JP2017169416A - 超音波モーター、ロボット、ハンド、及びポンプ - Google Patents

超音波モーター、ロボット、ハンド、及びポンプ Download PDF

Info

Publication number
JP2017169416A
JP2017169416A JP2016055062A JP2016055062A JP2017169416A JP 2017169416 A JP2017169416 A JP 2017169416A JP 2016055062 A JP2016055062 A JP 2016055062A JP 2016055062 A JP2016055062 A JP 2016055062A JP 2017169416 A JP2017169416 A JP 2017169416A
Authority
JP
Japan
Prior art keywords
vibration
ultrasonic motor
piezoelectric
signal
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016055062A
Other languages
English (en)
Other versions
JP2017169416A5 (ja
Inventor
勉 宮本
Tsutomu Miyamoto
勉 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016055062A priority Critical patent/JP2017169416A/ja
Publication of JP2017169416A publication Critical patent/JP2017169416A/ja
Publication of JP2017169416A5 publication Critical patent/JP2017169416A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】周期的な外乱に応じて発生する振動の変化を低減し、回転を安定に制御する。【解決手段】発明の超音波モーターは、回転体と、回転体に接触して回転の駆動力を与えるとともに、振動に応じた振動対応信号を出力する振動体と、振動対応信号を入力して振動対応信号に平滑処理を施した振動状態信号を出力する信号処理部と、振動状態信号に基づいて振動体の振動を制御する制御部と、を備える。【選択図】図1

Description

本発明は、超音波モーター及び超音波モーターを用いた各種の装置に関する。
特許文献1では、超音波モーターの駆動回路において、ピックアップ信号を検出して駆動信号にフィードバックするフィードバック制御が行われている。これにより、超音波モーターが温度変化等の外乱による影響を受けて、駆動周波数が変化したとしても容易に追従可能としている。
特開昭63−202278号公報
しかし、ピックアップ信号に回転体に起因した外乱が重畳した場合、この外乱による影響を検出するための回路構成が複雑となる可能性があり、フィードバック制御が困難である、という問題がある。
本発明は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、超音波モーターが提供される。この超音波モーターは、回転体と、前記回転体に接触して回転の駆動力を与えるとともに、振動に応じた振動対応信号を出力する振動体と、前記振動対応信号を入力して前記振動対応信号に平滑処理を施した振動状態信号を出力する信号処理部と、前記振動状態信号に基づいて前記振動体の振動を制御する制御部と、を備える。
この形態の超音波モーターは、振動体の振動の状態を示す振動状態信号に基づいて振動体の振動を制御することができるので、簡単な構成で、周期的な外乱に応じて発生する振動の変化を低減し、回転を安定に制御することができる。
(2)上記形態の超音波モーターにおいて、前記回転体の回転周期に応じて前記平滑処理を実行するようにしてもよい。
この形態によれば、振動信号に重畳される外乱のうち、不要な外乱を除去するとともに、回転周期に応じて発生する周期的な外乱に応じた変動を維持した振動状態信号を出力することができる。
(3)上記形態の超音波モーターにおいて、前記平滑処理は、前記回転体の回転周期に含まれる複数の振動周期の振動信号について、前記振動周期ごとの複数の位相点について、それぞれ、あらかじめ定めた移動平均周期数の単位で移動平均をとる、としてもよい。
この形態によれば、振動信号に重畳される外乱のうち、回転周期に応じて発生する周期的な外乱に応じた変動を維持しつつ、不要な外乱を除去する平滑処理を容易に実行することができる。
(4)上記形態の超音波モーターにおいて、前記制御部は、前記振動状態信号に含まれる振動の振幅のエンベロープ値を記憶する記憶部を有するとしてもよい。
この形態によれば、記憶したエンベロープ値に基づいて振動体の制御を実行することができる。
(5)上記形態の超音波モーターにおいて、前記制御部は、N回転目(Nは1以上の整数)の回転周期における前記エンベロープ値に基づいて、N+1回転目の回転周期における前記振動体の駆動電圧を調整するとしてもよい。
この形態によれば、前(N回転目)の回転周期で発生した周期的な外乱に応じた振動の変動を利用して、今回(N+1回転目)の回転周期においても発生が想定される周期的な外乱に応じた振動の変動を低減するように振動を滑らかに制御することができる。
(6)上記形態の超音波モーターにおいて、前記制御部は、前記エンベロープ値の閾値を記憶する閾値記憶部を有し、前記エンベロープ値が前記閾値以下となったとき、前記振動体の駆動電圧を増加させるとしてもよい。
この形態によれば、振動体の振動が回転体に回転の駆動力を与えることができないほど小さくなって、回転が停止してしまわないように制御するこができる。
(7)上記形態の超音波モーターにおいて、前記振動体は、振動板と、前記振動板を振動させる圧電素子と、前記圧電素子による前記振動板の振動に応じて、前記振動対応信号として、前記振動に応じて変動する電圧を出力するピックアップ部と、を有しているとしてもよい。
この形態によれば、ピックアップ部が出力する電圧によって振動体の振動を容易に検出することができる。
(8)上記形態の超音波モーターにおいて、前記振動体は、振動板と、前記振動板を振動させる圧電素子と、を有し、前記振動対応信号として、前記振動に応じて変動する前記圧電素子に流れる電流を出力するとしてもよい。
この形態によっても、圧電素子に流れる電流によって振動体の振動を容易に検出することができる。
(9)上記形態の超音波モーターにおいて、積層された複数の前記振動体を備えるようにしてもよい。この形態によれば、振動体が積層されているので、振動力を大きくできる。
本発明は、種々の形態で実現することが可能であり、例えば、超音波モーターの他、超音波モーターを備えるロボット、超音波モーターを備えるハンド、超音波モーターを備えるポンプ等様々な形態で実現することができる。
第1実施形態の超音波モーターを示す説明図である。 圧電アクチュエーターの概略構成を示す説明図である。 図2の圧電アクチュエーターの断面図である。 圧電アクチュエーターの動作の例を示す説明図である。 信号処理部の振動検出部の内部構成の一例を示す説明図である。 信号処理部の検出信号処理部の内部構成を示す説明図である。 平滑処理部における平滑処理の内容を示す説明図である。 振動状態検出部によって平滑振動信号から検出される振動状態信号の一例を示す説明図である。 制御部による制御動作について示す説明図である。 第1実施形態において発生する可能性のある制御現象について示す説明図である。 第2実施形態において図10の現象に対応するための制御部による制御動作について示す説明図である。 第3実施形態における圧電アクチュエーターの概略構成を示す説明図である。 第3実施形態における振動検出部の内部構成を示す説明図である。 超音波モーターを利用したロボットの一例を示す説明図である。 超音波モーターを利用したロボットのハンドの説明図である。 超音波モーターを利用した指アシスト装置を示す説明図である。 超音波モーターを利用した送液ポンプの一例を示す説明図である。
A.第1実施形態:
図1は、第1実施形態の超音波モーター300を示す説明図である。超音波モーター300は、回転体310と、回転体310の回転位置を検出するエンコーダー320と、回転体310に接触して超音波振動することにより回転体310に回転の駆動力を与える複数の圧電アクチュエーター100と、圧電アクチュエーター100を超音波振動させて駆動する駆動装置330と、を備えている。なお、図1では、10個の圧電アクチュエーター100が、回転体310の中心軸RXに垂直な円形面311の外周縁に沿って配置された例を示している。また、図1では、複数の圧電アクチュエーター100を駆動する複数の駆動装置330のうち、1つの圧電アクチュエーター100に対応する1つの駆動装置330のみを示し、他は省略している。なお、各圧電アクチュエーター100と対応する駆動装置330との関係はいずれも同じである。
エンコーダー320は、回転体310の回転位置(「角度位置」あるいは「位相位置」とも呼ばれる)を検出して、そのデータ―を位置信号Rpとして出力する。エンコーダー320としては、回転位置を検出可能であれば、特に限定はなく、ロータリーエンコーダー、磁気式エンコーダー等の種々の一般的なエンコーダーを用いることができる。
駆動装置330は、制御部340と駆動部350と信号処理部360とを備えている。制御部340は、エンコーダー320からの位置信号Rp及び信号処理部360からの振動状態信号DPeに基づいて駆動部350の動作を制御する。駆動部350は、制御部340の制御に従った駆動周波数及び駆動電圧を有する駆動信号DSを出力し、圧電アクチュエーター100を超音波振動させる。すなわち、制御部340は、エンコーダー320からの位置信号Rp及び信号処理部360からの振動状態信号DPeに基づいて圧電アクチュエーター100の振動を制御する。
信号処理部360は、振動検出部370と検出信号処理部380とを備えている。振動検出部370は、圧電アクチュエーター100のピックアップ部(不図示)から出力される振動に応じて変化する振動対応信号Spを受けて、振動を表す振動信号Sptを検出して出力する。検出信号処理部380は、制御部340から供給されるタイミング信号Tpに基づいて、振動信号Sptに平滑処理を実行するとともに、平滑後の振動信号に基づいて圧電アクチュエーター100の振動の状態を示す振動状態信号DPeを出力する。なお、信号処理部360及び制御部340の動作についてはさらに後述する。
図2は、圧電アクチュエーター100の概略構成を示す説明図である。圧電アクチュエーター100は、振動子としての圧電素子110a,110b,110c,110d,110e,110fと、基板200と、突起部103と、を備える。基板200は、振動部210と、支持部220とを有する。振動部210は略長方形形状を有しており、圧電素子110a〜110fを配置している。圧電素子110eは、略長方形形状に構成されており、振動部210の短手方向(「短辺方向」あるいは「幅方向」とも呼ぶ)の中央において、振動部210の長手方向(中心線CXに沿った方向)に沿って配置されている。圧電素子110fは、略矩形形状に構成されており、振動部210の幅方向の中央において、圧電素子110eよりも突起部103側に配置されている。圧電素子110a〜110dは、振動部210の四隅の位置に配置されている。
支持部220は、振動部210の約半分を囲うように配置されており、支持部220の端部は、振動部210の長辺の中央で振動部210と接続されている。支持部220のうちの振動部210と接続されている端部を「第1接続部222」、「第2接続部223」と呼び、第1接続部222、第2接続部223以外の部分を「固定部221」と呼ぶ。振動部210と支持部220との間には、隙間205が配置されている。圧電素子110a〜110eに電圧を印加すると圧電素子110a〜110eが伸縮し、振動部210が振動するが、隙間205は、この振動によっても振動部210が支持部220の固定部221と接触しない大きさに構成されている。振動部210の支持部220に囲われていない側の短辺を含む側面214の中央位置(平面視における中心線CX上の位置)の凹部216には、突起部103が設けられている。突起部103は、セラミックス(例えばAl)などの耐久性がある材料で構成することが好ましい。なお、基板200、より具体的には、振動部210が「振動板」に相当する。
図3は、図2の圧電アクチュエーター100の3−3断面図である。なお、図3では、図示の便宜上、上下方向(厚さ方向)の寸法を誇張して描いている。また、図3では、振動部210に対応する断面のみを示している。なお、固定部221に対応する断面も、振動部210と同様の構造を有している。
図3に示すように、圧電アクチュエーター100は、積層された2つの圧電振動体ユニット101を備える。圧電振動体ユニット101は、積層された2つの圧電振動体102を備える。2つの圧電振動体102は、それぞれ、基板200と、基板200上に配置された6つの圧電素子110a〜110f(図2)を備える。なお、図3は、図2の3−3断面図のため、6つの圧電素子110a〜110fのうち2つの圧電素子110c,110dが図示され、他の4つの圧電素子110a,110b,110e,110fは図示されていない。圧電素子110a〜110fは、それぞれ、第1電極130と圧電体140と第2電極150とを備える。圧電素子110a〜110fは、平面視(図2参照)で2枚の基板200が重なっている領域(振動部210の領域)において、2枚の基板200が互いに向かい合う側の平面(主面)上にそれぞれ配置されている。また、同一の符号を付した2つの圧電素子、例えば、2つの圧電素子110aは、2枚の基板200の平面視で、互いに重なって見える位置にある。他の圧電素子110b〜110fについても同様である。
2つの圧電振動体102は、基板200を外側にして、それぞれの圧電素子110a〜110fを2枚の基板200で挟むようにして配置されている。すなわち、圧電振動体ユニット101は、2つの圧電振動体102が、基板200上に圧電素子110a〜110fが配置される方向に沿って配置(積層)されている。圧電素子110a〜110fは、保護層260により覆われている。ここで「保護層260」を「被覆部260」とも呼ぶ。2つの圧電振動体102の被覆部260同士が、接着層270により接着されることにより、圧電振動体ユニット101が構成される。突起部103は、図2,図3に示すように、略直方体形状をしており、2つの基板200に跨って取り付けられている。但し、突起部103を略円柱形状、球体形状、楕円体形状としてもよく、また、各基板200のそれぞれに設けるようにしてもよい。なお、圧電振動体102が一つの「振動体」に相当する。
圧電振動体102は、基板200の上に絶縁層201、第1電極130、圧電体140、第2電極150、絶縁層240、配線層250、保護層260(被覆部260)の順に各部材が配置されている。絶縁層201は、基板200を他の電極(第1電極130と第2電極150と配線層250)から絶縁する。第1電極130と圧電体140と第2電極150は、圧電素子110a〜110fを構成する。絶縁層240は、圧電素子110a〜110fを覆い絶縁する。但し、絶縁層240は、圧電素子110a〜110fの第1電極130と第2電極150を、配線層250に接触させるためのコンタクトホールを備える。配線層250は、第1電極130と第2電極150に通電するための配線を配置する。保護層260は、上述したように、圧電素子110a〜110fを保護する。
圧電振動体102は、例えば、成膜プロセスを利用して作製可能である。概略すると、以下の通りである。基板200としてのSiウェハー上に、絶縁層201、第1電極130、圧電体140、第2電極150、絶縁層240、配線層250、保護層(被覆部)260を順に形成する。そして、エッチングにより、個々の基板200の形状を形成すると同時に、振動部210と、支持部220との間の隙間205を形成し、突起部103を取り付けるための凹部216(図2)を形成する。これにより、1枚のSiウェハー上に、複数の圧電振動体102を形成することができる。そして、2つの圧電振動体102を、互いに基板200が外側、圧電素子110a〜110fが内側を向き、同一符号の部材が面対称となるように配置し、接着層270を用いて2つの圧電振動体102の被覆部260同士を接着し、2つの基板200の凹部216に跨って突起部103を接着剤で接着する。これにより、圧電振動体ユニット101を作製することができる。そして、複数(本例では2つ)の圧電振動体ユニット101を積層することにより圧電アクチュエーター100を作製することができる。なお、複数の圧電振動体ユニット101の積層は、例えば、不図示の接着剤で接着することによって実行可能である。また、不図示の筐体に複数の圧電振動体ユニット101を積層することも可能である。
なお、絶縁層201,240としては、例えば、基板200の表面を熱酸化して形成されるSiO層を利用することができる。また、絶縁層201としてアルミナ(Al)、アクリルやポリイミドなどの有機材料を用いることもできる。基板200が絶縁体である場合には、絶縁層201を形成する工程は省略可能である。
また、電極130,150の材料としては、Al(アルミニウム)や、Ni(ニッケル),Au(金),Pt(白金),Ir(イリジウム),Cu(銅)などの導電性の高い任意の材料を利用可能である。電極130,150は、例えば、スパッタリングにより形成でき、パターニングは、例えば、エッチングにより行うことができる。
また、圧電体140の材料としては、ABO型のペロブスカイト構造を採るセラミックスなど、圧電効果を示す任意の材料を利用可能である。ABO型のペロブスカイト構造を採るセラミックスとしては、例えばチタン酸ジルコン酸鉛(PZT),チタン酸バリウム,チタン酸鉛,ニオブ酸カリウム,ニオブ酸リチウム,タンタル酸リチウム,タングステン酸ナトリウム,酸化亜鉛,チタン酸バリウムストロンチウム(BST),タンタル酸ストロンチウムビスマス(SBT),メタニオブ酸鉛,亜鉛ニオブ酸鉛,スカンジウムニオブ酸鉛等を用いることが可能である。またセラミック以外の圧電効果を示す材料、例えばポリフッ化ビニリデン,水晶等を用いることも可能である。
圧電体140の形成は、バルク材料から形成されてもよいし、例えばゾル−ゲル法を用いて行うことも可能である。すなわち、圧電体材料のゾルゲル溶液を基板200(第1電極130)の上に滴下し、基板200を高速回転させることにより、第1電極130の上にゾルゲル溶液の薄膜を形成する。その後、200℃〜300℃の温度で仮焼きして第1電極130の上に圧電体材料の第1層を形成する。その後、ゾルゲル溶液の滴下、高速回転、仮焼き、のサイクルを複数回繰り返すことによって、第1電極130の上に所望の厚さまで圧電体層を形成する。なお、1サイクルで形成される圧電体の一層の厚みは、ゾルゲル溶液の粘度や、基板200の回転速度にも依存するが、約50nm〜150nmの厚さとなる。所望の厚さまで圧電体層を形成した後、600℃〜1000℃の温度で焼結することにより、圧電体140を形成する。焼結後の圧電体140の厚さを、50nm(0.05μm)以上20μm以下とすれば、小型の圧電アクチュエーター100を実現できる。なお、圧電体140の厚さを0.05μm以上とすれば、圧電体140の伸縮に応じて十分に大きな力を発生することができる。また、圧電体140の厚さを20μm以下とすれば、圧電体140に印加する電圧を600V以下としても十分に大きな力を発生することができる。その結果、圧電アクチュエーター100を駆動するための駆動回路(図示せず)を安価な素子で構成できる。なお、圧電体の厚さを400nm以上としてもよく、この場合、圧電素子で発生する力を大きくできる。なお、仮焼きや焼結の温度、時間は、一例であり、圧電体材料により、適宜選択される。なお、圧電体140の厚さを20μm以上としてもよい。
圧電体140のパターニングは、アルゴンイオンビームを用いたイオンミリングにより行うことができる、なお、イオンミリングを用いてパターニングを行う代わりに、他の任意のパターニング方法(例えば、塩素系のガスを用いたドライエッチング)によりパターニングを行っても良い。
配線層250は、銅または真鍮を用いて形成することができる。配線層250は、例えば、スパッタリングにより形成でき、配線層250には、パターニングにより配線を形成することができる。配線のパターニングは、例えば、エッチングにより行うことができる。
圧電アクチュエーター100は、駆動部350(図1)から、駆動用の5つの圧電素子110a〜110e(図2)のうちの所定の圧電素子、例えば第1グループの圧電素子110a,110dの第1電極130と第2電極150との間に周期的に変化する交流電圧又は脈流電圧(「駆動電圧」とも呼ぶ)の駆動信号を印加することにより、圧電アクチュエーター100を超音波振動させて、突起部103に接触する回転体310を所定の方向に回転させることが可能である。ここで、「脈流電圧」とは、交流電圧にDCオフセットを付加した電圧を意味し、脈流電圧の電圧(電界)の向きは、一方の電極から他方の電極に向かう一方向である。電流の向きは、第1電極130から第2電極150に向かうよりも第2電極150から第1電極130に向かう方が好ましい。また、第2グループの圧電素子110b,110cの第1電極130と第2電極150との間に駆動電圧を印加することにより、突起部103に接触する回転体310を逆方向に回転させることが可能である。
図4は、圧電アクチュエーター100の動作の例を示す説明図である。図4は、駆動用の第1グループの圧電素子110a,110dに駆動電圧を印加した状態を示しており、第1グループの圧電素子110a,110dは矢印xの方向に伸縮する。この振動が、基板200の振動部210に伝えられ、振動部210が振動部210の平面内で屈曲して蛇行形状(S字形状)に変形するように振動(屈曲振動)する。そして、突起部103が圧電振動体102の平面内で矢印yの向き(振動部210の幅方向)に往復運動、又は、楕円運動をする。その結果、回転体310は、その中心軸RXの周りの所定の方向に回転する。なお、駆動用の第2グループの圧電素子110b,110c(図2)に駆動電圧を印加する場合には、回転体310は逆方向に回転する。なお、中央の第3グループの圧電素子110eに、駆動電圧を印加すれば、圧電アクチュエーター100が長手方向に伸縮するので、突起部103から回転体310に与える力をより大きくすることが可能である。なお、圧電アクチュエーター100のこのような動作については、特開2004−320979号公報(又は、対応する米国特許第7224102号)に記載されており、その開示内容は参照により組み込まれる。
なお、駆動用の圧電素子110a〜110eに印加する駆動電圧の周波数(「駆動周波数」とも呼ぶ)は、圧電振動体102の振動を効率良く利用して、圧電アクチュエーター100としての出力特性を高めるために、あらかじめ、圧電アクチュエーター100の共振周波数あるいはその近傍の周波数に設定される。
6つの圧電素子110a〜110f(図2)のうち、圧電素子110fは、以下で説明するように、圧電アクチュエーター100の振動をピックアップするピックアップ部として利用される。なお、以下の説明では、駆動用の圧電素子110a〜110eを特に区別することなく単に「圧電素子110」とも呼び、ピックアップ部として用いられる圧電素子110fを「ピックアップ部110f」とも呼ぶ。
図5は、信号処理部360(図1)の振動検出部370の内部構成の一例を示す説明図である。圧電アクチュエーター100を構成する4つの圧電振動体102(図2)の圧電素子110a〜110eに、駆動周波数で変化する駆動信号DS(図5ではサイン波)を印加すると、各圧電振動体102が同時に振動して圧電アクチュエーター100としての振動が発生する。各圧電振動体102のピックアップ部110fは、圧電振動体102に発生する振動に応じた逆起電力の変化を振動対応信号Spとして出力する。振動検出部370は、ボルテージフォロア回路で構成されており、振動対応信号Spから、振動に応じて電圧が変化する振動信号Sptを検出して出力する。
図6は、信号処理部360(図1)の検出信号処理部380の内部構成を示す説明図である。検出信号処理部380は、ADコンバーター382と、平滑処理部384と、振動状態検出部386と、タイミングコントロール部388と、を備えている。ADコンバーター382は、振動検出部370(図5)から出力される振動信号Sptを、各振動の周期中の各位相点のタイミングでデジタル化し、振動信号DPrとして出力する。平滑処理部384は、ADコンバーター382から供給される振動信号DPrの振幅値を処理用記憶部385に記憶し、後述する平滑処理によって振動信号DPrに重畳されている不要な外乱を除去し、平滑振動信号DPsを出力する。振動状態検出部386は、平滑振動信号DPsに含まれる振幅値を検出用記憶部387に記憶し、後述する振動状態検出処理によって振動状態信号DPeを出力する。タイミングコントロール部388は、制御部340から供給される、回転周期のタイミングや、回転位置、駆動周期タイミング、各駆動周期の各位相点のタイミング、を含むタイミング信号Tpに基づいて、ADコンバーター382の動作タイミング、平滑処理部384の動作タイミング、振動状態検出部386の動作タイミングを制御する。
制御部340は、振動状態信号DPeに含まれる振動の状態を示す振幅のエンベロープ値を振動状態記憶部342に記憶し、後述するように、駆動信号DSの電圧を制御する。
図7は、平滑処理部384における平滑処理の内容を示す説明図である。図7の最上段に示すように、回転体310(図1)の1回転分の回転周期Tn中には、q周期(qは複数)分の振動信号DPrが発生する。振動信号の1周期Ts(「振動周期Ts」と呼ぶ)は駆動周期Tdに等しい。図7の上から2段目の振動信号DPr(2→q+1)は、1段目の振動信号DPr(1→q)を1振動周期Tsだけ左側にシフトした信号に相当し、3段目の振動信号DPr(p→p+q−1)は、(p−1)振動周期Tsだけ左側にシフトした信号に相当する。平滑処理では、各周期の複数の位相点(図中○で示す)について、それぞれ、p周期分の平均をとることにより、平滑振幅値(図中●で示す)を含む平滑振動信号DPsを得る。換言すれば、平滑処理では、振動周期Tsごとの複数の位相点について、それぞれ、あらかじめ定めた移動平均周期数pの単位で移動平均をとる処理である。なお、移動平均周期数pは、重畳されている外乱のうち、回転体310の偏心(数μm程度の偏心)に応じた周期的な外乱や、圧電アクチュエーター100との接触面である円形面311の凹凸に応じた周期的な外乱(以下、「周期的な外乱」と呼ぶ)を維持しつつ、それ以外の不要な外乱を除去するように、設定されることが好ましい。例えば、移動平均周期数pは、回転周期Tn中に含まれる振動信号の振動周期数qに対して、q/10〜q/20程度に設定されることが好ましい。
図8は、振動状態検出部386によって平滑振動信号DPsから検出される振動状態信号DPeの一例を示す説明図である。振動状態検出部386は、平滑振動信号DPsから、各振動周期の振幅(電圧)のピーク値、すなわち、エンベロープ値(包絡線)を抽出する。時系列に並ぶエンベロープ値は、上記した周期的な外乱に応じて発生するアクチュエーター100の振動の強弱等の振動の状態の変動を示している。振動状態検出部386は、この時系列に並ぶエンベロープ値を振動状態信号DPeとして出力する。なお、エンベロープ値の抽出は、各振動周期の振幅のピーク値を検出するピーク検出回路等の種々の一般的なエンベロープ検出回路を用いて実行することができる。
図9は、制御部340による制御動作について示す説明図である。制御部340は、図9の上段に示すように、N回転目(Nは1以上の整数)の回転周期Tn(N)において、一定の駆動電圧Adを振幅のピーク値とする駆動信号DSを圧電アクチュエーター100の圧電素子110(図5)に印加するものとする。なお、以下では、一定電圧の振幅のピーク値を単に「振幅」とも呼ぶ。また、図9の上段では、駆動信号DSの振幅のピーク値であるエンベロープを分かりやすくするため、太実線で示している。
駆動信号DSが一定の振幅Adの場合、理想的には、図9の下段に破線で示すように、平滑振動信号DPsも一定の振幅Avとなり、そのエンベロープを示す振動状態信号DPeも破線で示すように一定となるはずである。しかしながら、実際の振動状態信号DPe(N)は、太実線で示すように、上記した周期的な外乱による影響を受けて回転位置(位相位置)に応じて変動する信号となる場合がある。
そして、N回転目において周期的な外乱による影響を受けて振動状態信号DPe(N)に変動が発生した場合、一定の振幅Adの駆動信号DSのままでは、N+1回転目の回転周期Tn(N+1)における振動状態信号DPe(N+1)も、太破線で示すように、N回転目と同様の変動となることが予想される。
そこで、制御部340は、N+1回転目の振動状態信号DPe(N+1)が一定値に近付くように、駆動信号DSの振幅を、N回転目の振動状態信号DPe(N)の一定の振幅Avに対する変動に応じて調整する。具体的には、振動状態信号DPe(N)が一定の振幅Avに対して大きい位置では、その変動分に応じて駆動信号DSの振幅を小さくし、一定の振幅Avに対して小さい位置では、その変動分に応じて駆動信号DSの振幅を小さくする。
これにより、制御部340は、N回転目の振動状態信号DPeに基づいてN+1回転目の駆動信号DSを調整することによって、周期的な外乱による変動を低減するように圧電アクチュエーター100の動作を滑らかに制御することができる。
上記説明は、複数の圧電アクチュエーター100のうちの1つの圧電アクチュエーター100と対応する駆動装置330の動作について説明したが、他の圧電アクチュエーターと対応する駆動装置330の動作も、それぞれ、同様である。
以上のように、第1実施形態においては、圧電アクチュエーター100の振動の状態の変動に応じて、周期的な外乱による変動を低減するように超音波モーター300の振動を滑らかに制御することができる。また、圧電アクチュエーター100の振動の状態の変動によって、超音波モーター300の動作が停止してしまわないように制御することができる。
なお、複数の圧電アクチュエーター100にそれぞれ対応する複数の駆動装置330を備えるのではなく、複数の圧電アクチュエーター100に共通する1つの駆動装置330を備えて、1つの駆動装置330で複数の圧電アクチュエーター100の動作を制御するようにしてもよい。また、1つの圧電アクチュエーター100と駆動装置330を備える構成としてもよい。
また、振動状態検出部386は、信号処理部360の検出信号処理部380ではなく、制御部340に備える構成としてもよい。この場合、検出信号処理部380は、平滑振動信号DPsを振動状態信号として制御部340へ出力すればよい。
また、圧電アクチュエーター100は、積層された2つの圧電振動体ユニット101を備える構成を例に示した。しかしながら、これに限定されるものではなく、1つ以上の圧電振動体102を備える構成としてもよい。また、圧電振動体102は、駆動用の圧電素子として第1グループの圧電素子110a,110dと第2グループの圧電素子110b,110cと第3グループの圧電素子110eとを備える構成を例に示した。しかしながら、これに限定されるものではなく、第1グループの圧電素子110a,110dと第2グループの圧電素子110b,110cと第3グループの圧電素子110eのうちのいずれかの圧電素子を備える構成や、いずれか二つの圧電素子の組み合わせを備える構成としてもよい。
なお、以上説明した種々の変形例は、以下の実施形態においても同様に適用可能である。
B.第2実施形態:
図10は、上述した第1実施形態において発生する可能性のある制御現象について示す説明図である。図11は、図10の現象に対応するための制御部340による制御動作について示す説明図である。図10の上段に示すように、平滑振動信号DPsの変動に応じて振動状態信号DPeが変動し、所定の閾値Ath以下となった場合に、圧電アクチュエーター100が回転体310に駆動力を与えることができず、図10の下段に示すように、回転速度Nrが遅くなって停止してしまう可能性がある。これに対して、制御部340は、図11の上段に示すように、振動状態信号DPeが閾値記憶部344に記憶されている閾値Ath以下となった場合に、振動状態信号DPeが閾値Athよりも大きな平滑振動信号DPsとなるように、図11の下段に示す駆動信号DSの振幅(駆動電圧)を増大させることが好ましい。このようにすれば、回転体310の回転が停止してしまわないように制御することができる。なお、この制御は省略してもよい。
C.第3実施形態:
第3実施形態は、以下で説明するように、圧電アクチュエーターの構成、圧電アクチュエーターが出力する振動対応信号、及び、振動対応信号を検出する振動検出部の構成が、第1実施形態の構成(図1,図2,図5)と異なっている。
図12は、第2実施形態における圧電アクチュエーター100Aの概略構成を示す説明図である。圧電アクチュエーター100Aは、第1実施形態における圧電アクチュエーター100のピックアップ部としての圧電素子100fを省略したものである。
図13は、第2実施形態における振動検出部370Aの内部構成を示す説明図である。振動検出部370Aは、I−V変換器374と積算器376とを備えている。圧電アクチュエーター100Aを構成する4つの圧電振動体102Aの圧電素子110a〜110eの一方の端子に駆動信号DSを印加すると、各圧電振動体102Aが振動して圧電アクチュエーター100Aとしての振動が発生する。このとき、発生した振動に応じて変化する電流が圧電素子110a〜110eの他方の端子からI−V変換器374に出力される。I−V変換器374は、圧電素子110a〜110eから出力される電流を電圧に変換する。I−V変換器374は電流を電圧として検出する電流検出回路に相当する。I−V変換器374としては、オペアンプで構成されるI−V変換回路を用いることができる。但し、これに限定されるものではなく、種々の一般的なI−V変換回路を利用することができる。積算器376は、圧電アクチュエーター100Aの振動に対応する電流に相当する電圧と駆動信号DSとを積算した電力信号を、圧電アクチュエーター100の振動に対応する振動信号Sptとして出力する。振動信号Sptとして用いられる電力信号も、圧電アクチュエーター100Aの振動の状態に応じて変動する信号である。従って、第2実施形態においても第1実施形態と同様に、圧電アクチュエーター100Aの振動の状態の変動に応じて、周期的な外乱による変動を低減するように超音波モーターの振動を滑らかに制御することができる。また、圧電アクチュエーター100Aの振動の状態の変動によって、超音波モーターの動作が停止してしまわないように制御することができる。
なお、上記の振動検出部370Aでは、電力信号を振動信号Sptとする場合を例に説明したが、積算器376を省略して、I−V変換器374から出力される電流に相当する電圧を振動信号Sptとして利用することも可能である。
D.超音波モーターを用いた装置の実施形態:
上述した超音波モーターは、共振を利用することで被駆動部材に対して大きな力を与えることができるものであり、各種の装置に適用可能である。超音波モーターは、例えば、ロボット(電子部品搬送装置(ICハンドラー)も含む)、ハンド(指アシスト装置を含む)、投薬用ポンプ、時計のカレンダー送り装置、印刷装置(例えば紙送り機構。)等の各種の機器における駆動装置として用いることができる。以下、代表的な実施の形態について説明する。
図14は、上述の超音波モーターを利用したロボット2050の一例を示す説明図である。ロボット2050は、複数本のリンク部2012(「リンク部材」とも呼ぶ)と、それらリンク部2012の間を回動又は屈曲可能な状態で接続する複数の関節部2020とを備えたアーム2010(「腕部」とも呼ぶ)を有している。それぞれの関節部2020には、上述した超音波モーターが内蔵されており、超音波モーターを用いて関節部2020を任意の角度だけ回動又は屈曲させることが可能である。なお、図14には、超音波モーターに備えられる圧電アクチュエーター100が図示されている。アーム2010の先端には、ハンド2000が接続されている。ハンド2000は、一対の把持部2003を備えている。なお、ハンド2000には圧電アクチュエーター100が内蔵されており、圧電アクチュエーター100を用いて把持部2003を開閉して物を把持することが可能である。また、ハンド2000とアーム2010との間にも超音波モーターが設けられており、超音波モーターを用いてハンド2000をアーム2010に対して回転させることも可能である。
図15は、図14に示したロボット2050の手首部分の説明図である。手首の関節部2020は、手首回動部2022を挟持しており、手首回動部2022に手首のリンク部2012が、手首回動部2022の中心軸O周りに回動可能に取り付けられている。手首回動部2022は、超音波モーターを備えており、超音波モーターは、圧電アクチュエーター100によってローター2013を回動させることにより、ローター2013が固定された手首のリンク部2012およびハンド2000を中心軸O周りに回動させる。ハンド2000には、複数の把持部2003が立設されている。把持部2003の基端部はハンド2000内で移動可能となっており、この把持部2003の根元の部分に圧電アクチュエーター100が搭載されている。このため、圧電アクチュエーター100を動作させることで、把持部2003を移動させて対象物を把持することができる。
なお、ロボットとしては、単腕のロボットに限らず、腕の数が2以上の多腕ロボットにも超音波モーターを適用可能である。ここで、手首の関節部2020やハンド2000の内部には、超音波モーターの他に、力覚センサーやジャイロセンサー等の各種装置に電力を供給する電力線や、信号を伝達する信号線等が含まれ、非常に多くの配線が必要になる。従って、関節部2020やハンド2000の内部に配線を配置することは非常に困難だった。しかしながら、上述した実施形態の超音波モーターは、通常の電動モーターや、従来の圧電駆動装置よりも駆動電流を小さくできるので、関節部2020(特に、アーム2010の先端の関節部)やハンド2000のような小さな空間でも配線を配置することが可能になる。
上記説明では、ハンド2000を備えるロボット2050を例にとって説明したが、ハンド2000は、ロボット2050の部品としてのみならず、単独の製品として構成されていても良い。
図16は、上述の超音波モーターを利用した指アシスト装置1000を示す説明図である。指アシスト装置1000は、第1の指アシスト部1001と、第2の指アシスト部1002と、ベース部材1003と、を備え、指700に装着される。第1の指アシスト部1001は、超音波モーターの圧電アクチュエーター100と、超音波モーターの回転体を含む減速機501と、指支持部701と、を備える。第2の指アシスト部1002は、超音波モーターの圧電アクチュエーター100と、超音波モーターの回転体を含む減速機502と、指支持部702と、バンド703と、を備える。バンド703を除き、第1の指アシスト部1001と第2の指アシスト部1002とは、ほぼ同じ構成である。バンド703は、指700の腹側から第2の指アシスト部1002を固定する。なお、バンド703は、第1の指アシスト部1001にも、設けられるが、図15では省略されている。指アシスト装置1000は、超音波モーターにより、指700の屈伸をアシストする。なお、本実施形態では、指アシスト装置1000は、指700の屈伸をアシストするものとして説明したが、指700の代わりにロボットのハンドを用い、ハンドと指アシスト装置1000とを一体化してもよい。この場合、ハンドが、超音波モーターにより駆動され、屈伸する。
図17は、上述の超音波モーター300を利用した送液ポンプ2200の一例を示す説明図である。送液ポンプ2200は、ケース2230内に、リザーバー2211と、チューブ2212と、超音波モーターの圧電アクチュエーター100と、超音波モーターの回転体(ローター)2222と、減速伝達機構2223と、カム2202と、複数のフィンガー2213、2214、2215、2216、2217、2218、2219と、が設けられている。リザーバー2211は、輸送対象である液体を収容するための収容部である。チューブ2212は、リザーバー2211から送り出される液体を輸送するための管である。圧電アクチュエーター100の突起部103は、ローター2222の側面に押し付けた状態で設けられており、圧電アクチュエーター100がローター2222を回転駆動する。ローター2222の回転力は減速伝達機構2223を介してカム2202に伝達される。フィンガー2213から2219はチューブ2212を閉塞させるための部材である。カム2202が回転すると、カム2202の突起部2202Aによってフィンガー2213から2219が順番に放射方向外側に押される。フィンガー2213から2219は、輸送方向上流側(リザーバー2211側)から順にチューブ2212を閉塞する。これにより、チューブ2212内の液体が順に下流側に輸送される。こうすれば、極く僅かな量を精度良く送液可能で、しかも小型な送液ポンプ2200を実現することができる。なお、各部材の配置は図示されたものには限られない。また、フィンガーなどの部材を備えず、ローター2222に設けられたボールなどがチューブ2212を閉塞する構成であってもよい。上記のような送液ポンプ2200は、インシュリンなどの薬液を人体に投与する投薬装置などに活用できる。ここで、上述した実施形態の超音波モーターを用いることにより、従来の圧電駆動装置よりも駆動電流が小さくなるので、投薬装置の消費電力を抑制することができる。従って、投薬装置を電池駆動する場合は、特に有効である。
本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部または全部を解決するために、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
100,100A…圧電アクチュエーター、101…圧電振動体ユニット、102,102A…圧電振動体、103…突起部、110,110a〜110e…圧電素子、110f…圧電素子(ピックアップ部)、130…第1電極、140…圧電体、150…第2電極、200…基板、201…絶縁層、205…隙間、210…振動部、214…側面、216…凹部、220…支持部、221…固定部、222…接続部(第1接続部)、223…接続部(第2接続部)、240…絶縁層、250…配線層、260…被覆部(保護層)、270…接着層、300…超音波モーター、310…回転体、311…円形面、320…エンコーダー、330…駆動装置、340…制御部、342…振動状態記憶部、344…閾値記憶部、350…駆動部、360…信号処理部、370,370A…振動検出部、374…I−V変換器、376…積算器、380…検出信号処理部、382…ADコンバーター、384…平滑処理部、385…処理用記憶部、386…振動状態検出部、387…検出用記憶部、388…タイミングコントロール部、501,502…減速機、700…指、701,702…指支持部、703…バンド、1000…指アシスト装置、1001,1002…指アシスト部、1003…ベース部材、2000…ハンド、2003…把持部、2010…アーム、2012…リンク部、2013…ローター、2020…関節部、2022…手首回動部、2050…ロボット、2200…送液ポンプ、2202…カム、2202A…突起部、2211…リザーバー、2212…チューブ、2213〜2219…フィンガー、2222…ローター、2223…減速伝達機構、2230…ケース、CX…中心線、RX…中心軸、O…中心軸

Claims (12)

  1. 回転体と、
    前記回転体に接触して回転の駆動力を与えるとともに、振動に応じた振動対応信号を出力する振動体と、
    前記振動対応信号を入力して前記振動対応信号に平滑処理を施した振動状態信号を出力する信号処理部と、
    前記振動状態信号に基づいて前記振動体の振動を制御する制御部と、
    を備える、超音波モーター。
  2. 前記信号処理部は、前記回転体の回転周期に応じて前記平滑処理を実行する、請求項1に記載の超音波モーター。
  3. 前記平滑処理は、前記回転体の回転周期に含まれる複数の振動周期の振動信号について、前記振動周期ごとの複数の位相点について、それぞれ、あらかじめ定めた移動平均周期数の単位で移動平均をとる、請求項2に記載の超音波モーター。
  4. 前記制御部は、前記振動状態信号に含まれる振動の振幅のエンベロープ値を記憶する記憶部を有する請求項1乃至請求項3のいずれか一項に記載の超音波モーター。
  5. 前記制御部は、N回転目(Nは1以上の整数)の回転周期における前記エンベロープ値に基づいて、N+1回転目の回転周期における前記振動体の駆動電圧を調整する、請求項4に記載の超音波モーター。
  6. 前記制御部は、前記エンベロープ値の閾値を記憶する閾値記憶部を有し、前記エンベロープ値が前記閾値以下となったとき、前記振動体の駆動電圧を増大させる、請求項4または請求項5に記載の超音波モーター。
  7. 前記振動体は、振動板と、前記振動板を振動させる圧電素子と、前記圧電素子による前記振動板の振動に応じて、前記振動対応信号として、前記振動に応じて変動する電圧を出力するピックアップ部と、を有している、請求項1乃至請求項6のいずれか一項に記載の超音波モーター。
  8. 前記振動体は、振動板と、前記振動板を振動させる圧電素子と、を有し、前記振動対応信号として、前記振動に応じて変動する前記圧電素子に流れる電流を出力する、請求項1乃至請求項6のいずれか一項に記載の超音波モーター。
  9. 積層された複数の前記振動体を備える請求項1乃至請求項8のいずれか一項に記載の超音波モーター。
  10. 請求項1乃至請求項9のいずれか一項に記載の超音波モーターを備えるロボット。
  11. 請求項1乃至請求項9のいずれか一項に記載の超音波モーターを備えるハンド。
  12. 請求項1乃至請求項9のいずれか一項に記載の超音波モーターを備えるポンプ。
JP2016055062A 2016-03-18 2016-03-18 超音波モーター、ロボット、ハンド、及びポンプ Withdrawn JP2017169416A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016055062A JP2017169416A (ja) 2016-03-18 2016-03-18 超音波モーター、ロボット、ハンド、及びポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016055062A JP2017169416A (ja) 2016-03-18 2016-03-18 超音波モーター、ロボット、ハンド、及びポンプ

Publications (2)

Publication Number Publication Date
JP2017169416A true JP2017169416A (ja) 2017-09-21
JP2017169416A5 JP2017169416A5 (ja) 2019-04-04

Family

ID=59914110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016055062A Withdrawn JP2017169416A (ja) 2016-03-18 2016-03-18 超音波モーター、ロボット、ハンド、及びポンプ

Country Status (1)

Country Link
JP (1) JP2017169416A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019083628A (ja) * 2017-10-30 2019-05-30 セイコーエプソン株式会社 圧電駆動装置、圧電モーター、ロボット、電子部品搬送装置、プリンターおよびプロジェクター

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352573A (ja) * 1989-07-18 1991-03-06 Aisin Seiki Co Ltd 超音波モータ
JPH0690574A (ja) * 1992-07-24 1994-03-29 Seiko Instr Inc 超音波モータ及び超音波モータ付電子機器
JPH1118451A (ja) * 1997-06-19 1999-01-22 Nikon Corp 振動アクチュエータの駆動装置
JP2004166324A (ja) * 2002-11-08 2004-06-10 Seiko Epson Corp 超音波モータ駆動回路および電子機器
JP2006340503A (ja) * 2005-06-02 2006-12-14 Seiko Epson Corp 圧電アクチュエータ及びこれを備えた機器
JP2008295269A (ja) * 2007-05-28 2008-12-04 Canon Inc 振動型モータの駆動制御装置
JP2011033724A (ja) * 2009-07-30 2011-02-17 Kyocera Mita Corp 画像形成装置
JP2012257411A (ja) * 2011-06-09 2012-12-27 Canon Inc 振動型モータの駆動装置およびその駆動方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352573A (ja) * 1989-07-18 1991-03-06 Aisin Seiki Co Ltd 超音波モータ
JPH0690574A (ja) * 1992-07-24 1994-03-29 Seiko Instr Inc 超音波モータ及び超音波モータ付電子機器
JPH1118451A (ja) * 1997-06-19 1999-01-22 Nikon Corp 振動アクチュエータの駆動装置
JP2004166324A (ja) * 2002-11-08 2004-06-10 Seiko Epson Corp 超音波モータ駆動回路および電子機器
JP2006340503A (ja) * 2005-06-02 2006-12-14 Seiko Epson Corp 圧電アクチュエータ及びこれを備えた機器
JP2008295269A (ja) * 2007-05-28 2008-12-04 Canon Inc 振動型モータの駆動制御装置
JP2011033724A (ja) * 2009-07-30 2011-02-17 Kyocera Mita Corp 画像形成装置
JP2012257411A (ja) * 2011-06-09 2012-12-27 Canon Inc 振動型モータの駆動装置およびその駆動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019083628A (ja) * 2017-10-30 2019-05-30 セイコーエプソン株式会社 圧電駆動装置、圧電モーター、ロボット、電子部品搬送装置、プリンターおよびプロジェクター

Similar Documents

Publication Publication Date Title
US9827672B2 (en) Piezoelectric drive device, driving method thereof, robot, and driving method thereof
JP2017017916A (ja) 圧電駆動装置、ロボット及び圧電駆動装置の駆動方法
US10153418B2 (en) Control circuit of piezoelectric driving device, piezoelectric driving device, ultrasonic motor, robot, hand, and pump
JP2016152705A (ja) 圧電駆動装置、ロボット、及び、それらの駆動方法
JP6442913B2 (ja) 圧電駆動装置、ロボット、及び、それらの駆動方法
JP6766328B2 (ja) 圧電駆動装置、ロボット、及び圧電駆動装置の駆動方法
US9712087B2 (en) Piezoelectric element drive circuit and robot
JP2016082834A (ja) 圧電駆動装置及びその駆動方法、ロボット及びその駆動方法
JP2017169416A (ja) 超音波モーター、ロボット、ハンド、及びポンプ
JP6601174B2 (ja) 圧電アクチュエーター、積層アクチュエーター、圧電モーター、ロボット、ハンド及び送液ポンプ
JP2016040990A (ja) 圧電駆動装置、ロボット、及び、それらの駆動方法
JP2016082835A (ja) 圧電駆動装置、指アシスト装置及びロボット
JP6662007B2 (ja) 圧電駆動装置、モーター、ロボット、およびポンプ
JP6641943B2 (ja) モーター用圧電駆動装置およびその製造方法、モーター、ロボット、ならびにポンプ
JP6657902B2 (ja) 圧電アクチュエーターおよびロボット
JP6641910B2 (ja) 圧電駆動装置およびその製造方法、モーター、ロボット、ならびにポンプ
JP6702482B2 (ja) 圧電駆動装置及びその駆動方法、ロボット及びその駆動方法
JP6455017B2 (ja) 圧電駆動装置及びその駆動方法、ロボット及びその駆動方法
JP2017135935A (ja) 圧電アクチュエーター、圧電モーター、ロボット、ハンドおよび送液ポンプ
JP2016158380A (ja) 圧電素子駆動回路、及び、ロボット
JP6617449B2 (ja) 圧電駆動装置、モーター、ロボットおよび圧電駆動装置の駆動方法
JP6617450B2 (ja) 圧電駆動装置、モーターおよびロボット
JP2017103956A (ja) 圧電駆動装置、モーター、ロボット、およびポンプ
JP2017103954A (ja) 圧電駆動装置、モーター、ロボット、およびポンプ
JP2017118625A (ja) 圧電駆動装置およびその製造方法、モーター、ロボット、ならびにポンプ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20191224