JP2017169314A - 永久磁石埋込同期機 - Google Patents

永久磁石埋込同期機 Download PDF

Info

Publication number
JP2017169314A
JP2017169314A JP2016051036A JP2016051036A JP2017169314A JP 2017169314 A JP2017169314 A JP 2017169314A JP 2016051036 A JP2016051036 A JP 2016051036A JP 2016051036 A JP2016051036 A JP 2016051036A JP 2017169314 A JP2017169314 A JP 2017169314A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
synchronous machine
magnet
arbitrary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016051036A
Other languages
English (en)
Inventor
典禎 西山
Norisada Nishiyama
典禎 西山
長生 木戸
Osao Kido
長生 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2016051036A priority Critical patent/JP2017169314A/ja
Publication of JP2017169314A publication Critical patent/JP2017169314A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

【課題】永久磁石の耐減磁性に優れ、高トルクな永久磁石埋込同期機を提供する。【解決手段】本開示の永久磁石埋込同期機(100)は、シャフト(3)及び回転子(4)を備えている。回転子(4)は、コア(7)及びコア(7)に埋め込まれた複数の板状の永久磁石(5)を含む。コア(7)には、回転子(4)の周方向に沿って複数の磁石埋設孔(6)が形成されており、それら複数の磁石埋設孔(6)のそれぞれに永久磁石(5)が配置されている。シャフト(3)の回転軸(O)に垂直な断面において、複数の永久磁石(5)から選ばれた任意の永久磁石(5)が形成するd軸に平行な方向に関して、回転子(4)の外周面(7a)から任意の永久磁石(5)までの最短距離(D)が任意の永久磁石(5)の厚さの60%以上110%以下の範囲にある。【選択図】図2A

Description

本開示は、永久磁石埋込同期機に関する。
埋込磁石型モータは、家電製品、ハイブリッド自動車、電車などに広く使用されており、その需要は年々増大している。よく知られているように、埋込磁石型モータの回転子は、コア及びコアに埋め込まれた永久磁石を有する。永久磁石によるマグネットトルクだけでなく、磁気抵抗の非対称性に起因するリラクタンストルクも利用できるため、埋込磁石型モータは高効率かつ高出力である。回転子の構造は、埋込磁石型モータの効率及び信頼性に直結するので非常に重要である。
図6は、特許文献1に記載された埋込磁石型モータの回転子の一部を示している。永久磁石102は、第1磁石表面121と第2磁石表面122と一対の磁石側面123とを備えている。非磁性体103は、第1非磁性表面131と第2非磁性表面132とを備えている。一の磁石側面123と第2磁石表面122とが成す第1角部102bと、第1非磁性表面131との間の最小距離b1は、第1角部102bと、一の磁石側面123と第1磁石表面121とが成す第2角部102aとの間の端部距離a以上である。第2非磁性表面132と第2角部102aとの間の最小距離b2は端部距離a以上である。非磁性体103の最小幅cは、非磁性体103側における一の永久磁石の最小幅a’よりも小さい。
特開2014−7928号公報
特許文献1によれば、図6に示す構造には永久磁石の耐減磁性を向上させる効果がある。しかし、耐減磁性は向上するものの、トルクが減少するという課題がある。
本開示の目的は、永久磁石の耐減磁性に優れ、かつ高トルクな永久磁石埋込同期機(IPMSM:Interior Permanent Magnet Synchronous Machine)を提供することにある。
すなわち、本開示は、
シャフトと、
前記シャフトに支持された回転子と、
を備え、
前記回転子は、コア及び前記コアに埋め込まれた複数の板状の永久磁石を含み、
前記コアには、前記回転子の周方向に沿って複数の磁石埋設孔が形成されており、それら複数の磁石埋設孔のそれぞれに前記永久磁石が配置されており、
前記シャフトの回転軸に垂直な断面において、前記複数の永久磁石から選ばれた任意の永久磁石が形成するd軸に平行な方向に関して、前記回転子の外周面から前記任意の永久磁石までの距離が前記任意の永久磁石の厚さの60%以上110%以下の範囲にある、永久磁石埋込同期機を提供する。
本開示の技術によれば、永久磁石の耐減磁性に優れ、高トルクな永久磁石埋込同期機を提供できる。
図1は、本開示の実施形態1にかかる永久磁石埋込同期機の断面図である。 図2Aは、図1に示す永久磁石埋込同期機の回転子の部分拡大断面図である。 図2Bは、図2Aの部分拡大図である。 図3は、シミュレーションによる定格電流と減磁率との関係を示すグラフである。 図4Aは、本開示の実施形態2にかかる永久磁石埋込同期機の回転子の部分拡大断面図である。 図4Bは、図4Aの部分拡大図である。 図5は、シミュレーションによる定格電流と減磁率との関係を示すグラフである。 図6は、従来の埋込磁石型モータの部分断面図である。
(本開示の基礎となった知見)
図6に示す従来の埋込磁石型モータによれば、回転子の周方向における非磁性体103(空隙)の最小幅cは、永久磁石の最小幅a’よりも小さい。このような構造によれば、永久磁石の端を通る減磁磁束が低減される。しかし、非磁性体(空隙)の先端を細くすると、隣接する磁極へ磁束が漏れやすくなる。その結果、減磁に対する耐力は向上するが、磁束が漏れやすいことでトルクが減少する。
本開示の第1態様は、
シャフトと、
前記シャフトに支持された回転子と、
を備え、
前記回転子は、コア及び前記コアに埋め込まれた複数の板状の永久磁石を含み、
前記コアには、前記回転子の周方向に沿って複数の磁石埋設孔が形成されており、それら複数の磁石埋設孔のそれぞれに前記永久磁石が配置されており、
前記シャフトの回転軸に垂直な断面において、前記複数の永久磁石から選ばれた任意の永久磁石が形成するd軸に平行な方向に関して、前記回転子の外周面から前記任意の永久磁石までの距離が前記任意の永久磁石の厚さの60%以上110%以下の範囲にある、永久磁石埋込同期機を提供する。
第1態様によれば、永久磁石の耐減磁性に優れ、高トルクな永久磁石埋込同期機を提供できる。つまり、永久磁石の耐減磁性と同期機のトルクとの両立を図ることができる。
本開示の第2態様において、例えば、第1態様にかかる永久磁石埋込同期機の前記距離が前記任意の永久磁石の前記厚さの80%以上110%以下の範囲にある。第2態様によれば、第1態様の効果をより確実に得ることができる。
本開示の第3態様において、例えば、第1又は第2態様にかかる永久磁石埋込同期機の前記複数の永久磁石は、それぞれ、直方体の形状を有する板状の永久磁石であり、前記回転子の周方向において互いに隣り合う1対の前記永久磁石がV字状に配置されており、それらの1対の前記永久磁石によって1つの極が形成されている。このような配置によれば、回転子の外周面と永久磁石との間におけるコアの一部である磁極部の断面積を広く確保することができる。
本開示の第4態様において、例えば、第1〜第3態様のいずれか1つにかかる永久磁石埋込同期機の前記回転子は、空間又は非磁性材料で形成されたフラックスバリアをさらに有し、前記フラックスバリアは、前記任意の永久磁石に隣接する領域であって、前記任意の永久磁石が形成する前記d軸又は前記任意の永久磁石が形成するq軸に隣接する領域に設けられている。フラックスバリアは、回転子の内部での磁束の回り込みを防ぎ、エアギャップを介して固定子と鎖交する磁束を増やす役割を果たす。
本開示の第5態様において、例えば、第4態様にかかる永久磁石埋込同期機の前記複数の永久磁石は、それぞれ、直方体の形状を有する板状の永久磁石であり、前記永久磁石の磁化方向は、前記永久磁石の厚さ方向に平行であり、前記シャフトに垂直な前記断面に現れる前記永久磁石の4つの面のうち、前記厚さ方向において互いに向かい合う面を主面と定義し、前記主面以外の2つの面を側面と定義し、前記回転子の前記外周面に対して近い側に位置する前記主面を含む仮想的な平面を第1基準平面と定義したとき、前記フラックスバリアは、前記永久磁石の前記側面に隣接する領域に設けられているとともに、前記第1基準平面を越えて前記永久磁石がある側とは反対側に向かって突出している突出部分を含む。このような突出部分が設けられていると、隣接する磁極からの磁束の流れ込みを効果的に防ぐことができるので、耐減磁性の向上に有利である。
本開示の第6態様において、例えば、第5態様にかかる永久磁石埋込同期機の前記永久磁石の前記側面を含む仮想的な平面を第2基準平面と定義したとき、前記フラックスバリアの前記突出部分は、前記第2基準平面から見て前記永久磁石が存在する領域とは反対側の領域にのみ形成されている。このような構造によれば、永久磁石から回転子の外周面に向かう磁束がフラックスバリアの突出部分によって遮蔽されにくい。このことは、同期機のトルクの低下を防ぐ観点で有利である。
本開示の第7態様において、
シャフトと、
前記シャフトに支持された回転子と、
を備え、
前記回転子は、コア、前記コアに埋め込まれた複数の板状の永久磁石、及び、空間又は非磁性材料で形成されたフラックスバリアを含み、
前記コアには、前記回転子の周方向に沿って複数の磁石埋設孔が形成されており、それら複数の磁石埋設孔のそれぞれに前記永久磁石が配置されており、
前記複数の永久磁石は、それぞれ、直方体の形状を有する板状の永久磁石であり、
前記永久磁石の磁化方向は、前記永久磁石の厚さ方向に平行であり、
前記シャフトの回転軸に垂直な前記断面に現れる前記永久磁石の4つの面のうち、前記厚さ方向において互いに向かい合う面を主面と定義し、前記主面以外の2つの面を側面と定義し、前記回転子の前記外周面に対して近い側に位置する前記主面を含む仮想的な平面を第1基準平面と定義したとき、
前記フラックスバリアは、前記永久磁石の前記側面に隣接する領域に設けられているとともに、前記第1基準平面を越えて前記永久磁石がある側とは反対側に向かって突出している突出部分を含む、永久磁石埋込同期機を提供する。
第7態様によっても、フラックスバリアの働きにより、永久磁石の耐減磁性と同期機のトルクとの両立を図ることができる。
以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。本明細書において、「断面」は、シャフト及び回転子の回転軸Oに垂直な断面を意味する。「永久磁石埋込同期機」は、永久磁石を有する回転子とコイルを有する固定子とを備えた電気機械の総称である。本明細書において、「同期機」の用語は、電動機、発電機、及び、電動機と発電機とを組み合わせた電気機械の全てを含む用語として使用される。したがって、「永久磁石埋込同期機」の用語は、「電動機」及び「発電機」の一方に限定されない。
(実施形態1)
図1に示すように、永久磁石埋込同期機100(以下、単に「同期機100」ともいう)は、固定子2、シャフト3及び回転子4を備えている。固定子2は、環状のヨーク10及び複数のティース11を備えている。各ティース11には、巻線(図示省略)が巻き付けられている。回転子4は、コア7及び複数の永久磁石5を備えている。回転子4は、円筒状のエアギャップ9を介して固定子2と対向している。言い換えれば、回転子4は、固定子2によって包囲されている。回転子4は、シャフト3によって回転可能に支持されている。本実施形態において、同期機100は、6極9ティースのインナーロータ型である。ただし、極数及びティース数は特に限定されない。巻線方式も特に限定されず、各ティース11に巻線を巻き付けてもよく(集中巻)、複数のティース11を跨いで巻線を巻き付けてもよい(分布巻)。
回転子4において、コア7は、典型的には、複数の円形状の電磁鋼板を積み重ねることによって形成されている。したがって、コア7は円柱の形状を有する。コア7に複数の永久磁石5が埋め込まれている。詳細には、コア7には、回転子4の周方向(シャフト3の周方向)に沿って複数の磁石埋設孔6が形成されている。磁石埋設孔6は、シャフト3及び回転子4の回転軸Oに平行な方向に延びている。それら複数の磁石埋設孔6のそれぞれに永久磁石5が配置されている。永久磁石5は、フェライト磁石、アルニコ磁石、コバルト磁石又はネオジム磁石であり、典型的には、ネオジム磁石である。永久磁石5は、平面視で矩形かつ板状の形状を有する。言い換えれば、永久磁石5は、直方体の形状を有する板状の永久磁石である。永久磁石5の互いに向かい合う面は平行である。永久磁石5の厚さ方向において互いに向かい合う面がそれぞれ最も広い面であり、永久磁石5の主面である。永久磁石5の角部は、例えば、0.2R〜0.5R(単位:mm)の範囲にて面取りされていてもよい。
本実施形態において、永久磁石5の磁化方向は、厚さ方向に平行である。言い換えれば、永久磁石5によって形成されるd軸方向(磁束の方向)が厚さ方向に平行である。永久磁石5による磁極の中心軸をd軸と定義している。本実施形態において、回転子4の周方向において互いに隣り合う1対の永久磁石5のN極(及びS極)の向きは互いに反対向きである。一方の永久磁石5のN極が回転軸Oから遠くS極が回転軸Oに近い。他方の永久磁石5のN極が回転軸Oに近くS極が回転軸Oから遠い。d軸と電気的及び磁気的に直交する軸がq軸であるから、隣り合う1対の永久磁石5の間を通り、回転軸Oから径方向の外側に向かう方向がq軸方向である。図2Aに示す断面において、回転子4の外周面4aとq軸との交点を磁極境界位置Kと定義したとき、永久磁石5の主面は、回転子4の周方向において互いに隣り合う2つの磁極境界位置Kを通る仮想的な直線の近傍に位置している。詳細には、永久磁石5の主面は、この仮想的な直線に平行である。
図2Aに示すように、回転軸Oに垂直な断面において、複数の永久磁石5から選ばれた任意の永久磁石5に着目する。本実施形態において、この任意の永久磁石5が形成するd軸に平行な方向に関して、回転子4の外周面4aからこの任意の永久磁石5までの距離D(最短距離)は、この任意の永久磁石5の厚さtの60%以上110%以下の範囲にある。距離Dは、任意の永久磁石5の厚さtの80%以上110%以下の範囲にあってもよい。
一般に、永久磁石埋込同期機において、永久磁石の位置をシャフトに近づければ近づけるほど、永久磁石の耐減磁性は向上する一方、同期機のトルク(単位電流あたりのトルク)は低下する。詳細には、回転子の外周面と永久磁石との間におけるコアの一部である磁極部(図2Aに示す磁極部8)の断面積が大きければ大きいほど、過大な逆磁界が回転子に作用した際に、永久磁石に作用する逆磁界を低減し、ある磁極部から隣の磁極部へと逆磁界磁束を漏らすことができる。つまり、磁極部の断面積が大きければ大きいほど、耐減磁性を向上させることができる。しかし、回転子の外周面から永久磁石までの距離が大きければ大きいほど、磁極部における磁気抵抗が増加する。また、磁極部に作用する遠心力が増加するので、隣り合う磁極部を連結する部分を太くする必要が生じる。その結果、漏れ磁束が増加し、固定子へと流れる有効磁束が減少し、ひいてはトルクが低下する。
本実施形態によれば、上記の範囲を満たす位置に永久磁石5が配置されているので、耐減磁性の向上の効果を高めつつ、トルクの低下を抑えることができる。つまり、本実施形態によれば、永久磁石5の耐減磁性と同期機100のトルクとの両立を図ることができる。
なお、永久磁石5の角部が面取りされていることを考慮に入れると、図2Aの断面において、永久磁石5を取り囲む最小の矩形領域を磁石埋設領域と定義することができる。回転子4の外周面4aからこの磁石埋設領域までのd軸に平行な方向に関する距離を回転子4の外周面4aから任意の永久磁石5までのd軸に平行な方向に関する距離Dとみなすことができる。
回転子4は、さらに、フラックスバリア13(磁束障壁)を有する。フラックスバリア13は、磁束を通さない部分であり、回転子4の内部での磁束の回り込みを防ぎ、エアギャップ9を介して固定子2と鎖交する磁束を増やす役割を果たす。本実施形態において、フラックスバリア13は空間によって形成されている。つまり、磁石埋設孔6とフラックスバリア13とが連続した1つの孔によって形成されている。より詳細には、磁石埋設孔6と2つのフラックスバリア13とが連続した1つの孔によって形成されている。ただし、フラックスバリア13が樹脂、セラミック、非磁性金属などの非磁性材料によって形成されていてもよい。本実施形態において、フラックスバリア13は、任意の永久磁石5に隣接する領域であって、任意の永久磁石5が形成するq軸に隣接する領域に設けられている。
図2Bに示すように、回転軸Oに垂直な断面に現れる永久磁石5の4つの面のうち、厚さ方向において互いに向かい合う面を主面5fと定義し、主面5f以外の2つの面を側面5gと定義する。回転子4の外周面4aに対して近い側に位置する主面5fを含む仮想的な平面を第1基準平面P1と定義する。側面5gを含む仮想的な平面を第2基準平面P2と定義する。フラックスバリア13は、永久磁石5の側面5gに隣接する領域に設けられている。言い換えれば、永久磁石5の側面5gがフラックスバリア13に面している。さらに、フラックスバリア13は、第1基準平面P1を越えて永久磁石5がある側とは反対側に向かって突出している突出部分13aを含む。このような突出部分13aが設けられていると、隣接する磁極からの磁束の流れ込みを効果的に防ぐことができるので、耐減磁性の向上に有利である。
また、フラックスバリア13の突出部分13aは、第2基準平面P2から見て永久磁石5が存在する領域とは反対側の領域にのみ形成されている。また、図2Bの断面において、突出部分13aの1つの辺は、第2基準平面P2に重なっている。このような構造によれば、永久磁石5から回転子4の外周面4aに向かう磁束がフラックスバリア13の突出部分13aによって遮蔽されにくい。このことは、同期機100のトルクの低下を防ぐ観点で有利である。
図2Bに示すように、回転子4のコア7は、フラックスバリア13と回転子4の外周面4aとの間にある連結部17(「第1連結部17」と称する)を有する。周方向において互いに隣り合う1対の第1連結部17によって、磁極部8と磁極部8とが連結されている。回転子4の半径方向に関する第1連結部17の幅は十分に狭い。回転子4のコア7は、さらに、周方向において互いに隣り合う1対のフラックスバリア13を隔てており、かつ、1対の第1連結部17とコア7の内側部分とを連結している連結部19(「第2連結部19」と称する)を有する。1対の第1連結部17と第2連結部19とによってT字状の部分がコア4に形成されている。
一般に、回転子のN極に対し、N極となる固定子の巻線への通電による磁界が作用し、回転子のS極に対し、S極となる固定子の巻線への通電による磁界が作用するとき、回転子の永久磁石に減磁界が作用する。固定子の巻線への通電により、N極となる固定子のティースから、対向する回転子を介して、S極となる固定子のティースに大きな磁束が流れる。そして、回転子において、N極とS極との境界(磁極と磁極との境界)の近傍で過大な逆磁界が作用し、永久磁石の端部で局所的な減磁が発生しやすい。
本実施形態によれば、フラックスバリア13、第1連結部17及び第2連結部19の働きにより、永久磁石5に過大な逆磁界が作用しても、永久磁石5の外側に位置する磁極部8から隣接する他の磁極部8に過大な逆磁界磁束を漏らすことができる。これにより、永久磁石5に作用する逆磁界を低減することができる。また、フラックスバリア13は、永久磁石5の両端部から回転子4の外周面4aに向かってd軸方向(磁極方向)と平行に突出している。このような構造によれば、フラックスバリア13によって永久磁石5の磁束が遮蔽されにくく、永久磁石5の磁束を固定子2に向けてスムーズに流すことができる。したがって、本実施形態によれば、耐減磁性を高トルクとを両立した高性能な永久磁石埋込同期機100を提供することができる。
次に、図1及び図2Aに示す構造を有する永久磁石埋込同期機(電動機)において、距離Dを変化させ、コアにおける永久磁石の配置がトルクと耐減磁性に与える影響をコンピュータシミュレーションによって調べた。
具体的には、図2Aを参照して説明した距離Dが互いに異なる複数の永久磁石埋込同期機についてシミュレーションを行った。回転子における距離DをD1〜D8(D1<…<D8)に設定した。詳細には、距離D1〜D8は、それぞれ、永久磁石の厚さの26%、53%、80%、91%、107%、134%及び161%であった。磁石の種類はネオジム磁石であった。回転子の直径Φは54mmであった。
シミュレーションにおいては、定格トルクが得られる電流を同期機に流し、そのときの電流値を「定格電流」として記録した。また、定格電流に対して、一定の安全性を考慮した減磁電流を同期機に印加し、永久磁石の減磁率を調べた。詳細には、電磁界解析によって減磁率を評価した。永久磁石のデータを用いて非線形のB−Hカーブを定義した。動作点がB−Hカーブ上を動き、解析中に動作点がクニック点を超えると減磁状態が発生するようにして解析を行った。減磁率の計算式を以下に示す。
減磁率(%)=100×(1−B2/B1)
B1:初期の残留磁束密度
B2:逆磁界を作用させたときの残留磁束密度
図3は、シミュレーションによる定格電流と減磁率との関係を示すグラフである。図3において、減磁率は規格化してある。図3に示すように、回転子の外周面からの永久磁石の埋設深さが増加するにつれて減磁率が低減した。つまり、耐減磁性が向上した。距離DがD3(永久磁石の厚さの80%)以上であるとき、減磁率が十分に低かった。ただし、減磁率を抑制する効果は飽和した。一方、永久磁石の埋設深さが増加するにつれて、定格トルクが得られる定格電流は徐々に増加した。同一の定格トルクが得られるのであれば、定格電流が小さければ小さいほど、電流の2乗と巻線抵抗との積であるジュール損(銅損)が小さいので、同期機は高効率である。したがって、図3のグラフにおいて曲率が最大となる位置の近傍の領域が、耐減磁性と高効率化とを両立するのに適している。図3においては、定格電流があらかじめ設定された規格値X以下で、且つ減磁率があらかじめ設定された規格値Y以下である領域が望ましい領域であるとして規定した。この領域において、効率を重視する場合には、D=D3である回転子が望ましい。耐減磁性を重視する場合には、D=D4又はD=D5である回転子が望ましい。つまり、図2Aを参照して説明した距離Dが永久磁石の厚さtの80%以上となるように永久磁石がコアに配置されていることが望ましく、距離Dが永久磁石の厚さtの80%以上110%以下の範囲に収まるように永久磁石がコアに配置されていることがより望ましい。なお、規格値X及びYは、同期機に求められる特性に応じて適切に設定される。
(実施形態2)
図4A及び図4Bに示すように、実施形態2と実施形態1との相違点は、回転子における永久磁石5の配置にある。具体的には、本実施形態の回転子40においては、複数の永久磁石5(例えば、2つの永久磁石5)によって1つの極が形成されているのに対し、実施形態1の回転子4においては、1つの永久磁石5によって1つの極が形成されている。本実施形態の永久磁石埋込同期機のその他の構成は、実施形態1の同期機100の構成と共通である。以下において、実施形態1と実施形態2との間で共通する構成の説明は省略することがある。
本実施形態において、複数の永久磁石5は、それぞれ、直方体の形状を有する板状の永久磁石である。回転子40の周方向において互いに隣り合う1対の永久磁石5がV字状に配置されている。永久磁石5の磁化方向は、永久磁石5の厚さ方向に一致している。V字状に配置された1対の永久磁石5は、ともに、磁極部18に面する側にN極又はS極を有し、回転軸Oに近い側に反対の極(S極又はN極)を有する。したがって、2つの永久磁石5によって1つの極が形成され、回転子40の周方向において互いに隣り合う1対の永久磁石5によってd軸方向が規定されている。磁極部18は、先に説明したように、回転子40の外周面4aと永久磁石5との間におけるコア7の一部である。
上記の配置によれば、磁極部18の断面積を広く確保することができる。より多くの磁束を磁極部18に流すことができるとともに、磁気飽和も緩和される。このことは、トルクの向上に寄与する。また、磁極部18が広いので、永久磁石5に過大な逆磁界が作用したとき、永久磁石5に作用する逆磁界磁束の多くを隣接する磁極部18に流すことができる。このことは、耐減磁性の向上にとって有利である。
一方、実施形態1における磁極部8と比較して、本実施形態における磁極部18は、大きい断面積を有するので、磁極部18に作用する遠心力も大きい。したがって、本実施形態における連結部27の幅(太さ)は、より大きい遠心力に耐えるために、実施形態1における連結部17の幅を上回っている。連結部27は、フラックスバリア13と回転子40の外周面4aとの間にある部分である。一方、連結部27の幅が広ければ広いほど、ある磁極部18から隣の磁極部18に漏れる磁束が増加する。したがって、永久磁石5に過大な逆磁界が作用したとき、永久磁石5が受ける逆磁界は、連結部27の幅の増加分に対応して減少する。これらのことを考慮すると、実施形態2の構造は、実施形態1と比較して、より優れた耐減磁性を有する。回転子40の外周面4aから永久磁石5までの距離が短かったとしても、本実施形態における永久磁石5の配置によれば、実施形態1と同等の効果が得られる。
本実施形態では、磁石埋設孔6hに2つの永久磁石5が配置されている。ただし、実施形態1のように、1つの磁石埋設孔に永久磁石5が1つのみ配置されていてもよい。つまり、磁石埋設孔6hが複数の部分(例えば2つ)に分かれていてもよい。
本実施形態においても、フラックスバリア13は、任意の永久磁石5が形成するq軸にに隣接する領域に設けられている。しかし、上記したように、磁石埋設孔6hが2つに分かれている場合、任意の永久磁石5が形成するd軸に隣接する領域及び任意の永久磁石5が形成するq軸に隣接する領域の両方にフラックスバリア13が形成されうる。さらには、フラックスバリア13は、任意の永久磁石5が形成するd軸に隣接する領域に形成されていてもよい。
本実施形態においても、回転子40の外周面4aから任意の永久磁石5までの距離Dは、任意の永久磁石5の厚さの60%以上110%以下の範囲にある。距離Dの定義は、実施形態1で説明した通りである。
別の側面において、距離Dを次のように定義することもできる。この定義は、実施形態1にも適用されうる。まず、回転子40の周方向において互いに隣り合う1対の永久磁石5であって、互いに異なる極を形成している1対の永久磁石5をそれぞれ第1磁石5a及び第2磁石5bと定義する(図4A参照)。図4Aの断面において、第1磁石5aと第2磁石5bとの中間を通り、かつ、回転軸Oと交差する直線を第1直線L1と定義する。さらに、第1直線L1と回転子40の外周面4aとの交点を磁極境界位置Kと定義する。回転子40の周方向において互いに隣り合う2つの磁極境界位置Kを通る仮想的な直線を第2直線L2と定義する。この第2直線L2に垂直な方向に関し、回転子40の外周面4aから任意の永久磁石5(又は磁石埋設領域)までの距離(最短距離)が距離Dである。
次に、図4A及び図4Bに示す構造を有する永久磁石埋込同期機(電動機)において、距離Dを変化させ、コアにおける永久磁石の配置がトルクと耐減磁性に与える影響をコンピュータシミュレーションによって調べた。
具体的には、図4Aに示す距離Dが互いに異なる複数の永久磁石埋込同期機についてシミュレーションを行った。回転子における距離Dをd1〜d6(d1<…<d6)に設定した。詳細には、距離d1〜d6は、それぞれ、永久磁石の厚さの30%、40%、60%、84%、111%、及び138%であった。磁石の種類はネオジム磁石であった。回転子の直径Φは54mmであった。これらの回転子を用いて図4Aに示す構造を有する永久磁石埋込同期機を作製し、実施形態1と同じ方法で減磁率を調べた。結果を図5に示す。図3と同様に減磁率は規格化してある。
図5に示すように、実施形態2の構造において回転子の外周面からの永久磁石の埋設深さを変化させたとき、定格電流と減磁率との関係は、実施形態1と同じ傾向を示した。同一の定格トルクが得られるのであれば、定格電流が小さければ小さいほど、電流の2乗と巻線抵抗との積であるジュール損(銅損)が小さいので、同期機は高効率である。したがって、図5のグラフにおいて曲率が最大となる位置の近傍の領域が、耐減磁性と高効率化とを両立するのに適している。図5においては、定格電流があらかじめ設定された規格値X以下で、且つ減磁率があらかじめ設定された規格値Y以下である領域が望ましい領域であるとして規定した。この領域において、効率を重視する場合には、D=d3である回転子が望ましい。耐減磁性を重視する場合には、D=d4である回転子が望ましい。つまり、図4Aを参照して説明した距離Dが永久磁石の厚さtの60%以上となるように永久磁石がコアに配置されていることが望ましく、距離Dが永久磁石の厚さtの60%以上110%以下の範囲に収まるように、永久磁石がコアに配置されていることがより望ましい。なお、規格値X及びYは、同期機に求められる特性に応じて適切に設定される。
なお、V字状の配置に近い形状となるように、円弧状かつ板状の永久磁石を用いて磁極を構成してもよい。
本開示にかかる永久磁石埋込同期機は、耐減磁性に優れているとともに、高いトルクを発生しうる。本開示にかかる永久磁石埋込同期機は、電動機、発電機などの電気機械に有用である。
2 固定子
3 シャフト
4,40 回転子
4a 回転子の外周面
5 永久磁石
5f 永久磁石の主面
5g 永久磁石の側面
6,6h 磁石埋設孔
7 コア
8,18 磁極部
10 ヨーク
11 ティース
13 フラックスバリア
13a 突出部分
17,19 連結部
100 永久磁石埋込同期機
P1 第1基準平面
P2 第2基準平面

Claims (6)

  1. シャフトと、
    前記シャフトに支持された回転子と、
    を備え、
    前記回転子は、コア及び前記コアに埋め込まれた複数の板状の永久磁石を含み、
    前記コアには、前記回転子の周方向に沿って複数の磁石埋設孔が形成されており、それら複数の磁石埋設孔のそれぞれに前記永久磁石が配置されており、
    前記シャフトの回転軸に垂直な断面において、前記複数の永久磁石から選ばれた任意の永久磁石が形成するd軸に平行な方向に関して、前記回転子の外周面から前記任意の永久磁石までの距離が前記任意の永久磁石の厚さの60%以上110%以下の範囲にある、永久磁石埋込同期機。
  2. 前記距離が前記任意の永久磁石の前記厚さの80%以上110%以下の範囲にある、請求項1に記載の永久磁石埋込同期機。
  3. 前記複数の永久磁石は、それぞれ、直方体の形状を有する板状の永久磁石であり、
    前記回転子の周方向において互いに隣り合う1対の前記永久磁石がV字状に配置されており、それらの1対の前記永久磁石によって1つの極が形成されている、請求項1又は2に記載の永久磁石埋込同期機。
  4. 前記回転子は、空間又は非磁性材料で形成されたフラックスバリアをさらに有し、
    前記フラックスバリアは、前記任意の永久磁石に隣接する領域であって、前記任意の永久磁石が形成する前記d軸又は前記任意の永久磁石が形成するq軸に隣接する領域に設けられている、請求項1〜3のいずれか1項に記載の永久磁石埋込同期機。
  5. 前記複数の永久磁石は、それぞれ、直方体の形状を有する板状の永久磁石であり、
    前記永久磁石の磁化方向は、前記永久磁石の厚さ方向に平行であり、
    前記回転軸に垂直な前記断面に現れる前記永久磁石の4つの面のうち、前記厚さ方向において互いに向かい合う面を主面と定義し、前記主面以外の2つの面を側面と定義し、前記回転子の前記外周面に対して近い側に位置する前記主面を含む仮想的な平面を第1基準平面と定義したとき、
    前記フラックスバリアは、前記永久磁石の前記側面に隣接する領域に設けられているとともに、前記第1基準平面を越えて前記永久磁石がある側とは反対側に向かって突出している突出部分を含む、請求項4に記載の永久磁石埋込同期機。
  6. 前記永久磁石の前記側面を含む仮想的な平面を第2基準平面と定義したとき、
    前記フラックスバリアの前記突出部分は、前記第2基準平面から見て前記永久磁石が存在する領域とは反対側の領域にのみ形成されている、請求項5に記載の永久磁石埋込同期機。
JP2016051036A 2016-03-15 2016-03-15 永久磁石埋込同期機 Pending JP2017169314A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016051036A JP2017169314A (ja) 2016-03-15 2016-03-15 永久磁石埋込同期機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016051036A JP2017169314A (ja) 2016-03-15 2016-03-15 永久磁石埋込同期機

Publications (1)

Publication Number Publication Date
JP2017169314A true JP2017169314A (ja) 2017-09-21

Family

ID=59914162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016051036A Pending JP2017169314A (ja) 2016-03-15 2016-03-15 永久磁石埋込同期機

Country Status (1)

Country Link
JP (1) JP2017169314A (ja)

Similar Documents

Publication Publication Date Title
CN112838693B (zh) 旋转电机
JP6508168B2 (ja) 回転電機
JP6002217B2 (ja) 複合トルク型回転電機
JP5757281B2 (ja) 回転電機のロータ
JP5876147B2 (ja) 複合トルク型回転電機
JP5935615B2 (ja) 回転電機のロータ
JP5646119B1 (ja) 永久磁石型回転電機
JP5709907B2 (ja) 車両用永久磁石埋込型回転電機
CN109565198B (zh) 转子以及磁阻马达
JP5891089B2 (ja) 永久磁石同期機
JP7076188B2 (ja) 可変磁力モータ
JP2011083066A (ja) 永久磁石補助形同期リラクタンスモータ
US20140210296A1 (en) Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor
JP6239190B2 (ja) 回転電機
JP2018011466A (ja) 永久磁石埋込同期機
JP2016072995A (ja) 埋め込み磁石型ロータおよびそれを備えた電動機
JP2014236577A (ja) 永久磁石式回転電機
WO2017171037A1 (ja) ロータ及びロータの設計方法
JP2018098936A (ja) 磁石ユニット
JP5989878B2 (ja) 回転子及びスポーク型ipm永久磁石式回転機
JP6440349B2 (ja) 回転電機
JP5740250B2 (ja) 永久磁石式回転電機
JP2017169314A (ja) 永久磁石埋込同期機
JP2018011450A (ja) 永久磁石埋込同期機
JP2014161206A (ja) 磁石埋込式回転電機