JP2017168186A - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
JP2017168186A
JP2017168186A JP2016049067A JP2016049067A JP2017168186A JP 2017168186 A JP2017168186 A JP 2017168186A JP 2016049067 A JP2016049067 A JP 2016049067A JP 2016049067 A JP2016049067 A JP 2016049067A JP 2017168186 A JP2017168186 A JP 2017168186A
Authority
JP
Japan
Prior art keywords
microwave
plasma processing
unit
microwaves
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016049067A
Other languages
English (en)
Other versions
JP6697292B2 (ja
Inventor
池田 太郎
Taro Ikeda
太郎 池田
河西 繁
Shigeru Kasai
河西  繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2016049067A priority Critical patent/JP6697292B2/ja
Priority to KR1020170030166A priority patent/KR101882609B1/ko
Priority to US15/455,566 priority patent/US20170263421A1/en
Publication of JP2017168186A publication Critical patent/JP2017168186A/ja
Application granted granted Critical
Publication of JP6697292B2 publication Critical patent/JP6697292B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32266Means for controlling power transmitted to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32266Means for controlling power transmitted to the plasma
    • H01J37/32275Microwave reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/32247Resonators
    • H01J37/32256Tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】 複数のマイクロ波を共通する一つのマイクロ波透過部材を介して処理容器内に導入するプラズマ処理装置において、マイクロ波透過部材の内部におけるマイクロ波の干渉を効果的に抑制する。【解決手段】マイクロ波透過部材73Bは、板状であり、全体として平面視円環状をなしている。壁部77は、マイクロ波透過部材73Bの上面から上方に突出する突起として3箇所に均等に配設されている。壁部77は、円環状のマイクロ波透過部材73Bの上面において、その円環部を横断するように径方向に長く延設されている。壁部77は、マイクロ波透過部材73Bの内部を周方向に伝播するマイクロ波を反射波によって打消し、マイクロ波透過部材73Bの内部でのマイクロ波の干渉を抑制する。【選択図】図7

Description

本発明は、被処理体をマイクロ波プラズマによって処理するプラズマ処理装置及びプラズマ処理方法に関する。
半導体デバイスの製造過程では、プラズマを用いて、半導体ウエハなどの被処理体に対して、例えば酸化処理、窒化処理などの成膜処理や、エッチング処理などが行われる。最近では、次世代以降のデバイス開発に向けて、微細化への対応が益々求められている。その一方、主に生産効率を高める観点から、被処理体の大型化も進行している。
プラズマ処理に関する従来技術として、特許文献1では、マイクロ波を処理容器内に導入するマイクロ波導入機構を複数箇所に備えるとともに、処理容器の天井部に円周状に配置された複数のスロットと、各スロットから放射されたマイクロ波を透過する円環状のマイクロ波透過部材とを備えたプラズマ処理装置が提案されている。この特許文献1では、円環状のマイクロ波透過部材によって、周方向へのプラズマの均一な拡がりを確保できる、とされている。
また、特許文献2では、処理容器内でのマイクロ波の過度の伝播を抑制するため、マイクロ波を導入する開口の周囲にマイクロ波の伝播を抑制するチョーク溝を設けたプラズマ処理装置が提案されている。
特開2015−118739号公報(特許請求の範囲など) 特開2003−45848号公報(特許請求の範囲など)
プラズマ処理装置において、マイクロ波導入部位の数をむやみに増やすことなく、被処理体の大型化に対応するためには、特許文献1のように、複数のマイクロ波導入機構からのマイクロ波を共通する一つのマイクロ波透過部材を介して導入することが有効である。しかし、複数のマイクロ波導入機構から導入されるマイクロ波の位相が異なると、マイクロ波透過部材の内部でマイクロ波の干渉が生じて電界強度に偏りが生じ、プラズマの均一性が損なわれることがある。
本発明の目的は、複数のマイクロ波を共通する一つのマイクロ波透過部材を介して処理容器内に導入するプラズマ処理装置において、マイクロ波透過部材の内部におけるマイクロ波の干渉を効果的に抑制することである。
本発明のプラズマ処理装置は、被処理体を収容する処理容器と、
前記処理容器の内部に配置され、前記被処理体を載置する載置面を有する載置台と、
マイクロ波を生成すると共に、該マイクロ波を複数の経路に分配して出力するマイクロ波出力部と、
前記マイクロ波出力部から出力されたマイクロ波を複数の伝送経路で前記処理容器内へ伝送するマイクロ波伝送部と、
前記マイクロ波伝送部によって伝送された前記マイクロ波を前記処理容器内に放射するマイクロ波導入部と、
を備えている。
本発明のプラズマ処理装置において、前記マイクロ波伝送部は、前記複数の伝送経路毎に、前記マイクロ波出力部と前記処理容器内との間のインピーダンスを整合させるチューナー部を有している。
また、本発明のプラズマ処理装置において、前記マイクロ波導入部は、
前記処理容器の天井部を構成するとともに、前記載置面に対向して設けられた凹部を有する導電性部材と、
前記導電性部材の一部分をなし、前記マイクロ波伝送部を介して伝送された前記マイクロ波を放射する複数のスロットと、
前記導電性部材の前記凹部に嵌合し、前記スロットから放射された前記マイクロ波を透過させて前記処理容器内に導入させるマイクロ波透過部材と、
を有している。
そして、本発明のプラズマ処理装置において、前記マイクロ波透過部材は、複数の前記伝送経路を介して伝送された複数の前記マイクロ波に共通して設けられているとともに、その内部における複数のマイクロ波の干渉を抑制する干渉抑制手段を有している。
本発明のプラズマ処理装置は、前記干渉抑制手段が、板状をなす前記マイクロ波透過部材に形成された突起であってもよい。この場合、前記マイクロ波透過部材は、全体として円環状をなしていてもよく、前記突起が、前記円環状のマイクロ波透過部材の上面において、その径方向に横断して設けられた壁部であってもよい。
本発明のプラズマ処理装置において、前記マイクロ波導入部は、さらに、誘電体材料からなる複数のマイクロ波遅波材を備えていてもよく、
前記マイクロ波遅波材は、前記導電性部材において、前記複数のスロットの上部であって前記チューナー部の配置部分と上下に重なる部位を含む円環状をなす領域に沿って全体として円環状に配置されていてもよい。この場合、前記突起が、前記チューナー部の配置部分と上下に重ならない部位において、隣接する2つの前記マイクロ波遅波材の間に挿入されていてもよい。
本発明のプラズマ処理装置は、前記複数のスロットと前記マイクロ波透過部材との間に、前記複数のスロットに対応して互いに分離して設けられた複数の誘電体層を有するものであってもよい。この場合、前記誘電体層は、空気層または誘電体材料層であってもよい。
本発明のプラズマ処理方法は、上記いずれかのプラズマ処理装置を用いて被処理体を処理するものである。
本発明によれば、複数のマイクロ波を共通する一つのマイクロ波透過部材を介して処理容器内に導入するプラズマ処理装置において、マイクロ波透過部材の内部におけるマイクロ波の干渉を効果的に抑制することができる。従って、プラズマの均一な広がりが確保され、被処理体への処理の均一性を確保できる。
本発明の一実施の形態に係るプラズマ処理装置の概略の構成を模式的に示す説明図である。 図1に示した制御部の構成を示す説明図である。 図1に示したマイクロ波導入装置の構成を示す説明図である。 チューナー部とマイクロ波導入部の構成を示す断面図である。 マイクロ波導入部の上部の構成を示す平面図である。 マイクロ波導入部の下部の構成を示す平面図である。 マイクロ波透過部材の外観斜視図である。 壁部を拡大して示すマイクロ波透過部材の要部斜視図である。 シミュレーション結果を示す図面である。
以下、本発明の実施の形態について適宜図面を参照して詳細に説明する。
[プラズマ処理装置の構成例]
まず、本発明の一実施の形態に係るプラズマ処理装置について説明する。図1は、プラズマ処理装置の概略の構成を示す断面図である。図2は、図1に示した制御部の構成を示す説明図である。本実施の形態のプラズマ処理装置1は、連続する複数の動作を伴って、半導体ウエハ(以下、単に「ウエハ」と記す)Wに対してプラズマ処理を施す装置である。ここで、プラズマ処理として、例えば、プラズマ酸化処理、プラズマ窒化処理などの成膜処理や、プラズマエッチング処理などを挙げることができる。
プラズマ処理装置1は、被処理体であるウエハWを収容する処理容器2と、処理容器2の内部に配置され、ウエハWを載置する載置面21aを有する載置台21と、処理容器2内にガスを供給するガス供給機構3と、処理容器2内を減圧排気する排気装置4と、処理容器2内にプラズマを生成させるためのマイクロ波を発生させると共に、処理容器2内へマイクロ波を導入するマイクロ波導入装置5と、マイクロ波導入装置5からのマイクロ波を処理容器2内へ放射するマイクロ波導入部6A,6Bと、これらプラズマ処理装置1の各構成部を制御する制御部8と、を備えている。なお、処理容器2内にガスを供給する手段としては、ガス供給機構3の代りに、プラズマ処理装置1の構成には含まれない外部のガス供給機構を使用してもよい。
<処理容器>
処理容器2は、例えば略円筒形状をなしている。処理容器2は、例えばアルミニウムおよびその合金等の金属材料によって形成されている。マイクロ波導入装置5は、処理容器2の上部に設けられ、処理容器2内に電磁波(マイクロ波)を導入してプラズマを生成するプラズマ生成手段として機能する。マイクロ波導入装置5の構成については、後で詳しく説明する。
処理容器2は、板状の天井部11および底部13と、天井部11と底部13とを連結する側壁部12とを有している。天井部11は、複数の凹部を有しており、マイクロ波導入部6A,6Bを構成する導電性部材として機能する。側壁部12は、処理容器2に隣接する図示しない搬送室との間でウエハWの搬入出を行うための搬入出口12aを有している。処理容器2と図示しない搬送室との間には、ゲートバルブGが配置されている。ゲートバルブGは、搬入出口12aを開閉する機能を有している。ゲートバルブGは、閉状態で処理容器2を気密にシールすると共に、開状態で処理容器2と図示しない搬送室との間でウエハWの移送を可能にする。
底部13は、複数(図1では2つ)の排気口13aを有している。プラズマ処理装置1は、更に、排気口13aと排気装置4とを接続する排気管14を備えている。排気装置4は、APCバルブと、処理容器2の内部空間を所定の真空度まで高速に減圧することが可能な高速真空ポンプとを有している。このような高速真空ポンプとしては、例えばターボ分子ポンプ等がある。排気装置4の高速真空ポンプを作動させることによって、処理容器2は、その内部空間が所定の真空度、例えば0.133Paまで減圧される。
<載置台>
載置台21は、被処理体であるウエハWを水平に載置するためのものである。プラズマ処理装置1は、更に、処理容器2内において載置台21を支持する支持部材22と、支持部材22と処理容器2の底部13との間に設けられた絶縁材料よりなる絶縁部材23とを備えている。支持部材22は、底部13の中央から処理容器2の内部空間に向かって延びる円筒形状を有している。載置台21および支持部材22は、例えばAlN等によって形成されている。
プラズマ処理装置1は、更に、載置台21に高周波電力を供給する高周波バイアス電源25と、載置台21と高周波バイアス電源25との間に設けられた整合器24とを備えている。高周波バイアス電源25は、ウエハWにイオンを引き込むために、載置台21に高周波電力を供給する。
図示しないが、プラズマ処理装置1は、更に、載置台21を加熱または冷却する温度制御機構を備えている。温度制御機構は、例えば、ウエハWの温度を、20℃(室温)〜900℃の範囲内で制御する。また、載置台21は、載置面21aに対して突没可能に設けられた複数の支持ピンを有している。複数の支持ピンは、任意の昇降機構により上下に変位し、上昇位置において、図示しない搬送室との間でウエハWの受け渡しを行うことができるように構成されている。
プラズマ処理装置1は、更に、処理容器2の天井部11に設けられたガス導入部15を備えている。ガス導入部15は、円筒形状をなす複数のノズル16を有している。ノズル16は、その下面に形成されたガス孔16aを有している。
<ガス供給機構>
ガス供給機構3は、ガス供給源31を含むガス供給装置3aと、ガス供給源31とガス導入部15とを接続する配管32とを有している。なお、図1では、1つのガス供給源31を図示しているが、ガス供給装置3aは、使用されるガスの種類に応じて複数のガス供給源を含んでいてもよい。
ガス供給源31は、例えば、プラズマ生成用の希ガスや、酸化処理、窒化処理、エッチング処理などに使用される処理ガス等のガス供給源として用いられる。なお、希ガスは、酸化処理、窒化処理、エッチング処理などの処理ガスと共に使用される場合もある。
図示しないが、ガス供給装置3aは、更に、配管32の途中に設けられたマスフローコントローラおよび開閉バルブを含んでいる。処理容器2内に供給されるガスの種類や、これらのガスの流量等は、マスフローコントローラおよび開閉バルブによって制御される。
<制御部>
プラズマ処理装置1の各構成部は、それぞれ制御部8に接続されて、制御部8によって制御される。制御部8は、典型的にはコンピュータである。図2に示した例では、制御部8は、CPUを備えたプロセスコントローラ81と、このプロセスコントローラ81に接続されたユーザーインターフェース82および記憶部83とを備えている。
プロセスコントローラ81は、プラズマ処理装置1において、例えば温度、圧力、ガス流量、バイアス印加用の高周波電力、マイクロ波出力等のプロセス条件に関係する各構成部(例えば、高周波バイアス電源25、ガス供給装置3a、排気装置4、マイクロ波導入装置5等)を統括して制御する制御手段である。
ユーザーインターフェース82は、工程管理者がプラズマ処理装置1を管理するためにコマンドの入力操作等を行うキーボードやタッチパネル、プラズマ処理装置1の稼働状況を可視化して表示するディスプレイ等を有している。
記憶部83には、プラズマ処理装置1で実行される各種処理をプロセスコントローラ81の制御によって実現するための制御プログラム(ソフトウエア)や、処理条件データ等が記録されたレシピ等が保存されている。プロセスコントローラ81は、ユーザーインターフェース82からの指示等、必要に応じて、任意の制御プログラムやレシピを記憶部83から呼び出して実行する。これにより、プロセスコントローラ81による制御下で、プラズマ処理装置1の処理容器2内において所望の処理が行われる。
上記の制御プログラムおよびレシピは、例えば、CD−ROM、ハードディスク、フレキシブルディスク、フラッシュメモリ、DVD、ブルーレイディスク等のコンピュータ読み取り可能な記憶媒体に格納された状態のものを利用することができる。また、上記のレシピは、他の装置から、例えば専用回線を介して随時伝送させてオンラインで利用することも可能である。
<マイクロ波導入装置及びマイクロ波導入部>
次に、図1、図3から図6を参照して、マイクロ波導入装置5及びマイクロ波導入部6A,6Bの構成について詳しく説明する。図3は、マイクロ波導入装置5の構成を示す説明図である。図4は、マイクロ波導入装置5の一部分をなすチューナー部63Bとマイクロ波導入部6Bの構成を示す断面図である。図5は、天井部11の上方から見たマイクロ波導入部6A,6Bの構成を示す平面図である。図6は、天井部11の下方から見たマイクロ波導入部6A,6Bの構成を示す平面図である。
<マイクロ波導入装置>
前述のように、マイクロ波導入装置5は、処理容器2の上部に設けられ、処理容器2内に電磁波(マイクロ波)を導入してプラズマを生成するプラズマ生成手段として機能する。図1および図3に示したように、マイクロ波導入装置5は、マイクロ波を生成すると共に、マイクロ波を複数の経路に分配して出力するマイクロ波出力部50と、マイクロ波出力部50から出力されたマイクロ波を処理容器2に伝送するマイクロ波伝送部60とを有している。
(マイクロ波出力部)
マイクロ波出力部50は、電源部51と、マイクロ波発振器52と、マイクロ波発振器52によって発振されたマイクロ波を増幅するアンプ53と、アンプ53によって増幅されたマイクロ波を複数の経路に分配する分配器54とを有している。マイクロ波発振器52は、所定の周波数(例えば、860MHz)でマイクロ波を発振(例えば、PLL発振)させる。なお、マイクロ波の周波数は、860MHzに限らず、2.45GHz、8.35GHz、5.8GHz、1.98GHz等であってもよい。分配器54は、入力側と出力側のインピーダンスを整合させながらマイクロ波を分配する。
(マイクロ波伝送部)
マイクロ波伝送部60は、複数のアンテナモジュール61を含んでいる。複数のアンテナモジュール61は、それぞれ、分配器54によって分配されたマイクロ波を処理容器2内に導入する。各アンテナモジュール61は、分配されたマイクロ波を主に増幅して出力するアンプ部62と、アンプ部62から出力されたマイクロ波のインピーダンスを調整するチューナー部63A,63Bとを有している。
本実施の形態では、複数のアンテナモジュール61におけるアンプ部62の構成は全て同一である。アンプ部62は、マイクロ波の位相を変化させる位相調節部としての位相器62Aと、メインアンプ62Cに入力されるマイクロ波の電力レベルを調整する可変ゲインアンプ62Bと、ソリッドステートアンプとして構成されたメインアンプ62Cと、後述するマイクロ波導入部6A又は6Bのスロットアンテナ部で反射されてメインアンプ62Cに向かう反射マイクロ波を分離するアイソレータ62Dとを含んでいる。
図1に示したように、複数のチューナー部63A,63Bは、天井部11に設けられている。本実施の形態では、天井部11の中央部分に設けられたチューナー部63Aと、天井部11の周縁部分に設けられた3つのチューナー部63B(図1では3つの内2つのみを図示。)とを備えている。3つのチューナー部63Bは、チューナー部63Aを囲むように、周方向に120度の角度をあけて均等に配置されている。図4では、代表的に、天井部11の周縁部分の上部に配置された一つのチューナー部63Bの構成を示しているが、天井部11の中央部分の上部に配置されたチューナー部63Aも同様の構成である。
チューナー部63A,63Bは、インピーダンスを整合させるスラグチューナ64と、金属材料よりなり、図4における上下方向に延びる円筒状の形状を有する本体容器65と、本体容器65内において本体容器65が延びる方向と同じ方向に延びる内側導体66とを有している。本体容器65および内側導体66は、同軸管を構成している。本体容器65は、この同軸管の外側導体を構成している。内側導体66は、棒状または筒状の形状を有している。本体容器65の内周面と内側導体66の外周面との間の空間は、マイクロ波伝送路67を形成する。
スラグチューナ64は、図4に示したように、本体容器65の基端部側(上端部側)の部分に配置された2つのスラグ69A,69Bと、2つのスラグ69A,69Bを動作させるアクチュエータ70と、このアクチュエータ70を制御するチューナコントローラ71とを有している。
スラグ69A,69Bは、板状且つ環状の形状を有し、本体容器65の内周面と内側導体66の外周面との間に配置されている。また、スラグ69A,69Bは、誘電体材料によって形成されている。スラグ69A,69Bを形成する誘電体材料としては、例えば、比誘電率が10の高純度アルミナを用いることができる。
スラグチューナ64は、チューナコントローラ71からの指令に基づいて、アクチュエータ70によって、スラグ69A,69Bを上下方向に移動させる。これにより、スラグチューナ64は、インピーダンスを調整する。例えば、チューナコントローラ71は、終端部のインピーダンスが50Ωになるように、スラグ69A,69Bの位置を調整する。
本実施の形態では、メインアンプ62C、スラグチューナ64およびマイクロ波導入部6A又は6Bの後述するスロットアンテナ部74A又は74Bは、互いに近接して配置されている。特に、スラグチューナ64およびスロットアンテナ部74A又は74Bは、集中定数回路を構成し、且つ共振器として機能する。スラグチューナ64によって、スロットアンテナ部74A又は74Bに至るまでのインピーダンス不整合を高精度で解消することができ、実質的に不整合部分をプラズマ空間とすることができる。これにより、スラグチューナ64によって、高精度のプラズマ制御が可能になる。
上記のように構成されたチューナー部63A,63Bにおいて、メインアンプ62Cで増幅されたマイクロ波は、本体容器65の内周面と内側導体66の外周面との間(マイクロ波伝送路67)を通ってマイクロ波導入部6A,6Bに伝送される。
<マイクロ波導入部>
マイクロ波導入部6A,6Bは、天井部11に設けられている。本実施の形態では、天井部11の中央部分に設けられたマイクロ波導入部6Aと、天井部11の周縁部分に設けられたマイクロ波導入部6Bとを備えている。マイクロ波導入部6Aは、天井部11の一部分と、マイクロ波遅波材72Aと、スロットアンテナ部74Aと、マイクロ波透過部材73Aとを含んでいる。マイクロ波導入部6Bは、天井部11の一部分と、マイクロ波遅波材72Bと、スロットアンテナ部74Bと、マイクロ波透過部材73Bとを含んでいる。マイクロ波導入部6Aと、マイクロ波導入部6Bは、以下に説明するように構成が若干異なる。
(中央部分のマイクロ波導入部)
図5に示すように天井部11の中央部分の上部には、チューナー部63Aの配置部位と上下に重なる領域に凹部11aが形成されており、そこに円板状をなすマイクロ波遅波材72Aが嵌め込まれている。また、図6に示すように、天井部11の中央部分の下面において、マイクロ波遅波材72Aと上下に重なる部位には凹部11bが形成されており、そこに円板状をなすマイクロ波透過部材73Aが嵌め込まれている。マイクロ波遅波材72Aの下方とマイクロ波透過部材73Aとの間にはスロットアンテナ部74Aが形成されている。スロットアンテナ部74Aには、スロット75aが形成されている。
スロットアンテナ部74Aは、チューナー部63AからTEM波として伝送されてきたマイクロ波をスロット75aによりTE波にモード変換し、マイクロ波透過部材73Aを経て、処理容器2内に放射する。スロット75aの形状や大きさは、モードジャンプが発生せず均一な電界強度が得られるように適宜調整される。例えば、スロット75aは、図5に示すように円環状に形成される。これにより、スロット75a間の継ぎ目が存在せず、均一な電界を形成することができ、モードジャンプも発生し難くなる。
(周縁部分のマイクロ波導入部)
図4及び図5に示すように、天井部11における周縁部分の上部には、チューナー部63Bの配置部位と上下に重なる円環状の領域に沿って凹部11cが形成されており、そこに複数のマイクロ波遅波材72Bが嵌め込まれている。また、図4及び図6に示すように、天井部11の周縁部分の下面には、チューナー部63Bの配置部位と上下に重なる円環状の領域に凹部11dが形成されており、そこにマイクロ波透過部材73Bが嵌め込まれている。そして、図4に示すように、複数のマイクロ波遅波材72Bとマイクロ波透過部材73Bとの間には、スロットアンテナ部74B及び複数の誘電体層76が形成されている。
マイクロ波遅波材72Bは、図5に示すように、円弧状をなし、複数のマイクロ波遅波材72Bによって、全体が円環状をなすように配置されている。マイクロ波遅波材72Bは、チューナー部63Bの2倍の数、例えば本実施の形態では6枚設けられている。これらのマイクロ波遅波材72Bは、等間隔に設けられており、隣接するマイクロ波遅波材72Bの間は、導電性部材である天井部11の一部分をなす隔壁部11e又は後述するマイクロ波透過部材73Bの一部分をなす壁部77で分離されている。例えば、3つのチューナー部63Bと上下に重なる部位においては、隣接するマイクロ波遅波材72Bの間に隔壁部11eが下方から挿入されており、隣接するマイクロ波遅波材72Bが分離されている。一方、チューナー部63Bと上下に重ならない残りの3箇所においては、隣接するマイクロ波遅波材72Bの間にマイクロ波透過部材73Bの壁部77が下方から挿入されており、隣接するマイクロ波遅波材72Bが分離されている。なお、壁部77とその両側のマイクロ波遅波材72Bとは、例えば2〜3mm程度のクリアランスをもって離間させておくことが好ましい。
図5に示すように、チューナー部63Bは、それぞれ2枚のマイクロ波遅波材72Bの間に跨るように上方に配置されている。すなわち、互いに隣接する2枚のマイクロ波遅波材72Bは、1つのチューナー部63Bと上下に重なる位置を基準に、その両側に周方向に延びるように配置されている。上記のとおり、チューナー部63Bの直下位置には隔壁部11eが配置されているため、チューナー部63Bを介して伝送されてきたマイクロ波電力は、隔壁部11eで分離され、その両側のマイクロ波遅波材72Bに均等に分配される。従って、通常はマイクロ波電界が大きくなる傾向があるチューナー部63Bの直下部分の電界強度が大きくならずに、その両側のマイクロ波遅波材72Bに均等に分配され、周方向の電界強度が均一化される。
マイクロ波透過部材73Bは、マイクロ波を透過する材料である誘電体材料で構成されており、図6に示すように、全体として円環状をなしている。かかる形状により、3つのチューナー部63Bを介して伝送されてきたマイクロ波を、共通する一つのマイクロ波透過部材73Bを介して処理容器2内に放射し、周方向に均一な表面波プラズマを形成する機能を有している。
図7は、本実施の形態で用いるマイクロ波透過部材73Bの外観斜視図であり、図8は、マイクロ波透過部材73Bにおける壁部77を拡大して示す要部斜視図である。壁部77は、マイクロ波透過部材73Bにおいて、複数のマイクロ波の干渉を抑制する干渉抑制手段として機能する。図7に示すように、マイクロ波透過部材73Bは、板状であり、全体として平面視円環状をなしている。かかる形状のマイクロ波透過部材73Bにおいて、その上面から上方に突出する突起として、壁部77が3箇所に均等に配設されている。図5に示すように、3つの壁部77は、チューナー部63Bと上下に重ならない位置において、周方向に120度の角度をあけて均等に配置されている。各壁部77は、マイクロ波透過部材73Bと一体に加工された四角柱形状をなしている。つまり、壁部77は、1つの上面と4つの側面とを有し、上面及び側面はいずれも長方形をなし、各側面が板状のマイクロ波透過部材73Bの上平面から垂直に立ち上がり、四角柱の突起を形成している。壁部77は、円環状のマイクロ波透過部材73Bの上面において、その円環部を横断するように径方向に長く延設されている。つまり、壁部77の長手方向は、マイクロ波透過部材73Bの径方向に一致するように設けられている。
壁部77は、マイクロ波透過部材73Bの内部を周方向に伝播するマイクロ波を反射波によって打消し、マイクロ波透過部材73Bの内部でのマイクロ波の干渉を抑制する機能を有している。すなわち、本実施の形態のプラズマ処理装置1では、共通する一つのマイクロ波透過部材73Bに対し、天井部11の周縁部分の上部に設けられた3つのチューナー部63Bを介して伝送されてきた3つのマイクロ波が、マイクロ波遅波材72B及びスロットアンテナ部74Bを介して、それぞれ導入される。仮に、壁部77を具備しないマイクロ波透過部材を用いた場合、3つのマイクロ波の位相がずれると、マイクロ波透過部材の内部でマイクロ波どうしの予測不能な干渉が生じて、電界分布が不均一となり、処理容器2内における周方向のプラズマ分布に偏りが生じるおそれがある。このような不具合を防止するため、本実施の形態では、マイクロ波透過部材73Bの壁部77がスタブチューナとして機能する。壁部77によって、マイクロ波透過部材73Bの内部を周方向に伝播するマイクロ波の一部分を打ち消すような反射波が生成され、マイクロ波透過部材73Bの内部でのマイクロ波の干渉を抑制する。つまり、壁部77は、円環状に一体加工されているマイクロ波透過部材73Bを、マイクロ波の伝播という観点で周方向に分断することによって、複数のマイクロ波の干渉を抑制する。従って、壁部77を設けたことにより、処理容器2内における周方向のプラズマ分布を均質化し、ウエハWの面内での処理の均一化を図ることができる。
図7及び図8に示すように、壁部77は、板状であり、かつ全体として平面視円環状をなすマイクロ波透過部材73Bの円環部の幅方向(つまり、マイクロ波透過部材73Bの径方向)の全部にわたって設けられている。壁部77の高さH1及び厚みW1は、マイクロ波透過部材73B内部でのマイクロ波の干渉が効果的に抑制されるように、マイクロ波透過部材73Bの内部におけるマイクロ波の実効波長λとの関係を考慮して設定することができ、下式によって示すことができる。
H1≒(λ/4)×f(W1)
[ここで、f(W1)は、W1の関数を表す。]
なお、壁部77の形状、高さH1、厚みW1は、上記例示の態様に限定されるものではない。また、壁部77の配設数は、3つに限らず、マイクロ波伝送経路の数に応じて設定することができる。
スロットアンテナ部74Bは、導電性部材である天井部11の一構成部分であり、平板状をなしている。スロットアンテナ部74Bは、チューナー部63BからTEM波として伝送されてきたマイクロ波をスロット75bによりTE波にモード変換し、マイクロ波透過部材73Bを経て、処理容器2内に放射する。
スロット75bは、図4に示すように、マイクロ波遅波材72Bに接する上面位置から誘電体層76に接する下面位置まで天井部11が貫通した孔として形成されている。スロット75bは、チューナー部63Bから伝送されてきたマイクロ波の放射特性を決定する。スロット75bの周囲は、図示しないシール部材によってシールされている。これにより、マイクロ波透過部材73Bがスロット75bを覆って密閉し、真空シールとして機能している。スロット75bの形状および配置によりアンテナ指向性が決定される。スロット75bは円弧状をなし、電界が均一に分散されるように、チューナー部63Bの配置領域に沿って、全体形状が円周状をなすように設けられている。図5に示すように、本実施の形態では、チューナー部63Bの配置領域に沿って、12個の円弧状のスロット75bが周方向に一列に配置されている。
また、スロット75bは、各マイクロ波遅波材72Bに対応して2つずつ設けられている。一つのスロット75bの円周方向の長さはλ/2が好ましい。ただし、λはマイクロ波の実効波長であり、下式で表すことができる。
λ≒(λ/ε 1/2)/{1−[(λ/ε 1/2)/λ1/2
[ここで、εはスロット75bに充填される誘電体材料の比誘電率、λは真空中のマイクロ波の波長、λはカットオフ周波数を意味する。]
複数の誘電体層76は、図4に示すように、それぞれスロット75bに対応して設けられている。本例では、12個のスロット75bのそれぞれに対して合計12個の誘電体層76が設けられている。隣接する誘電体層76は金属製の天井部11により分離されている。誘電体層76内には、対応するスロット75bから放射されるマイクロ波によって単一ループの磁場を形成させることができ、その下のマイクロ波透過部材73Bにおいて磁場ループのカップリングが生じないようになっている。これにより、複数の表面波モードが出現することを防止し、単一の表面波モードを実現することができる。誘電体層76の周方向の長さは、複数の表面波モードの出現を防止する観点から、誘電体層76内のマイクロ波の実効波長をλとしたとき、λ/2以下であることが好ましい。また、誘電体層76の厚さは、1〜5mmが好ましい。
誘電体層76は、空気(真空)であってもよく、誘電体セラミックスや樹脂等の誘電体材料であってもよい、誘電体材料としては、例えば、石英、セラミックス、ポリテトラフルオロエチレン等のフッ素系樹脂やポリイミド系樹脂を用いることができる。プラズマ処理装置1が300mmウエハWを処理するもので、マイクロ波の波長が860MHz、マイクロ波遅波材72B、マイクロ波透過部材73B及びスロット75b内の誘電体として、誘電率が10程度のアルミナを用いる場合は、誘電体層76として空気層(真空層)を好ましく用いることができる。
このように、本実施形態では、複数のスロット75bの下に、各スロット75bに対応して複数の誘電体層76を互いに分離して設けている。これにより、各スロット75bから放射されたマイクロ波によって、各誘電体層76内に単一ループの磁場を発生させることができ、それによって、マイクロ波透過部材73B内に誘電体層76の磁場ループに対応する磁場ループが形成され、マイクロ波透過部材73B内に磁場カップリングが生じることを防止できる。このため、マイクロ波透過部材73B内で磁場ループが生じたり、生じなかったりすることによる複数の表面波モードの出現を防止することができ、モードジャンプが生じない安定したプラズマ処理を実現することができる。
また、スロットアンテナ部74A,74Bのスロット75a,75b内は、真空であってもよいが、誘電体材料が充填されていることが好ましい。スロット75a,75bに誘電体材料を充填することにより、マイクロ波の実効波長が短くなり、スロット75a,75bの厚さを薄くすることができる。スロット75a,75bに充填する誘電体材料としては、例えば、石英、セラミックス、ポリテトラフルオロエチレン等のフッ素系樹脂やポリイミド系樹脂を用いることができる。
また、マイクロ波遅波材72A,72Bは、真空よりも大きい誘電率を有しており、例えば、石英、アルミナなどのセラミックス、フッ素系樹脂、ポリイミド系樹脂などの合成樹脂により構成することができる。マイクロ波遅波材72A,72Bは、真空中ではマイクロ波の波長が長くなることから、マイクロ波の波長を短くしてアンテナを小さくする機能を有している。また、マイクロ波の位相は、マイクロ波遅波材72A,72Bの厚みによって変化する。そのため、マイクロ波遅波材72A,72Bの厚みによってマイクロ波の位相を調整することにより、スロット75a,75bが定在波の腹の位置になるように調整することができる。これにより、スロットアンテナ部74A,74Bにおける反射波を抑制することができると共に、スロット75a,75bから放射されるマイクロ波の放射エネルギーを大きくすることができる。つまり、マイクロ波のパワーを効率よく処理容器2内に導入することができる。
また、マイクロ波透過部材73A,73Bは、マイクロ波遅波材72A,72Bと同様に、例えば、石英、アルミナなどのセラミックス、フッ素系樹脂、ポリイミド系樹脂などの合成樹脂により構成することができる。
上記のように構成されたマイクロ波導入部6A,6Bにより、複数のチューナー部63A,63Bを介して伝送されてきた複数のマイクロ波が、スロットアンテナ部74A,74Bに達し、スロットアンテナ部74A,74Bのスロット75a,75bからマイクロ波透過部材73A,73Bを透過して処理容器2の内部空間に放射される。このとき、天井部11の周縁部分では、全体として円環状をなすように設けられた複数のスロット75bからマイクロ波が放射され、かつ複数のスロット75bを覆うように円環状にマイクロ波透過部材73Bが設けられているので、上述のとおりマイクロ波遅波材72Bで均一に分配されたマイクロ波電力を、各スロット75bから均一に放射し、さらにマイクロ波透過部材73Bで円周状に広げることができる。このため、マイクロ波透過部材73Bの直下で、円環状に均一なマイクロ波電界を形成することができ、処理容器2内で周方向に均一な表面波プラズマを形成することができる。
<プラズマ処理の手順>
プラズマ処理装置1を用いるプラズマ処理は、例えば以下の手順で行うことができる。まず、例えばユーザーインターフェース82から、プラズマ処理装置1においてプラズマ処理を行うように、プロセスコントローラ81に指令が入力される。次に、プロセスコントローラ81は、この指令を受けて、記憶部83またはコンピュータ読み取り可能な記憶媒体に保存されたレシピを読み出す。次に、レシピに基づく条件によってプラズマ処理が実行されるように、プロセスコントローラ81からプラズマ処理装置1の各エンドデバイス(例えば、高周波バイアス電源25、ガス供給装置3a、排気装置4、マイクロ波導入装置5等)に制御信号が送出される。
次に、ゲートバルブGが開状態にされて、図示しない搬送装置によって、ウエハWがゲートバルブGおよび搬入出口12aを通って処理容器2内に搬入される。ウエハWは、載置台21の載置面21aに載置される。次に、ゲートバルブGが閉状態にされて、排気装置4によって、処理容器2内が減圧排気される。次に、ガス供給機構3によって、所定の流量の希ガスおよび処理ガスが、ガス導入部15を介して処理容器2内に導入される。処理容器2の内部空間は、排気量およびガス供給量を調整することによって、所定の圧力に調整される。
次に、マイクロ波出力部50において、処理容器2内に導入するマイクロ波を発生させる。マイクロ波出力部50の分配器54から出力された複数のマイクロ波は、マイクロ波伝送部60の複数のアンテナモジュール61に入力される。このとき、制御部8からの制御信号によって、天井部11の周縁部分の上部に配置された3つのチューナー部63Bにそれぞれ接続されたアンテナモジュール61では、位相器62Aによって、各アンテナモジュール61で伝送されるマイクロ波の位相が互いに一致するように制御する。しかしながら、共通する一つのマイクロ波透過部材73Bに対し、天井部11の周縁部分の上部に設けられた3つのチューナー部63Bを介して伝送されてきた3つのマイクロ波の間で、位相に僅かなずれが発生することがある。このような位相のずれによる電界分布の偏りとプラズマへの影響を回避するため、本実施の形態では、マイクロ波透過部材73Bに壁部77を設けている。壁部77によって、マイクロ波透過部材73Bの内部での複数のマイクロ波の干渉を抑制することができる。
各アンテナモジュール61では、マイクロ波は、アンプ部62およびチューナー部63A,63Bを伝搬し、マイクロ波導入部6A,6Bに到達する。そして、マイクロ波は、スロットアンテナ部74A,74Bのスロット75a,75bから、マイクロ波透過部材73A,73Bを透過して、処理容器2内におけるウエハWの上方の空間に放射される。このようにして、各アンテナモジュール61から、それぞれ別々にマイクロ波が処理容器2内に導入される。
上記のように複数の部位から処理容器2内に導入されたマイクロ波は、それぞれ処理容器2内に電磁界を形成する。これにより、処理容器2内に導入された希ガスや処理ガスをプラズマ化する。そして、プラズマ中の活性種、例えばラジカルやイオンの作用によって、ウエハWに成膜処理やエッチング処理がなされる。
プロセスコントローラ81からプラズマ処理装置1の各エンドデバイスにプラズマ処理を終了させる制御信号が送出されると、マイクロ波の発生が停止されると共に、希ガスおよび処理ガスの供給が停止されて、ウエハWに対するプラズマ処理が終了する。次に、ゲートバルブGが開状態にされて、図示しない搬送装置によって、ウエハWが搬出される。
次に、本発明の効果を確認したシミュレーション結果について、図9を参照しながら説明する。シミュレーションでは、天井部11の周縁部分の上部に配置された3つのチューナー部63Bの中の一つのチューナー部63Bを介して導入した100Wのマイクロ波電力が、周方向に120°間隔で配置された隣接する他のチューナー部63Bにどの程度伝播するかを調べた。マイクロ波透過部材73Bにおける壁部77の厚みW1を、8mmから12mmの間で1mm単位で変化させ、壁部77の高さH1を、38mmから43mmまでの間で変化させた場合の結果を図9に示した。図9の縦軸は、マイクロ波電力を導入したチューナー部63Bの全電力量と隣接するチューナー部63Bで検出される電力量との比率(%)を示しており、横軸は壁部77の高さH1を示している。
図9より、2つのチューナー部63Bの間に介在して壁部77を設け、その高さH1と厚みW1を適切に設定することによって、隣接するチューナー部63Bへ伝播するマイクロ波電力を効果的に抑制できることが確認された。このシミュレーションでは、壁部77の厚みW1が12mm、高さH1が42mmのとき、隣接する他のチューナー部63Bに伝播するマイクロ波電力が最も効果的に抑制された。
本発明によれば、複数のマイクロ波を共通する一つのマイクロ波透過部材73Bを介して処理容器2内に導入するプラズマ処理装置1において、マイクロ波透過部材73Bの内部におけるマイクロ波の干渉を効果的に抑制することができる。従って、プラズマの均一な広がりが確保され、ウエハWへの処理の均一性を確保できる。
なお、本発明は、上記各実施の形態に限定されず、種々の変更が可能である。例えば、上記実施の形態では、被処理体として半導体ウエハを挙げたが、これに限定されず、例えば液晶ディスプレイ用基板に代表されるFPD(フラットパネルディスプレイ)基板や、セラミックス基板等の他の基板であってもよい。
また、上記実施の形態では、天井部11の中央部分にマイクロ波導入部6Aを有する構成としたが、天井部11の中央部分には、マイクロ波導入部を設けないことも可能である。
さらに、マイクロ波出力部50、マイクロ波伝送部60の構成等は、上記実施形態に限定されるものではない。
1…プラズマ処理装置、2…処理容器、3…ガス供給機構、4…排気装置、5…マイクロ波導入装置、6A,6B…マイクロ波導入部、8…制御部、11…天井部、11e…隔壁部、14…排気管、15…ガス導入部、16…ノズル、21…載置台、21a…載置面、24…整合器、25…高周波バイアス電源、50…マイクロ波出力部、51…電源部、52…マイクロ波発振器、53…アンプ、54…分配器、60…マイクロ波伝送部、61…アンテナモジュール、62…アンプ部、63A,63B…チューナー部、64…スラグチューナ、65…本体容器、66…内側導体、72A,72B…マイクロ波遅波材、73A,73B…マイクロ波透過部材、74A,74B…スロットアンテナ部、75a,75b…スロット、77…壁部、81…プロセスコントローラ、82…ユーザーインターフェース、83…記憶部、W…半導体ウエハ

Claims (8)

  1. 被処理体を収容する処理容器と、
    前記処理容器の内部に配置され、前記被処理体を載置する載置面を有する載置台と、
    マイクロ波を生成すると共に、該マイクロ波を複数の経路に分配して出力するマイクロ波出力部と、
    前記マイクロ波出力部から出力されたマイクロ波を複数の伝送経路で前記処理容器内へ伝送するマイクロ波伝送部と、
    前記マイクロ波伝送部によって伝送された前記マイクロ波を前記処理容器内に放射するマイクロ波導入部と、
    を備えたプラズマ処理装置であって、
    前記マイクロ波伝送部は、前記複数の伝送経路毎に、前記マイクロ波出力部と前記処理容器内との間のインピーダンスを整合させるチューナー部を有しており、
    前記マイクロ波導入部は、
    前記処理容器の天井部を構成するとともに、前記載置面に対向して設けられた凹部を有する導電性部材と、
    前記導電性部材の一部分をなし、前記マイクロ波伝送部を介して伝送された前記マイクロ波を放射する複数のスロットと、
    前記導電性部材の前記凹部に嵌合し、前記スロットから放射された前記マイクロ波を透過させて前記処理容器内に導入させるマイクロ波透過部材と、
    を有し、
    前記マイクロ波透過部材は、複数の前記伝送経路を介して伝送された複数の前記マイクロ波に共通して設けられているとともに、その内部における複数のマイクロ波の干渉を抑制する干渉抑制手段を有していることを特徴とするプラズマ処理装置。
  2. 前記干渉抑制手段が、板状をなす前記マイクロ波透過部材に形成された突起である請求項1に記載のプラズマ処理装置。
  3. 前記マイクロ波透過部材は、全体として円環状をなし、前記突起が、前記円環状のマイクロ波透過部材の上面において、その径方向に横断して設けられた壁部である請求項2に記載のプラズマ処理装置。
  4. 前記マイクロ波導入部は、さらに、誘電体材料からなる複数のマイクロ波遅波材を備えており、
    前記マイクロ波遅波材は、前記導電性部材において、前記複数のスロットの上部であって前記チューナー部の配置部分と上下に重なる部位を含む円環状をなす領域に沿って全体として円環状に配置されている請求項2又は3に記載のプラズマ処理装置。
  5. 前記突起が、前記チューナー部の配置部分と上下に重ならない部位において、隣接する2つの前記マイクロ波遅波材の間に挿入されている請求項4に記載のプラズマ処理装置。
  6. 前記複数のスロットと前記マイクロ波透過部材との間に、前記複数のスロットに対応して互いに分離して設けられた複数の誘電体層を有する請求項1から5のいずれか1項に記載のプラズマ処理装置。
  7. 前記誘電体層は、空気層または誘電体材料層である請求項6に記載のプラズマ処理装置。
  8. 請求項1から7のいずれか1項に記載のプラズマ処理装置を用いて被処理体を処理するプラズマ処理方法。
JP2016049067A 2016-03-14 2016-03-14 プラズマ処理装置及びプラズマ処理方法 Active JP6697292B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016049067A JP6697292B2 (ja) 2016-03-14 2016-03-14 プラズマ処理装置及びプラズマ処理方法
KR1020170030166A KR101882609B1 (ko) 2016-03-14 2017-03-09 플라즈마 처리 장치 및 플라즈마 처리 방법
US15/455,566 US20170263421A1 (en) 2016-03-14 2017-03-10 Plasma Processing Apparatus and Plasma Processing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016049067A JP6697292B2 (ja) 2016-03-14 2016-03-14 プラズマ処理装置及びプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2017168186A true JP2017168186A (ja) 2017-09-21
JP6697292B2 JP6697292B2 (ja) 2020-05-20

Family

ID=59786946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016049067A Active JP6697292B2 (ja) 2016-03-14 2016-03-14 プラズマ処理装置及びプラズマ処理方法

Country Status (3)

Country Link
US (1) US20170263421A1 (ja)
JP (1) JP6697292B2 (ja)
KR (1) KR101882609B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168185A (ja) * 2016-03-14 2017-09-21 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
WO2021246023A1 (ja) * 2020-06-05 2021-12-09 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
JP2022549828A (ja) * 2019-09-27 2022-11-29 アプライド マテリアルズ インコーポレイテッド モノリシックモジュラー高周波プラズマ源

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11222769B2 (en) * 2017-05-26 2022-01-11 Applied Materials, Inc. Monopole antenna array source with gas supply or grid filter for semiconductor process equipment
JP6960813B2 (ja) * 2017-09-20 2021-11-05 東京エレクトロン株式会社 グラフェン構造体の形成方法および形成装置
US11355317B2 (en) * 2017-12-14 2022-06-07 Applied Materials, Inc. Methods and apparatus for dynamical control of radial uniformity in microwave chambers
CN112259435B (zh) * 2020-11-10 2022-05-03 湖南旭昱新能源科技有限公司 一种等离子刻蚀设备
KR20230033101A (ko) * 2021-08-27 2023-03-08 삼성전자주식회사 플라즈마 발생 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177065A (ja) * 2009-01-30 2010-08-12 Tokyo Electron Ltd マイクロ波プラズマ処理装置、マイクロ波プラズマ処理装置用のスロット板付き誘電体板及びその製造方法
JP2012109080A (ja) * 2010-11-16 2012-06-07 Tokyo Electron Ltd プラズマ処理装置およびプラズマ処理方法
JP2015018685A (ja) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
US20160284516A1 (en) * 2015-03-24 2016-09-29 Tokyo Electron Limited Microwave plasma source and plasma processing apparatus
JP2017168185A (ja) * 2016-03-14 2017-09-21 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762754B1 (ko) * 1999-11-30 2007-10-09 동경 엘렉트론 주식회사 플라즈마 처리 장치
JP2003045848A (ja) 2001-07-27 2003-02-14 Shibaura Mechatronics Corp プラズマ処理装置
JP4093212B2 (ja) * 2004-07-23 2008-06-04 東京エレクトロン株式会社 プラズマ処理装置
JP4677918B2 (ja) * 2006-02-09 2011-04-27 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP5893865B2 (ja) * 2011-03-31 2016-03-23 東京エレクトロン株式会社 プラズマ処理装置およびマイクロ波導入装置
JP2013143448A (ja) * 2012-01-10 2013-07-22 Tokyo Electron Ltd 表面波プラズマ処理装置
JP2014017129A (ja) 2012-07-09 2014-01-30 Tokyo Electron Ltd プラズマ処理装置
JP6356415B2 (ja) * 2013-12-16 2018-07-11 東京エレクトロン株式会社 マイクロ波プラズマ源およびプラズマ処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177065A (ja) * 2009-01-30 2010-08-12 Tokyo Electron Ltd マイクロ波プラズマ処理装置、マイクロ波プラズマ処理装置用のスロット板付き誘電体板及びその製造方法
JP2012109080A (ja) * 2010-11-16 2012-06-07 Tokyo Electron Ltd プラズマ処理装置およびプラズマ処理方法
JP2015018685A (ja) * 2013-07-10 2015-01-29 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
US20160284516A1 (en) * 2015-03-24 2016-09-29 Tokyo Electron Limited Microwave plasma source and plasma processing apparatus
JP2017168185A (ja) * 2016-03-14 2017-09-21 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168185A (ja) * 2016-03-14 2017-09-21 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP2022549828A (ja) * 2019-09-27 2022-11-29 アプライド マテリアルズ インコーポレイテッド モノリシックモジュラー高周波プラズマ源
JP7336591B2 (ja) 2019-09-27 2023-08-31 アプライド マテリアルズ インコーポレイテッド モノリシックモジュラー高周波プラズマ源
JP7492636B2 (ja) 2019-09-27 2024-05-29 アプライド マテリアルズ インコーポレイテッド モノリシックモジュラー高周波プラズマ源
WO2021246023A1 (ja) * 2020-06-05 2021-12-09 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法

Also Published As

Publication number Publication date
KR101882609B1 (ko) 2018-07-26
US20170263421A1 (en) 2017-09-14
KR20170106922A (ko) 2017-09-22
JP6697292B2 (ja) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6697292B2 (ja) プラズマ処理装置及びプラズマ処理方法
US8961735B2 (en) Plasma processing apparatus and microwave introduction device
JP6144902B2 (ja) マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置
US9991097B2 (en) Plasma processing apparatus
JP6624833B2 (ja) マイクロ波プラズマ源およびプラズマ処理装置
TW201711080A (zh) 微波電漿源及電漿處理裝置
WO2013027470A1 (ja) プラズマ処理装置、マイクロ波導入装置及びプラズマ処理方法
US10804078B2 (en) Plasma processing apparatus and gas introduction mechanism
JP5953057B2 (ja) プラズマ処理方法及びプラズマ処理装置
US10777389B2 (en) Plasma processing apparatus and plasma processing method
WO2011013633A1 (ja) 平面アンテナ部材およびこれを備えたプラズマ処理装置
JP2009224455A (ja) 平面アンテナ部材およびこれを備えたプラズマ処理装置
JP6700128B2 (ja) マイクロ波プラズマ処理装置
JP6283438B2 (ja) マイクロ波放射アンテナ、マイクロ波プラズマ源およびプラズマ処理装置
JP6700127B2 (ja) マイクロ波プラズマ処理装置
US20230343561A1 (en) Plasma processing apparatus and ceiling wall
JP2018101587A (ja) マイクロ波プラズマ処理装置及びマイクロ波導入機構
JP2009099975A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200424

R150 Certificate of patent or registration of utility model

Ref document number: 6697292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250