JP2017184218A - 放射線撮像装置および放射線撮像システム - Google Patents

放射線撮像装置および放射線撮像システム Download PDF

Info

Publication number
JP2017184218A
JP2017184218A JP2016135207A JP2016135207A JP2017184218A JP 2017184218 A JP2017184218 A JP 2017184218A JP 2016135207 A JP2016135207 A JP 2016135207A JP 2016135207 A JP2016135207 A JP 2016135207A JP 2017184218 A JP2017184218 A JP 2017184218A
Authority
JP
Japan
Prior art keywords
mode
rows
period
scanning
reset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016135207A
Other languages
English (en)
Other versions
JP6417368B2 (ja
Inventor
拓哉 笠
Takuya Ryu
拓哉 笠
八木 朋之
Tomoyuki Yagi
朋之 八木
竹中 克郎
Katsuro Takenaka
克郎 竹中
英之 岡田
Hideyuki Okada
英之 岡田
恵梨子 佐藤
Eriko Sato
恵梨子 佐藤
竹田 慎市
Shinichi Takeda
慎市 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to US15/446,187 priority Critical patent/US10416323B2/en
Priority to EP17159306.4A priority patent/EP3226549B1/en
Priority to CN201710156928.2A priority patent/CN107242878B/zh
Priority to KR1020170035060A priority patent/KR20170113149A/ko
Publication of JP2017184218A publication Critical patent/JP2017184218A/ja
Application granted granted Critical
Publication of JP6417368B2 publication Critical patent/JP6417368B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]

Abstract

【課題】モードの切り替え直後における画質の低下を抑制するために有利な技術を提供する。【解決手段】放射線撮像装置は、画素アレイと、複数のモードのうち選択されたモードで前記画素アレイの前記複数の行を走査する走査回路と、前記走査回路による走査において選択される行の画素の信号を読み出す読出回路とを備える。前記複数のモードは、第1フレームレートで撮像を行う第1モードと、前記第1フレームレートより低い第2フレームレートで撮像を行う第2モードとを含む。前記第1モードの1フレーム期間において前記走査回路によって複数の行が走査される回数よりも前記第2モードの1フレーム期間において前記走査回路によって複数の行が走査される回数の方が多い。【選択図】図6

Description

本発明は、放射線撮像装置および放射線撮像システムに関する。
現在、X線による医療画像診断や非破壊検査に用いる放射線撮影装置として、半導体材料によって形成された平面検出器(Flat Panel Detector;以下、FPDと略す)を用いた放射線撮像装置が普及している。放射線撮像装置は、例えば、医療画像診断においては、一般撮影のような静止画撮影や、透視撮影のような動画撮影のためのデジタル撮像装置として用いられている。FPDは、放射線を電気信号に変換する複数の光電変換素子がマトリクス状に配列された検出部と、検出部からの電気信号を読み出すための読出回路とを有している。
FPDで取得した画像には、検出部における容量ばらつきや読出回路のオフセットばらつきによるオフセット成分(ノイズ成分)が含まれる。そこで、放射線を曝射せずに画像の読み出しを行ってオフセット画像を取得した後、放射線を曝射してから読み出しを行って放射線画像を取得し、放射線画像からオフセット画像を減算することでオフセット成分を除去する画像補正を行う方法がある。このような画像補正は、オフセット補正と呼ばれる。
オフセット画像の取り込みについては、放射線画像の撮影前に予めオフセット画像を読み込んでおき、その情報を記憶させておく方式と、放射線画像の取得の直前または直後に取得する方式がある。FPDを用いて動画撮影を行う場合、オフセット画像を放射線画像の取得の直前または直後に取得する方式では、予め取得しておく方式に比べ、撮影間隔が2倍になる上に、ノイズが√2倍になってしまう。近年、FPDを用いた動画撮影では、低ノイズ化・高フレームレート化が求められており、オフセット画像を予め取得しておく方法が有利である。このような方式において、オフセット画像は、撮影モード毎に準備され、撮影モードに応じて、オフセット画像が切り替えられる。
しかし、撮影モードが切り替わった直後はオフセット成分が過渡的に変化することが分かっている。また、この過渡的な変化は、再現性が高いものではないので、予め取得しておいたオフセット画像を使用して撮影モード切り替え直後の放射線画像を補正しても、正しく補正を行うことは難しく、結果的に画像にアーチファクトが重畳してしまう。
特許文献1には、過渡的に変化する成分を補正するための過渡オフセット画像データを予め取得し、例えば、撮影モード切り替え直後の数枚の放射線画像を過渡オフセット画像データも用いて補正を行うことが開示されている。
特開2014−108284号公報
しかしながら、特許文献1に開示された技術では、撮影の前に予め全ての撮影モード切り替えパターンで過渡オフセット画像データを取得する必要があり、そのデータの取得に時間がかかってしまう。また、過渡オフセット画像データが膨大になる。
本発明は、このような事情に鑑みてなされたものであって、モードの切り替え直後における画質の低下を抑制するために有利な技術を提供することを目的とする。
本発明の1つの側面は、複数の行および複数の列を構成するように複数の画素が配列された画素アレイと、複数のモードのうち選択されたモードで前記画素アレイの前記複数の行を走査する走査回路と、前記走査回路による走査において選択される行の画素の信号を読み出す読出回路と、を備える放射線撮像装置に係り、前記放射線撮像装置は、前記複数のモードは、第1フレームレートで撮像を行う第1モードと、前記第1フレームレートより低い第2フレームレートで撮像を行う第2モードとを含み、前記第1モードの1フレーム期間において前記走査回路によって前記複数の行が走査される回数よりも前記第2モードの1フレーム期間において前記走査回路によって前記複数の行が走査される回数の方が多い。
本発明によれば、モードの切り替え直後における画質の低下を抑制するために有利な技術が提供される。
本発明の一つの実施形態の放射線撮像システムの構成を示す図。 図1の放射線撮像システムの放射線撮像装置における撮像部の等価回路を例示する図。 図1の放射線撮像システムおよび放射線撮像装置の動作方法を例示する図。 モードの変更に伴うオフセット成分の過渡的な変化を例示する図。 第1モードの動作を例示する図。 第2モードの動作を例示する図。 第3モードの動作を例示する図。
以下、図面を参照しながら本発明をその例示的な実施形態を通して説明する。なお、放射線の範疇には、X線の他、α線、β線、γ線なども含まれうる。
図1には、本発明の一つの実施形態の放射線撮像システムRISの構成が示されている。放射線撮像システムRISは、X線等の放射線を被検体に照射し被検体を透過したX線を検出することによって被検体の放射線画像を得る。放射線撮像システムRISは、例えば、放射線源112、曝射制御装置113、制御装置111および放射線撮像装置100を備えうる。曝射制御装置113は、操作者による曝射指令に応答して放射線源112に放射線を発生させる。制御装置111は、放射線撮像装置100を制御し、また、放射線撮像装置100から放射線画像を取得する。また、制御装置111は、曝射制御装置113を制御する。
放射線撮像装置100は、放射線画像を撮像する撮像部104、制御装置111との通信を行う通信部107、撮像部104を制御する制御部106、撮像部104に電力を供給する電源部108を備えうる。また、放射線撮像装置100は、撮像部104から出力された画像を解析する解析部109、画像の演算処理を行う処理部105を備えうる。放射線撮像装置100の構成要素の一部は、制御装置111に組み込まれてもよいし、放射線撮像装置100および制御装置111は、一体化されてもよい。例えば、図1に示された例では、解析部109および処理部105が放射線撮像装置100に組み込まれているが、解析部109および処理部105は、制御装置111に組み込まれてもよい。
撮像部104は、例えば、画素アレイ101、走査回路102および読出回路103を含みうる。画素アレイ101は、複数の行および複数の列を構成するように複数の画素が配列されて構成される。走査回路102は、複数のモード(撮影モード)のうち選択されたモードに従って画素アレイ101の複数の行を走査する。読出回路103は、画素アレイ101から信号を読み出す。より具体的には、読出回路103は、画素アレイ101の複数の行のうち走査回路102による走査において選択される行の画素の信号を読み出す。画素アレイ101からの信号の読出は、画素アレイ101から出力される信号を処理し、該信号に対応する信号を出力することを意味する。
図2には、撮像部104の等価回路が例示的に示されている。画素PIXは、例えば、放射線又は光を電荷に変換する変換素子201と、その電荷に応じた電気信号を出力するスイッチ素子202とを含みうる。一例において、変換素子201は、変換素子201に照射された光を電荷に変換する光電変換素子であり、ガラス基板等の絶縁性基板上に配置されアモルファスシリコンを主材料とするPIN型フォトダイオードまたはMIS型フォトダイオードである。また、変換素子201としては、放射線を光電変換素子が検知可能な波長帯域の光に変換する波長変換体を備えた間接型の変換素子や、放射線を直接電荷に変換する直接型の変換素子が採用されうる。
スイッチ素子202としては、制御端子と2つの主端子を有するトランジスタ、例えば、薄膜トランジスタ(TFT)が採用されうる。変換素子201の一方の電極はスイッチ素子202の2つの主端子の一方に電気的に接続され、他方の電極は共通のバイアス線Vsを介して電源部108と電気的に接続される。図2では、変換素子201を相互に区別するために、変換素子201にSij(iは行の番号、jは列の番号を示す)の符号が付されている。また、スイッチ素子202を相互に区別するために、スイッチ素子202にTij(iは行の番号、jは列の番号を示す)の符号が付されている。
1つの行を構成する複数の画素PIXのスイッチ素子202の制御端子は、当該行の駆動線Gi(iは行の番号)に接続されている。例えば、第1行を構成する複数の画素PIXのスイッチ素子T11〜T1nの制御端子は、第1行の駆動線G1に電気的に接続されている。したがって、走査回路102による画素アレイ101の複数の画素PIXの駆動の最小単位は、1つの行を構成する画素PIXである。
1つの列を構成する複数の画素PIXのスイッチ素子202の他方の主端子は、当該列の信号線Sigj(jは列の番号)に接続されている。例えば、第1列を構成する複数の画素PIXのスイッチ素子T11〜Tm1の主端子は、第1列の信号線Sig1に電気的に接続されている。スイッチ素子202が導通状態である間は、変換素子201の電荷に応じた電気信号が信号線Sigjを介して読出回路103に出力される。複数の信号線Sig1〜Signは、読出回路103に電気的に接続される。
読出回路103は、画素アレイ101から複数の信号線Sig1〜Signを介して並列に出力された複数の電気信号をそれぞれ増幅する複数の増幅回路200を含む。各増幅回路200は、例えば、積分増幅器203と、可変増幅器204と、サンプルホールド回路205と、バッファアンプ206とを含みうる。積分増幅器203は、信号線Sigjを介して出力された電気信号を増幅する。可変増幅器204は、積分増幅器203からの電気信号を増幅する。サンプルホールド回路205は、可変増幅器204からの電気信号をサンプルしホールドする。バッファアンプ206は、サンプルホールド回路205からの電気信号をバッファリングする。
積分増幅器203は、例えば、演算増幅器211と、積分容量212と、リセットスイッチ213とを含みうる。演算増幅器211は、信号線Sigjを介して提供される電気信号を受ける反転入力端子と、基準電源110から基準電圧Vrefを受ける非反転入力端子と、出力端子とを有する。積分容量212およびリセットスイッチ213は、反転入力端子と出力端子との間に並列に配置される。積分容量212は、可変の容量値Cfを有しうる。サンプルホールド回路205は、例えば、サンプリングスイッチ221と、サンプリング容量222とによって構成されうる。
読出回路103は、更に、マルチプレクサ207と、バッファ増幅器208と、A/D変換器209とを含みうる。マルチプレクサ207は、複数の増幅回路200から並列に出力される電気信号を順次に選択して出力して画像信号として出力する。バッファ増幅器208は、マルチプレクサ207から出力される画像信号をインピーダンス変換して画像信号Voutとしてのアナログ電気信号を出力する。A/D変換器209は、バッファ増幅器208から出力された画像信号Voutをデジタルの画像データに変換し、処理部105および解析部109に提供する。
走査回路102は、制御部106から供給される制御信号(D−CLK、OE、DIO)に応じて駆動信号Giを発生し駆動線Giに出力する。なお、本明細書では、信号線とその信号線に出力される信号に同一の符号が付されている。駆動信号Giは、画素PIXのスイッチ素子202を導通状態にする導通電圧Vcom、または、スイッチ素子202非道通状態とする非導通電圧Vssを有する。
一例において、走査回路102は、シフトレジスタを含みうる。制御信号D−CLKは、シフトレジスタにシフト動作をさせるシフトクロックであり、制御信号DIOは、シフトレジスタが転送するパルス、OEは、シフトレジスタの出力端を制御する信号である。また、制御部106は、読出回路103に制御信号RC、制御信号SH、及び制御信号CLKを供給することによって、読出回路103を制御する。ここで、制御信号RCは積分増幅器203のリセットスイッチ213を制御し、制御信号SHはサンプルホールド回路205のサンプリングスイッチ221を制御し、制御信号CLKはマルチプレクサ207を制御する。
図3には、放射線撮像システムRISおよび放射線撮像装置100の動作方法が例示的に示されている。放射線撮像装置100の電源が投入されると、工程S301において、放射線撮像装置100は、放射線撮像装置100の動作の安定化のための立ち上げ動作が行われる。この動作は、制御部106によって制御されうる。立ち上げ動作では、暗電流に起因して蓄積される電荷を除去するリセット動作が行われうる。リセット動作は、スイッチ素子202を導通させることによって、変換素子201に蓄積されている電荷をリセットする動作である。リセット動作は、画素アレイ101を構成する複数の行を少なくとも1つの行を単位として走査回路102が走査することよってなされうる。一例において、リセット動作では、リセットスイッチ213が導通状態にされ、演算増幅器211がボルテージフォロアの状態にされることによって信号線Sigjが基準電圧Vrefに固定される。この状態で、スイッチ素子202が導通状態にされることによって変換素子201に蓄積された電荷が除去され、変換素子201の電圧がリセットされる。
工程S302では、オフセット画像を取得する動作が行われる。この動作は、制御部106によって制御されうる。オフセット画像は、放射線撮像装置100に対して放射線が照射されない状態で撮像動作を行うことによって取得される。オフセット画像は、複数回(例えば、30回)の撮像を行い、得られた画像を処理(例えば、加算平均)することにとって得られる。撮像動作は、画素アレイ101の複数の画素PIXに電荷を蓄積させた後に、走査回路102によって画素アレイ101の複数の行を順に選択(走査)し、選択された行の画素PIXの信号を読出回路103によって読み出す動作を含む。
放射線撮像装置100は、複数のモード(撮影モード)を有する。モードを指定する情報は、操作者によって操作される制御装置111を介して制御部106に通知されうる。複数のモードは、例えば、フレームレート(単位時間当たりのフレーム取得数(撮像回数))、読出回路103の信号増幅率(ゲイン)、画素加算数(ビニング)、撮像範囲の少なくともいずれかが互いに異なる。複数のモードは、例えば、第1フレームレートで放射線画像を撮像する第1モードと、該第1フレームレートより遅い第2フレームレートで放射線画像を撮像する第2モードとを含みうる。換言すると、第1モードは、第1期間で1フレーム分の放射線画像を撮像するモードであり、第2モードは、第1期間より長い第2期間で1フレーム分の放射線画像を撮像するモードである。複数のモードは、第1モードおよび第2モードの他に、1または複数の他のモードを含みうる。
オフセット画像は、複数のモードのそれぞれに関して取得される。例えば、制御部106は、第1モードに設定された状態でオフセット画像を取得し、第2モードに設定された状態でオフセット画像を取得するように制御を実行する。
工程S302においてオフセット画像を取得した後に、工程S303において、制御部106は、操作者によって設定されたモードで透視撮影(動画の撮像)を実行する。具体的には、制御部106は、操作者によって設定されたモードによって規定されているフレームレート、信号増幅率(ゲイン)、画素加算数(ビニング)、撮像範囲に従って撮像動作を繰り返す。透視撮影では、放射線源112から断続的に放射線が照射され、放射線撮像装置100は、放射線の照射に同期して撮像動作を繰り返す。
ここで、長時間にわたって透視撮影を行うと、環境温度の変化等により、放射線撮像装置100によって撮像される画像に含まれるオフセット成分が変化し、正しいオフセット補正ができなくなり、画像にアーチファクトが生じうる。そこで、工程S305では、制御部106は、オフセット画像を更新するかどうかを決定する。オフセット画像の更新は、制御部106が透視撮影の時間や温度等に応じて決定してもよいし、操作者からの指示に従って決定してもよい。オフセット画像を更新すると決定された場合、工程S302に戻って、オフセット画像が再取得される。オフセット画像を再取得する場合には、放射線源112による放射線の断続的な照射が停止される。オフセット画像の再取得が終了した後、工程S303における透視撮影に戻る。
透視撮影は、いつでも終了することができる。また、透視撮影中にモードを変更することができる。透視撮影を終了する場合は、放射線源112からの放射線の断続的な照射が停止され、放射線撮像装置100は、撮像動作を停止する。操作者が制御装置111に対してモードの変更を指示すると、モードの変更を要求する指令が制御装置111から放射線撮像装置100の制御部106に送られうる。制御部106は、工程S307において、制御装置111からの指令に応じてモードを変更する。また、操作者が制御装置111に対してモードの変更を指示すると、制御装置111は、曝射制御装置113に対して、放射線源112による放射線の発生を一時的に停止させる指令を送り、放射線の発生を一時的に停止させる。放射線撮像装置100においてモードが変更され、透視撮影を再開することができる状態になると、制御装置111は、曝射制御装置113に対して、放射線源112による放射線の照射を開始させる指令を送る。これにより、工程S303において、新たなモードでの透視撮影が開始される。放射線撮像装置100の制御部106は、あるフレームの画像を読出回路103で読み出している際にモードの変更の指令を受けた場合、そのフレームの画像の読出が終了した後にモードを変更する。
前述のように、モードが変更された直後は、オフセット成分が過渡的に変化することが分かっている。また、過渡的な変化の時間は比較的長い時間にわたるので、過渡状態におけるオフセット補正のためのオフセット画像を準備していたとしても、正しいオフセット補正を行うことは難しく、出力画像にアーチファクトが重畳してしまう。
本発明者は、過渡的に変化するオフセット成分は、モードの切り替えの前後におけるフレームレートの差(変化量)に相関を有することを確認した。具体的には、モードの切り替えの前後におけるフレームレートの差が大きい場合は、過渡的に変化するオフセット成分が大きく、過渡的な変化が終了するまでに要する時間が長くなる。一方、モードの切り替えの前後におけるフレームレートの差が小さい場合は、過渡的に変化するオフセット成分が小さく、過渡的な変化が終了するまでに要する時間が短くなる。
図4には、モードの変更に伴うオフセット成分の過渡的な変化が例示されている。モードA、Cは、高フレームレートのモードであり、互いにフレームレートが同じである。モードBは、低フレームレートのモードであり、モードA、Cよりもフレームレートが低い。モードAからモードBへの変更の直後、および、モードBからモードAへの変更の直後のオフセット成分の過渡的な変化は大きく、変化が終了するまでに要する時間が長い。一方、フレームレートの変更を伴わないモードの変更であるモードAからモードCへの変更では、オフセットの成分の過渡的な変化は小さく、変化が終了するまでに要する時間が短い。モードAとモードCとは、例えば、読出回路103の信号増幅率(ゲイン)または画素加算数(ビニング)が異なり、フレームレートが互いに等しいモードである。
以上の結果より、モード変更によるオフセット成分の過渡的な変化の大きさは、単位時間あたりの各スイッチ素子202のトグルの回数、換言すると、単位時間あたりの走査回路102による画素アレイ101の走査の回数に対して強い相関を有すると考えられる。スイッチ素子202のトグルとは、スイッチ素子202をオン・オフする動作を意味する。走査回路102による画素アレイ101の走査は、画素アレイ101の複数の行を順に選択し、選択された行の画素PIXのスイッチ素子202をオフ状態(非導通状態)からオン状態(導通状態)にすることを意味する。
つまり、単位時間あたりの走査回路102による画素アレイ101の走査の回数をモードの変更によって変化させないことによってモードの変更に伴うオフセット成分の変化を抑えることができる。走査回路102による画素アレイ101の走査は、画素PIX(変換素子201)のリセット動作においても、画素PIXからの信号の読出においてもなされる。そこで、フレームレートが低いモードにおける1フレームあたりのリセット動作の回数を増やせば、フレームレートの変更を伴うモードの変更があっても、それによるオフセット成分の変化を小さくすることができる。
図5、図6には、上記の思想に基づいて2つのモードにおける動作が例示されている。ここでは、第1フレームレートで放射線画像を撮像する第1モードと、該第1フレームレートより低い第2フレームレートで放射線画像を撮像する第2モードとを考える。図5には第1モードの動作が例示され、図6には第2モードの動作が例示されている。まず、第1モードの動作を説明する。第1モードの1フレーム期間は、照射された放射線に応じた信号を複数の画素PIXが蓄積する蓄積期間と、走査回路102によって複数の行を走査しながら読出回路103によって画素アレイ101から1フレーム分の信号を読み出す読出期間とを含む。蓄積期間における動作を蓄積動作といい、読出期間における動作を読出動作という。蓄積期間中は全ての画素PIXのスイッチ素子202に非導通電圧Vssが与えられており、全ての画素PIXのスイッチ素子202は非導通状態となる。蓄積期間が終了すると、読出期間に移行する。読出期間では、走査回路102によって画素アレイ101の複数の行を走査しながら読出回路103によって画素アレイ101の複数の画素PIXから信号が読み出される。走査回路102による走査は、第1行の駆動線G1から第m行の駆動線Gmまでを順に選択する動作である。即ち、読出期間では、走査回路102によって第1行の駆動線G1から第m行の駆動線Gmまでに対して順に導通電圧Vcomが供給され(即ち、第1行から第m行を順に選択され)、選択された行の画素PIXの信号が読出回路103によって読み出される。以上のようにして、第1モードでは、1フレーム期間において、画素アレイ101の複数の行が1回だけ走査される。
次に、第2モードの動作を説明する。第2モードの1フレーム期間は、照射された放射線に応じた信号を複数の画素PIXが蓄積する蓄積期間と、走査回路102によって複数の行を走査しながら読出回路103によって画素アレイ101から1フレーム分の信号を読み出す読出期間とを含む。また、第2モードの1フレーム期間は、1または複数のリセット期間を含む。1つのリセット期間は、画素アレイ101の複数の画素PIXがリセットされるように走査回路102によって画素アレイ101の複数の行を走査する期間である。リセット期間における動作をリセット動作という。
第2モードにおける蓄積期間は、第1モードにおける蓄積期間より長く、そのために、第2モードのフレームレートは、第1モードのフレームレートより低い。したがって、第2モードにおける1フレーム期間が蓄積期間と読出期間とを含むだけでは、単位時間あたりに画素アレイ101が走査される回数が第1モードより小さくなる。そこで、第2モードでは、1フレーム期間は、蓄積期間および読出期間の他にリセット期間を含む。これにより、第1モードの1フレーム期間において走査回路102によって画素アレイ101の複数の行が走査される回数よりも第2モードの1フレーム期間において走査回路102によって画素アレイ101の複数の行が走査される回数の方が多くなる。
動画の撮像においては複数のフレーム期間が連続しているので、リセット期間は、読出期間の後に設けられてもよいし、蓄積期間の前に設けられてもよい。第2モードの読出期間における読出動作は、第1モードの読出動作を同様である。リセット期間では、走査回路102が第1行の駆動線G1から第m行の駆動線Gmまでを走査する。即ち、リセット期間では、走査回路102が第1行の駆動線G1から第m行の駆動線Gmまでに対して順に導通電圧Vcomを供給し(即ち、第1行から第m行を順に選択し)、選択された行の画素PIXの変換素子201がリセットされる。
第2モードの1フレーム期間が複数のリセット期間を含む場合、該複数のリセット期間のうち最後のリセット期間における走査時間(走査回路102が画素アレイ101の複数の行を走査するために要する時間。)は、第2モードの読出期間における走査時間(走査回路102が画素アレイ101の複数の行を走査するために要する時間。)と同じであることが好ましい。より具体的には、リセット期間の走査と読出期間における走査とで、同時に選択される行の数を同じにし、かつ、ある行の選択の開始から次の行の選択の開始までの時間(ラインタイム)を同じにすることが好ましい。
最後のリセット期間における走査時間とその後の読出期間における走査時間とが異なる場合、最後のリセット期間における第i行のリセットからその後の読出期間における第i行の読み出しまでの時間が複数の行の間で互いに異なってしまう。このため、時間積分で重畳するアーチファクト成分(例えば、暗電流や残像)が各行で異なってしまい、画像にアーチファクトが重畳してしまったり、アーチファクト補正が難しくなったりしてしまう。
最後のリセット期間における走査時間とその後の読出期間における走査時間とを同じにすることで、アーチファクトを低減し、または簡便に補正を行うことが可能になり、高品質な画像を提供することができる。
また、1フレーム期間における複数のリセット期間のうち最後のリセット期間よりも前のリセット期間の走査時間は、該最後のリセット期間の走査時間よりも短いことが好ましい。例えば、第1フレーム期間における複数のリセット期間のうち最後のリセット期間よりも前のリセット期間の走査時間は、該最後のリセット期間の走査時間の1/5以下であることが好ましい。あるいは、1フレーム期間における複数のリセット期間のうち最後のリセット期間よりも前のリセット期間では、走査回路102は、少なくとも2つの行を単位として画素アレイ101の複数の行を走査してもよい。このような制御は、走査時間を短縮し走査回数を増やすために有利であり、モード間における単位時間当たりの走査回数の差を低減するために有利である。
モード間において、単位時間あたりの走査回数の差がないことが理想的である。しかし、低フレームレートのモードにおける1フレーム期間内にリセット期間を挿入することによって、高フレームレートの第1モードと低フレームレートの第2モードとにおける単位時間当たりの走査回数の差が小さくなれば、相応の効果が得られる。
以上のように、モード間における単位時間あたりの走査回数の差が小さくなるように他のモードよりもフレームレートが低いモードのフレーム期間にリセット期間を挿入することで、モードの変更時におけるオフセット成分の過渡的な変化を低減することができる。これにより、過渡的な変化時の画像のオフセット補正のための大量のオフセット画像を取得するための時間やそれを保持するためのメモリ領域を削減することができる。
ここまでの説明では、低フレームレートのモードにおける1フレーム期間にリセット期間を挿入することによって、高フレームレートの第1モードと低フレームレートの第2モードとにおける単位時間当たりの走査回数の差が小さくされる。しかしながら、1フレーム期間にダミーの読出期間を挿入することによっても同様の効果が得られる。ダミーの読出期間は通常の読出期間と同様でありうるが、ダミーの読出期間に読出回路103によって読み出された信号は通常は使用されないであろう。あるいは、1フレーム期間に、画素PIXをリセットすることなく複数の行を走査する走査期間を挿入してもよい。あるいは、1フレーム期間にリセット期間、ダミーの読出期間および走査期間の少なくとも1つを挿入してもよい。あるいは、1フレーム期間に、ダミーの読出期間および走査期間の少なくとも1つを挿入し、その後にリセット期間を挿入してもよい。
以下、3つ以上のモードを有する場合の動作について例示する。
まず、放射線撮像装置100が第1モード、第2モード、第3モードを有し、各モードのフレームレートが、第1モード>第3モード>第2モード、である場合について説明する。第1モードおよび第2モードは、上記の関係を有するものとする。図7には、第3モードにおける動作が例示されており、第3モードにおけるリセット動作の回数は1回となっている。第3モードは、1フレーム期間におけるリセット動作の回数が第2モードにおける1フレーム期間におけるリセット動作の回数よりも多く、第1モードにおける1フレーム期間におけるリセット動作の回数よりも少ないことが好ましい。リセット動作の回数は、第1モード、第2モード、第3モードで単位時間あたりの走査回数の差が小さくなるように、好ましくは当該差がなくなるように決定される。図7に示す第3モードにおいては、リセット動作の回数が1回であるため、リセット期間における走査時間は、読出期間における走査時間と同じであることが好ましい。より具体的には、リセット期間の走査と読出期間における走査とで、同時に選択される行の数を同じにし、かつ、ある行の選択の開始から次の行の選択の開始までの時間(ラインタイム)を同じにすることが好ましい。このような制御は、前述したように、アーチファクトを低減し、または簡便に補正することを可能にし、高品質な画像を提供するために有利である。
次に、放射線撮像装置100が第1モード、第2モード、第4モードを有し、各モードのフレームレートが、第1モード≒第4モード>第2モードである場合について説明する。第1モードおよび第2モードは、上記の関係を有するものとする。第4モードの動作は、基本的には第1モードの動作と同様で、第2モードで実施するようなリセット動作は必要ない。これは、例えば第1モードから第4モードにモード切り替えを行った場合でも、フレームレートの差が小さければ過渡的に変化する成分によるアーチファクトも小さくなるためである。

Claims (12)

  1. 複数の行および複数の列を構成するように複数の画素が配列された画素アレイと、複数のモードのうち選択されたモードに従って前記画素アレイの前記複数の行を走査する走査回路と、前記走査回路による走査において選択される行の画素の信号を読み出す読出回路と、を備える放射線撮像装置であって、
    前記複数のモードは、第1フレームレートで撮像を行う第1モードと、前記第1フレームレートより低い第2フレームレートで撮像を行う第2モードとを含み、
    前記第1モードの1フレーム期間において前記走査回路によって前記複数の行が走査される回数よりも前記第2モードの1フレーム期間において前記走査回路によって前記複数の行が走査される回数の方が多い、
    ことを特徴とする放射線撮像装置。
  2. 前記第1モードの1フレーム期間は、照射された放射線に応じた信号を前記複数の画素が蓄積する蓄積期間と、前記走査回路によって前記複数の行を走査しながら前記読出回路によって前記画素アレイから1フレーム分の信号を読み出す読出期間とを含み、
    前記第2モードの1フレーム期間は、照射された放射線に応じた信号を前記複数の画素が蓄積する蓄積期間と、前記走査回路によって前記複数の行を走査しながら前記読出回路によって前記画素アレイから1フレーム分の信号を読み出す読出期間と、前記複数の画素がリセットされるように前記走査回路によって前記複数の行を走査するリセット期間を更に含む、
    ことを特徴とする請求項1に記載の放射線撮像装置。
  3. 前記第2モードの1フレーム期間は、前記リセット期間を含む複数のリセット期間を含む、
    ことを特徴とする請求項2に記載の放射線撮像装置。
  4. 前記第2モードにおける前記複数のリセット期間のうち最後のリセット期間において前記走査回路が前記複数の行を走査するために要する時間は、前記第2モードにおける前記読出期間において前記走査回路が前記複数の行を走査するために要する時間と同じである、
    ことを特徴とする請求項3に記載の放射線撮像装置。
  5. 前記第2モードにおける前記複数のリセット期間のうち前記最後のリセット期間において前記走査回路が前記複数の行の走査を行うときと、前記第2モードにおける前記読出期間において前記走査回路が前記複数の行の走査を行うときと前記走査回路が同時に選択する行の数が同じである、
    ことを特徴とする請求項4に記載の放射線撮像装置。
  6. 前記第2モードにおける前記複数のリセット期間のうち前記最後のリセット期間において前記走査回路が前記複数の行の走査を行うときと、前記第2モードにおける前記読出期間において前記走査回路が前記複数の行の走査を行うときとで、ある行の選択の開始から次の行の選択の開始までの時間が同じである
    ことを特徴とする請求項4又は5に記載の放射線撮像装置。
  7. 前記複数のリセット期間のうち最後のリセット期間よりも前のリセット期間は、前記最後のリセット期間よりも、前記走査回路が前記複数の行を走査するために要する時間が短い、
    ことを特徴とする請求項3乃至6のいずれか1項に記載の放射線撮像装置。
  8. 前記複数のリセット期間のうち前記最後のリセット期間よりも前のリセット期間では、前記走査回路は、少なくとも2つの行を単位として前記複数の行を走査する、
    ことを特徴とする請求項4乃至6のいずれか1項に記載の放射線撮像装置。
  9. 動画を撮像している際に前記第1モードおよび前記第2モードの一方から前記第1モードおよび前記第2モードの他方に変更する制御部を更に備える、
    ことを特徴とする請求項1乃至8のいずれか1項に記載の放射線撮像装置。
  10. 放射線を発生する放射線源と、
    請求項1乃至9のいずれか1項に記載の放射線撮像装置と、
    を備えることを特徴とする放射線撮像システム。
  11. 複数の行および複数の列を構成するように複数の画素が配列された画素アレイと、複数のモードのうち選択されたモードに従って前記画素アレイの前記複数の行を走査する走査回路と、前記走査回路による走査において選択される行の画素の信号を読み出す読出回路と、を備える放射線撮像装置の動作方法であって、
    前記複数のモードは、第1フレームレートで撮像を行う第1モードと、前記第1フレームレートより低い第2フレームレートで撮像を行う第2モードとを含み、
    前記第1モードの1フレーム期間において前記走査回路によって前記複数の行が走査される回数よりも前記第2モードの1フレーム期間において前記走査回路によって前記複数の行が走査される回数の方が多い、
    ことを特徴とする放射線撮像装置の動作方法。
  12. 前記第1モードの1フレーム期間は、照射された放射線に応じた信号を前記複数の画素が蓄積する蓄積期間と、前記走査回路によって前記複数の行を走査しながら前記読出回路によって前記画素アレイから1フレーム分の信号を読み出す読出期間とを含み、
    前記第2モードの1フレーム期間は、照射された放射線に応じた信号を前記複数の画素が蓄積する蓄積期間と、前記走査回路によって前記複数の行を走査しながら前記読出回路によって前記画素アレイから1フレーム分の信号を読み出す読出期間と、前記複数の画素がリセットされるように前記走査回路によって前記複数の行を走査するリセット期間を更に含む、
    ことを特徴とする請求項11に記載の放射線撮像装置の動作方法。
JP2016135207A 2016-03-29 2016-07-07 放射線撮像装置および放射線撮像システム Active JP6417368B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/446,187 US10416323B2 (en) 2016-03-29 2017-03-01 Radiation imaging apparatus, radiation imaging system, and method of operating radiation imaging apparatus
EP17159306.4A EP3226549B1 (en) 2016-03-29 2017-03-06 Radiation imaging apparatus, radiation imaging system, and method of operating radiation imaging apparatus
CN201710156928.2A CN107242878B (zh) 2016-03-29 2017-03-16 放射线成像装置和操作该装置的方法、放射线成像系统
KR1020170035060A KR20170113149A (ko) 2016-03-29 2017-03-21 방사선 촬상 장치, 방사선 촬상 시스템 및 방사선 촬상 장치를 동작시키는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016066316 2016-03-29
JP2016066316 2016-03-29

Publications (2)

Publication Number Publication Date
JP2017184218A true JP2017184218A (ja) 2017-10-05
JP6417368B2 JP6417368B2 (ja) 2018-11-07

Family

ID=60006546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135207A Active JP6417368B2 (ja) 2016-03-29 2016-07-07 放射線撮像装置および放射線撮像システム

Country Status (3)

Country Link
JP (1) JP6417368B2 (ja)
KR (1) KR20170113149A (ja)
CN (1) CN107242878B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188331A (ja) * 2019-05-13 2020-11-19 キヤノン株式会社 撮像装置およびその制御方法
CN113810595A (zh) * 2021-06-16 2021-12-17 荣耀终端有限公司 视频拍摄的编码方法、设备、存储介质和程序产品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230110665A (ko) * 2018-04-02 2023-07-24 에이에스엠엘 네델란즈 비.브이. 넓은 활성 영역 고속 검출기를 위한 아키텍처
US10827135B2 (en) * 2018-11-26 2020-11-03 Bae Systems Information And Electronic Systems Integration Inc. BDI based pixel for synchronous frame-based and asynchronous event-driven readouts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179682A (ja) * 2002-11-22 2004-06-24 Canon Inc 放射線撮像装置
JP2010227511A (ja) * 2009-03-30 2010-10-14 Fujifilm Corp 放射線検出装置及び方法、並びに放射線画像撮影システム
JP2010268171A (ja) * 2009-05-14 2010-11-25 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置および放射線画像撮影システム
JP2011045492A (ja) * 2009-08-26 2011-03-10 Canon Inc 撮像システム、その画像処理方法及びそのプログラム
JP2011078083A (ja) * 2009-09-04 2011-04-14 Canon Inc 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
US20120126132A1 (en) * 2010-11-23 2012-05-24 Samsung Mobile Display Co., Ltd. X-Ray Detector and Method of Driving the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325261A (ja) * 2003-04-24 2004-11-18 Canon Inc 放射線画像撮像装置
JP5121473B2 (ja) * 2007-02-01 2013-01-16 キヤノン株式会社 放射線撮像装置、その制御方法及び放射線撮像システム
JP5559000B2 (ja) * 2010-10-12 2014-07-23 キヤノン株式会社 放射線撮像装置、放射線撮像装置の制御方法、およびプログラム
CN103988265B (zh) * 2011-11-22 2017-10-20 杜尔牙科股份有限公司 用于读取成像板的装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179682A (ja) * 2002-11-22 2004-06-24 Canon Inc 放射線撮像装置
JP2010227511A (ja) * 2009-03-30 2010-10-14 Fujifilm Corp 放射線検出装置及び方法、並びに放射線画像撮影システム
JP2010268171A (ja) * 2009-05-14 2010-11-25 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置および放射線画像撮影システム
JP2011045492A (ja) * 2009-08-26 2011-03-10 Canon Inc 撮像システム、その画像処理方法及びそのプログラム
JP2011078083A (ja) * 2009-09-04 2011-04-14 Canon Inc 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
US20120126132A1 (en) * 2010-11-23 2012-05-24 Samsung Mobile Display Co., Ltd. X-Ray Detector and Method of Driving the Same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188331A (ja) * 2019-05-13 2020-11-19 キヤノン株式会社 撮像装置およびその制御方法
JP7277251B2 (ja) 2019-05-13 2023-05-18 キヤノン株式会社 撮像装置およびその制御方法
CN113810595A (zh) * 2021-06-16 2021-12-17 荣耀终端有限公司 视频拍摄的编码方法、设备、存储介质和程序产品
CN113810595B (zh) * 2021-06-16 2023-03-17 荣耀终端有限公司 视频拍摄的编码方法、设备和存储介质

Also Published As

Publication number Publication date
KR20170113149A (ko) 2017-10-12
CN107242878B (zh) 2020-09-22
JP6417368B2 (ja) 2018-11-07
CN107242878A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
EP3226549B1 (en) Radiation imaging apparatus, radiation imaging system, and method of operating radiation imaging apparatus
US10148898B2 (en) Image sensor driving apparatus, method and radiation imaging apparatus
US8818068B2 (en) Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program
US8785870B2 (en) Imaging apparatus, radiation imaging system, and control method of image sensor
RU2504101C2 (ru) Устройство формирования изображений и система формирования изображений, способ формирования изображений и программа формирования изображений
US8436314B2 (en) Imaging apparatus, imaging system, method of controlling the apparatus and the system, and program
JP2016040880A (ja) 放射線撮像装置及び放射線検出システム
JP6417368B2 (ja) 放射線撮像装置および放射線撮像システム
US9467631B2 (en) Radiation imaging apparatus, method of driving the same, and radiation inspection apparatus
JP2011091771A (ja) 撮像装置及び撮像システム、それらの制御方法及びそのプログラム
CN107645640B (zh) 放射线图像捕获装置和放射线图像捕获系统及其控制方法
US9838619B2 (en) Radiation imaging apparatus and radiation inspection apparatus
US9565384B2 (en) Radiation imaging apparatus and control method thereof
US8446495B2 (en) Image pickup apparatus and image pickup system
JP2012070849A (ja) 撮像装置、撮像システム、撮像装置の制御方法
JP2014216794A (ja) 放射線撮像装置及び放射線検査装置
WO2018083894A1 (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の駆動方法およびプログラム
JP2020054588A (ja) 放射線撮像装置、その制御方法及び放射線撮像システム
WO2022244495A1 (ja) 放射線撮像装置および放射線撮像システム
WO2019239755A1 (ja) 放射線撮像装置、放射線撮像システム、および、放射線撮像装置の制御方法
JP2022176882A (ja) 放射線撮像装置および放射線撮像システム
JP2024004308A (ja) 放射線撮像装置、放射線撮像システム、放射線撮像装置の制御方法、信号処理装置、信号処理装置の制御方法、および、プログラム
JP2017224991A (ja) 放射線撮像装置、その駆動方法およびプログラム
JP2020048081A (ja) 放射線撮像装置、放射線撮像システム、および、放射線撮像装置の制御方法
JP2019213742A (ja) 放射線撮像装置、放射線撮像システム、および、放射線撮像装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181005

R151 Written notification of patent or utility model registration

Ref document number: 6417368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151