JP5355373B2 - 熱可塑性樹脂組成物および光学フィルム - Google Patents

熱可塑性樹脂組成物および光学フィルム Download PDF

Info

Publication number
JP5355373B2
JP5355373B2 JP2009286103A JP2009286103A JP5355373B2 JP 5355373 B2 JP5355373 B2 JP 5355373B2 JP 2009286103 A JP2009286103 A JP 2009286103A JP 2009286103 A JP2009286103 A JP 2009286103A JP 5355373 B2 JP5355373 B2 JP 5355373B2
Authority
JP
Japan
Prior art keywords
weight
film
acrylic polymer
polymerization
ring structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009286103A
Other languages
English (en)
Other versions
JP2011068845A (ja
Inventor
隆司 大西
宏和 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2009286103A priority Critical patent/JP5355373B2/ja
Publication of JP2011068845A publication Critical patent/JP2011068845A/ja
Application granted granted Critical
Publication of JP5355373B2 publication Critical patent/JP5355373B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、主鎖に環構造を有するアクリル系重合体とセルロースエステルを含む熱可塑性樹脂組成物および光学フィルムに関する。
アクリル系樹脂は、透明性だけでなく、表面光沢や耐候性に優れ、しかも、機械的強度、成形加工性、表面硬度のバランスがとれているので、自動車や家電製品などにおける光学関連用途に幅広く使用されている。 近年、透明性と耐熱性とを兼ね備えたアクリル系樹脂として、主鎖に環構造を有するアクリル系重合体を含む樹脂が開発され、光学フィルム用途などへの適用が検討されている。主鎖に環構造を有するアクリル系重合体は、一般的なアクリル系樹脂に比べてガラス転移温度(Tg)が高く、例えば、画像表示装置において光源などの発熱部に近接した配置が容易となるなど、実用上の様々な利点を有する。
例えば特許文献1、2には、分子鎖内に水酸基とエステル基とを有する重合体を環化反応させて得られた、ラクトン環構造を主鎖に有するアクリル系重合体を含む樹脂が開示されている。特許文献3には、環構造としてグルタルイミド構造を主鎖に有するアクリル系重合体を含む樹脂が開示されており、特許文献4には、環構造としてグルタル酸無水物構造を主鎖に有するアクリル系重合体を含む樹脂が開示されている。しかし、主鎖に環構造を有するアクリル系重合体を含む樹脂は、械的強度、特にフィルムの可とう性が不足する傾向があり、光学フィルムとして使用する場合は、延伸やゴム添加などの手法を用いて、機械的強度を向上させる必要があった。
一方、主鎖に環構造を有するアクリル系重合体は、従来偏光子保護フィルムなどの光学フィルムに用いられてきたセルロースエステルを溶融成膜する場合の改質剤としても有用であることが特許文献5に記載されており、セルロースエステルフィルムの馬の背故障や凸状故障等のフィルム原反の変形故障を抑制することが知られている。しかし、セルロースエステルにアクリル系重合体を添加する場合の添加量は通常10%程度である。
特開2006−96960号公報 特開2005−146084号公報 WO05/108438号公報 WO05/105918号公報 特開2009−1744号公報
上述したように、主鎖に環構造を有するアクリル系重合体を含む樹脂の機械的特性を改良する手法としては、主に延伸とゴム添加の手法が知られている。しかしながら、延伸した場合、延伸後のフィルムの可とう性は改良されるが、未延伸フィルムは脆く、成形時のフィルムの割れにより生産性が低下するという課題があった。また、ゴム添加の場合、未延伸フィルムも含めて機械的特性は改善されるが、成形時にゴムが凝集してしまうことがあり、光学フィルム用途には外観欠点の抑制という問題点を克服する必要があった。
本発明は、主鎖に環構造を有するアクリル系重合体とセルロースエステルを含む熱可塑性樹脂組成物および光学フィルムであって、主鎖に環構造を有するアクリル系重合体とセルロースエステルに共通の優れた光学特性と高い耐熱性を有しながら、機械的強度に優れた樹脂組成物および光学フィルムを提供することを目的とする。
本発明は、主鎖に環構造を有するアクリル系重合体50〜95重量%とセルロースエステル5〜50重量%を含む熱可塑性樹脂組成物である。
前記主鎖に環構造を有するアクリル系重合体は環構造を25重量%以上含むことが好ましい。
また、本発明は前記熱可塑性樹脂組成物からなる光学フィルムである。
本発明の樹脂組成物は、主鎖に環構造を有するアクリル系重合体とセルロースエステルを含む樹脂組成物であって、高い光学特性と耐熱性を有しながら、特に機械的強度に優れており、光学フィルムに成形した場合、可とう性の良いフィルムを提供することが出来る。
これ以降の説明において特に記載がない限り、「%」は「重量%」を、「部」は「重量部」を、それぞれ意味する。また、範囲を示す「A〜B」は、A以上B以下であることを示す。さらに、含有率と含有割合は同じ意味で用いる。

《主鎖に環構造を有するアクリル系重合体》
本発明における主鎖に環構造を有するアクリル系重合体は、主鎖に(メタ)アクリル酸エステル単量体由来の構造と環構造を含む。(メタ)アクリル酸エステル単量体由来の構造単位の含有割合と環構造単位の含有割合の合計を主鎖中に好ましくは50重量%以上、より好ましくは70重量%以上、さらに好ましくは90重量%、特に好ましくは95重量%以上、最も好ましくは99重量%以上含む。特に環構造の含有率は、好ましくは25重量%以上、更に好ましくは35重量%以上、最も好ましくは40重量%以上である。
(メタ)アクリル酸エステル単位は、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどの単量体に由来する構成単位である。これらの構成単位を2種類以上有していてもよい。メタクリル酸メチル単位を有することが好ましく、この場合、アクリル系重合体ならびにアクリル系重合体を含む組成物および当該組成物を成形して得られたフィルムなどの成形品の熱安定性が向上する。
アクリル系重合体は、(メタ)アクリル酸エステル単位以外の構成単位を有していてもよい。環化反応により主鎖に環構造を導入するため、アクリル系重合体は重合時に水酸基やカルボン酸基を有する単量体を共重合することが好ましい。具体的には、水酸基を有する単量体として、2−(ヒドロキシメチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチル、2−(ヒドロキシエチル)アクリル酸メチル、また、カルボン酸基を有する単量体として(メタ)アクリル酸単位は、例えば、アクリル酸、メタクリル酸、クロトン酸、2−(ヒドロキシメチル)アクリル酸、2−(ヒドロキシエチル)アクリル酸などの単量体に由来する構成単位が挙げられる。これらの単量体を2種類以上共重合有していてもよい。水酸基やカルボン酸基を有する単量体は環化反応により環構造へと変化するが、主鎖に環構造を有するアクリル系重合体に未反応の水酸基やカルボン酸基を有する単量体由来の構成単位が含まれていてもよい。
また、アクリル系重合体はその他の構成単位を有していてもよく、このような構成単位は、例えば、スチレン、ビニルトルエン、α−メチルスチレン、α−ヒドロキシメチルスチレン、α−ヒドロキシエチルスチレン、アクリロニトリル、メタクリロニトリル、メタリルアルコール、アリルアルコール、エチレン、プロピレン、4−メチル−1−ペンテン、酢酸ビニル、2−ヒドロキシメチル−1−ブテン、メチルビニルケトン、N−ビニルピロリドン、N−ビニルカルバゾールなどの単量体に由来する構成単位である。アクリル系重合体は、これらの構成単位を2種以上有していてもよい。
本発明における熱可塑性アクリル系重合体は主鎖に環構造を有する。そのため、アクリル系重合体およびアクリル系重合体を含む組成物のTgが高くなり、当該組成物から得た樹脂成形品の耐熱性が向上する。このように主鎖に環構造を有するアクリル系重合体から得た樹脂成形品、例えばフィルムは画像表示装置における光源などの発熱部近傍への配置が容易になるなど光学部材としての用途に好適である。
環構造の種類は特に限定されないが、例えば、ラクトン環構造、無水グルタル酸構造、グルタルイミド構造、N−置換マレイミド構造および無水マレイン酸構造から選ばれる少なくとも1種である。この内、セルロースエステル、特にセルロースアセテートへの相溶性からはラクトン環構造が好ましい。
アクリル系重合体が主鎖に有していてもよいラクトン環構造は特に限定されず、例えば、4から8員環であってもよいが、環構造の安定性に優れることから5員環または6員環であることが好ましく、6員環であることがより好ましい。6員環であるラクトン環構造は、例えば、特開2004−168882号公報に開示されている構造であるが、前駆体の重合収率が高いこと、前駆体の環化反応により、高いラクトン環含有率を有するアクリル系重合体が得られること、メタクリル酸メチル単位を構成単位として有する重合体を前駆体にできること、などの理由から以下の一般式(1)に示される構造が好ましい。
Figure 0005355373
上記一般式(1)において、R1、R2およびR3は、互いに独立して、水素原子または炭素数1から20の範囲の有機残基である。当該有機残基は酸素原子を含んでいてもよい。
一般式(1)における有機残基は、例えば、メチル基、エチル基、プロピル基などの炭素数1から20の範囲のアルキル基、エテニル基、プロペニル基などの炭素数1から20の範囲の不飽和脂肪族炭化水素基、フェニル基、ナフチル基などの炭素数1から20の範囲の芳香族炭化水素基であり、上記アルキル基、上記不飽和脂肪族炭化水素基、上記芳香族炭化水素基は、水素原子の一つ以上が、水酸基、カルボキシル基、エーテル基、およびエステル基から選ばれる少なくとも1種類の基により置換されていてもよい。
アクリル系重合体が主鎖に環構造を有する場合、環構造の含有率は特に限定はされないが、セルロースエステル、特に、セルロースアセテートとの相溶性から25重量%以上が好ましく、より好ましくは25〜90重量%、さらに好ましくは25〜70重量%、特に好ましくは30〜60重量%、最も好ましくは35〜60重量%である。
アクリル系重合体における環構造の含有率が過渡に小さくなると、アクリル系重合体ならびに当該組成物から得られるフィルムなどの成形品における耐熱性の低下や、耐溶剤性および表面硬度が不十分となることがある。一方、上記含有率が過渡に大きくなると、アクリル系重合体の成形性、ハンドリング性が低下する。
主鎖に環構造を有するアクリル系重合体は特に限定されないが、後述の実施例からも分かるように、熱可塑性であることが好ましい。熱可塑性であれば、ペレット化などの溶融成形が可能となり、成形性が向上する。
本発明における主鎖に環構造を有するアクリル系重合体の重量平均分子量(Mw)は8万以上、分散度は3.5以下が好ましく、より好ましくはMw10万以上、分散度は3以下である。尚、重量平均分子量と分散度は、GPC(ゲルパーミエーションクロマトグラフ)を用いて、ポリスチレン換算により求めた。分散度とは、重量平均分子量/数平均分子量であり、GPCで重量平均分子量、数平均分子量の測定結果から算出するものである。本発明における主鎖に環構造を有するアクリル系重合体の重量平均分子量を8万以上、分散度を3.5以下とすることにより、樹脂の分岐構造が抑制され、加工時の熱安定性が改善され、成形品とした時の強度や外観が改善される。
本発明における主鎖に環構造を有するアクリル系重合体のガラス転移温度(Tg)は、特に限定されないが、110℃以上が好ましい。アクリル系重合体としてのTgを向上できることから、アクリル系重合体のTgは115℃以上がより好ましく、120℃以上がさらに好ましい。なお、一般的なアクリル系重合体のTgは100℃程度である。
主鎖に環構造を有するアクリル系重合体は公知の方法により製造できる。環構造が無水グルタル酸構造あるいはグルタルイミド構造であるアクリル系重合体は、例えば、WO2007/26659号公報あるいはWO2005/108438号公報に記載の方法により製造できる。環構造が無水マレイン酸構造あるいはN−置換マレイミド構造であるアクリル系重合体は、例えば、特開昭57−153008号公報、特開2007−31537号公報に記載の方法により製造できる。環構造がラクトン環構造であるアクリル系重合体は、例えば、特開2006−96960号公報、特開2006−171464号公報あるいは特開2007−63541号公報に記載の方法により製造できる。
本発明における主鎖に環構造を有するアクリル系重合体の製造方法としては、アクリル系重合体を重合する重合工程後に環化反応を行い、主鎖に環構造を導入することが好ましい。
重合工程に供する単量体成分中における(メタ)アクリル酸エステルの含有割合は、好ましくは30〜95重量%、より好ましくは50〜90重量%、さらに好ましくは60〜90重量%、特に好ましくは65〜85重量%である。(メタ)アクリル酸エステルの含有割合が30重量%未満であると、得られたアクリル系重合体の光学的特性が劣ることがある。逆に、(メタ)アクリル酸エステルの含有割合が95重量%を超えると、得られたアクリル系重合体の耐熱性が低下することがある。
また、重合工程に供する単量体成分中における(メタ)アクリル酸の含有割合は、好ましくは0〜30重量%、より好ましくは0〜20重量%、さらに好ましくは0〜10重量%、特に好ましくは0〜5重量%である。(メタ)アクリル酸の含有割合が30重量%を超えると、重合工程などでゲル化が起こることがある。
重合工程に供する単量体成分には、(メタ)アクリル酸エステルおよび(メタ)アクリル酸以外の単量体を配合してもよい。これらの単量体は、単独で用いても2種以上を併用してもよい。
重合温度、重合時間は、使用する単量体(単量体組成物)の種類、使用比率等によって異なるが、好ましくは、重合温度が0〜150℃の範囲内、重合時間が0.5〜20時間の範囲内であり、より好ましくは、重合温度が80〜140℃の範囲内、重合時間が1〜10時間の範囲内である。 重合溶媒としては有機溶媒が好ましく、特に限定されるものではないが、例えば、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素系溶媒;メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メタノール、エタノール、ブタノールなどのアルコール系溶媒などが挙げられる。これらの溶媒は、単独で用いても2種以上を併用してもよい。
エステル交換反応などの脱アルコール反応により起きる主鎖間の架橋反応が抑制できることから、重合溶媒はアルコール系溶媒を含むことが好ましい。ただし、アルコール系溶媒の含有割合が高い場合は主鎖に環構造を有する熱可塑性アクリル系重合体の溶解性が悪くなるため、有機溶媒中のアルコール系溶媒の含有割合は0〜90%が好ましく、より好ましくは0〜50%、さらに好ましくは0〜20%、特に好ましくは0〜5%である。
また、重合溶媒の沸点が高すぎると、最終的に得られるアクリル系重合体の残存揮発分が多くなることから、沸点が40〜200℃である溶媒が好ましく、溶液製膜を実施する場合は、脱揮せずに溶液のままでセルロースエステルと混合することも可能であるが、その場合、重合溶媒の沸点は40〜100℃が好ましい。重合溶媒の沸点が100℃を超える場合は、重合槽内を減圧することにより有機溶媒の沸点を下げる方法や、ジャケット部を冷却、または、重合槽内に導入したコイルによる冷却で徐熱を行う方法によって温度を制御する形態も好ましい重合形態のひとつである。
重合反応時には、必要に応じて、重合開始剤を添加してもよい。重合開始剤としては、特に限定されるものではないが、例えば、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルパーオキシイソプロピルカーボネート、t−アミルパーオキシ−2−エチルヘキサノエートなどの有機過酸化物;2,2’−アゾビス(イソブチロニトリル)、1,1’−アゾビス(シクロヘキサンカルボニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2’−アゾビスイソブチレート;などが挙げられる。これらの重合開始剤は、単独で用いても2種以上を併用してもよい。重合開始剤の使用量は、単量体の組合せや反応条件などに応じて適宜設定すればよく、特に限定されるものではない。
重合を行う際には、重合溶液のゲル化を抑制するために、重合溶液中に生成したアクリル系重合体の濃度が60重量%以下となるように制御することが好ましい。具体的には、重合溶液中に生成したアクリル系重合体の濃度が60重量%を超える場合には、重合溶媒を重合溶液に追加して60重量%以下となるように制御することが好ましい。重合溶液中に生成したアクリル系重合体の濃度は、より好ましくは45重量%以下、さらに好ましくは40重量%以下である。なお、重合溶液中に生成したアクリル系重合体の濃度が低すぎると生産性が低下するので、重合溶液中に生成したアクリル系重合体の濃度は、好ましくは10重量%以上、より好ましくは20重量%以上である。
重合溶液の粘度や重合温度を制御するために、重合中に有機溶媒を追加するのも好ましい形態のひとつである。追加する形態としては、特に限定されるものではなく、例えば、重合溶液に連続的に重合溶媒を添加してもよいし、間欠的に重合溶媒を添加してもよい。また、添加する重合溶媒としては、例えば、重合反応の初期仕込み時に使用した溶媒と同じ種類の重合溶媒であってもよいし、異なる種類の重合溶媒であってもよいが、重合反応の初期仕込み時に使用した溶媒と同じ種類の溶媒を用いることが好ましい。また、添加する重合溶媒は、1種のみの単一溶媒であっても2種以上の混合溶媒であってもよい。樹脂の重合中に重合溶媒を追加することにより、重合槽内の重合溶液の粘度を一定の範囲内に制御することが可能となり、十分な攪拌を行うことが可能となると共に、高粘度下で発生するポリマー鎖の分岐や架橋を抑制できる。また、重合温度より低温の重合溶媒を追加するため、重合で発熱する重合系中の重合温度の制御も容易となる。
以上の重合工程を終了した時点で得られる重合溶液中には、通常、得られたアクリル系重合体以外に有機溶媒が含まれているが、溶媒を完全に除去してアクリル系重合体を固体状態で取り出す必要はなく、有機溶媒を含んだ状態で、続く環化反応工程に導入することが好ましい。また、必要な場合は、固体状態で取り出した後に、続く環化反応に好適な溶媒を再添加してもよい。
環化反応は、重合後に行われることが好ましく、加熱により環化反応が促進される。主鎖にラクトン環構造または無水グルタル酸構造を有するアクリル系重合体の場合、アクリル系重合体の分子鎖中に存在するヒドロキシ基またはカルボキシル基とエステル基とが環化反応してラクトン環構造または無水グルタル酸構造を生じる反応であり、その環化反応によってアルコールが発生し、脱アルコールが行われる。主鎖にグルタルイミド構造アクリル系重合体の場合は、添加したアミノ基含有化合物のアミノ基とポリマー鎖中に存在するカルボキシル基とエステル基とが環化反応を起こし、その環化反応によって水やアルコールが発生し、脱水と脱アルコールが行われる。環構造がアクリル系重合体の分子鎖中(アクリル系重合体の主骨格中)に形成されることにより、高い耐熱性が付与される。
環化反応を行う際に、公知の環化触媒を添加することが好ましい。樹脂の重合後に環化触媒を添加することにより、単量体と触媒の副反応や重合中の分岐・架橋が抑制され、アクリル系重合体に優れた熱安定性と機械的強度を付与することが出来る。
環化触媒としてはp−トルエンスルホン酸などのエステル化触媒またはエステル交換触媒を用いてもよいし、酢酸、プロピオン酸、安息香酸、アクリル酸、メタクリル酸などの有機カルボン酸類を触媒として用いてもよい。さらに、例えば、特開昭61−254608号公報や特開昭61−261303号公報に開示されているように、塩基性化合物、酢酸亜鉛などの有機カルボン酸塩、炭酸塩などを用いてもよい。
あるいは、環化反応の触媒として有機リン化合物を用いてもよい。使用可能な有機リン酸化合物としては、例えば、メチル亜ホスホン酸、エチル亜ホスホン酸、フェニル亜ホスホン酸などのアルキル(アリール)亜ホスホン酸(ただし、これらは、互変異性体であるアルキル(アリール)ホスフィン酸になっていてもよい)およびこれらのモノエステルまたはジエステル;ジメチルホスフィン酸、ジエチルホスフィン酸、ジフェニルホスフィン酸、フェニルメチルホスフィン酸、フェニルエチルホスフィン酸などのジアルキル(アリール)ホスフィン酸およびこれらのエステル;メチルホスホン酸、エチルホスホン酸、トリフルオルメチルホスホン酸、フェニルホスホン酸などのアルキル(アリール)ホスホン酸およびこれらのモノエステルまたはジエステル;メチル亜ホスフィン酸、エチル亜ホスフィン酸、フェニル亜ホスフィン酸などのアルキル(アリール)亜ホスフィン酸およびこれらのエステル;亜リン酸メチル、亜リン酸エチル、亜リン酸フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニルなどの亜リン酸モノエステル、ジエステルまたはトリエステル;リン酸メチル、リン酸エチル、リン酸2−エチルヘキシル、リン酸イソデシル、リン酸ラウリル、リン酸ステアリル、リン酸イソステアリル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジ−2−エチルヘキシル、リン酸オクチル、リン酸ジイソデシル、リン酸ジラウリル、リン酸ジステアリル、リン酸ジイソステアリル、リン酸ジフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリイソデシル、リン酸トリラウリル、リン酸トリステアリル、リン酸トリイソステアリル、リン酸トリフェニルなどのリン酸モノエステル、ジエステルまたはトリエステル;メチルホスフィン、エチルホスフィン、フェニルホスフィン、ジメチルホスフィン、ジエチルホスフィン、ジフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィンなどのモノ−、ジ−またはトリ−アルキル(アリール)ホスフィン;メチルジクロロホスフィン、エチルジクロロホスフィン、フェニルジクロロホスフィン、ジメチルクロロホスフィン、ジエチルクロロホスフィン、ジフェニルクロロホスフィンなどのアルキル(アリール)ハロゲンホスフィン;酸化メチルホスフィン、酸化エチルホスフィン、酸化フェニルホスフィン、酸化ジメチルホスフィン、酸化ジエチルホスフィン、酸化ジフェニルホスフィン、酸化トリメチルホスフィン、酸化トリエチルホスフィン、酸化トリフェニルホスフィンなどの酸化モノ−、ジ−またはトリ−アルキル(アリール)ホスフィン;塩化テトラメチルホスホニウム、塩化テトラエチルホスホニウム、塩化テトラフェニルホスホニウムなどのハロゲン化テトラアルキル(アリール)ホスホニウム;などが挙げられる。これらの有機リン化合物は、単独で用いても2種以上を併用してもよい。これらの有機リン化合物のうち、触媒活性が高くて着色性が低いことから、アルキル(アリール)亜ホスホン酸、亜リン酸モノエステルまたはジエステル、リン酸モノエステルまたはジエステル、アルキル(アリール)ホスホン酸が好ましく、アルキル(アリール)亜ホスホン酸、亜リン酸モノエステルまたはジエステル、リン酸モノエステルまたはジエステルがより好ましく、アルキル(アリール)亜ホスホン酸、リン酸モノエステルまたはジエステルが特に好ましい。
また、塩基性の環化触媒の使用も可能であり、特開2009−144112に記載された12族元素の化合物、特に亜鉛化合物が好ましい。亜鉛化合物の具体的な種類は特に限定されず、例えば、酢酸亜鉛、プロピオン酸亜鉛、オクチル酸亜鉛などの有機亜鉛化合物;酸化亜鉛、塩化亜鉛、硫酸亜鉛などの無機亜鉛化合物;トリフルオロメタンスルホン酸亜鉛などのフッ素を含む有機亜鉛化合物;が挙げられる。
環化反応の際に用いる触媒の使用量は、特に限定されるものではないが、例えば、アクリル系重合体に対して、好ましくは0.001〜5重量%、より好ましくは0.01〜2.5重量%、さらに好ましくは0.01〜1重量%、特に好ましくは0.05〜0.5重量%である。触媒の使用量が0.001重量%未満であると、環化反応の反応率が充分に向上しないことがある。逆に、触媒の使用量が5重量%を超えると、得られたアクリル系重合体が着色することや、アクリル系重合体の主鎖が架橋して、溶融成形が困難になることがある。
触媒の添加時期は、特に限定されるものではなく、例えば、重合工程途中に添加してもよいし、重合工程後に添加してもよいし、それらの両方で添加してもよい。重合中あるいは重合後に加熱しながら触媒を添加してもよいし、環化触媒の添加後に高温で熱処理してもよい。
環化反応において加熱する方法については、特に限定されるものではなく、従来公知の方法を利用すればよい。例えば、重合工程によって得られた、重合溶媒を含む重合溶液をそのまま加熱処理してもよいし、溶媒を脱揮後に加熱処理してもよい。溶液状態でオートクレーブなどの耐圧装置中で200℃以上の温度で環化反応を行い、高温で環化反応を促進させるのも好ましい実施形態のひとつである。あるいは、揮発成分を除去するための真空装置あるいは脱揮装置を備えた加熱炉や反応装置、脱揮装置を備えた押出機などを用いて脱揮処理を行うこともできる。本発明では、触媒を含んだ重合溶液を加圧下に熱処理することが好ましい実施形態のひとつである。重合溶媒と後述する環化触媒を含んだ状態で加熱した後、更に耐圧装置中加圧下で200℃以上に加熱して環化することにより、脱揮や再溶解工程での劣化無しに、環化度が高くて耐熱性に優れた主鎖に環構造を有するアクリル系重合体を溶液状態で得ることが出来、そのままセルロースエステルと混合して溶液製膜することが可能となる。
環化反応の際に採用できる反応器は、特に限定されるものではないが、例えば、オートクレーブ、釜型反応器、熱交換器と脱揮槽とからなる脱揮装置などが挙げられ、さらに、脱揮工程を同時に併用した環化反応に好適なベント付き押出機も使用可能である。これらの反応器のうち、本発明においては、釜型反応器、オートクレーブ、熱交換器が特に好ましい。環化触媒を加えてから釜型反応器において常圧で熱処理後、オートクレーブや熱交換器などの耐圧装置を使用して加圧下で200℃以上の高温において熱処理することも好ましい実施形態のひとつである。
環化反応の際には、例えば、重合工程で得られたアクリル系重合体と重合溶媒とを含む重合溶液を無触媒で加熱反応させることも可能であるが、本発明では環化触媒を添加して加熱反応させる方法が好ましい。加熱時間は、特に限定されるものではないが、例えば、加熱温度は、好ましくは40〜300℃であり、加熱時間は、好ましくは1〜20時間、より好ましくは2〜10時間である。加熱温度が40℃未満であるか、あるいは、加熱時間が1時間未満であると、環化反応率が低下することがある。逆に、加熱温度が300℃を超えるか、あるいは、加熱時間が20時間を超えると、樹脂の着色や分解が起こることがある。
本発明においては、環化反応に特開2000-230016や特開2007−262396、特開2007−262399などに記載された脱揮工程を併用することも可能である。脱揮された主鎖に環構造を有するアクリル系重合体は重合時に用いられた溶媒や溶液製膜に好ましい低沸点の溶媒に再溶解して、溶液製膜に用いられる。
環化反応を溶剤の存在下で行い、且つ、環化反応の際に、脱揮工程を併用することが好ましい。この場合、環化反応の全体を通じて脱揮工程を併用する形態、および、脱揮工程を環化反応の過程全体にわたっては併用せずに過程の一部においてのみ併用する形態が挙げられる。脱揮工程を併用する方法では、縮合環化反応で副生するアルコールを強制的に脱揮させて除去するので、反応の平衡が生成側に有利となる。
脱揮工程とは、溶剤、残存単量体等の揮発分と、ラクトン環構造を導く環化反応により副生したアルコールを、必要により減圧加熱条件下で、除去処理する工程をいう。この除去処理が不十分であると、生成した樹脂中の残存揮発分が多くなり、成形時の変質等によって着色したり、泡やシルバーストリークなどの成形不良が起こったりする問題等が生じる。
環化反応の全体を通じて脱揮工程を併用する形態の場合、使用する装置については特に限定されないが、本発明をより効果的に行うために、熱交換器と脱揮槽からなる脱揮装置やベント付き押出機、また、前記脱揮装置と前記押出機を直列に配置したものを用いることが好ましく、熱交換器と脱揮槽からなる脱揮装置またはベント付き押出機を用いることがより好ましい。
前記熱交換器と脱揮槽からなる脱揮装置を用いる場合の反応処理温度は、150〜350℃の範囲内が好ましく、200〜300℃の範囲内がより好ましい。反応処理温度が150℃より低いと、環化反応が不十分となって残存揮発分が多くなるおそれがあり、350℃より高いと、着色や分解が起こるおそれがある。
前記熱交換器と脱揮槽からなる脱揮装置を用いる場合の、反応処理時の圧力は、931〜1.33hPa(700〜1mmHg)の範囲内が好ましく、798〜66.5hPa(600〜50mmHg)の範囲内がより好ましい。上記圧力が931hPaより高いと、アルコールを含めた揮発分が残存し易いという問題があり、1.33hPaより低いと、工業的な実施が困難になっていくという問題がある。
前記ベント付き押出機を用いる場合、ベントは1個でも複数個でもいずれでもよいが、複数個のベントを有する方が好ましい。
前記ベント付き押出機を用いる場合の反応処理温度は、150〜350℃の範囲内が好ましく、200〜300℃の範囲内がより好ましい。上記温度が150℃より低いと、環化反応が不十分となって残存揮発分が多くなるおそれがあり、350℃より高いと、着色や分解が起こるおそれがある。
前記ベント付き押出機を用いる場合の、反応処理時の圧力は、931〜1.33hPa(700〜1mmHg)の範囲内が好ましく、798〜13.3hPa(600〜10mmHg)の範囲内がより好ましい。上記圧力が931hPaより高いと、アルコールを含めた揮発分が残存し易いという問題があり、1.33hPaより低いと、工業的な実施が困難になっていくという問題がある。
なお、環化反応の全体を通じて脱揮工程を併用する形態の場合、後述するように、厳しい熱処理条件では得られる主鎖に環構造を有するアクリル系重合体の物性が悪化するおそれがあるので、好ましくは、上述した脱アルコール反応の触媒を使用し、できるだけ温和な条件で、ベント付き押出機等を用いて行うことが好ましい。
また、環化反応の全体を通じて脱揮工程を併用する形態の場合、好ましくは、重合工程で得られた重合体を溶剤とともに環化反応装置系に導入するが、この場合、必要に応じて、もう一度ベント付き押出機等の上記反応装置系に通してもよい。
脱揮工程を環化反応の過程全体にわたっては併用せずに、過程の一部においてのみ併用する形態を行ってもよい。例えば、重合体を製造した装置を、さらに加熱し、必要に応じて脱揮工程を一部併用して、環化反応を予めある程度進行させておき、その後に引き続いて脱揮工程を同時に併用した環化反応を行い、反応を完結させる形態である。
先に述べた環化反応の全体を通じて脱揮工程を併用する形態では、例えば、重合体を、二軸押出し機を用いて、250℃近い、あるいはそれ以上の高温で熱処理する時に、熱履歴の違いにより環化反応が起こる前に一部分解等が生じ、得られる主鎖に環構造を有するアクリル系重合体の物性が悪くなるおそれがある。そこで、脱揮工程を同時に併用した環化反応を行う前に、予め環化反応をある程度進行させておくと、後半の反応条件を緩和でき、得られる主鎖に環構造を有するアクリル系重合体の物性の悪化を抑制できるので好ましい。特に好ましい形態としては、脱揮工程を環化反応の開始から時間をおいて開始する形態、すなわち、重合工程で得られた重合体の分子鎖中に存在する水酸基とエステル基をあらかじめ環化反応させて環化反応率をある程度上げておき、引き続き、脱揮工程を同時に併用した環化反応を行う形態が挙げられる。具体的には、例えば、予め釜型の反応器を用いて溶剤の存在下で環化反応をある程度の反応率まで進行させておき、その後、脱揮装置のついた反応器、例えば、熱交換器と脱揮槽とからなる脱揮装置や、ベント付き押出機等で、環化反応を完結させる形態が好ましく挙げられる。特にこの形態の場合、環化反応用の触媒が存在していることがより好ましい。
上述のように、重合工程で得られた重合体の分子鎖中に存在する水酸基とエステル基とを予め環化反応させて環化反応率をある程度上げておき、引き続き、脱揮工程を同時に併用した環化反応を行う方法は、主鎖に環構造を有するアクリル系重合体を得る上で好ましい形態である。この形態により、環化反応率もより高まり、ガラス転移温度がより高く、耐熱性に優れた主鎖に環構造を有するアクリル系重合体が得られる。この場合、環化反応率の目安としては、実施例に示すダイナッミクTG測定における、150〜300℃間での重量減少率が2%以下であることが好ましく、より好ましくは1.5%以下であり、さらに好ましくは1%以下である。
脱揮工程を同時に併用した環化反応の前に予め行う環化反応の際に採用できる反応器は特に限定されないが、好ましくは、オートクレーブ、釜型反応器、熱交換器と脱揮槽とからなる脱揮装置等が挙げられ、さらに、脱揮工程を同時に併用した環化反応に好適なベント付き押出機も使用できる。より好ましくは、オートクレーブ、釜型反応器である。しかしながら、ベント付き押出機等の反応器を使用するときでも、ベント条件を温和にしたり、ベントをさせなかったり、温度条件やバレル条件、スクリュウ形状、スクリュウ運転条件等を調整することで、オートクレーブや釜型反応器での反応状態と同じ様な状態で環化反応を行うことが可能である。
脱揮工程を同時に併用した環化反応の前に予め行う環化反応の際には、好ましくは、重合工程で得られた重合体と溶剤とを含む混合物を、(i)触媒を添加して、加熱反応させる方法、(ii)無触媒で加熱反応させる方法、および、前記(i)または(ii)を加圧下で行う方法が挙げられる。
なお、環化工程において環化反応に導入する「重合体と溶剤とを含む混合物」とは、重合工程で得られた重合反応混合物をそのまま使用してもよいし、一旦溶剤を除去したのちに環化反応に適した溶剤を再添加してもよいことを意味する。
脱揮工程を同時に併用した環化反応の前に予め行う環化反応の際に再添加できる溶剤としては、特に限定されず、例えば、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;クロロホルム、DMSO、テトラヒドロフランなどでもよいが、好ましくは、重合工程で用いることができる溶剤と同じ種類の溶剤である。
上記方法(i)で添加する触媒としては、一般に用いられるp−トルエンスルホン酸等のエステル化触媒またはエステル交換触媒、塩基性化合物、有機カルボン酸塩、炭酸塩などが挙げられるが、本発明においては、前述の有機リン化合物を用いることが好ましい。
触媒の添加時期は特に限定されず、反応初期に添加しても、反応途中に添加しても、それらの両方で添加してもよい。添加する触媒の量は特に限定されないが、重合体の重量に対し、好ましくは0.001〜5重量%の範囲内、より好ましくは0.01〜2.5重量%の範囲内、さらに好ましくは0.01〜1重量%の範囲内、特に好ましくは0.05〜0.5重量%の範囲内である。方法(i)の加熱温度と加熱時間とは特に限定されないが、加熱温度としては、好ましくは室温以上、より好ましくは50℃以上であり、加熱時間としては、好ましくは1〜20時間の範囲内、より好ましくは2〜10時間の範囲内である。加熱温度が低いと、あるいは、加熱時間が短いと、環化反応率が低下するので好ましくない。また、加熱時間が長すぎると、樹脂の着色や分解が起こる場合があるので好ましくない。
上記方法(ii)としては、例えば、耐圧性の釜などを用いて、重合工程で得られた重合反応混合物をそのまま加熱する方法等が挙げられる。加熱温度としては、好ましくは100℃以上、さらに好ましくは150℃以上である。加熱時間としては、好ましくは1〜20時間の範囲内、より好ましくは2〜10時間の範囲内である。加熱温度が低いと、あるいは、加熱時間が短いと、環化反応率が低下するので好ましくない。また、加熱時間が長すぎると、樹脂の着色や分解が起こる場合があるので好ましくない。
上記方法(i)、(ii)ともに、条件によっては加圧下となっても何ら問題はない。また、脱揮工程を同時に併用した環化反応の前に予め行う環化反応の際には、溶剤の一部が反応中に自然に揮発しても何ら問題ではない。
脱揮工程を同時に併用した環化反応の前に予め行う環化反応の終了時、すなわち、脱揮工程開始直前における、ダイナミックTG測定における150〜300℃の間での重量減少率は、2%以下が好ましく、より好ましくは1.5%以下であり、さらに好ましくは1%以下である。重量減少率が2%より高いと、続けて脱揮工程を同時に併用した環化反応を行っても、環化反応率が十分高いレベルまで上がらず、得られる主鎖に環構造を有するアクリル系重合体の物性が低下するおそれがある。なお、上記の環化反応を行う際に、重合体に加えて、他のアクリル系重合体を共存させてもよい。
重合工程で得られた重合体の分子鎖中に存在する水酸基とエステル基とを予め環化反応させて環化反応率をある程度上げておき、引き続き、脱揮工程を同時に併用した環化反応を行う形態の場合、予め行う環化反応で得られた重合体(分子鎖中に存在する水酸基とエステル基の少なくとも一部が環化反応した重合体)と溶剤とを分離することなく、脱揮工程を同時に併用した環化反応を行ってもよい。また、必要に応じて、前記重合体(分子鎖中に存在する水酸基とエステル基の少なくとも一部が環化反応した重合体)を分離してから溶剤を再添加する等のその他の処理を経てから脱揮工程を同時に併用した環化反応を行っても構わない。
脱揮工程は、環化反応と同時に終了することのみには限定されず、環化反応の終了から時間をおいて終了しても構わない。
環化触媒を添加し環化反応を十分行った後にも微量の未反応の反応性基が残存し、成形時に発泡やポリマー間の架橋での増粘などの問題が起きることがあるため、環化触媒の失活剤を添加することが好ましい。失活剤の添加は、残存する触媒による溶液製膜時のセルロースエステルの劣化を抑制するためにも有効である。環化反応には酸性触媒、あるいは、塩基性触媒が用いられることが多く、その場合、失活剤は中和反応により触媒を失活させるため、触媒が酸性物質である場合、失活剤は塩基性物質を用いればよく、逆に触媒が塩基性物質である場合、失活剤は酸性物質を用いればよい。失活剤としては、熱加工時に樹脂組成物を阻害する物質などを発生しない限り、特に限定されるものではないが、失活剤に塩基性物質を用いる場合、例えば、金属カルボン酸塩、金属錯体、金属酸化物などが挙げられ、金属カルボン酸塩と金属酸化物が好ましく、金属カルボン酸塩が特に好ましい。ここで、金属としては、樹脂組成物の物性を阻害せず、廃棄時に環境汚染を招くことがない限り、特に限定されるものではないが、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属;マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属;亜鉛;ジルコニウム;などが挙げられる。金属カルボン酸塩を構成するカルボン酸としては、特に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベヘン酸、トリデカン酸、ペンタデカン酸、ヘプタデカン酸、乳酸、リンゴ酸、クエン酸、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸などが挙げられる。金属錯体における有機成分としては、特に限定されるものではないが、アセチルアセトンなどが挙げられる。金属酸化物としては、酸化亜鉛、酸化カルシウム、酸化マグネシウムなどが挙げられ、酸化亜鉛が好ましい。他方、失活剤に酸性物質を用いる場合には、例えば、有機リン酸化合物やカルボン酸などが挙げられる。失活剤は単独で用いても2種以上を併用してもよい。なお、失活剤は固形物、粉末状、分散体、懸濁液、水溶液など、いずれの形態で添加しても良く、特に限定されるものではない。
失活剤の配合量は、環化反応に使用した触媒に応じて適宜調節すればよく、特に限定されるものではないが、好ましくはアクリル系重合体に対して、10〜10,000ppm、より好ましくは50〜5,000ppm、さらに好ましくは100〜3,000ppmである。失活剤の配合量が10ppm未満であると、失活剤の作用が不十分になり、成形時に発泡やポリマー間の架橋での増粘が起こることがある。逆に、失活剤の配合量が10,000を越えると、必要以上に失活剤を使用することになり、分子量低下が起こるなど樹脂組成物の物性を阻害することがある。
失活剤を添加するタイミングは、アクリル系重合体の製造にあたり、触媒を添加し環化反応を十分行った後であり、かつ得られたアクリル系重合体が溶液製膜される前である限り、特に限定されるものではない。例えば、アクリル系重合体を製造中に所定の段階で失活剤を添加するか、アクリル系重合体に環化触媒を添加し熱処理して環化反応を進行させてから失活剤を添加するか、あるいは、アクリル系重合体を製造した後、アクリル系重合体、失活剤、その他の成分などを同時に加熱溶融させて混練する方法;アクリル系重合体を製造した後、アクリル系重合体、失活剤、その他の成分などを溶剤に溶解する方法;溶液流延法に用いる溶液に失活剤を添加する方法;アクリル系重合体、その他の成分などを加熱溶融させておき、そこに失活剤を添加して混練する方法;アクリル系重合体を加熱溶融させておき、そこに失活剤、その他の成分などを添加して混練する方法;などが挙げられる。
アクリル系重合体を環化反応させて得られた、主鎖に環構造を有するアクリル系重合体に含まれる異物数は、アクリル系重合体の製造工程および/またはフィルム製膜工程において、アクリル系重合体の溶液または溶融液を、例えば、濾過精度0.01〜15μmのフィルターなどで濾過することにより、減少させることができる。

《セルロースエステル》
本発明に用いられるセルロースエステルとしては、特に限定はされず、例えば芳香族カルボン酸エステル等も用いられるが、光学特性等の得られるフィルムの特性を鑑みると、セルロースの低級脂肪酸エステルを使用するのが好ましい。本発明においてセルロースの低級脂肪酸エステルにおける低級脂肪酸とは炭素原子数が5以下の脂肪酸を意味し、例えばセルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースピバレート等がセルロースの低級脂肪酸エステルの好ましいものとして挙げられる。力学特性と溶融製膜性の双方を両立させるために、セルロースアセテートプロピオネートやセルロースアセテートブチレート等のように混合脂肪酸エステルを用いてもよい。その中でも、環構造を25重量%以上含む主鎖に環構造を有するアクリル系重合体と相溶性が高いことから、セルロースアセテート(酢酸セルロース)、特にセルローストリアセテートが好ましく用いられる。
本発明に用いられるセルロースエステルは、50000〜150000の数平均分子量(Mn)を有することが好ましく、55000〜120000の数平均分子量を有することが更に好ましく、60000〜100000の数平均分子量を有することが最も好ましい。また、100000〜300000の重量平均分子量(Mw)を有することが好ましく、100000〜250000の重量平均分子量を有することが更に好ましく、120000〜200000の重量平均分子量を有することが最も好ましい。さらには、重量平均分子量(Mw)/数平均分子量(Mn)比が1.3〜5.5のものが好ましく用いられ、特に好ましくは1.5〜5.0であり、更に好ましくは1.7〜4.0であり、更に好ましくは2.0〜3.5のセルロースエステルが好ましく用いられる。
なお、Mn及びMw/Mnは下記の要領で、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算で算出した。
本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、或いは単独で使用することができる。
セルロースエステルは、例えば、原料セルロースの水酸基を無水酢酸、無水プロピオン酸及び/または無水酪酸を用いて常法によりアセチル基、プロピオニル基及び/またはブチル基を置換することで得られる。このようなセルロースエステルの合成方法は、特に限定はないが、例えば、特開平10−45804号或いは特表平6−501040号に記載の方法を参考にして合成することができる。
溶液製膜に用いるため、セルロースエステルは溶媒に溶解させておくことが好ましい。有機溶媒に溶解釜中で該セルロースエステルや添加剤を攪拌しながら溶解しドープを形成することや、セルロースエステル溶液にポリマー溶液や添加剤溶液を混合してドープを形成することが考えられる。セルロースエステルの合成の際に溶媒に溶解させたままの状態で用いることも可能である。セルロースエステルの溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9−95544号、同9−95557号または同9−95538号公報に記載の如き冷却溶解法で行う方法、特開平11−21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることが出来る。ドープ中のセルロースエステルの濃度は10〜35重量%が好ましい。溶解中または後のドープにマット剤を除く添加剤を加えて溶解した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。
濾過は、セルロースエステル中の異物は溶媒に溶解して、必要に応じて紫外線吸収剤、可塑剤、劣化防止剤、酸化防止剤、アンチブロッキング剤等の添加物を添加混合した後、実施することが出来る。溶媒としては、メチレンクロライド、酢酸メチル、ジオキソラン等の溶液流延法で用いられる良溶媒を用いることができ、同時にメタノール、エタノール、ブタノール等の貧溶媒を用いてもよい。溶解の過程で−20℃以下に冷却したり、80℃以上に加熱したりしてもよい。もちろん、セルロースエステルの合成の際に溶媒に溶解させて濾過により低減させてもよい。
濾過の濾材は、絶対濾過精度0.04mm以下のものが好ましく、0.01〜0.02mmの範囲がより好ましい。濾材の材質には特に制限はなく、通常の濾材を使用することが出来るが、ポリプロピレン、テフロン(登録商標)等のプラスチック繊維製の濾材やステンレス繊維等の金属製の濾材が繊維の脱落等がなく好ましい。

《熱可塑性樹脂組成物》
本発明の熱可塑性樹脂組成物は、主鎖に環構造を有するアクリル系重合体50〜95重量%とセルロースエステル5〜50重量%を含む。好ましくは、主鎖に環構造を有するアクリル系重合体60〜95重量%とセルロースエステル5〜40重量%、より好ましくは主鎖に環構造を有するアクリル系重合体70〜95重量%とセルロースエステル5〜30重量%、特に好ましくは、主鎖に環構造を有するアクリル系重合体70〜90重量%とセルロースエステル1〜30重量%である。主鎖に環構造を有するアクリル系重合体の割合が低すぎると耐湿性が低下し、高すぎると可とう性が低下する。
本発明の熱可塑性樹脂組成物は、主鎖に環構造を有する熱可塑性アクリル系重合体とセルロースエステル以外の成分を、当該組成物に占める割合にして40重量%未満、好ましくは10重量%未満の範囲で含んでいてもよい。
その他の熱可塑性樹脂を含む場合、その他の熱可塑性樹脂は、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリ(4−メチル−1−ペンテン)などのオレフィンポリマー;塩化ビニル、塩素化ビニル樹脂などのハロゲン含有ポリマー;ポリスチレン、スチレン−メタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、アクリロニトリル−ブタジエン−スチレンブロック共重合体などのスチレンポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ナイロン6、ナイロン66、ナイロン610などのポリアミド;ポリアセタール:ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド:ポリエーテルエーテルケトン;ポリエーテルニトリル;ポリサルホン;ポリエーテルサルホン;ポリオキシペンジレン;ポリアミドイミド;などである。
上記例示した熱可塑性樹脂のなかでも、アクリル系重合体との相溶性、特に主鎖にラクトン環構造を有するアクリル系重合体との相溶性に優れることから、シアン化ビニル単量体に由来する構成単位と芳香族ビニル単量体に由来する構成単位とを含む共重合体が好ましい。当該共重合体は、例えば、スチレン−アクリロニトリル共重合体である。
本発明の熱可塑性樹脂組成物は、紫外線吸収剤を含んでいてもよい。紫外線吸収剤を含む場合、紫外線吸収剤としては、ベンゾフェノン系化合物、サリシケート系化合物、ベンゾエート系化合物、トリアゾール系化合物およびトリアジン系化合物等が挙げられる。ベンゾフェノン系化合物としては、2,4−ジーヒドロキシベンゾフェノン、4−n−オクチルオキシ−2−ヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2−ヒドロキシ−4−n−オクチルオキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、1,4−ビス(4−ベンゾイル−3−ヒドロキシフェノン)−ブタン等が挙げられる。サリシケート系化合物としては、p−t−ブチルフェニルサリシケート等が挙げられる。ベンゾエート系化合物としては、2,4−ジ−t−ブチルフェニル−3’,5’−ジ−t−ブチル−4’−ヒドロキシベンゾエート等が挙げられる。また、トリアゾール系化合物としては、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(3,5−ジ−tert−ブチル−2−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2−(2H−ベンゾトリアゾール−2−イル)−p−クレゾール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール、2−ベンゾトリアゾール−2−イル−4,6−ジ−tert−ブチルフェノール、2−[5−クロロ(2H)−ベンゾトリアゾール−2−イル]−4−メチル−6−(tert−ブチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ジ−tert−ブチルフェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール、2−(2H−ベンゾトリアゾール−2−イル)−4−メチル−6−(3,4,5,6−テトラヒドロフタルイミジルメチル)フェノール、メチル3−(3−(2H−ベンゾトリアゾール−2−イル)−5−tert−ブチル−4−ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール、2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、3−(2H−ベンゾトリアゾール−2−イル)−5−(1,1−ジメチルエチル)−4−ヒドロキシ−C7−9側鎖及び直鎖アルキルエステルが挙げられる。さらに、トリアジン系化合物としては、2,4−ジフェニル−6−(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−エトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシエトキシ)−1,3,5−トリアジン、2,4−ビス「2−ヒドロキシ−4−ブトキシフェニル」−6−(2,4−ジブトキシフェニル)−1,3−5−トリアジン、2,4−ビス(2,4−ジメチルフェニル)−6−[2−ヒドロキシ−4−(3−アルキルオキシ−2−ヒドロキシプロピルオキシ)−5−α−クミルフェニル]−s−トリアジン骨格(アルキルオキシ;オクチルオキシ、ノニルオキシ、デシルオキシなどの長鎖アルキルオキシ基)を有する紫外線吸収剤が挙げられる。市販品としては、例えば、トリアジン系紫外線吸収剤として「チヌビン1577」「チヌビン460」「チヌビン477」(チバスペシシャリティーケミカルズ社製)、トリアゾール系紫外線吸収剤として「アデカスタブLA−31」(旭電化工業社製)等が挙げられる。
これらは単独で、または2種類以上の組み合わせて使用することができる。上記紫外線吸収剤の配合量は特に限定されないが、フィルム中に0.01〜25重量%であることが好ましく、さらに好ましくは0.05〜10重量%である。添加量が少なすぎると耐候性向上の寄与が低く、また多すぎると機械強度の低下や黄変を引き起こす場合がある。
本発明の熱可塑性樹脂組成物は、酸化防止剤を含んでいてもよい。酸化防止剤は特に限定されないが、例えば、ヒンダードフェノール系、リン系あるいはイオウ系などの公知の酸化防止剤を、1種で、または2種以上を併用して用いることができる。
酸化防止剤はフェノール系の酸化防止剤であってもよい。フェノール系酸化防止剤は、例えば、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、n−オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)アセテート、n−オクタデシル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、n−ヘキシル−3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、n−ドデシル−3,5−ジ−t−ブチル−4−ヒドロキシフェニルベンゾエート、ネオドデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ドデシル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、エチル−α−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシル−α−(4−ヒドロキシ−3,5−ジ−t−ブチルフェニル)イソブチレート、オクタデシル−α−(4−ヒドロキシ−3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2−(n−オクチルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、2−(n−オクチルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート、2−(n−オクタデシルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート、2−(n−オクタデシルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、2−(2−ヒドロキシエチルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、ジエチルグリコールビス−(3,5−ジ−t−ブチル−4−ヒドロキシ−フェニル)プロピオネート、2−(n−オクタデシルチオ)エチル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、ステアルアミド−N,N−ビス−[エチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、n−ブチルイミノ−N,N−ビス−[エチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−(2−ステアロイルオキシエチルチオ)エチル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエート、2−(2−ステアロイルオキシエチルチオ)エチル−7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,2−プロピレングリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ネオペンチルグリコールビス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、エチレングリコールビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、グリセリン−1−n−オクタデカノエート−2,3−ビス−(3,5−ジ−t−ブチル−4−ヒドロキシフェニルアセテート)、ペンタエリスリトールテトラキス−[3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]、1,1,1−トリメチロールエタントリス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ソルビトールヘキサ−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、2−ヒドロキシエチル−7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2−ステアロイルオキシエチル−7−(3−メチル−5−t−ブチル−4−ヒドロキシフェニル)ヘプタノエート、1,6−n−ヘキサンジオールビス[(3’,5’−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、ペンタエリトリトールテトラキス(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナメート)、3,9−ビス[1,1−ジメチル−2−[β−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]エチル]−2,4,8,10−テトラオキサスピロ[5,5]−ウンデカンである。
フェノール系酸化防止剤は、チオエーテル系酸化防止剤またはリン酸系酸化防止剤と組み合わせて使用することが好ましい。組み合わせる際の酸化防止剤の添加量は、アクリル系重合体に対してフェノール系酸化防止剤およびチオエーテル系酸化防止剤の各々が0.01%以上、あるいはフェノール系酸化防止剤およびリン酸系酸化防止剤の各々が0.025%以上である。
チオエーテル系酸化防止剤は、例えば、ペンタエリスリチルテトラキス(3−ラウリルチオプロピオネート)、ジラウリル−3,3’−チオジプロピオネート、ジミリスチル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネートである。
リン酸系酸化防止剤は、例えば、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、2−[[2,4,8,10−テトラキス(1,1−ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン−6−イル]オキシ]−N,N−ビス[2−[[2,4,8,10−テトラキス(1,1ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン−6−イル]オキシ]−エチル]エタナミン、ジフェニルトリデシルフォスファイト、トリフェニルフォスファイト、2,2−メチレンビス(4,6−ジ−t−ブチルフェニル)オクチルホスファイト、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリストールジホスファイト、ジステアリルペンタエリスリトールジフォスファイト、サイクリックネオペンタンテトライルビス(2,6−ジ−t−ブチル−4−メチルフェニル)フォスファイトである。 本発明の熱可塑性樹脂組成物における酸化防止剤の添加量は、例えば0〜10%であり、好ましくは0〜5%であり、より好ましくは0.01〜2%であり、さらに好ましくは0.05〜1%である。酸化防止剤の添加量が過度に大きくなると、成形時に酸化防止剤のブリードアウトやシルバーストリークスが発生することがある。
本発明の熱可塑性樹脂組成物は、その他の添加剤を含んでいてもよい。その他の添加剤は、例えば、耐光安定剤、耐候安定剤、熱安定剤などの安定剤;ガラス繊維、炭素繊維などの補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモンなどの難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤に代表される帯電防止剤;無機顔料、有機顔料、染料などの着色剤;有機フィラー、無機フィラー;樹脂改質剤;アンチブロッキング剤;マット剤;酸補足剤;金属不活性化剤;可塑剤;滑剤;難燃剤;ASAやABSなどのゴム質量体などである。本発明の熱可塑性樹脂組成物における、上記その他の添加剤の添加量は、例えば0〜5%であり、好ましくは0〜2%であり、より好ましくは0〜0.5%である。
本実施の熱可塑性樹脂組成物は、透明性や耐熱性に優れるのみならず、低着色性、機械的強度、成型加工性等の所望の特性を備えると共に、特に高い光学的等方性を有する低複屈折材料であるので、例えば、光学レンズ、光学プリズム、光学フィルム、光学ファイバー、光学ディスク等の用途に有用である。これらの中でも特に、光学レンズ、光学プリズム、光学フィルムが好ましい。
本実施の熱可塑性樹脂組成物は、用途に応じて様々な形状に成形することができる。形成可能な形状としては、例えば、フィルム、シート、プレート、ディスク、ブロック、ボール、レンズ、ロッド、ストランド、コード、ファイバー等が挙げられる。成形方法としては、従来公知の形成方法の中から形状に応じて適宜選択すればよく、特に限定されるものではない。

《光学フィルム》
本発明の光学フィルムは、主鎖に環構造を有するアクリル系重合体50〜95重量%とセルロースエステル5〜50重量%を含む熱可塑性樹脂組成物からなる。
本発明の光学フィルムの厚さは特に限定されないが、例えば10μm〜500μmであり、20μm〜300μmが好ましく、30μm〜100μmが特に好ましい。
本発明の光学フィルムは、全光線透過率が85%以上であることが好ましい。より好ましくは90%以上、さらに好ましくは91%以上である。全光線透過率は、透明性の目安であり、85%未満であると透明性が低下し、光学フィルムとして適さない。
本発明の光学フィルムは、着色が少なく、250μm厚みあたりのb値が好ましくは0.5以下であり、より好ましくは0.3以下である。
本発明の光学フィルムは、好ましくはヘイズが5%以下であり、より好ましくは3%以下である。ヘイズが5%を越えると透過率が低下し、光学用途に適さないことがある。
本発明の光学フィルムの製造方法について説明する。本発明の光学フィルムの製造方法は特に限定されず、公知の製法が可能である。フィルム成形の方法としては、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法など、公知のフィルム成形方法が挙げられる。これらの中でも、溶液キャスト法(溶液流延法)、溶融押出法が好ましい。
溶融押出法の具体的な例としては、押出混練に用いる混練機は特に限定されず、例えば、単軸押出機、二軸押出機などの押出機、あるいは加圧ニーダーなどの公知の混練機を用いることができる。また、熱可塑性樹脂組成物と、必要に応じて添加剤を添加し、オムニミキサーなどの混合機でプレブレンドした後、得られた混合物を混練機から押出混練してもよい。
溶融押出法には、例えば、Tダイ法、インフレーション法などがあり、その際の成形温度は、好ましくは200〜350℃、より好ましくは250〜300℃、さらに好ましくは255〜300℃、特に好ましくは260〜300℃である。
Tダイ法を用いる場合、押出機の先端部にTダイを取り付け、このTダイから押し出したフィルムを巻き取ることで、ロール状に巻回させた樹脂フィルムを得ることができる。このとき、巻き取りの温度および速度を制御して、フィルムの押し出し方向に延伸(一軸延伸)を加えることも可能である。また、押し出し方向と垂直な方向にフィルムを延伸して、逐次二軸延伸あるいは同時二軸延伸などを実施してもよい。
押出成形に押出機を用いる場合、その種類は特に限定されず、単軸であっても二軸であっても多軸であってもよいが、そのL/D値は(Lは押出機のシリンダーの長さ、Dはシリンダー内径)、熱可塑性樹脂組成物を十分に可塑化して良好な混練状態を得るために、好ましくは10以上100以下であり、より好ましくは15以上80以下であり、さらに好ましくは20以上60以下である。L/D値が10未満の場合、熱可塑性樹脂組成物を十分に可塑化できず、良好な混練状態が得られないことがある。一方、L/D値が100を超えると、熱可塑性樹脂組成物に対して過度に剪断発熱が加わることで、組成物中の樹脂が熱分解する可能性がある。
またこの場合、シリンダーの設定温度は、好ましくは200〜350℃以下であり、より好ましくは250〜300℃以下である。設定温度が200℃未満では、熱可塑性樹脂組成物の溶融粘度が過度に高くなって、樹脂フィルムの生産性が低下する。一方、設定温度が350℃を超えると、熱可塑性樹脂組成物中の樹脂が熱分解する可能性がある。
押出成形に押出機を用いる場合、その形状は特に限定されないが、押出機が1個以上の開放ベント部を有することが好ましい。このような押出機を用いることによって、開放ベント部から分解ガスを吸引することができ、得られた樹脂フィルムに残存する揮発成分の量を低減できる。開放ベント部から分解ガスを吸引するためには、例えば、開放ベント部を減圧状態にすればよく、その減圧度は、開放ベント部の圧力にして、931〜1.3hPaの範囲が好ましく、798〜13.3hPaの範囲がより好ましい。開放ベント部の圧力が931hPaより高い場合、揮発成分、あるいは樹脂の分解により発生する単量体成分などが、熱可塑性樹脂中に残存しやすい。一方、開放ベント部の圧力を1.3hPaより低く保つことは工業的に困難である。
本発明の光学フィルムを製造する場合、ポリマーフィルターで濾過するなどの濾過工程を取り入れることが好ましい。濾過工程を取り入れることにより、熱可塑性樹脂組成物中に存在する異物を除去できるため、得られたフィルムの外観上の欠点を低減できる。なお、ポリマーフィルターによる濾過時には、熱可塑性樹脂組成物は高温の溶融状態となる。このため、ポリマーフィルターを通過する際に熱可塑性樹脂組成物が劣化し、劣化により形成されたガス成分や着色劣化物が組成物中に流れだして、得られたフィルムに、穴あき、流れ模様、流れスジなどの欠点が観察されることがある。この欠点は、特にフィルムの連続成形時に観察されやすい。このため、ポリマーフィルターで濾過した熱可塑性樹脂組成物を成形する際には、その成形温度は、熱可塑性樹脂の溶融粘度を低下させ、ポリマーフィルターにおける熱可塑性樹脂の滞留時間を短くするために、例えば255〜350℃であり、260〜320℃が好ましい。
ポリマーフィルターの構成は特に限定されないが、ハウジング内に多数枚のリーフディスク型フィルターを配したポリマーフィルターを好適に用いることができる。リーフディスク型フィルターの濾材は、金属繊維不織布を焼結したタイプ、金属粉末を焼結したタイプ、金網を数枚積層したタイプ、あるいはそれらを組み合わせたハイブリッドタイプのいずれでもよいが、金属繊維不織布を焼結したタイプが最も好ましい。
ポリマーフィルターによる濾過精度は特に限定されないが、通常15μm以下、好ましくは10μm以下、より好ましくは5μm以下である。濾過精度が1μm以下になると、熱可塑性樹脂組成物の滞留時間が長くなることで当該組成物の熱劣化が大きくなる他、樹脂フィルムの生産性が低下する。一方、濾過精度が15μmを超えると、熱可塑性樹脂組成物中の異物を除去することが難しくなる。
ポリマーフィルターにおける、時間あたりの樹脂組成物処理量に対する濾過面積は特に限定されず、熱可塑性樹脂組成物の処理量に応じて適宜設定できる。上記濾過面積は、例えば、0.001〜0.15m2/(kg/時間)である。
ポリマーフィルターの形状は特に限定されず、例えば、複数の樹脂流通口を有し、センターポール内に樹脂の流路を有する内流型;断面が複数の頂点もしくは面においてリーフディスクフィルタの内周面に接し、センターポールの外面に樹脂の流路がある外流型;などがある。特に、樹脂の滞留箇所の少ない外流型を用いることが好ましい。
ポリマーフィルターにおける熱可塑性樹脂の滞留時間に特に制限はないが、好ましくは20分以下であり、より好ましくは10分以下であり、さらに好ましくは5分以下である。また、濾過時におけるフィルター入口圧およびフィルター出口圧は、例えば、それぞれ、3〜15MPaおよび0.3〜10MPaであり、圧力損失(フィルターの入口圧と出口圧の圧力差)は、1MPa〜15MPaの範囲が好ましい。圧力損失が1MPa以下になると、熱可塑性樹脂がフィルターを通過する流路に偏りが生じやすく、得られた樹脂フィルムの品質が低下する傾向がある。一方、圧力損失が15MPaを超えると、ポリマーフィルターの破損が起こり易くなる。
ポリマーフィルターに導入される熱可塑性樹脂組成物の温度は、その溶融粘度に応じて適宜設定すればよく、例えば250〜300℃であり、好ましくは255〜300℃であり、さらに好ましくは260〜300℃である。
ポリマーフィルターを用いた濾過処理により、異物、着色物の少ない樹脂フィルムを得る具体的な工程は、特に限定されない。例えば、(1)クリーン環境下で熱可塑性樹脂組成物の形成および濾過処理を行い、引き続いてクリーン環境下で熱可塑性樹脂の成形を行うプロセス、(2)異物または着色物を有する熱可塑性樹脂を、クリーン環境下で濾過処理した後、引き続いてクリーン環境下で熱可塑性樹脂の成形を行うプロセス、(3)異物または着色物を有する熱可塑性樹脂を、クリーン環境下で濾過処理すると同時に成形を行うプロセス、などが挙げられる。それぞれの工程毎に、複数回、ポリマーフィルターによる熱可塑性樹脂組成物の濾過処理を行ってもよい。
ポリマーフィルターによって熱可塑性樹脂組成物を濾過する際には、押出機とポリマーフィルターとの間にギアポンプを設置して、フィルター内の熱可塑性樹脂組成物の圧力を安定化することが好ましい。
熱可塑性樹脂組成物は、その製造後、そのまま押出成形して樹脂フィルムとすることが好ましい。熱可塑性樹脂組成物をペレット化した後に、得られたペレットを再溶融して光学フィルムを成形する場合に比べて、熱履歴を少なくできるため、熱可塑性樹脂組成物の熱劣化を抑制できる。また、この手法では、環境からの異物の混入を抑制できるため、得られた光学フィルムに異物が存在したり、得られた光学樹脂フィルムが着色することを抑制できる。なお、押出機とTダイの間に、ギアポンプおよびポリマーフィルターを配置することが好ましい。
溶液キャスト法の場合、工程としては、(1)溶解工程、(2)流延工程、(3)乾燥工程を有する。
(1)溶解工程:
主鎖に環構造を有するアクリル系重合体とセルロースエステルを溶媒に溶解する場合、個別に溶媒に溶解してから溶液同士を混合しても良いし、主鎖に環構造を有するアクリル系重合体とセルロースエステルを含む樹脂組成物を溶剤に溶解しても良い。主鎖に環構造を有するアクリル系重合体は脱揮工程を経ずに重合溶剤を含んだ重合溶液の状態とで溶解工程に用いることが可能であり、別に準備したセルロースエステル溶液を攪拌しながら、アクリル系重合体溶液を少しずつ添加していくことで、溶液製膜に用いるドープを用意することが出来る。溶解中または後のドープに必要な添加剤を加えて溶解した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。 濾過の濾材は、絶対濾過精度0.04mm以下のものが好ましく、0.01〜0.02mmの範囲がより好ましい。濾材の材質には特に制限はなく、通常の濾材を使用することが出来るが、ポリプロピレン、テフロン等のプラスチック繊維製の濾材やステンレス繊維等の金属製の濾材が繊維の脱落等がなく好ましい。
溶媒としては、メチレンクロライド、酢酸メチル、ジオキソラン等の溶液流延法で用いられる良溶媒を用いることができ、同時にメタノール、エタノール、ブタノール等の貧溶媒を用いてもよい。本発明においては、主鎖に環構造を有するアクリル系重合体の重合溶液に含まれる重合溶媒も用いることができる。これらの内、複数の溶媒が溶液に含まれていても良い。溶解の過程で−20℃以下に冷却したり、80℃以上に加熱したりしてもよい。
セルロースエステルの溶液を作成するには、セルロースエステル(フレーク状の)に対する良溶媒を主とする有機溶媒に溶解釜中で該セルロースエステル、主鎖に環構造を有するアクリル系重合体や添加剤を攪拌しながら溶解しドープを形成すること、あるいはセルロースエステル溶液に主鎖に環構造を有するアクリル系重合体の溶液や添加剤溶液を混合してドープを形成することが考えられる。セルロースエステルの溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9−95544号、同9−95557号または同9−95538号公報に記載の如き冷却溶解法で行う方法、特開平11−21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることが出来るが、ドープ中のセルロースエステルの濃度は10〜35重量%が好ましい。
(2)流延工程:
ドープを支持体上に流延し、均一な膜を得る工程である。
一般に、製膜工程で変形応力を受ければ、配向が進んでフィルムの複屈折値は増大する。複屈折値の増大に伴い、フィルムの均一性を維持しにくくなり、光学特性のバラツキも増大するので、粘度の低い状態で比較的小さな応力のもとに製膜することが望ましい。また、ドープが低粘度であることは塗工後のレベリング効果によって膜厚が均一化される効果もあるため好ましい。溶解液の好ましい粘度は10ポイズ以から100ポイズであり、より好ましくは15ポイズから70ポイズである。なお、10ポイズよりも低いと支持体上から流れ出してしまうため、適宜仕切り板を設けるなどの対処が必要となる。
塗工方法としてはダイコーター、ドクターブレードコーター、ロールコーター、コンマコーター、リップコーター等が好ましいが、これらの例に限定されずに通常使用される種々の方法が可能である。
好ましい支持体としては、ステンレス鋼のエンドレスベルトや回転する金属ドラム等の金属支持体、あるいはポリイミドフィルム、二軸延伸ポリエチレンテレフタレートフィルム等のようなフィルムを用いることができる。
(3)乾燥工程:
金属支持体上にドープを流延したドープ膜を加熱し、溶媒蒸発させて乾燥フィルムを得る工程である。
加熱乾燥は流延もしくは塗布直後の液膜が乾燥していない状態では、急激な風の流れや加熱などがあると、厚みムラが生じやすいため厚みムラをなくすよう注意しながら乾燥する。すなわち、直接的にフィルムに風を与えないようにしたり、風の代わりにマイクロウエーブを当てて加熱する手段もある。また、急激な加熱・冷却を防いだりすることが重要となる。さらに、雰囲気中の湿度によってドープ膜が発泡したりするため、湿度のコントロールも重要となる。その後、半固化状態になった後に熱風等を吹きつけて残留溶媒を少なくするように乾燥するのが好ましい。
キャスト後の乾燥は、支持体に担持されたまま行うことも可能であるが、必要に応じて、自己支持性を有するまで予備乾燥したフィルムを支持体から剥離し、さらに乾燥することもできる。フィルムの乾燥は、一般にはフロート法や、テンターあるいはロール搬送法が利用できる。フロート法の場合、フィルム自体が複雑な応力を受け、光学的特性の不均一が生じやすい。また、テンター法の場合、フィルム両端を支えているピンあるいはクリップの距離により、溶剤乾燥に伴うフィルムの幅収縮と自重を支えるための張力を均衡させる必要があり、複雑な幅の拡縮制御を行う必要がある。一方、ロール搬送法の場合、安定なフィルム搬送のためのテンションは原則的にフィルムの流れ方向(MD方向)にかかるため、応力の方向を一定にしやすい特徴を有する。従って、フィルムの乾燥は、ロール搬送法によることが最も好ましい。中でも、重力による応力を低減させるため、上下に複数のロールを配置し、フィルムを上下上下・・・と通すバーチカルパス方式(垂直懸垂パス方式)が、オーブンの設置スペースを省略しつつ長い乾燥経路を確保できるため好ましい。
また、溶剤の乾燥時にフィルムが水分を吸収しないよう、湿度を低く保った雰囲気中で乾燥することは、機械的強度と透明度の高いフィルムを得るには有効な方法である。
本発明の光学フィルムの製造工程は上記(1)〜(3)の工程以外にも、接着性向上のために、けん化処理やコロナ処理、プラズマ処理、さらには、易接着層などの塗布などの工程を有していても良い。また、防眩層やハードコート層などの各種の機能性コーティング層を設ける工程や延伸工程を有することも可能である。
本発明の光学フィルムを延伸する場合は、一軸延伸でも良いし、二軸延伸でも良い。二軸延伸する場合は、同時二軸延伸でも良いし、逐次二軸廷伸でも良い。延伸した場合は、機械強度が向上しフィルム性能が向上する。
延伸温度としては、光学フィルムのガラス転移温度近辺で行うことが好ましく、具体的には、(ガラス転移温度−30)℃〜(ガラス転移温度+100)℃で行うことが好ましく、より好ましくは(ガラス転移温度−20)℃〜(ガラス転移温度+80)℃である。(ガラス転移温度−30)℃よりも低いと、十分な延伸倍率が得られないために好ましくない。(ガラス転移温度+100)℃よりも高いと、樹脂の流動(フロー)が起こり安定な延伸が行えなくなるために好ましくない。
面積比で定義した廷伸倍率は、好ましくは1.1〜25倍の範囲、より好ましくは1.3〜10倍の範囲で行われる。1.1倍よりも小さいと、延伸に伴う靱性の向上につながらないために好ましくない。25倍よりも大きいと、延伸倍率を上げるだけの効果が認められない。
延伸速度(一方向)としては、好ましくは10〜20000%/分の範囲、より好ましくは100〜10000%/分の範囲である。10%/分よりも遅いと、十分な延伸倍率を得るために時間がかかり、製造コストが高くなるために好ましくない。20000%/分よりも早いと、光学フィルムの破断等が起こるおそれがあるために好ましくない。
フィルムの光学等方性や力学特性を安定化させるため、溶液製膜後や延伸処理後に熱処理(アニーリング)などを行うこともできる。
本発明の光学フィルムの表面には、必要に応じて、各種の機能性コーティング層が形成されていてもよい。機能性コーティング層は、例えば、帯電防止層、粘接着剤層、接着層、易接着層、防眩(ノングレア)層、光触媒層などの防汚層、反射防止層、ハードコート層、紫外線遮蔽層、熱線遮蔽層、電磁波遮蔽層、ガスバリヤー層などである。
本発明の光学フィルムの用途は特に限定されないが、その高い透明性、耐熱性により、光学部材として好適に用いることができる。光学部材は、例えば、光学用保護フィルム、具体的には、各種の光ディスク(VD、CD、DVD、MD、LDなど)基板の保護フィルム、液晶表示装置(LCD)などの画像表示装置が備える偏光板に用いる偏光子保護フィルムである。位相差フィルム、視野角補償フィルム、光拡散フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、タッチパネル用導電フィルムなどの光学フィルムとして、本発明の光学フィルムを用いてもよい。特に、偏光子保護フィルムや位相差フィルムとして好適に用いられる。
以下に、実施例によって本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。以下では、便宜上、「重量部」を単に「部」と、「リットル」を単に「L」と記すことがある。
[ダイナミックTG]
重合体(もしくは重合体溶液あるいはペレット)を一旦テトラヒドロフランに溶解もしくは希釈し、過剰のヘキサンもしくはメタノールへ投入して再沈殿を行い、取り出した沈殿物を真空乾燥(1mmHg(1.33hPa)、80℃、3時間以上)することによって揮発成分などを除去し、得られた白色固形状の樹脂を以下の方法(ダイナミックTG法)で分析した。
測定装置:ThermoPlus2TG−8120DynamicTG((株)リガク社製)
測定条件:試料量5〜10mg
昇温速度:10℃/min
雰囲気:窒素フロー 200ml/min
方法:階段状等温制御法(60℃〜500℃の間で重量減少速度値0.005%/sec以下で制御)
[ガラス転移温度]
重合体のガラス転移温度(Tg)は、JIS K7121に準拠して求めた。具体的には、示差走査熱量計(リガク社製、DSC−8230)を用い、窒素ガス雰囲気下、約10mgのサンプルを常温から200℃まで昇温(昇温速度20℃/分)して得られたDSC曲線から、始点法により評価した。リファレンスには、α−アルミナを用いた。
[メルトフローレート]
メルトフローレートはJISK6874に基づき、試験温度240℃、荷重10kgで測定した。
[重量平均分子量および数平均分子量]
重合体の重量平均分子量Mwおよび数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算により求めた。測定に用いた装置および測定条件は以下の通りである。
システム:東ソー製
カラム:TSK−GEL SuperHZM−M 6.0×150 2本直列
ガードカラム:TSK−GEL SuperHZ−L 4.6×35 1本
リファレンスカラム:TSK−GEL SuperH−RC 6.0×150 2本直列
溶離液:クロロホルム 流量0.6mL/分
カラム温度:40℃
[環構造単位の含有割合]
まず、重合で得られた重合体組成からすべての水酸基がメタノールとして脱アルコールした際に起こる重量減少量を基準にし、ダイナミックTG測定において重量減少が始まる前の150℃から重合体の分解が始まる前の300℃までの脱アルコール反応による重量減少から、脱アルコール反応率を求めた。
すなわち、環構造を有した重合体のダイナミックTG測定において150℃から300℃までの間の重量減少率の測定を行い、得られた実測重量減少率を(X)とする。他方、当該重合体の組成から、その重合体組成に含まれる全ての水酸基が環形成に関与するためアルコールになり脱アルコールすると仮定した時の理論重量減少率(すなわち、その組成上において100%脱アルコール反応が起きたと仮定して算出した重量減少率)を(Y)とする。なお、理論重量減少率(Y)は、より具体的には、重合体中の脱アルコール反応に関与する構造(水酸基)を有する原料単量体のモル比、すなわち当該重合体組成における前記原料単量体の含有率から算出することができる。これらの値(X、Y)を脱アルコール計算式:
1−(実測重量減少率(X)/理論重量減少率(Y))
に代入してその値を求め、%で表記すると、脱アルコール反応率が得られる。
例として、後述の製造例1で得られるペレットにおいてラクトン環構造の占める割合を計算する。この重合体の理論重量減少率(Y)を求めてみると、メタノールの分子量は32であり、2−(ヒドロキシメチル)アクリル酸メチルの分子量は116であり、2−(ヒドロキシメチル)アクリル酸メチルの重合体中の含有率(重量比)は組成上15重量%であるから、(32/116)×15≒4.14重量%となる。他方、ダイナミックTG測定による実測重量減少率(X)は0.35重量%であった。これらの値を上記の脱アルコール計算式に当てはめると、1−(0.35/4.14)≒0.915となるので、脱アルコール反応率は91.5%である。
そして、この脱アルコール反応率の分だけ所定のラクトン環化が行われたものとして、ラクトン環化に関与する構造(ヒドロキシ基)を有する原料単量体の当該共重合組成における含有率(重量比)に、脱アルコール反応率を乗じ、ラクトン環単位の構造の含有率(重量比)に換算することで、当該共重合体におけるラクトン環構造の含有割合を算出することが出来る。実施例1の場合、2−(ヒドロキシメチル)アクリル酸メチルの当該共重合体における含有率が15.0重量%、算出した脱アルコール反応率が91.5重量%、分子量が116の2−(ヒドロキシメチル)アクリル酸メチルがメタクリル酸メチルと縮合した場合に生成するラクトン環化構造単位の式量が170であることから、当該共重合体中におけるラクトン環の含有割合は20.1(15.0×0.915×170/116)重量%となる。
なお、ラクトン環以外の環構造の含有割合についても上記の脱揮量からの計算やNMRなど公知の方法での算出が可能である。
[ヘイズ]
フィルムのヘイズは、濁度計(日本電色工業社製、NDH 5000)を用いて測定した。
[耐屈曲性]
JIS K5600−5−1に準じて試験を行なった。該規格に規定される方法は、基材上に形成された塗膜の耐屈曲性を評価する方法であるが、フィルム自体の耐屈曲性を評価とした。即ち、試験に用いるマンドレルの直径を順番に小さくし、フィルムが始めて割れたマンドレルの直径を記録した。塗膜の評価の場合と同様に、値が小さい程耐屈曲性が高いと言える。試験には株式会社安田精機製作所製 塗膜屈曲試験器を用いた。
〔製造例1〕
攪拌装置、温度センサー、冷却管、窒素導入管を付した30L反応釜に、8500gのメタクリル酸メチル(MMA)、1500gの2−(ヒドロキシメチル)アクリル酸メチル(MHMA)、10000gの4−メチル−2−ペンタノン(メチルイソブチルケトン、MIBK)、5gのn−ドデシルメルカプタンを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、開始剤として10.0gのターシャリーブチルパーオキシイソプロピルカーボネート(アクゾ化薬製、商品名:カヤカルボンBic−7)を添加すると同時に、10.0gのターシャリーブチルパーオキシイソプロピルカーボネートと230gのMIBKからなる溶液を4時間かけて滴下しながら、還流下(約105〜120℃)で溶液重合を行い、さらに4時間かけて熟成を行った。重合の反応率は92.7%、重合対中のMHMAの含有率(重量比)は14.6%であった。
得られた重合体溶液に、600gの酢酸を加え、還流下(約90〜120℃)で5時間、環化縮合反応を行った。次いで、上記環化縮合反応で得られた重合体溶液を、バレル温度260℃、回転数100rpm、減圧度13.3〜400hPa(10〜300mmHg)、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出し機(φ=29.75mm、L/D=30)に、樹脂量換算で2.0kg/時間の処理速度で導入し、該押出し機内で環化縮合反応と脱揮を行い、押出すことにより、透明なペレット(A1)を得た。
得られた主鎖に環構造を有するアクリル系重合体を含む樹脂ペレット(A1)について、ダイナミックTGの測定を行ったところ、0.35重量%の重量減少を検知した。また、ラクトン環化率は91.5%、ペレットの重量平均分子量は166000であり、メルトフローレートは3.9g/10分、ガラス転移温度は127℃であった。
〔製造例2〕
攪拌装置、温度センサー、冷却管、窒素導入管を付した30L反応釜に、8000gのMMA、2000gのMHMA、10000gのMIBK、5gのn−ドデシルメルカプタンを仕込み、これに窒素を通じつつ、105℃ まで昇温し、還流したところで、開始剤として5.0gのターシャリーブチルパーオキシイソプロピルカーボネートを添加すると同時に、10.0gのターシャリーブチルパーオキシイソプロピルカーボネートと230gのMIBKからなる溶液を4時間かけて滴下しながら、還流下(約105〜120℃)で溶液重合を行い、さらに4時間かけて熟成を行った。重合の反応率は91.9%、重合対中のMHMAの含有率(重量比)は19.8%であった。
得られた重合体溶液に、30gのリン酸ステアリル/リン酸ジステアリル混合物(堺化学製、商品名:PhoslexA−18)を加え、還流下(約90〜120℃)で5時間、環化縮合反応を行った。次いで、上記環化縮合反応で得られた重合体溶液を、製造例1と同様にベントタイプスクリュー二軸押出し機内で環化縮合反応と脱揮を行い、押出すことにより、透明なペレット(A2)を得た。
得られた主鎖に環構造を有するアクリル系重合体を含む樹脂ペレット(A2)について、ダイナミックTGの測定を行ったところ、0.64重量%の重量減少を検知した。また、ラクトン環化率は88.4%、ペレットの重量平均分子量は144000であり、メルトフローレートは9.2g/10分、ガラス転移温度は131℃であった。
〔製造例3〕
攪拌装置、温度センサー、冷却管、窒素導入管を付した30L反応釜に、MMA7000g、MHMA3000g、MIBKとメチルエチルケトン(MEK)とからなる混合溶媒(重量比9:1)6667gを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、開始剤としてt−アミルパーオキシイソノナノエート(ルパゾール570、アトフィナ吉富(株)製)6.0gを添加すると同時に、t−アミルパーオキシイソノナノエート12.0g、MIBKとMEKとからなる混合溶媒(重量比9:1)3315gからなる溶液を3時間かけて滴下しながら、還流下(約95〜110℃)で溶液重合を行い、さらに4時間かけて熟成を行った。重合の反応率は94.5%、重合対中のMHMAの含有率(重量比)は29.7%であった。
得られた重合体溶液に、リン酸オクチル/リン酸ジオクチル混合物20gを加え、還流下(約85〜100℃)で2時間、環化縮合反応を行い、さらに、240℃の熱媒を用いてオートクレーブ中で加圧下(ゲージ圧が最高約2MPa) で1.5時間環化縮合反応を行った。次いで、上記環化縮合反応で得られた重合体溶液を、製造例1と同様にベントタイプスクリュー二軸押出し機内で環化縮合反応と脱揮を行い、押出すことにより、透明なペレット(A3)を得た。
得られた主鎖に環構造を有するアクリル系重合体を含む樹脂ペレット(A3)について、ダイナミックTGの測定を行ったところ、0.25重量%の重量減少を検知した。また、ラクトン環化率は97.0%、ペレットの重量平均分子量は127000であり、メルトフローレートは6.5g/10分、ガラス転移温度は140℃であった。
〔製造例4〕
攪拌装置、温度センサー、冷却管、窒素導入管を付した30L反応釜に、MMA6000g、MHMA3000g、メタクリル酸n−ブチル(BMA)1000g、MIBKとMEKとからなる混合溶媒(重量比9:1)6667gを仕込み、これに窒素を通じつつ、105℃まで昇温し、還流したところで、開始剤としてt−アミルパーオキシイソノナノエート6.0gを添加すると同時に、t−アミルパーオキシイソノナノエート12.0g、MIBKとMEKとからなる混合溶媒(重量比9:1)3315gからなる溶液を3時間かけて滴下しながら、還流下(約95〜110℃)で溶液重合を行い、さらに4時間かけて熟成を行った。重合の反応率は90.5%、重合対中のMHMAの含有率(重量比)は29.7%であった。
得られた重合体溶液に、リン酸オクチル/リン酸ジオクチル混合物(堺化学製、商品名:PhoslexA−8)20gを加え、還流下(約85〜100℃)で2時間、環化縮合反応を行い、さらに、240℃の熱媒を用いてオートクレーブ中で加圧下(ゲージ圧が最高約2MPa)で1.5時間環化縮合反応を行った。次いで、上記環化縮合反応で得られた重合体溶液を、製造例1と同様にベントタイプスクリュー二軸押出し機内で環化縮合反応と脱揮を行い、押出すことにより、透明なペレット(A4)を得た。
得られた主鎖に環構造を有するアクリル系重合体を含む樹脂ペレット(A4)について、ダイナミックTGの測定を行ったところ、0.25重量%の重量減少を検知した。また、ラクトン環化率は97.0%、ペレットの重量平均分子量は134000であり、メルトフローレートは14.5g/10分、ガラス転移温度は130℃であった。
〔製造例5〕
反応容器に仕込んだ単量体の組成を、MMA9,500g、MA500gとし、環化縮合工程を行なわなかったこと以外は、製造例2と同様にしてアクリル系重合体を含む透明な樹脂ペレット(A5)を得た。
[実施例1]
〈光学フィルム1の作製〉
(ドープ液組成)
アクリル系重合体を含む樹脂A1 10重量部
セルローストリアセテート(C1、アセチル基置換度 61.3〜61.9%、重量平均分子量Mw=171000、数平均分子量Mn=64000)
90重量部
塩化メチレン 1900重量部
上記組成物を、十分に溶解し、ドープ液を作製した。
〈光学フィルム1の製膜〉
上記作製したドープ液を、アプリケーターを用い、PETフィルム支持体に均一に流延した。PETフィルム支持体で、タックフリー状態(ドープ膜に指で触れてみて付着しなくなる状態)になるまで溶媒を蒸発させ、PETフィルム支持体上から剥離した。剥離した光学フィルムを100℃のオーブンで3分間乾燥させた。乾燥後の膜厚は50μmであった。
〔実施例2〜6〕
アクリル系重合体を含む樹脂(A)の種類とセルローストリアセテートとの重量比を表1記載のように変えた以外は、光学フィルム1と同様にして、光学フィルム試料2〜6を作製した。
〔実施例7〕
アクリル系重合体を含む樹脂にA2、セルロースエステル(C)にセルロースアセテートプロピオネート(C2、アセチル基置換度 2.5%、ヒドロキシル基置換度 1.8%、プロピオニル基置換度 46%、重量平均分子量Mw=175000、数平均分子量Mn=63000)を用い、重量比を表1記載のように変えた以外は、光学フィルム1と同様にして、光学フィルム試料7を作製した。
〔比較例1〕
アクリル系重合体を含む樹脂A5を用い、セルローストリアセテートとの重量比を表1記載のように変えた以外は、光学フィルム1と同様にして、環構造を全く含まない光学フィルム試料8を作製した。
〔比較例2〜4〕
アクリル系重合体を含む樹脂A1〜A3を10重量部に対して、塩化メチレン40重量部を加えて十分に溶解し、ドープ液を作製した以外は、実施例1と同様にして、セルロースエステルを含まない光学フィルム試料9〜11を作製した。
〔実施例8〕
アクリル系重合体を含む樹脂(A)にA2、セルロースエステル(C)にセルロースアセテートプロピオネート(C2、アセチル基置換度 2.5%、ヒドロキシル基置換度 1.8%、プロピオニル基置換度 46%、重量平均分子量Mw=175000)を用い、重量比を表1記載のよう混合した物(A:C=9:1)を、二軸押出機(φ=15mm、L/D=45、バレル温度250℃)に投入して溶融混練を行い、樹脂ペレットを得た。この樹脂ペレットを、コートハンガータイプのフィルム製膜用ダイス(幅150mm)を取り付けた単軸押出機(φ=20mm、L/D=25、シリンダー温度 240℃)に投入して溶融製膜を行い、厚み50μmのフィルム(光学フィルム試料12)を作製した。
得られた光学フィルム1〜12についての評価結果を表1に示す。
Figure 0005355373
表1の実施例と比べて、比較例1の環構造を全く有しないアクリル系重合体とセルロースエステルを含む樹脂組成物からなるフィルムのヘイズは非常に大きく、光学フィルムとして不適切であった。また、表1の実施例1と、実施例3、実施例5を比較すると、本発明に係る光学フィルム試料は、含まれるアクリル系共重合体の環構造の含有率が増加するに従い、フィルムのヘイズが減少することがわかる。更に、表1の実施例1と比較例2、実施例2−3と比較例3、または、実施例4−5と比較例4を比較すると、主鎖に環構造を有するアクリル系重合体にセルロースエステルを加える事で、光学フィルムに必須となる透明性を維持したまま、フィルムの耐屈曲性(可とう性)が向上することがわかる。
本発明の熱可塑性樹脂組成物は、その高い光学特性や耐熱性、機械的強度により、光学レンズ、光学プリズム、光学フィルムなどの光学部材として好適に用いることができる。特に光学フィルムとして好ましく、例えば、偏光子保護フィルムなどの光学用保護フィルムや位相差フィルム、視野角補償フィルム、光拡散フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、タッチパネル用導電フィルムなどに好適に用いられる。

Claims (4)

  1. 主鎖にラクトン環構造、グルタルイミド構造から選ばれる少なくとも1種の環構造を有する
    アクリル系重合体50〜95重量%とセルロースの低級脂肪酸エステル5〜50重量%を含む熱可塑性樹脂組成物。
  2. 前記環構造は6員環である請求項1に記載の熱可塑性樹脂組成物。
  3. 前記主鎖に環構造を有するアクリル系重合体は環構造を25重量%以上含む請求項1または請求項2に記載の熱可塑性樹脂組成物。
  4. 請求項1〜請求項3のいずれか1項に記載の熱可塑性樹脂組成物からなる光学フィルム。
JP2009286103A 2009-08-28 2009-12-17 熱可塑性樹脂組成物および光学フィルム Active JP5355373B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286103A JP5355373B2 (ja) 2009-08-28 2009-12-17 熱可塑性樹脂組成物および光学フィルム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009198555 2009-08-28
JP2009198555 2009-08-28
JP2009286103A JP5355373B2 (ja) 2009-08-28 2009-12-17 熱可塑性樹脂組成物および光学フィルム

Publications (2)

Publication Number Publication Date
JP2011068845A JP2011068845A (ja) 2011-04-07
JP5355373B2 true JP5355373B2 (ja) 2013-11-27

Family

ID=44014415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286103A Active JP5355373B2 (ja) 2009-08-28 2009-12-17 熱可塑性樹脂組成物および光学フィルム

Country Status (1)

Country Link
JP (1) JP5355373B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546235B2 (ja) * 2009-12-17 2014-07-09 株式会社日本触媒 光学フィルム
JP5666989B2 (ja) * 2010-06-03 2015-02-12 株式会社日本触媒 光学フィルムおよび画像表示装置
JP6457862B2 (ja) * 2015-03-30 2019-01-23 株式会社日本触媒 アクリル樹脂組成物、該樹脂組成物で形成されたフィルム、該フィルムを備えた偏光板及び該偏光板を備えた画像表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316366A (ja) * 2006-05-26 2007-12-06 Nippon Shokubai Co Ltd 偏光子保護フィルム、偏光板、および画像表示装置
JP5023837B2 (ja) * 2007-06-25 2012-09-12 コニカミノルタアドバンストレイヤー株式会社 セルロースエステルフィルム、セルロースエステルフィルムの製造方法、それを用いた偏光板、及び液晶表示装置
JP5288762B2 (ja) * 2007-10-15 2013-09-11 中国電力株式会社 入退出管理システムおよび入退出管理方法
DE102007062199A1 (de) * 2007-12-21 2009-06-25 Evonik Degussa Gmbh 2-Methylthioethyl-substituierte Heterocyclen als Futtermitteladditive
US8168702B2 (en) * 2008-01-30 2012-05-01 Konica Minolta Opto Inc. Acrylic-resin-containing film, polarizing plate and liquid crystal display device using the same
JP5040688B2 (ja) * 2008-01-31 2012-10-03 コニカミノルタアドバンストレイヤー株式会社 アクリル樹脂含有フィルム、それを用いた偏光板及び表示装置
WO2010119730A1 (ja) * 2009-04-15 2010-10-21 コニカミノルタオプト株式会社 光学素子
JP5383381B2 (ja) * 2009-08-25 2014-01-08 株式会社日本触媒 光学フィルムの製造方法
JP5546235B2 (ja) * 2009-12-17 2014-07-09 株式会社日本触媒 光学フィルム

Also Published As

Publication number Publication date
JP2011068845A (ja) 2011-04-07

Similar Documents

Publication Publication Date Title
JP2010180305A (ja) アクリル系樹脂およびその製造方法
JP2012001725A (ja) 樹脂成形品および樹脂成形品の製造方法
JP4878302B2 (ja) 偏光子保護フィルムおよび偏光板
JP2018178095A (ja) メタクリル系樹脂成形体、光学部品又は自動車部品
JP5154169B2 (ja) フィルム
JPWO2008047836A1 (ja) 熱可塑性樹脂組成物
JP5601781B2 (ja) 光学フィルム
KR101771768B1 (ko) 위상차 필름과 그것을 구비하는 화상 표시 장치
JP5666989B2 (ja) 光学フィルムおよび画像表示装置
JP5546235B2 (ja) 光学フィルム
JP2013083956A (ja) 位相差フィルム、偏光板、および画像表示装置
JP5383381B2 (ja) 光学フィルムの製造方法
JP5355373B2 (ja) 熱可塑性樹脂組成物および光学フィルム
JP6368178B2 (ja) 樹脂組成物、該樹脂組成物を含むフィルム、並びに該フィルムを用いた偏光子保護フィルム、偏光板及び画像表示装置
JP5086727B2 (ja) アクリル系重合体及び光学フィルムの製造方法
JP5430187B2 (ja) 2軸延伸フィルム
JP5566086B2 (ja) 熱可塑性樹脂組成物および光学フィルム
JP2009191248A (ja) 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルムならびに樹脂成形品の製造方法
JP6339881B2 (ja) 樹脂組成物、該樹脂組成物を含むフィルム、並びに該フィルムを用いた偏光子保護フィルム、偏光板及び画像表示装置
JP5775676B2 (ja) 位相差フィルムとそれを用いた画像表示装置
JP2012078778A (ja) 樹脂組成物、光学フィルムおよび画像表示装置
JP2014098133A (ja) 樹脂組成物とそれを用いた樹脂成形品
JP2017186522A (ja) 熱可塑性アクリル系樹脂
JP5350640B2 (ja) 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルム
JP6671140B2 (ja) 熱可塑性樹脂及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5355373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150