を提供することができる。
本発明のアクリル系樹脂をゲルパーミエーションクロマトグラフィー(GPC)で測定したときの溶出曲線の概略を示す図である。 本発明のアクリル系樹脂のロールへの貼り付き防止性の評価における、製膜時の第一温調ロール及び第二ロールの周辺の様子を示す図である。
《主鎖に環構造を有するアクリル系樹脂》
本発明の主鎖に環構造を有するアクリル系樹脂は、主鎖に(メタ)アクリル酸エステル単量体由来の構造と環構造を含む。(メタ)アクリル酸エステル単量体由来の構造単位の含有割合と環構造単位の含有割合の合計を主鎖中に好ましくは50質量%以上、より好ましくは70質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上、最も好ましくは99質量%以上含む。特に環構造の含有率は、好ましくは25質量%以上、更に好ましくは35質量%以上、最も好ましくは40質量%以上である。
(メタ)アクリル酸エステル単位は、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどの単量体に由来する構成単位である。これらの構成単位を2種類以上有していてもよい。メタクリル酸メチル単位を有することが好ましく、この場合、アクリル系樹脂ならびにアクリル系樹脂を含む組成物および当該組成物を成形して得られたフィルムなどの成形品の熱安定性が向上する。
アクリル系樹脂は、(メタ)アクリル酸エステル単位以外の構成単位を有していてもよい。環化反応により主鎖に環構造を導入するため、アクリル系樹脂には重合時に水酸基やカルボン酸基を有する単量体を共重合することが好ましい。具体的には、水酸基を有する単量体として、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシエチル)アクリル酸メチル、また、カルボン酸基を有する単量体として、例えば、アクリル酸、メタクリル酸、クロトン酸、2−(ヒドロキシメチル)アクリル酸、2−(ヒドロキシエチル)アクリル酸などの単量体に由来する構成単位が挙げられる。これらの単量体を2種類以上共重合有していてもよい。水酸基やカルボン酸基を有する単量体は環化反応により環構造へと変化するが、主鎖に環構造を有するアクリル系樹脂に未反応の水酸基やカルボン酸基を有する単量体由来の構成単位が含まれていてもよい。
また、アクリル系樹脂はその他の構成単位を有していてもよく、このような構成単位は、例えば、スチレン、ビニルトルエン、α−メチルスチレン、α−ヒドロキシメチルスチレン、α−ヒドロキシエチルスチレン、アクリロニトリル、メタクリロニトリル、メタリルアルコール、アリルアルコール、エチレン、プロピレン、4−メチル−1−ペンテン、酢酸ビニル、2−ヒドロキシメチル−1−ブテン、メチルビニルケトン、N−ビニルピロリドン、N−ビニルカルバゾールなどの単量体に由来する構成単位である。アクリル系樹脂は、これらの構成単位を2種以上有していてもよい。
本発明の熱可塑性アクリル系樹脂は主鎖に環構造を有する。そのため、アクリル系樹脂およびアクリル系樹脂のTgが高くなり、当該樹脂やこれを含む組成物から得た樹脂成形品の耐熱性が向上する。このように主鎖に環構造を有するアクリル系樹脂から得た樹脂成形品、例えばフィルムは画像表示装置における光源などの発熱部近傍への配置が容易になるなど光学部材としての用途に好適である。
アクリル系樹脂が環構造を有することにより、アクリル系樹脂のTgが高くなると、当該樹脂やこれを含む組成物の成形温度を高くする必要がある。成形温度が高くなると、成形時にポリマー主鎖間の架橋が生じやすく、成形体の異物が増加し、さらに、脆さが増加するため、特にフィルム成形時や成形後においてフィルム強度が不足しやすい。しかし、本発明のアクリル系樹脂では、このような場合においても、ポリマー主鎖間の架橋が抑制でき、フィルム成形時や成形後において十分な機械的強度を有する成形体を得ることができる。
環構造の種類は特に限定されないが、例えば、ラクトン環構造、無水グルタル酸構造、グルタルイミド構造、N−置換マレイミド構造および無水マレイン酸構造から選ばれる少なくとも1種である。
アクリル系樹脂が主鎖に有していてもよいラクトン環構造は特に限定されず、例えば、4から8員環であってもよいが、環構造の安定性に優れることから5員環または6員環であることが好ましく、6員環であることがより好ましい。6員環であるラクトン環構造は、例えば、特開2004−168882号公報に開示されている構造であるが、前駆体の重合収率が高いこと、前駆体の環化反応により、高いラクトン環含有率を有するアクリル系樹脂が得られること、メタクリル酸メチル単位を構成単位として有する重合体を前駆体にできること、などの理由から以下の一般式(1)に示される構造が好ましい。
Figure 2017186522
上記一般式(1)において、R、RおよびRは、互いに独立して、水素原子または炭素数1から20の範囲の有機残基である。当該有機残基は酸素原子を含んでいてもよい。
一般式(1)における有機残基は、例えば、メチル基、エチル基、プロピル基などの炭素数1から20の範囲のアルキル基、エテニル基、プロペニル基などの炭素数1から20の範囲の不飽和脂肪族炭化水素基、フェニル基、ナフチル基などの炭素数1から20の範囲の芳香族炭化水素基であり、上記アルキル基、上記不飽和脂肪族炭化水素基、上記芳香族炭化水素基は、水素原子の一つ以上が、水酸基、カルボキシル基、エーテル基、およびエステル基から選ばれる少なくとも1種類の基により置換されていてもよい。
アクリル系樹脂が主鎖にラクトン環構造を有する場合、当該樹脂におけるラクトン環構造の含有率は特に限定はされないが、例えば5〜90質量%であり、好ましくは10〜80質量%であり、より好ましくは10〜70質量%であり、さらに好ましくは20〜60質量%である。
アクリル系樹脂における環構造の含有率が過渡に小さくなると、アクリル系樹脂ならびにその組成物から得られるフィルムなどの成形品における耐熱性の低下や、耐溶剤性および表面硬度が不十分となることがある。一方、上記含有率が過渡に大きくなると、アクリル系樹脂の成形性、ハンドリング性が低下する。
本発明の主鎖に環構造を有するアクリル系樹脂の重量平均分子量(Mw)は10万以上であり、好ましくは12万以上、より好ましくは15万以上である。また、分子量分布は2.5以下であり、好ましくは2.3以下である。
なお、重量平均分子量(Mw)及び数平均分子量(Mn)については、ゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。詳細には、予め単分散の重量平均分子量、数平均分子量及びピーク分子量が既知で試薬として入手可能な標準アクリル樹脂と、高分子量成分を先に溶出する分析ゲルカラムとを用い、溶出時間と重量平均分子量から検量線を作成しておく。次に、得られた検量線から、測定対象であるアクリル系樹脂の試料の重量平均分子量及び数平均分子量を求めることができる。具体的には、後述する実施例に記載の方法により測定することができる。
本発明の主鎖に環構造を有するアクリル系樹脂の重量平均分子量を10万以上、分子量分布を2.5以下とすることにより、樹脂の分岐構造が抑制され、加工時の熱安定性が改善され、成形品とした時の強度や外観が改善される。また、本発明の主鎖に環構造を有するアクリル系樹脂を用いて得られるシートのトリミング性を良好なものとすることができる。
<特定の分子量範囲の成分の割合>
本発明の主鎖に環構造を有するアクリル系樹脂においては、ゲルパーミエーションクロマトグラフィー(GPC)で測定した、重量平均分子量が1万以下の成分の含有量が、加工流動性の向上、成型時のシルバーストリークスと呼ばれる銀状痕等の成型品の外観不良の低減、フィルム製膜時のロールへの貼り付き防止の観点から、0.1〜5.0質量%であることが好ましい。
上記含有量を0.1質量%以上とすることで、加工流動性を向上させることができる。下限値は、好ましくは0.2質量%以上、より好ましくは0.5質量%以上、さらに好ましくは0.6質量%以上である。また、上記含有量を5質量%以下とすることで、成型時のシルバーストリークスを低減することができる等、外観不良を低減することができ、さらには、成型時の金型離れを改善し、フィルム成膜時のロールへの貼り付き性を抑制し、延伸時にフィルムを挟む際に割れの発生を抑制することができる。上限値は、より好ましくは4.0質量%以下、さらに好ましくは3.0質量%以下、特に好ましくは2.0質量%以下である。
なお、重量平均分子量が1万以下の成分の含有量は、例えば、GPC溶出曲線から得られるエリア面積比率から求めることができ、具体的には、図1において、溶出曲線の開始点をA、その終了点をB、重量平均分子量1万となる溶出時間におけるベースライン上の点をX、そのGPC溶出曲線上の点をYとしたとき、曲線BYと線分BX、線分XYで囲まれる面積の、GPC溶出曲線におけるエリア面積に対する割合を、重量平均分子量が1万以下の成分の含有量(質量%)として求めることができる。
好適には、下記実施例の方法により測定することができる。
本発明の主鎖に環構造を有するアクリル系樹脂においては、重量平均分子量が1万超5万以下の成分の含有量が、10.0〜25.0質量%であることが好ましい。
上記含有量を10.0〜25.0質量%とすることで、フィルム成型加工時の筋ムラ発生を抑制することができるうえ、フィルム成型時にロールへの貼り付き性が改善される。そして、加工流動性と、筋ムラの抑制・タッチロールへの貼り付き抑制といった加工時の特性をバランスよく付与する観点から、下限値は、より好ましくは12.0質量%以上、更に好ましくは13.0質量%であり、また、上限値は、より好ましくは24.0質量%以下である。
なお、重量平均分子量が1万超5万以下の成分の含有量は、重量平均分子量が1万以下の成分の含有量の場合と同様に、求めることができる。
本発明の主鎖に環構造を有するアクリル系樹脂においては、前述の重量平均分子量が1万超5万以下の成分の含有量(a)に対する、重量平均分子量が5万超の成分の含有量(b)の割合(b/a)が、熱安定性及び加工性のバランスを良好なものとする観点から、2.5〜8.5であることが好ましい。
高分子量体と低分子量体の存在比率を見た場合、加熱加工時における高分子量体と低分子量体との間での粘度差の影響により、低分子量体比率が多いと、加工流動性には優れているものの、フィルム加工時にロールへの貼り付き性が高くなる傾向にある一方で、高分子量体比率が高いと、フィルム加工時に筋ムラが発生しやすくなる傾向がある。
両者の特性をバランスよく付与したうえで、より貼り付き性を改善したい場合は、上記割合は、3.0以上とすることが好ましく、より好ましくは3.5以上である。一方で、フィルム加工時の筋ムラをより改善したい場合は、上記比率は、8.0以下であることが好ましく、より好ましくは7.5以下である。
本発明の主鎖に環構造を有するアクリル系樹脂においては、前述の、(A)単量体、(B)構造単位を構成する単量体、(C)単量体の任意の組み合わせによる2量体及び3量体等を含む特定の成分の合計の含有量は、成型加工時の金型やロールへの貼り付き防止、製膜時の発泡抑制の観点から、0.01〜0.40質量%であることを必要とする。
上記成分の合計の含有量がこの範囲であると、成型加工時の金型やフィルムロールへの貼り付き性を抑制することができ、成型加工性が改善される。また、0.01質量%未満とするためには、工程が煩雑になるため好ましくない。
なお、上記成分の合計の含有量は、ガスクロマトグラフィー/質量分析(GC/MS)測定により求めることができる。
GC/MS測定において好適に使用されるカラムとしては、無極性又は微極性のカラムであることが好ましく、(5%フェニル)−95%メチルポリシロキサンを固定相とするカラムがより好ましい。具体的には、007−2、CP−Sil 8CB、DB−5、DB−5.625、DB−5ht、HP−5、HP−5ms、OV(登録商標)−5、PTE−5、PTE−5QTM、PAS−5、RSL−200、Rtx(登録商標)−5、Rtx(登録商標)−5ms、SAC−5、SE(登録商標)−54、SPB(登録商標)−5、ULTRA−2、XTI−5、SE(登録商標)−52、BP−5、PE−2、ZB−5、AT(登録商標)−5、EC(登録商標)−5等が挙げられる。
好適に使用されるキャリアガスとしては、ヘリウムガスが挙げられる。ガス流量としては、約1mL/分であることが好ましく、測定中一定となるように制御されることが好ましい。
試料の注入量としては、約1μL程度であることが好ましい。
内部標準物質として、オクタデシル3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナートを用いる場合、例えば保持時間約20分において内部標準物質のピークが検出されるところ、使用したモノマー種の2量体及び3量体等を含む成分のピークは、上記内部標準物質の保持時間よりも長い保持時間において検出される。ここで、上記成分の合計の含有量は、内部標準物質のピークが検出されてから上記成分のピークが検出されるまでの間における両ピークの面積比(すなわちそれらの存在比)から算出することができる。
またなお、上記成分の合計の含有量は、より具体的には、実施例において後述する特定の装置及び特定の条件でのGC/MS測定により求められるものとする。
本発明の主鎖に環構造を有するアクリル系樹脂は、10mmHgに減圧しながら240℃で1時間加熱した前後の重量平均分子量の増加率が5%以下であり、より好ましくは3%以下、さらに好ましくは1%以下である。重量平均分子量の増加率は加熱前後の重量平均分子量(Mw)から算出する。具体的には、
([加熱後のMw]−[加熱前のMw])/[加熱前のMw]×100(%)
から算出を行う。加熱は真空乾燥機などの減圧が可能な乾燥機を240℃に昇温した後、10gのサンプルを乾燥機内に入れ、減圧一定装置などで10mmHgの圧力に制御しながら240℃で1時間保持することによって行われる。
10mmHgに減圧しながら240℃で1時間加熱した前後の重量平均分子量の増加率を5%以下にすることにより、高温での成形加工時にもポリマー鎖間の架橋が抑制され、機械的強度の高い成形品や外観の優れた成形品が得られる。また、本発明の主鎖に環構造を有するアクリル系樹脂を用いてシートを作製したときに、良好な透明性、熱変色性、トリミング性を得ることもできる。
本発明の主鎖に環構造を有するアクリル系樹脂のガラス転移温度(Tg)は、特に限定されないが、アクリル系樹脂としてのTgを向上できることから、アクリル系樹脂のTgは115℃以上が好ましく、120℃以上がより好ましい。
なお、一般的なアクリル系樹脂のTgは、熱分析装置(Perkin Elmer社製、Diamond DSC)を用いて、ASTM−D−3418に準拠して測定を行うと、110℃程度で観測される。
なお、ガラス転移温度は、ASTM−D−3418に準拠して中点法により測定することができ、具体的には、後述する実施例において記載する方法により測定することができる。
本実施形態のアクリル系樹脂は、設定温度270℃の押出機で成形したフィルムを、例えば、約100μm厚で製膜した際のフィルムの表面100cm当たりに含まれる長径が100μm以上の気泡の個数が、4個未満であることが好ましく、より好ましくは3個未満、さらに好ましくは2個未満、よりさらに好ましくは1.5個未満、特に好ましくは0.8個以下である。フィルム表面の気泡数が上記範囲であることにより、外観性に優れる成形体が得られる。
(メタ)アクリル酸エステルを主成分とする樹脂は、熱で解重合をおこしてモノマー成分が生成し易い。樹脂に耐熱性を付与するために、環構造を有する基を有する単量体単位を導入すると、加工温度が高くなり、加工時の樹脂の溶融粘度が上がることになる。本実施形態のアクリル系樹脂によれば、上記条件で作製したフィルムの表面の気泡数が、上記範囲であるため、気泡が少なく外観に優れる成形体を得ることができる。
なお、フィルム表面の気泡数は、光学顕微鏡を用いて気泡数を算出し、その個数で評価することができる。具体的には、後述の実施例に記載する方法により測定することができる。
本発明の主鎖に環構造を有するアクリル系樹脂を用いて作製されるフィルムにおける全光線透過率は、用途に応じて適宜最適化すればよいが、透明性の求められる用途で使用される場合は、視認性の観点から、100μm厚みにおける全光線透過率が80%以上であることが好ましい。より好ましくは85%以上であり、さらに好ましくは88%以上、特に好ましくは90%以上である。
全光線透過率は高い方が好ましいが、実用上は94%以下でも十分に視認性を確保することができる。
全光線透過率は、例えば、下記実施例の方法により測定することができる。
主鎖に環構造を有するアクリル系樹脂は公知の方法により製造できる。環構造が無水グルタル酸構造あるいはグルタルイミド構造であるアクリル系樹脂は、例えば、WO2007/26659号公報あるいはWO2005/108438号公報に記載の方法により製造できる。環構造が無水マレイン酸構造あるいはN−置換マレイミド構造であるアクリル系樹脂は、例えば、特開昭57−153008号公報、特開2007−31537号公報に記載の方法により製造できる。環構造がラクトン環構造であるアクリル系樹脂は、例えば、特開2006−96960号公報、特開2006−171464号公報あるいは特開2007−63541号公報に記載の方法により製造できる。
本発明において、主鎖に環構造を有する熱可塑性アクリル系樹脂とは、上述のアクリル系樹脂のみを含むものも、上述のアクリル系樹脂に加えて上述のアクリル系樹脂以外の成分を含むものも、指すものとする。
そして、本発明の主鎖に環構造を有する熱可塑性アクリル系樹脂は、当該樹脂全体組成物に質量基準で占める割合にして、上述のアクリル系樹脂以外の成分を、40%未満、好ましくは10%未満の範囲で含んでいてもよい。
アクリル系樹脂以外の成分としてその他の熱可塑性樹脂を含む場合、その他の熱可塑性樹脂は、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリ(4−メチル−1−ペンテン)などのオレフィンポリマー;塩化ビニル、塩素化ビニル樹脂などのハロゲン含有ポリマー;ポリスチレン、スチレン−メタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、アクリロニトリル−ブタジエン−スチレンブロック共重合体などのスチレンポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ナイロン6、ナイロン66、ナイロン610などのポリアミド;ポリアセタール:ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド:ポリエーテルエーテルケトン;ポリエーテルニトリル;ポリサルホン;ポリエーテルサルホン;ポリオキシペンジレン;ポリアミドイミド;などである。
上記例示した熱可塑性樹脂のなかでも、アクリル系樹脂との相溶性、特に主鎖にラクトン環構造を有するアクリル系樹脂との相溶性に優れることから、シアン化ビニル単量体に由来する構成単位と芳香族ビニル単量体に由来する構成単位とを含む共重合体が好ましい。当該共重合体は、例えば、スチレン−アクリロニトリル共重合体である。
本発明の主鎖に環構造を有するアクリル系樹脂は、紫外線吸収剤を含んでいてもよい。
紫外線吸収剤は特に限定されないが、ベンゾフェノン系化合物、サリシケート系化合物、ベンゾエート系化合物、トリアゾール系化合物およびトリアジン系化合物等が挙げられる。ベンゾフェノン系化合物としては、2,4−ジーヒドロキシベンゾフェノン、4−n−オクチルオキシ−2−ヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2−ヒドロキシ−4−n−オクチルオキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、1,4−ビス(4−ベンゾイル−3−ヒドロキシフェノン)−ブタン等が挙げられる。サリシケート系化合物としては、p−t−ブチルフェニルサリシケート等が挙げられる。ベンゾエート系化合物としては、2,4−ジ−t−ブチルフェニル−3’,5’−ジ−t−ブチル−4’−ヒドロキシベンゾエート等が挙げられる。また、トリアゾール系化合物としては、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−p−クレゾール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール、2−ベンゾトリアゾール−2−イル−4,6−ジ−tert−ブチルフェノール、2−[5−クロロ(2H)−ベンゾトリアゾール−2−イル]−4−メチル−6−(tert−ブチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ジ−tert−ブチルフェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミジルメチル)フェノール、メチル3−(3−(2H−ベンゾトリアゾール−2−イル)−5−tert−ブチル−4−ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、3−(2H−ベンゾトリアゾール−2−イル)−5−(1,1−ジメチルエチル)−4−ヒドロキシ−C7−9側鎖及び直鎖アルキルエステルが挙げられる。さらに、トリアジン系化合物としては、2,4−ジフェニル−6−(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−エトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシエトキシ)−1,3,5−トリアジン、2,4−ビス「2−ヒドロキシ−4−ブトキシフェニル」−6−(2,4−ジブトキシフェニル)−1,3−5−トリアジン、2,4−ビス(2,4−ジメチルフェニル)−6−[2−ヒドロキシ−4−(3−アルキルオキシ−2−ヒドロキシプロピルオキシ)−5−α−クミルフェニル]−s−トリアジン骨格(アルキルオキシ;オクチルオキシ、ノニルオキシ、デシルオキシなどの長鎖アルキルオキシ基)を有する紫外線吸収剤(チバスペシャリティケミカルズ(株)製、商品名:チヌビン477)が挙げられる。
これらは単独でまたは2種類以上組み合わせて使用することができる。
上記紫外線吸収剤の配合量は特に限定されないが、耐熱アクリル系樹脂を主成分とする層中に0.01〜25重量%であることが好ましく、さらに好ましくは0.05〜10重量%である。添加量が少なすぎると耐候性向上の寄与が低く、また多すぎると機械強度の低下や黄変を引き起こす場合がある。
本発明の主鎖に環構造を有するアクリル系樹脂は、酸化防止剤を含んでいてもよい。
酸化防止剤は特に限定されないが、例えば、ヒンダードフェノール系、リン系あるいはイオウ系などの公知の酸化防止剤を、1種で、または2種以上を併用して用いることができる。特に、2,4−ジ−t−アミル−6−[1−(3,5−ジ−t−アミル−2−ヒドロキシフェニル)エチル]フェニルアクリレート(例えば、住友化学工業製スミライザーGS)、および2−t−ブチル−6−(3−t−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート(例えば、住友化学工業製スミライザーGM)が、高温成形時におけるアクリル系樹脂の劣化を抑制する効果が高いことから好ましい。
酸化防止剤はフェノール系の酸化防止剤であってもよい。フェノール系酸化防止剤は、例えば、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)アセテート、n−オクタデシル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、n−ヘキシル−3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、n−ドデシル−3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、ネオドデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ドデシル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、エチル−α−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシル−α−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシル−α−(4−ヒドロキシ−3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2−(n−オクチルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、2−(n−オクチルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート、2−(n−オクタデシルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート、2−(n−オクタデシルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、2−(2−ヒドロキシエチルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、ジエチルグリコールビス−(3,5−ジ−t−ブチル−4−ヒドロキシ−フェニル)プロピオネート、2−(n−オクタデシルチオ)エチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ステアルアミド−N,N−ビス−[エチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、n−ブチルイミノ−N,N−ビス−[エチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−(2−ステアロイルオキシエチルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、2−(2−ステアロイルオキシエチルチオ)エチル−7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,2−プロピレングリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ネオペンチルグリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコールビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、グリセリン−1−n−オクタデカノエート−2,3−ビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、ペンタエリスリトールテトラキス−[3−(3′,5′−ジ−t−ブチル−4′−ヒドロキシフェニル)プロピオネート]、1,1,1−トリメチロールエタントリス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ソルビトールヘキサ−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−ヒドロキシエチル−7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2−ステアロイルオキシエチル−7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,6−n−ヘキサンジオールビス[(3′,5′−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリトリトールテトラキス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナメート)、3,9−ビス[1,1−ジメチル−2−[β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル]−2,4,8,10−テトラオキサスピロ[5,5]−ウンデカンである。
フェノール系酸化防止剤は、チオエーテル系酸化防止剤またはリン酸系酸化防止剤と組み合わせて使用することが好ましい。組み合わせる際の酸化防止剤の添加量は、アクリル系樹脂に対してフェノール系酸化防止剤およびチオエーテル系酸化防止剤の各々が0.01%以上、あるいはフェノール系酸化防止剤およびリン酸系酸化防止剤の各々が0.025%以上である。
チオエーテル系酸化防止剤は、例えば、ペンタエリスリチルテトラキス(3−ラウリルチオプロピオネート)、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネートである。
リン酸系酸化防止剤は、例えば、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、2−[[2,4,8,10−テトラキス(1,1−ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン−6−イル]オキシ]−N,N−ビス[2−[[2,4,8,10−テトラキス(1,1ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン−6−イル]オキシ]−エチル]エタナミン、ジフェニルトリデシルフォスファイト、トリフェニルフォスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリストールジホスファイト、ジステアリルペンタエリスリトールジフォスファイト、サイクリックネオペンタンテトライルビス(2,6−ジ−t−ブチル−4−メチルフェニル)フォスファイトである。
本発明のアクリル系樹脂における酸化防止剤の添加量は、例えば0〜10%であり、好ましくは0〜5%であり、より好ましくは0.01〜2%であり、さらに好ましくは0.05〜1%である。酸化防止剤の添加量が過度に大きくなると、成形時に酸化防止剤のブリードアウトやシルバーストリークスが発生することがある。
本発明のアクリル系樹脂は、その他の添加剤を含んでいてもよい。
その他の添加剤は、例えば、耐光安定剤、耐候安定剤、熱安定剤などの安定剤;ガラス繊維、炭素繊維などの補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモンなどの難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤に代表される帯電防止剤;無機顔料、有機顔料、染料などの着色剤;有機フィラー、無機フィラー;樹脂改質剤;可塑剤;滑剤;難燃剤;ASAやABSなどのゴム質量体などである。
本発明のアクリル系樹脂における、上記その他の添加剤の添加量は、例えば0〜5%であり、好ましくは0〜2%であり、より好ましくは0〜0.5%である。
《主鎖に環構造を有するアクリル系樹脂の製造方法》
本発明の主鎖に環構造を有するアクリル系樹脂の製造方法としては、アクリル系樹脂を重合する重合工程後に環化反応を行い、主鎖に環構造を導入することが好ましい。
重合工程に供する単量体成分中における(メタ)アクリル酸の含有割合は、好ましくは0〜30質量%、より好ましくは0〜20質量%、さらに好ましくは0〜10質量%である。(メタ)アクリル酸の含有割合が30質量%を超えると、重合工程などでゲル化が起こることがある。
また、重合工程に供する単量体成分中における(メタ)アクリル酸エステルの含有割合は、好ましくは50〜95質量%、より好ましくは55〜90質量%、さらに好ましくは60〜90質量%、特に好ましくは65〜85質量%である。(メタ)アクリル酸エステルの含有割合が50質量%未満であると、得られたアクリル系樹脂の光学的特性が劣ることがある。逆に、(メタ)アクリル酸エステルの含有割合が95質量%を超えると、得られたアクリル系樹脂の耐熱性が低下したり、位相差が大きくなったりすることがある。
重合工程に供する単量体成分には、(メタ)アクリル酸および(メタ)アクリル酸エステル以外の単量体を配合してもよい。これらの単量体は、単独で用いても2種以上を併用してもよい。
本発明の主鎖に環構造を有する熱可塑性アクリル系樹脂製造方法の重合は有機溶剤中、100℃以下で重合する。この場合、実質的に100℃以下で重合が行われればよいが、具体的には重合時間の90%以上の時間を100℃以下で重合する。好ましくは、重合温度が0〜100℃、重合時間が0.5〜20時間であり、より好ましくは、重合温度が60〜100℃、重合時間が1〜10時間である。100℃以下で重合することにより、重合中の副反応としてのポリマーの分岐や主鎖間の架橋反応を抑制することが出来、アクリル系樹脂に優れた熱安定性と機械的強度を付与することが出来る。
有機溶剤としては、特に限定されるものではなく、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤;テトラヒドロフランなどのエーテル系溶剤;メタノール、エタノール、ブタノールなどのアルコール系溶剤などが挙げられる。これらの溶剤は、単独で用いても2種以上を併用してもよい。
エステル交換反応などの脱アルコール反応により起きる主鎖間の架橋反応が抑制できることから、有機溶剤はアルコール系溶剤を含むことが好ましい。ただし、アルコール系溶剤の含有割合が高い場合は主鎖に環構造を有する熱可塑性アクリル系樹脂の溶解性が悪くなるため、有機溶剤中のアルコール系溶剤の含有割合は0〜90%が好ましく、より好ましくは0〜50%、さらに好ましくは0〜20%、特に好ましくは0〜15%である。
また、有機溶剤の沸点が高すぎると、最終的に得られるアクリル系樹脂の残存揮発分が多くなることから、沸点が50〜200℃である溶剤が好ましい。有機溶剤の沸点が100℃を超える場合は、重合槽内を減圧することにより有機溶剤の沸点を下げる方法や、ジャケット部を冷却、または、重合槽内に導入したコイルによる冷却で徐熱を行う方法によって温度を制御する形態も好ましい重合形態のひとつである。
重合反応時には、必要に応じて、重合開始剤を添加してもよい。
重合開始剤は、重合温度で分解し活性ラジカルを発生するものであればよいが、滞留時間の範囲内で必要な重合転化率を達成することが必要であり、重合温度における半減期が0.6〜60分、好ましくは1〜30分を満足するような重合開始剤が選択される。但し、重合温度における半減期が60分を超える開始剤に関しても、所定量を一括もしくは10分程の時間で投入することで、本実施形態に適した活性ラジカル量を発生する重合開始剤として使用することができる。その場合に必要な重合転化率を達成するためには、重合温度における半減期が60〜1800分、好ましくは260〜900分を満足するような重合開始剤が選択される。
好適に使用される重合開始剤は、重合温度、重合時間を鑑みて適宜選択することができ、例えば、日本油脂(株)「有機過酸化物」資料第13版、アトケム吉富(株)技術資料及び和光純薬工業(株)「Azo Polymerization Initiators」等に記載の開始剤を好適に使用することができ、上記半減期は、記載の諸定数等により容易に求めることができる。
前記重合開始剤としては、ラジカル重合を行う場合は、以下に限定されるものではないが、例えば、ジ−t−ブチルパーオキサイド、ラウロイルパーオキサイド、ステアリルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルパーオキシネオデカネート、t−ブチルパーオキシピバレート、ジラウロイルパーオキサイド、ジクミルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン(例えば、パーヘキサ(登録商標)C)、アセチルパーオキサイド、カプリエルパーオキサイド、2,4−ジクロルベンゾイルパーオキサイド、イソブチルパーオキサイド、アセチルシクロヘキシルスルホニルパーオキサイド、t−ブチルパーオキシビパレート、t−ブチルパーオキシ−2−エチルヘキサノエート、iso−プロピルパーオキシジカーボネート、iso−ブチルパーオキシジカーボネート、sec−ブチルパーオキシジカーボネート、n−ブチルパーオキシジカーボネート、2−エチルヘキシルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、t−アミルパーオキシ−2−エチルヘキサノエート、1,1,3,3−テトラメチルブチルパーオキシエチルヘキサノエート、1,1,2−トリメチルプロピルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン(例えば、パーヘキサ(登録商標)25B)、t−ブチルパーオキシイソプロピルモノカーボネート、t−アミルパーオキシイソプロピルモノカーボネート、1,1,3,3−テトラメチルブチルパーオキシイソプロピルモノカーボネート、1,1,2−トリメチルプロピルパーオキシイソプロピルモノカーボネート、1,1,3,3−テトラメチルブチルパーオキシイソノナエート、1,1,2−トリメチルプロピルパーオキシ−イソノナエート、t−ブチルパーオキシベンゾエート等の有機過酸化物や、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル、アゾビスジメチルバレロニトリル、アゾビスシクロヘキサンニトリル、1,1−アゾビス(1−シクロヘキサンカルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−アゾビスイソブチロニトリル、2,2’−アゾビス−2,4−ジメチルバレロニトリル、2,2’−アゾビス−2−メチルブチロニトリル、1,1’−アゾビス(1−アセトキシ−1−フェニルエタン)、ジメチル−2,2’−アゾビスイソブチレート、4,4’−アゾビス−4−シアノバレリン酸等のアゾ系化合物等の、一般的なラジカル重合開始剤を挙げることができる。
これらのラジカル重合開始剤と適当な還元剤とを組み合わせてレドックス系開始剤として用いてもよい。
これらの重合開始剤は、1種単独で用いることができ、2種以上組み合わせて用いることもできる。
重合開始剤は、重合反応器で所望の重合率を得るために必要な量を添加すればよい。
重合反応においては重合開始剤の供給量を増やすことで重合度を上げることができるが、多量の開始剤を使用することで全体の分子量が低下する傾向にあるうえ、重合時の発熱量が増大するため、過熱により重合安定性が低下する場合もある。
重合開始剤は、所望の分子量を得やすくし、重合安定性を確保するという観点から、使用する全単量体の総量100質量部に対して、0〜1質量部の範囲で用いるのが好ましく、より好ましくは0.001〜0.8質量部であり、より好ましくは0.01〜0.5質量部である。重合開始剤の添加量は、重合を行う温度及び開始剤の半減期も考慮して、適宜選ぶことができる。
一例として、溶液重合法を用いてバッチ式でラジカル重合で製造する場合における、好適な重合開始剤の添加方法について、具体的に説明する。
本発明では、(a)重合後期におけるオリゴマー(例えば、2量体及び3量体)や低分子量体(例えば、重量平均分子量で500〜10,000)の生成量を抑える観点、(b)重合転化率を上げる観点、(c)得られるアクリル系樹脂の分子量を上げる観点、(d)重合時の過熱抑制による重合安定性の観点等から、重合反応系におけるラジカル量を最適量とすることが好ましい。
より具体的には、本発明の実施形態では、反応系内に残存する未反応モノマー総量に対する重合開始剤より発生するラジカル総量の割合が、常時一定値以下となるように、開始剤の種類、開始剤量、及び重合温度等を適宜選択することが好ましい。
以下、重合工程における、好適な重合開始剤の添加方法について記載する。
かかる方法によれば、重合時のラジカル発生量を制御することによって、アクリル系樹脂中の成分の合計量や重量平均分子量1万以下の成分量を所望の範囲とすることができる。
本実施形態では、重合開始剤の添加開始から添加終了までの時間の合計をB時間として、重合開始剤の添加開始から0.5×B時間までに、少なくとも一度、重合開始剤の単位時間当たりの添加量を、添加開始時の単位時間当たりの添加量よりも小さくすること(条件(i))が好ましい。
ここで、特に、ラジカル濃度の最適化の観点から、添加速度は漸減させることが好ましい。
また、本実施形態では、上記条件(i)に加えて、前記重合開始剤の添加開始から0.01×B〜0.3×B時間の間に、重合開始剤の単位時間当たりの添加量を、添加開始時の単位時間当たりの添加量の70%以下とすること(条件(ii))が好ましく、60%以下とすることがより好ましく、50%以下とすることが更に好ましく、40%以下とすることが特に好ましい。なお、重合の開始時に重合開始剤の所定量を一括で添加する場合、添加開始0時間における所定量の添加に相当し、上記の「重合開始剤の添加開始から0.01×B〜0.3×B時間」の間における添加の範疇には含まれない
例えば、重合開始時の重合開始剤の添加速度(単位時間当たりの添加量)を100ppm/時とし、重合開始剤の添加開始から添加終了までの時間の合計であるB時間を10時間とした場合に、重合開始剤の添加開始から0.1〜3時間の間に、添加速度(単位時間当たりの添加量)を70ppm/時以下とすることが好ましい。
更に好適には、本実施形態では、上記に加えて、前記重合開始剤の添加開始から0.01×B〜0.3×B時間の間における、重合開始剤の単位時間当たりの添加量の平均を、重合開始剤の添加開始から0.01×B時間までの間における重合開始剤の単位時間当たりの添加量の平均の70%以下とすることが好ましく、60%以下とすることがより好ましく、50%以下とすることが更に好ましく、40%以下とすることが特に好ましい。
そして、本実施形態では、上記条件(i)に加えて、重合開始剤の添加開始から0.7×B〜1.0×B時間の間に、重合開始剤の単位時間当たりの添加量を、添加開始時の単位時間当たりの添加量の25%以下とすること(条件(iii))が好ましく、20%以下とすることがより好ましく、18%以下とすることが更に好ましい。
例えば、重合開始時の重合開始剤の添加速度(単位時間当たりの添加量)を100ppm/時とし、重合開始剤の添加開始から添加終了までの時間の合計であるB時間を10時間とした場合に、重合開始剤の添加開始から7〜10時間の間に、添加速度(単位時間当たりの添加量)を25ppm/時以下とすることが好ましい。
更に好適には、本実施形態では、上記に加えて、重合開始剤の添加開始から0.7×B〜1.0×B時間の間における重合開始剤の単位時間当たりの添加量の平均を、重合開始剤の添加開始から0.01×B時間までの間における重合開始剤の単位時間当たりの添加量の平均の25%以下とすることが好ましく、20%以下とすることがより好ましく、18%以下とすることがさらに好ましい。
上記条件(ii)及び条件(iii)は、組み合わせて採用することがより好ましい。
さらに、本実施形態では、上記条件(i)に加えて、重合開始剤の添加開始から0.5×B〜1.0×B時間の間における重合開始剤の添加量を、重合開始剤の全添加量を100質量%として、20〜80質量%とすること(条件(iv))が好ましく、20〜70質量%とすることがより好ましく、20〜60質量%とすることが更に好ましい。
また、本実施形態では、上記条件(i)に加えて、単量体の重合反応を行う重合反応時間を、1.0×B〜5.0×B時間とすること(条件(v))が好ましく、1.0×B〜4.5×B時間とすることがより好ましく、1.0×B〜4.0×B時間とすることがさらに好ましい。
上記条件(iv)及び条件(v)は、組み合わせて採用することがより好ましい。
なお、上記(i)〜(v)のいずれの場合にも、重合開始剤を供給する方法としては、供給安定性の観点から、重合反応で使用する単量体及び/又は有機溶媒に予め溶解させてから供給することが好ましい。使用する単量体及び/又は有機溶媒は、重合反応で使用するものと同一のものが好ましい。また、重合配管での閉塞等を回避する観点から、重合開始剤は有機溶媒に溶解して供給することがより好ましい。
重合反応時には、必要に応じて、分子量調整剤を用いてよい。
分子量調整剤としては、連鎖移動剤やイニファータ等が挙げられる。
アクリル系樹脂の製造工程においては、本発明の目的を損なわない範囲で、製造する重合体の分子量の制御を行うことができる。
連鎖移動剤及びイニファータとしては、例えば、アルキルメルカプタン類、ジメチルアセトアミド、ジメチルホルムアミド、トリエチルアミン等の連鎖移動剤;ジチオカルバメート類、トリフェニルメチルアゾベンゼン、テトラフェニルエタン誘導体等のイニファータ等を用いることによって分子量の制御を行うことができ、さらには、これらの連鎖移動剤やイニファータの添加量を調整することにより、分子量を制御することができる。
これらの連鎖移動剤やイニファータを用いる場合、取扱性や安定性の点から、アルキルメルカプタン類が好適に用いられ、以下に限定されるものではないが、例えば、n−ブチルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−テトラデシルメルカプタン、n−オクタデシルメルカプタン、2−エチルヘキシルチオグリコレート、エチレングリコールジチオグリコレート、トリメチロールプロパントリス(チオグリコート)、ペンタエリスリトールテトラキス(チオグリコレート)等が挙げられる。
これら分子量調整剤は、要求される分子量に応じて適宜添加することができるが、一般的には使用する全単量体の総量100質量部に対して、0.001〜3質量部の範囲で用いられる。
また、その他の分子量制御方法としては重合方法を変える方法、重合開始剤の量を調整する方法、重合温度を変更する方法等が挙げられる。
これらの分子量制御方法は、1種の方法だけを単独で用いてもよいし、2種以上の方法を併用してもよい。
アクリル系樹脂においては、分子量を調整したり、ポリマーの熱安定性を向上させる目的で、連鎖移動剤(分子量調整剤)を使用してもよく、使用に供される連鎖移動剤としては、本発明の効果を発揮できるものであれば、その種類及び使用方法は限定されるものではない。
アクリル系樹脂においては、2量体及び3量体を含む成分の合計量を適量に制御する必要があり、また重量平均分子量1万以下の成分量も適量に制御する観点から、重合反応系に残るモノマー量に対して、残存する連鎖移動剤の量が過剰にならないような方法を選択することが好ましい。
連鎖移動剤の供給する方法の一例としては、連鎖移動剤を予めモノマーに溶解させておく方法、重合度が50%以下の段階で一括及び/又は逐次添加する方法、重合度90%までの間に一括及び/又は連続的に添加する方法で、連鎖移動剤を添加する量を、徐々に減じていく方法等の方法を好適に用いることができる。
重合を行う際には、反応液のゲル化を抑制するために、重合反応混合物中に生成したアクリル系樹脂の濃度が60質量%以下となるように制御することが好ましい。具体的には、重合反応混合物中に生成したアクリル系樹脂の濃度が60質量%を超える場合には、重合溶剤を重合反応混合物に追加して60質量%以下となるように制御することが好ましい。重合反応混合物中に生成したアクリル系樹脂の濃度は、より好ましくは45質量%以下、さらに好ましくは40質量%以下である。なお、重合反応混合物中に生成したアクリル系樹脂の濃度が低すぎると生産性が低下するので、重合反応混合物中に生成したアクリル系樹脂の濃度は、好ましくは10質量%以上、より好ましくは20質量%以上である。
樹脂の分子量が高く、重合液の粘度が高くなるため、樹脂の重合中に有機溶剤を追加するのも好ましい形態のひとつである。重合温度を制御するために、樹脂の重合中に有機溶剤を追加するのも好ましい形態のひとつである。追加する形態としては、特に限定されるものではなく、例えば、重合反応混合物に連続的に重合溶剤を添加してもよいし、間欠的に重合溶剤を添加してもよい。また、添加する重合溶剤としては、例えば、重合反応の初期仕込み時に使用した溶剤と同じ種類の有機溶剤であってもよいし、異なる種類の有機溶剤であってもよいが、重合反応の初期仕込み時に使用した溶剤と同じ種類の溶剤を用いることが好ましい。また、添加する重合溶剤は、1種のみの単一溶剤であっても2種以上の混合溶剤であってもよい。樹脂の重合中に有機溶剤を追加することにより、重合槽内の重合液の粘度を一定の範囲内に制御することが可能となり、十分な攪拌を行うことが可能となると共に、高粘度下で発生するポリマー鎖の分岐や架橋を抑制できる。また、重合温度より低温の有機溶剤を追加するため、重合で発熱する重合系中の重合温度の制御も容易となる。
以上の重合工程を終了した時点で得られる重合反応混合物中には、通常、得られたアクリル系樹脂以外に有機溶剤が含まれているが、溶剤を完全に除去してアクリル系樹脂を固体状態で取り出す必要はなく、有機溶剤を含んだ状態で、続く環化反応工程に導入することが好ましい。また、必要な場合は、固体状態で取り出した後に、続く環化反応に好適な溶剤を再添加してもよい。
環化反応は、重合後に行われることが好ましく、加熱により環化反応が促進される。主鎖にラクトン環構造または無水グルタル酸構造を有するアクリル系樹脂の場合、アクリル系樹脂の分子鎖中に存在するヒドロキシ基またはカルボキシル基とエステル基とが環化縮合反応してラクトン環構造または無水グルタル酸構造を生じる反応であり、その環化反応によってアルコールが発生し、脱アルコールが行われる。主鎖にグルタルイミド構造アクリル系樹脂の場合は、添加したアミノ基含有化合物のアミノ基とポリマー鎖中に存在するカルボキシル基とエステル基とが環化縮合反応を起こし、その環化反応によって水やアルコールが発生し、脱水と脱アルコールが行われる。環構造がアクリル系樹脂の分子鎖中(アクリル系樹脂の主骨格中)に形成されることにより、高い耐熱性が付与される。
環化反応において加熱する方法については、特に限定されるものではなく、従来公知の方法を利用すればよい。例えば、重合工程によって得られた、有機溶剤を含む重合反応混合物をそのまま加熱処理してもよいし、溶剤を脱揮後に加熱処理してもよい。溶液状態でオートクレーブなどの耐圧装置中で200℃以上の温度で環化反応を行い、高温で環化反応を促進させるのも好ましい実施形態のひとつである。あるいは、揮発成分を除去するための真空装置あるいは脱揮装置を備えた加熱炉や反応装置、脱揮装置を備えた押出機などを用いて加熱処理を行うこともできる。
環化反応を行う際に、公知の環化触媒を添加することが好ましい。樹脂の重合後に環化触媒を添加することにより、単量体と触媒の副反応や重合中の分岐・架橋が抑制され、アクリル系樹脂に優れた熱安定性と機械的強度を付与することが出来る。
環化触媒としてはp−トルエンスルホン酸などのエステル化触媒またはエステル交換触媒を用いてもよいし、酢酸、プロピオン酸、安息香酸、アクリル酸、メタクリル酸などの有機カルボン酸類を触媒として用いてもよい。さらに、例えば、特開昭61−254608号公報や特開昭61−261303号公報に開示されているように、塩基性化合物、酢酸亜鉛などの有機カルボン酸塩、炭酸塩などを用いてもよい。
あるいは、環化反応の触媒として有機リン化合物を用いてもよい。使用可能な有機リン酸化合物としては、例えば、メチル亜ホスホン酸、エチル亜ホスホン酸、フェニル亜ホスホン酸などのアルキル(アリール)亜ホスホン酸(ただし、これらは、互変異性体であるアルキル(アリール)ホスフィン酸になっていてもよい)およびこれらのモノエステルまたはジエステル;ジメチルホスフィン酸、ジエチルホスフィン酸、ジフェニルホスフィン酸、フェニルメチルホスフィン酸、フェニルエチルホスフィン酸などのジアルキル(アリール)ホスフィン酸およびこれらのエステル;メチルホスホン酸、エチルホスホン酸、トリフルオルメチルホスホン酸、フェニルホスホン酸などのアルキル(アリール)ホスホン酸およびこれらのモノエステルまたはジエステル;メチル亜ホスフィン酸、エチル亜ホスフィン酸、フェニル亜ホスフィン酸などのアルキル(アリール)亜ホスフィン酸およびこれらのエステル;亜リン酸メチル、亜リン酸エチル、亜リン酸フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニルなどの亜リン酸モノエステル、ジエステルまたはトリエステル;リン酸メチル、リン酸エチル、リン酸2−エチルヘキシル、リン酸イソデシル、リン酸ラウリル、リン酸ステアリル、リン酸イソステアリル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジ−2−エチルヘキシル、リン酸オクチル、リン酸ジイソデシル、リン酸ジラウリル、リン酸ジステアリル、リン酸ジイソステアリル、リン酸ジフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリイソデシル、リン酸トリラウリル、リン酸トリステアリル、リン酸トリイソステアリル、リン酸トリフェニルなどのリン酸モノエステル、ジエステルまたはトリエステル;メチルホスフィン、エチルホスフィン、フェニルホスフィン、ジメチルホスフィン、ジエチルホスフィン、ジフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィンなどのモノ−、ジ−またはトリ−アルキル(アリール)ホスフィン;メチルジクロロホスフィン、エチルジクロロホスフィン、フェニルジクロロホスフィン、ジメチルクロロホスフィン、ジエチルクロロホスフィン、ジフェニルクロロホスフィンなどのアルキル(アリール)ハロゲンホスフィン;酸化メチルホスフィン、酸化エチルホスフィン、酸化フェニルホスフィン、酸化ジメチルホスフィン、酸化ジエチルホスフィン、酸化ジフェニルホスフィン、酸化トリメチルホスフィン、酸化トリエチルホスフィン、酸化トリフェニルホスフィンなどの酸化モノ−、ジ−またはトリ−アルキル(アリール)ホスフィン;塩化テトラメチルホスホニウム、塩化テトラエチルホスホニウム、塩化テトラフェニルホスホニウムなどのハロゲン化テトラアルキル(アリール)ホスホニウム;などが挙げられる。これらの有機リン化合物は、単独で用いても2種以上を併用してもよい。これらの有機リン化合物のうち、触媒活性が高くて着色性が低いことから、アルキル(アリール)亜ホスホン酸、亜リン酸モノエステルまたはジエステル、リン酸モノエステルまたはジエステル、アルキル(アリール)ホスホン酸が好ましく、アルキル(アリール)亜ホスホン酸、亜リン酸モノエステルまたはジエステル、リン酸モノエステルまたはジエステルがより好ましく、アルキル(アリール)亜ホスホン酸、リン酸モノエステルまたはジエステルが特に好ましい。
環化反応の際に用いる触媒の使用量は、特に限定されるものではないが、例えば、アクリル系樹脂に対して、好ましくは0.001〜5質量%、より好ましくは0.01〜2.5質量%、さらに好ましくは0.01〜1質量%、特に好ましくは0.05〜0.5質量%である。触媒の使用量が0.001質量%未満であると、環化反応の反応率が充分に向上しないことがある。逆に、触媒の使用量が5質量%を超えると、得られたアクリル系樹脂が着色することや、アクリル系樹脂の主鎖が架橋して、溶融成形が困難になることがある。
触媒の添加時期は、特に限定されるものではなく、例えば、反応初期に添加してもよいし、反応途中に添加してもよいし、それらの両方で添加してもよい。
環化反応を溶剤の存在下で行い、かつ、環化反応の際に、脱揮工程を併用することが好ましい。この場合、環化反応の全体を通じて脱揮工程を併用する形態、および、脱揮工程を環化反応の過程全体にわたっては併用せずに過程の一部においてのみ併用する形態が挙げられる。脱揮工程を併用する方法では、縮合環化反応で副生するアルコールを強制的に脱揮させて除去するので、反応の平衡が生成側に有利となる。
脱揮工程とは、溶剤、残存単量体などの揮発分と、環化反応により副生したアルコールや水を、必要に応じて減圧加熱条件下で、除去処理する工程を意味する。この除去処理が不充分であると、得られたアクリル系樹脂中の残存揮発分が多くなり、成形時の変質などにより着色することや、泡やシルバーストリークなどの成形不良が起こることがある。
環化反応の全体を通じて脱揮工程を併用する形態の場合、用いる装置については、特に限定されるものではないが、例えば、本発明をより効果的に行うために、熱交換器と脱揮槽からなる脱揮装置やベント付き押出機、また、脱揮装置と押出機を直列に配置したものを用いることが好ましく、熱交換器と脱揮槽からなる脱揮装置またはベント付き押出機を用いることがより好ましい。
熱交換器と脱揮槽からなる脱揮装置を用いる場合の反応処理温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。反応処理温度が150℃未満であると、環化反応が不充分となって残存揮発分が多くなることがある。逆に、反応処理温度が350℃を超えると、得られたアクリル系樹脂の着色や分解が起こることがある。
熱交換器と脱揮槽からなる脱揮装置を用いる場合の反応処理圧力は、好ましくは931〜1.33hPa(700〜1mmHg)、より好ましくは798〜66.5hPa(600〜50mmHg)である。反応処理圧力が931hPa(700mmHg)を超えると、アルコールを含めた揮発分が残存しやすいことがある。逆に、反応処理圧力が1.33hPa(1mmHg)未満であると、工業的な実施が困難になることがある。
ベント付き押出機を用いる場合、ベントは1個でも複数個でもいずれでもよいが、複数個のベントを有する方が好ましい。
ベント付き押出機を用いる場合の反応処理温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。反応処理温度が150℃未満であると、環化反応が不充分となって残存揮発分が多くなることがある。逆に、反応処理温度が350℃を超えると、得られたアクリル系樹脂の着色や分解が起こることがある。
ベント付き押出機を用いる場合の反応処理圧力は、好ましくは931〜1.33hPa(700〜1mmHg)、より好ましくは798〜13.3hPa(600〜10mmHg)である。反応処理圧力が931hPa(700mmHg)を超えると、アルコールを含めた揮発分が残存しやすいことがある。逆に、反応処理圧力が1.33hPa(1mmHg)未満であると、工業的な実施が困難になることがある。
なお、環化反応の全体を通じて脱揮工程を併用する形態の場合、後述するように、厳しい熱処理条件では得られるアクリル系樹脂の物性が劣化することがあるので、前述した脱アルコール反応の触媒を用い、できるだけ温和な条件で、ベント付き押出機などを用いて行うことが好ましい。
また、環化反応の全体を通じて脱揮工程を併用する形態の場合、好ましくは、重合工程で得られたアクリル系樹脂を溶剤と共に環化反応装置に導入するが、この場合、必要に応じて、もう一度ベント付き押出機などの環化反応装置に通してもよい。
脱揮工程を環化反応の過程全体にわたっては併用せずに、過程の一部においてのみ併用する形態を行ってもよい。例えば、アクリル系樹脂を製造した装置を、さらに加熱し、必要に応じて脱揮工程を一部併用して、環化反応を予めある程度進行させておき、その後に引き続いて脱揮工程を同時に併用した環化反応を行い、反応を完結させる形態である。
先に述べた環化反応の全体を通じて脱揮工程を併用する形態では、例えば、アクリル系樹脂を、二軸押出機を用いて、250℃付近、あるいはそれ以上の高温で熱処理する時に、熱履歴の違いにより環化反応が起こる前に一部分解などが生じ、得られる樹脂の物性が劣化することがある。そこで、脱揮工程を同時に併用した環化反応を行う前に、予め環化反応をある程度進行させておくと、後半の反応条件を緩和でき、得られる低複屈折重合体の物性の劣化を抑制できるので好ましい。特に好ましい形態としては、例えば、脱揮工程を環化反応の開始から時間をおいて開始する形態、すなわち、重合工程で得られたアクリル系樹脂を予め重合槽中で環化反応させて環化反応率をある程度上げておき、引き続き、脱揮工程を同時に併用した環化反応を行う形態が挙げられる。具体的には、例えば、予め釜型反応器を用いて溶剤の存在下で環化反応をある程度の反応率まで進行させておき、その後、脱揮装置を備えた反応器、例えば、熱交換器と脱揮槽とからなる脱揮装置や、ベント付き押出機などで、環化反応を完結させる形態が好ましく挙げられる。特に、この形態の場合、環化反応用の触媒が存在していることがより好ましい。
前述したように、重合工程で得られたアクリル系樹脂を予め環化反応させて環化反応率をある程度上げておき、引き続き、脱揮工程を同時に併用した環化反応を行う方法は、本発明において主鎖に環構造を有するアクリル系樹脂を得る上で好ましい形態である。この形態により、ガラス転移温度がより高く、環化反応率もより高まり、耐熱性に優れたアクリル系樹脂が得られる。
脱揮工程を同時に併用した環化反応の前に予め行う環化反応の際に採用できる反応器は、特に限定されるものではないが、例えば、オートクレーブ、釜型反応器、熱交換器と脱揮槽とからなる脱揮装置などが挙げられ、さらに、脱揮工程を同時に併用した環化反応に好適なベント付き押出機も使用可能である。これらの反応器のうち、オートクレーブ、釜型反応器が特に好ましい。しかし、ベント付き押出機などの反応器を用いる場合でも、ベント条件を温和にしたり、ベントをさせなかったり、温度条件やバレル条件、スクリュー形状、スクリュー運転条件などを調整することにより、オートクレーブや釜型反応器での反応状態と同じ様な状態で環化反応を行うことが可能である。
脱揮工程を同時に併用した環化反応の前に予め行う環化反応の際には、例えば、重合工程で得られたアクリル系樹脂と溶剤とを含む混合物を、(i)触媒を添加して、加熱反応させる方法、(ii)無触媒で加熱反応させる方法、および、前記(i)または(ii)を加圧下で行う方法などが挙げられる。
なお、環化反応工程において環化反応に導入する「アクリル系樹脂と溶剤とを含む混合物」とは、重合工程で得られた重合反応混合物それ自体、あるいは、いったん有機溶剤を除去した後に環化反応に適した溶剤を再添加して得られた混合物を意味する。
脱揮工程を同時に併用した環化反応の前に予め行う環化反応の際に再添加できる溶剤としては、特に限定されるものではなく、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;メチルエチルケトン、メチルイソブチルケトンなどのケトン類;タノール、エタノール、ブタノールなどのアルコール系類;クロロホルム、ジメチルスルホキシド、テトラヒドロフラン;などが挙げられる。これらの溶媒は、単独で用いても2種以上を併用してもよい。重合工程に用いた溶剤と同じ種類の溶剤を用いることが好ましい。
方法(i)で添加する触媒としては、例えば、一般に使用されるp−トルエンスルホン酸などのエステル化触媒またはエステル交換触媒、塩基性化合物、有機カルボン酸塩、炭酸塩などが挙げられるが、本発明においては、前述の有機リン化合物を用いることが好ましい。触媒の添加時期は、特に限定されるものではないが、例えば、反応初期に添加してもよいし、反応途中に添加してもよいし、それらの両方で添加してもよい。触媒の添加量は、特に限定されるものではないが、例えば、アクリル系樹脂の質量に対して、好ましくは0.001〜5質量%、より好ましくは0.01〜2.5質量%、さらに好ましくは0.01〜1質量%、特に好ましくは0.05〜0.5質量%である。方法(i)の加熱温度や加熱時間は、特に限定されるものではないが、例えば、加熱温度は、好ましくは室温〜180℃、より好ましくは50〜150℃であり、加熱時間は、好ましくは1〜20時間、より好ましくは2〜10時間である。加熱温度が室温未満であるか、あるいは、加熱時間が1時間未満であると、環化反応率が低下することがある。逆に、加熱温度が180℃を超えるか、あるいは、加熱時間が20時間を超えると、樹脂の着色や分解が起こることがある。
方法(ii)は、例えば、耐圧性の釜型反応器などを用いて、重合工程で得られた重合反応混合物をそのまま加熱すればよい。方法(ii)の加熱温度や加熱時間は、特に限定されるものではないが、例えば、加熱温度は、好ましくは100〜280℃、より好ましくは100〜250℃以上であり、加熱時間は、好ましくは1〜20時間、より好ましくは2〜10時間である。加熱温度が100℃未満であるか、あるいは、加熱時間が1時間未満であると、環化反応率が低下することがある。逆に、加熱温度が280℃を超えるか、あるいは加熱時間が20時間を超えると、樹脂の着色や分解が起こることがある。
いずれの方法においても、条件によっては、加圧下となっても何ら問題はない。
脱揮工程を同時に併用した環化反応の前に予め行う環化反応の際には、有機溶剤の一部が反応中に自然に揮発しても何ら問題ではない。
重合工程で得られたアクリル系樹脂を重合槽中で予め環化反応させて環化反応率をある程度上げておき、引き続き、脱揮工程を同時に併用した環化反応を行う形態の場合、予め行う環化反応で得られたアクリル系樹脂(分子鎖中に存在するヒドロキシ基またはカルボキシル基とエステル基との少なくとも一部が環化反応したアクリル系樹脂)と溶剤を、そのまま脱揮工程を同時に併用した環化反応に導入してもよいし、必要に応じて、前記樹脂(分子鎖中に存在するヒドロキシ基またはカルボキシル基とエステル基との少なくとも一部が環化反応したアクリル系樹脂)を単離してから溶剤を再添加するなどのその他の処理を経てから脱揮工程を同時に併用した環化反応に導入しても構わない。
脱揮工程は、環化反応と同時に終了することには限らず、環化反応の終了から時間をおいて終了しても構わない。
環化触媒を添加し環化反応を十分行った後にも微量の未反応の反応性基が残存し、成形時に発泡やポリマー間の架橋での増粘などの問題が起きることがあるため、環化触媒の失活剤を添加することが好ましい。環化反応には酸性触媒、あるいは、塩基性触媒が用いられることが多く、その場合、失活剤は中和反応により触媒を失活させるため、触媒が酸性物質である場合、失活剤は塩基性物質を用いればよく、逆に触媒が塩基性物質である場合、失活剤は酸性物質を用いればよい。失活剤としては、熱加工時に樹脂組成物を阻害する物質などを発生しない限り、特に限定されるものではないが、失活剤に塩基性物質を用いる場合、例えば、金属カルボン酸塩、金属錯体、金属酸化物などが挙げられ、金属カルボン酸塩と金属酸化物が好ましく、金属カルボン酸塩が特に好ましい。ここで、金属としては、樹脂組成物の物性を阻害せず、廃棄時に環境汚染を招くことがない限り、特に限定されるものではないが、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属;マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属;亜鉛;ジルコニウム;などが挙げられる。金属カルボン酸塩を構成するカルボン酸としては、特に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、トリデカン酸、ペンタデカン酸、ヘプタデカン酸、乳酸、リンゴ酸、クエン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸などが挙げられる。金属錯体における有機成分としては、特に限定されるものではないが、アセチルアセトンなどが挙げられる。金属酸化物としては、酸化亜鉛、酸化カルシウム、酸化マグネシウムなどが挙げられ、酸化亜鉛が好ましい。他方、失活剤に酸性物質を用いる場合には、例えば、有機リン酸化合物やカルボン酸などが挙げられる。失活剤は単独で用いても2種以上を併用してもよい。なお、失活剤は固形物、粉末状、分散体、懸濁液、水溶液など、いずれの形態で添加しても良く、特に限定されるものではない。
失活剤の配合量は、環化反応に使用した触媒に応じて適宜調節すればよく、特に限定されるものではないが、好ましくはアクリル系樹脂に対して、10〜10,000質量ppm、より好ましくは50〜5,000質量ppm、さらに好ましくは100〜3,000質量ppmである。失活剤の配合量が10質量ppm未満であると、失活剤の作用が不十分になり、成形時に発泡やポリマー間の架橋での増粘が起こることがある。逆に、失活剤の配合量が10,000質量ppmを越えると、必要以上に失活剤を使用することになり、分子量低下が起こるなど樹脂組成物の物性を阻害することがある。
失活剤を添加するタイミングは、アクリル系樹脂の製造にあたり、触媒を添加し環化反応を十分行った後であり、かつ得られた樹脂組成物が熱加工される前である限り、特に限定されるものではない。例えば、アクリル系樹脂を製造中に所定の段階で失活剤を添加するか、あるいは、アクリル系樹脂を製造した後、アクリル系樹脂、失活剤、その他の成分などを同時に加熱溶融させて混練する方法;アクリル系樹脂、その他の成分などを加熱溶融させておき、そこに失活剤を添加して混練する方法;アクリル系樹脂を加熱溶融させておき、そこに失活剤、その他の成分などを添加して混練する方法;などが挙げられる。この場合、熱可塑性樹脂と失活剤を混練した後に、脱揮工程を設けることが好ましい。得られた熱可塑性樹脂が熱加工時に発泡現象をほとんど起こさなくなるからである。脱揮工程としては、例えば、ラクトン環含有重合体の製造に際して行う脱揮工程として説明した上記のような脱揮工程が挙げられる。
アクリル系樹脂を環化反応させて得られた、主鎖に環構造を有するアクリル系樹脂に含まれる異物数は、アクリル系樹脂の製造工程および/またはフィルム製膜工程において、アクリル系樹脂の溶液または溶融液を、例えば、濾過精度1.5〜15μmのリーフディスク型ポリマーフィルターなどで濾過することにより、減少させることができる。
本発明の主鎖に環構造を有する熱可塑性アクリル系樹脂は、公知の成形手法、例えば、射出成形、ブロー成形、押出成形、キャスト成形などの手法により、任意の形状、例えばフィルムあるいはシート、に成形できる。成形温度はアクリル系樹脂のTgおよび特性に応じて適宜設定すればよく、特に限定されないが、例えば150〜350℃であり、200〜300℃が好ましい。
以下に好ましい用途である一例として、本発明の主鎖に環構造を有する熱可塑性アクリル系樹脂から押し出しフィルムを製造する方法について説明する。
本発明の主鎖に環構造を有する熱可塑性アクリル系樹脂から押し出しフィルムを製造する方法は、特に限定されないが、例えば、主鎖に環構造を有する熱可塑性アクリル系樹脂と、その他の熱可塑性樹脂やその他の添加剤などを、従来公知の混合方法にて混合し、予め主鎖に環構造を有する熱可塑性アクリル系樹脂としてから、押し出しフィルムを製造する事ができる。この主鎖に環構造を有する熱可塑性アクリル系樹脂の製造方法は、例えば、オムニミキサー等の混合機でプレブレンドした後、得られた混合物を押出混練する方法を採用することができる。この場合、押出混練に用いる混練機は、特に限定されるものではなく、例えば、単軸押出機、二軸押出機等の押出機や加圧ニーダー等、例えば、従来公知の混練機を用いることができる。
溶融押出法としては、Tダイ法、インフレーション法などが挙げられ、その際の、押し出しフィルムの成形温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。
上記Tダイ法で押し出しフィルム成形する場合は、公知の単軸押出し機や2軸押出し機の先端部にTダイを取り付け、フィルム状に押出したフィルムを巻取りロール状のフィルムを得る事ができる。この際、巻取りロールの温度を適宜調整して、押出し方向に延伸を加えることで、一軸延伸工程とする事も可能である。また、押出し方向と垂直な方向にフィルムを延伸する工程を加える事で、逐次二軸延伸、同時二軸延伸などの工程を加えることも可能である。
押し出しフィルムは、未延伸フィルムであっても良いし、延伸フィルムであっても良い。延伸する場合は、一軸延伸フィルムでも良いし、二軸延伸フィルムでも良い。二軸延伸フィルムとする場合は、同時二軸延伸したものでも良いし、逐次二軸廷伸したものでも良い。二軸延伸した場合は、機械強度が向上しフィルム性能が向上する。押し出しフィルムは、アクリロニトリル−スチレン樹脂などのその他の樹脂を混合する事により、延伸しても位相差の増大を抑制する事ができ、光学的等方性を保つ事ができる。
延伸温度としては、主鎖に環構造を有する熱可塑性アクリル系樹脂のガラス転移温度近辺で行うことが好ましく、具体的には、(ガラス転移温度−30)℃〜(ガラス転移温度+100)℃で行うことが好ましく、より好ましくは(ガラス転移温度−20)℃〜(ガラス転移温度+80)℃である。(ガラス転移温度−30)℃よりも低いと、十分な延伸倍率が得られないために好ましくない。(ガラス転移温度+100)℃よりも高いと、樹脂の流動(フロー)が起こり安定な延伸が行えなくなるために好ましくない。
面積比で定義した廷伸倍率は、好ましくは1.1〜25倍の範囲、より好ましくは1.3〜10倍の範囲で行われる。1.1倍よりも小さいと、延伸に伴う靱性の向上につながらないために好ましくない。25倍よりも大きいと、延伸倍率を上げるだけの効果が認められない。
延伸速度(一方向)としては、好ましくは10〜20000%/分の範囲、より好ましくは100〜10000%/分の範囲である。10%/分よりも遅いと、十分な延伸倍率を得るために時間がかかり、製造コストが高くなるために好ましくない。20000%/分よりも早いと、延伸押し出しフィルムの破断等が起こるおそれがあるために好ましくない。
フィルムの光学等方性や力学特性を安定化させるため、押出後や延伸処理後に熱処理(アニーリング)などを行うこともできる。
<アクリル系樹脂の重量平均分子量、数平均分子量、分子量分布の測定>
後述の製造例で製造したアクリル系樹脂の重量平均分子量(Mw)、数平均分子量(Mn)を、下記の装置及び条件で測定した。
・測定装置:東ソー株式会社製、ゲルパーミエーションクロマトグラフィー(HLC−8320GPC)
・測定条件:
カラム:TSKguardcolumn SuperH−H 1本、TSKgel SuperHM−M 2本、TSKgel SuperH2500 1本を順に直列接続して使用した。本カラムでは、高分子量が早く溶出し、低分子量が遅く溶出する。
展開溶媒:テトラヒドロフラン、流速;0.6mL/分、内部標準として、2,6−ジ−t−ブチル−4−メチルフェノール(BHT)を、0.1g/L添加した。
検出器:RI(示差屈折)検出器
検出感度:3.0mV/分
カラム温度:40℃
サンプル:0.02gのアクリル系樹脂のテトラヒドロフラン20mL溶液
注入量:10μL
検量線用標準サンプル:単分散の重量ピーク分子量が既知で分子量が異なる、以下の10種のポリメタクリル酸メチル(Polymer Laboratories製、PMMA Calibration Kit M−M−10)を用いた。
重量ピーク分子量(Mp)
標準試料1 1,916,000
標準試料2 625,500
標準試料3 298,900
標準試料4 138,600
標準試料5 60,150
標準試料6 27,600
標準試料7 10,290
標準試料8 5,000
標準試料9 2,810
標準試料10 850
上記の条件で、アクリル系樹脂の溶出時間に対するRI検出強度を測定した。
GPC溶出曲線におけるエリア面積と、3次近似式の検量線とを基に、アクリル系樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)を求めた。評価結果を表1に示す。
<単量体単位の組成の測定>
重合により得られたアクリル系共重合体について、NMR及びFT−IRの測定を実施し、単量体単位及び構造単位の組成を確認した。評価結果を表1に示す。
NMR:日本電子株式会社製、JNM−ECA500
FT−IR:日本分光社製、IR−410、ATR法(Dura Scope(ATR結晶:ダイヤモンド/ZnSe)、分解能:4cm−1)を用いた。
<成分の合計量の測定>
下記装置及び条件により、後述の製造例にて調製したアクリル系樹脂(具体的には再沈可溶分)について、オクタデシル3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナートを内部標準物質して、GC/MS測定を行うことによって、単量体の2量体及び3量体等を含む成分の合計量を算出した。
初めに、標準液を下記の手順に従って作製した。オクタデシル3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナート25.0mgを、100mL容量のメスフラスコに採取した。このメスフラスコの標線一杯にクロロホルムを加え、0.025質量%のオクタデシル3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナート標準液を作製した。
次いで、GC/MS測定用溶液を下記の手順に従って作製した。樹脂試料約0.5gを10mLのクロロホルムに溶解させ、60mLのメタノールから再沈殿を実施した。不溶分をろ過して取り除き、クロロホルム・メタノール可溶分を窒素ブロー下60℃で90分間加熱して乾固させた。濃縮可溶分に上記標準液1mLを添加し、これを溶解させて、GC/MS測定用溶液を作製した。
その後、下記装置及び条件にて、上記GC/MS測定用溶液1μLを用いて、GC/MSの測定を実施した。
下記装置及び条件では、使用する単量体の二量体及び三量体のピークは、保持時間22分から32分までの間に観測されることを、別のGC/MS測定により予め確認し、そして、これに基づいて、上記GC/MS測定用溶液のGC/MS測定において保持時間22分から32分までの間に観測されたピークの総面積値を、単量体の2量体及び3量体等を含む成分に由来するものとした。こうして、上記GC/MS測定用溶液中に含まれる成分の合計量を算出した。
なお、熱安定剤等の添加剤に由来するピークが上記保持時間の範囲に現れた場合には、添加剤由来のピークの分の面積値を総面積値から差し引いて、成分の合計量の計算を行った。
・測定装置
Agilent社製、GC/MS GC−7890A、MSD−5975C
・測定条件
カラム:HP−5MS(長さ30m、内径0.25mm、膜厚0.25μm)
キャリアガス:ヘリウム(1mL/分)
検出器:MSD
イオン化法:EI
オーブン温度:50℃(5分ホールド)〜(10℃/分で昇温)〜325℃(10分ホールド)
注入口温度:325℃
トランスファー温度:325℃
質量スペクトル範囲:20〜800
スプリット比:10:1
注入量:1μL
内部標準物質:オクタデシル3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナート
上記GC/MSの測定におけるデータを下記の手順に従って処理した。
検出されたオクタデシル3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナートのピーク面積値を算出した後、樹脂試料中の、成分検出領域に検出されたピーク総面積値と比較し、成分の合計量[mg]を概算した。計算式を下記に示す。
(成分の合計量[mg])=(オクタデシル3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナートの添加量0.25[mg])×(成分のピーク総面積値)/オクタデシル3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオナートのピーク面積値)
この成分の合計量を再沈処理した後の樹脂試料の量で割り、成分の合計の含有量(質量%)を算出した。
なお、GC/MSのトータルイオンクロマトグラムは、オーブン温度が高くなるにつれて、ベースラインが緩やかに上昇することがある。ベースラインの傾きが大きくなった箇所については、正確なピーク面積値を算出するため、ベースラインの傾きを考慮して、積分を数回に分けて行い、そして、これらの積分値を合算して「成分のピーク総面積値」とした。
<特定の分子量範囲の成分の割合>
上記(I)の分子量測定装置を用いて、分子量500以上1万以下の成分による分画より、重量平均分子量1万以下の成分の含有量とした。また、同様に、重量平均分子量1万超5万以下の成分の含有量を求めた。さらに、重量平均分子量1万超5万以下の成分の含有量(a)に対する、重量平均分子量5万超の成分の含有量(b)の割合(b/a)を算出した。評価結果を表1に示す。
<ガラス転移温度の測定>
後述の実施例及び比較例で得られたアクリル系樹脂について、熱分析装置(Perkin Elmer社製、Diamond DSC)を用いて、ASTM−D−3418に準拠して測定を行い、中点法によりガラス転移温度(℃)を算出した。評価結果を表1に示す。評価結果を表1に示す。
<重量平均分子量の増加率>
後述の実施例及び比較例で得られたアクリル系樹脂の重量平均分子量の増加率(Mw増加率)は加熱前後の重量平均分子量から算出した。具体的には、真空乾燥機を240℃に昇温した後、アルミカップに秤取った2gのサンプルを乾燥機内に入れ、減圧一定装置で10mmHgの圧力に制御しながら240℃で1時間保持し、その前後のサンプルのGPC測定を行った。Mw増加率は
([加熱後のMw]−[加熱前のMw])/[加熱前のMw]×100(%)
として計算した。評価結果を表1に示す。
<シートの熱変色性>
後述の実施例及び比較例で得られたアクリル系樹脂を、押出機(プラスチック工学研究所製、φ32mm単軸押出機)(L/D=32、ベント数:1個)を、設定温度:280℃、ロール温度:(ガラス転移温度−20℃)から(ガラス転移温度+15℃)まで範囲の条件で用いて、幅約12cm、約130μm厚のシートに製膜した。
得られたシートを10cm角に切断し、テンションのかからない状態で100℃に設定した乾燥機(PHH−201M;エスペック製)で48時間放置した。前後のシートの変色度合を目視観察した。明らかに前後で変色が分かるものを「×」、わずかに変色が認められるものを「△」、変色がみとめられないものを「○」と評価した。評価結果を表1に示す。
<シートのトリミング性>
後述の実施例及び比較例で得られたアクリル系樹脂を、上述の<シートの熱変色性>における方法と同様の方法を用いて、製膜した。
得られたシートを巻取り速度3m/分で送り出しながら、シートの中央部をシアーカッターで切断することで、広幅シートとした際のトリミング性を模擬的に評価した。ひび割れを生じることなく切断できた場合を「○」、切断後に確認するとひび割れをわずかに生じていた場合を「△」、切断時にひび割れを多数生じた場合を「×」と評価した。評価結果を表1に示す。
<気泡の有無(フィルム表面の気泡数)>
後述の実施例及び比較例で得られたアクリル系樹脂を用いて、押出機(プラスチック工学研究所製、φ32mm単軸押出機)(L/D=32、ベント数:1個)を、設定温度:270℃、ロール温度:(ガラス転移温度−10℃)にて、約100μm厚、約12cm幅のフィルムを製造した。使用した樹脂は事前に105℃設定のオーブンにて24時間乾燥させておいた。
製造したフィルムを、温度が安定してから約5分経過後から、約20cmずつ合計10枚切り出した。そして、各フィルムの表面を光学顕微鏡を用いて観察し、フィルム100cm当たりに含まれる長径が100μm以上の気泡の個数を各フィルムについて数えて、当該個数の10枚での平均値を算出した。評価結果を表1に示す。
<ロールへの貼り付き防止性>
後述の実施例及び比較例で得られたアクリル系樹脂を、押出機(プラスチック工学研究所製、φ32mm単軸押出機)(L/D=32、ベント数:1個)を、設定温度:270℃、スクリュー回転数15rpm、ロール回転速度1m/分、ロール温度:(ガラス転移温度−20℃)から(ガラス転移温度+15℃)まで範囲の条件で用いて、約100μm厚のシートに製膜した。
シートは、設定温度を変化させることが可能な第一温調ロール(材質:S45C、ハードクロムメッキ処理、表面粗度0.2S、鏡面仕上げ)を介して、第二ロールに巻き取った。ここで、第一温調ロール及び第二ロールの外径はともに15cmとし、第一温調ロールと第二ロールとの間の距離(両ロールの中心間距離)は24cmとした。第一温調ロールの中心の高さと第二ロールの中心の高さとは同じに設定した。
図2に、本実施形態のアクリル系樹脂のロールへの貼り付き防止性の評価における、製膜時の第一温調ロール及び第二ロールの周辺の様子を示す。
図2に示す通り、第1温調ロールから第二ロールに向かうシートは、第1温調ロールの最下端から所定距離だけロールの外周に沿って貼り付き、ロールから離反し、その後、ほぼ同径の第二ロールに巻き取られる。図中の実線は、本試験における定常時のフィルムを示しており、ここで、第1温調ロールの最下端と第1温調ロールの断面中心と上記離反点とがなす角度をθ(図2参照)としたとき、定常時における角度θは本試験においては通常40°である。一方、図中の破線は、貼付き時のフィルムを示しており、本試験では、上記角度θが90°である時を貼付き時とする。
このとき、上記角度θが90°に達した時点での第1温調ロールの設定温度を貼付開始温度として、(貼付開始温度−ガラス転移温度)の差温(℃)を観察した。
そして、差温が+7℃以上のものを「◎」、差温が+5℃以上のものを「○」、+5℃未満のものを「×」として、ロールへの貼り付き防止性の評価の指標とした。(貼付開始温度−ガラス転移温度)の差が大きいほど、ロールへの貼り付き防止性が良好であると評価した。評価結果を表1に示す。
<全光線透過率の測定>
後述の実施例及び比較例で得られたアクリル系樹脂からなるフィルム(約100μm厚)を用いて、ISO13468−1規格に準拠して、全光線透過率(%)の測定を行い、透明性の指標とした。評価結果を表1に示す。
[実施例1]
パドル翼を備え付けた撹拌装置、温度センサー、冷却管、窒素導入管を付した200Lの反応釜に、41.0kgのメタクリル酸メチル(MMA)、10.0kgの2−(ヒドロキシメチル)アクリル酸メチル(Combi Bloks社製)、50.0kgのトルエン、2kgのメタノールを仕込み、原料溶液を調製した。これに窒素を通じつつ、撹拌し液温度を90℃まで昇温した。
別途、0.05kgのt−ブチルパーオキシイソプロピルカーボネートと0.36kgのトルエンを混合した開始剤フィード液を調製した。
原料溶液温度が97℃に到達したところで、開始剤フィード液のフィードを(1)〜(3)のプロファイルにて開始した。
(1)0.0〜1.0時間:フィード速度0.10kg/時
(2)1.0〜5.0時間:フィード速度0.05kg/時
(3)5.0〜6.0時間:フィード速度0.10kg/時
合計6時間かけて開始剤をフィードした(B時間=6時間)後、さらに3時間反応させて、合計9時間かけて重合反応を完結させた。
重合反応中、内温は96±2℃で制御した。得られた重合体溶液に、51gのリン酸ステアリル/リン酸ジステアリル混合物を加え、還流下(約90〜98℃)で5時間、環化縮合反応を行った。
得られた重合液を4フォアベント、1バックベント付φ42mm二軸脱揮押出機を用いて、140rpm、樹脂量換算で10kg/時で環化縮合反応及び、脱揮処理を行い、樹脂ペレットを得た。得られた樹脂の組成は、MMA単位:82質量%、ラクトン環構造単位:17質量%、MHMA単位:1質量%であり、ガラス転移温度は129℃であった。
なお、実施例1における製造方法は、前述の製法の条件(i)、(ii)、(iv)、(v)を満たしていたが、条件(iii)を満たしていなかった。
[比較例1]
パドル翼を備え付けた撹拌装置、温度センサー、冷却管、窒素導入管を付した20Lの反応釜に、4.1kgのメタクリル酸メチル(MMA)、1kgの2−(ヒドロキシメチル)アクリル酸メチル(Combi Bloks社製)、連鎖移動剤として全単量体の総量100質量部に対して0.20質量部のn−ドデシルメルカプタン、5kgのトルエン、0.175kgのメタノールを仕込み、これに窒素を通じつつ、撹拌しつつ107℃まで昇温した。
100rpmで撹拌しながら窒素ガスを10分間バブリングした後、窒素雰囲気下で昇温を開始した。重合槽内の温度が100℃に達した時点で、重合槽内にt−ブチルパーオキシイソプロピルカーボネートを全単量体の総量100質量部に対して0.15質量部加え、重合温度105〜110℃、還流下で15時間、重合反応を行った。得られた重合体溶液に、5.1gのリン酸ステアリル/リン酸ジステアリル混合物を加え、還流下(約90〜110℃)で5時間、環化縮合反応を行った。
得られた重合液を4フォアベント、1バックベント付φ42mm脱揮押出機を用いて、140rpm、樹脂量換算で10kg/時で環化縮合反応及び、脱揮処理を行い、樹脂ペレットを得た。得られた樹脂の組成は、MMA単位:82質量%、ラクトン環構造単位:17質量%、MHMA単位:1質量%であり、ガラス転移温度は129℃であった。
なお、比較例1における製造方法は、前述の製法の条件(i)を満たしていなかった。
[比較例2]
パドル翼を備え付けた撹拌装置、温度センサー、冷却管、窒素導入管を付した20Lの反応釜に、4.1kgのメタクリル酸メチル(MMA)、1kgの2−(ヒドロキシメチル)アクリル酸メチル(Combi Bloks社製)、連鎖移動剤として全単量体の総量100質量部に対して0.20質量部のn−ドデシルメルカプタン、5kgのトルエンを仕込み、これに窒素を通じつつ、撹拌しつつ90℃まで昇温した。
100rpmで撹拌しながら窒素ガスを10分間バブリングした後、窒素雰囲気下で昇温を開始した。重合槽内の温度が100℃に達した時点で、重合槽内にt−ブチルパーオキシイソプロピルカーボネートを全単量体の総量100質量部に対して0.15質量部加え、重合温度105〜110℃、還流下で15時間、重合反応を行った。得られた重合体溶液に、5.1gのリン酸ステアリル/リン酸ジステアリル混合物を加え、還流下(約90〜110℃)で5時間、環化縮合反応を行った。
得られた重合液を4フォアベント、1バックベント付φ42mm脱揮押出機を用いて、140rpm、樹脂量換算で10kg/時で環化縮合反応及び、脱揮処理を行い、樹脂ペレットを得た。得られた樹脂の組成は、MMA単位:82質量%、ラクトン環構造単位:17質量%、MHMA単位:1質量%であり、ガラス転移温度は129℃であった。
なお、比較例2における製造方法は、前述の製法の条件(i)を満たしていなかった。
[実施例2]
パドル翼を備え付けた撹拌装置、温度センサー、冷却管、窒素導入管を付した200Lの反応釜に、41.0kgのメタクリル酸メチル(MMA)、10.0kgの2−(ヒドロキシメチル)アクリル酸メチル(Combi Bloks社製)、50.0kgのトルエン、2kgのメタノールを仕込み、原料溶液を調製した。これに窒素を通じつつ、撹拌し液温度を90℃まで昇温した。
別途、0.05kgのt−ブチルパーオキシイソプロピルカーボネートと0.36kgのトルエンを混合した開始剤フィード液を調製した。
原料溶液温度が97℃に到達したところで、開始剤フィード液のフィードを(1)〜(4)のプロファイルにて開始した。
(1)0.0〜0.5時間:フィード速度0.20kg/時
(2)0.5〜1.0時間:フィード速度0.10kg/時
(3)1.0〜3.0時間:フィード速度0.06kg/時
(4)3.0〜8.0時間:フィード速度0.028kg/時
合計8時間かけて開始剤をフィードした(B時間=8時間)後、さらに1時間反応させて、合計9時間かけて重合反応を完結させた。
重合反応中、内温は96±2℃で制御した。得られた重合体溶液に、51gのリン酸ステアリル/リン酸ジステアリル混合物を加え、還流下(約90〜98℃)で5時間、環化縮合反応を行った。
得られた重合液を4フォアベント、1バックベント付φ42mm二軸脱揮押出機を用いて、140rpm、樹脂量換算で10kg/時で環化縮合反応及び、脱揮処理を行い、樹脂ペレットを得た。得られた樹脂の組成は、MMA単位:82質量%、ラクトン環構造単位:17質量%、MHMA単位:1質量%であり、ガラス転移温度は129℃であった。
なお、実施例2における製造方法は、前述の製法の条件(i)〜(v)を満たしていた。
[実施例3]
実施例2で得られたペレット100質量部に対し、チヌビンP(BASF社製)0.03質量部、及び、AD−2112(ADEKA社製)0.10質量部を、Φ26mm二軸押出機(3ベント、シリンダー温度260℃設定、TEM−26SS;東芝機械社製)を用いて混練し、樹脂ペレットを得た。
得られた樹脂の組成は、MMA単位:82質量%、ラクトン環構造単位:17質量%、MHMA単位:1質量%であり、ガラス転移温度は129℃であった。
Figure 2017186522
本発明によれば、高いガラス転移温度を有しながら、平均分子量が高く、かつ、分子量分布が小さく、更には、熱安定性が高いため、成形時や成形後のフィルムの機械的強度に優れたアクリル系樹脂を提供できる。また、本発明による樹脂は、各種画像表示装置(液晶表示装置、有機EL表示装置、PDP等)に用いる光学部材に好適に用いることができる。

Claims (6)

  1. 主鎖に環構造を有する熱可塑性アクリル系樹脂であって、
    ガラス転移温度が115℃以上、
    重量平均分子量が10万以上、分子量分布が2.5以下、
    下記式(1)で示される10mmHgに減圧しながら240℃で1時間加熱した前後の重量平均分子量の増加率が5%以下である、
    式(1):[加熱後のMw]−[加熱前のMw])/[加熱前のMw]×100(%)
    アクリル系樹脂。
  2. GC/MSの測定を実施したときに、保持時間22〜32分に検出される成分の合計の含有量が、前記アクリル系樹脂を100質量%として、0.01〜0.40質量%である、請求項1に記載のアクリル系樹脂。
  3. ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量が1万以下の成分の含有量が、前記アクリル系樹脂を100質量%として、0.1〜5.0質量%である、請求項1または2に記載のアクリル系樹脂。
  4. 紫外線吸収剤及び/又は酸化防止剤を含有する、請求項1〜3のいずれか一項に記載のアクリル系樹脂。
  5. 請求項1〜4のいずれか一項に記載のアクリル系樹脂を含む、光学フィルム。
  6. 請求項1〜4のいずれか一項に記載のアクリル系樹脂を含む、画像表示装置。
JP2017015881A 2016-03-31 2017-01-31 熱可塑性アクリル系樹脂 Pending JP2017186522A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016072968 2016-03-31
JP2016072968 2016-03-31

Publications (1)

Publication Number Publication Date
JP2017186522A true JP2017186522A (ja) 2017-10-12

Family

ID=60043948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017015881A Pending JP2017186522A (ja) 2016-03-31 2017-01-31 熱可塑性アクリル系樹脂

Country Status (1)

Country Link
JP (1) JP2017186522A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028043A (ja) * 2016-08-19 2018-02-22 旭化成株式会社 メタクリル系樹脂、及びメタクリル系樹脂組成物
JP2020147966A (ja) * 2019-03-13 2020-09-17 首都高速道路株式会社 コンクリート版の水分の蒸発を抑制する施工方法及び積層構造体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180305A (ja) * 2009-02-04 2010-08-19 Nippon Shokubai Co Ltd アクリル系樹脂およびその製造方法
JP2017101225A (ja) * 2015-11-20 2017-06-08 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム、製造方法
JP2017125185A (ja) * 2016-01-07 2017-07-20 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180305A (ja) * 2009-02-04 2010-08-19 Nippon Shokubai Co Ltd アクリル系樹脂およびその製造方法
JP2017101225A (ja) * 2015-11-20 2017-06-08 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム、製造方法
JP2017125185A (ja) * 2016-01-07 2017-07-20 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028043A (ja) * 2016-08-19 2018-02-22 旭化成株式会社 メタクリル系樹脂、及びメタクリル系樹脂組成物
JP2020147966A (ja) * 2019-03-13 2020-09-17 首都高速道路株式会社 コンクリート版の水分の蒸発を抑制する施工方法及び積層構造体
JP7317527B2 (ja) 2019-03-13 2023-07-31 首都高速道路株式会社 コンクリート版の水分の蒸発を抑制する施工方法

Similar Documents

Publication Publication Date Title
JP2010180305A (ja) アクリル系樹脂およびその製造方法
JP4340128B2 (ja) ラクトン環含有重合体の製造方法
CN108690162B (zh) 甲基丙烯酸系树脂成型体、光学构件或汽车构件
WO2015199038A1 (ja) メタクリル樹脂組成物およびその成形体
KR100905451B1 (ko) 열가소성 수지 조성물 및 그의 제조 방법
US11286237B2 (en) Method for manufacturing methacrylic resin composition
CN112154185B (zh) 甲基丙烯酸系树脂组合物和成型体
EP1911777A1 (en) Low birefringent copolymer
JP2018009141A (ja) メタクリル系樹脂及びその製造方法、成形体、光学部品又は自動車部品
JP2002060424A (ja) 透明耐熱性樹脂およびその製造方法
JP2017186522A (ja) 熱可塑性アクリル系樹脂
JP7421404B2 (ja) アクリル系樹脂組成物
JP5383381B2 (ja) 光学フィルムの製造方法
JP4509628B2 (ja) 熱可塑性樹脂組成物
JP5546235B2 (ja) 光学フィルム
JP5355373B2 (ja) 熱可塑性樹脂組成物および光学フィルム
JP6151422B1 (ja) メタクリル系樹脂組成物、及び光学部品
JP5004716B2 (ja) 光学用フィルム及びその製造方法
US10800875B2 (en) Methacrylic resin and production method, molded article, and optical or automotive component of same
JP6247372B2 (ja) メタクリル系樹脂組成物
JP6671140B2 (ja) 熱可塑性樹脂及びその製造方法
JP2019099593A (ja) メタクリル系樹脂、メタクリル系樹脂組成物、成形体、光学部材及び自動車部品
JP6614767B2 (ja) 良色相の成形品およびその製造方法
JP7177724B2 (ja) 成形体の製造方法
JP2014065805A (ja) アクリル樹脂組成物およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210810

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210817

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210824

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211001

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211005

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230124

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230602