JP2017166930A - レーダ装置、観測方法およびプログラム - Google Patents

レーダ装置、観測方法およびプログラム Download PDF

Info

Publication number
JP2017166930A
JP2017166930A JP2016051589A JP2016051589A JP2017166930A JP 2017166930 A JP2017166930 A JP 2017166930A JP 2016051589 A JP2016051589 A JP 2016051589A JP 2016051589 A JP2016051589 A JP 2016051589A JP 2017166930 A JP2017166930 A JP 2017166930A
Authority
JP
Japan
Prior art keywords
observation target
oversampling
weather parameter
error
estimated value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016051589A
Other languages
English (en)
Inventor
朝海 青木
Tomomi Aoki
朝海 青木
一彰 川端
Kazuaki Kawabata
一彰 川端
宏一郎 五味
Koichiro Gomi
宏一郎 五味
滋 日浦
Shigeru Hiura
滋 日浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016051589A priority Critical patent/JP2017166930A/ja
Priority to US15/394,071 priority patent/US20170269206A1/en
Publication of JP2017166930A publication Critical patent/JP2017166930A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/581Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/582Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of interrupted pulse modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

【課題】オーバサンプリングにより生じる推定誤差を低減させる気象レーダ装置を提供する。【解決手段】本発明の一実施形態に係るレーダ装置は、受信信号をオーバサンプリングすることにより、サンプリング信号を取得するオーバサンプリング部と、前記サンプリング信号と、波形情報行列とに基づき、ウェイトベクトルを算出するウェイトベクトル算出部と、前記ウェイトベクトルと、前記波形情報行列とに基づき、観測標的の気象パラメータの推定値を算出する気象パラメータ算出部と、前記気象パラメータの推定値に含まれる推定誤差または前記推定誤差に基づく誤差影響度により、第1の観測標的を選択する誤差影響度算出部と、前記第1の観測標的が第2の観測標的の気象パラメータの推定値に与える推定誤差を、前記第2の観測標的の気象パラメータの推定値から減算する誤差低減部と、を備える。【選択図】図1

Description

本発明の実施形態は、レーダ装置、観測方法およびプログラムに関する。
急速かつ局所的に発生し、甚大な被害をもたらす雨雲などの気象現象を正確に観測または予測するためには、高分解能な気象レーダ装置が必要である。分解能は、基本的に、アンテナ径、パルス幅などにより定まる。ゆえに、分解能を向上させるために、例えば、気象レーダ装置のアンテナ径を拡大させて送信するビーム幅を狭めるといった対応、または、送信パルスのパルス幅を狭めるといった対応が行われている。しかし、これらの対応により、アンテナ機器の大型化、機器コストの増加、受信電力の低下といった問題が発生する。
このような問題に対し、信号処理の観点から、分解能を向上させる取り組みが行われている。例えば、通常のサンプリングよりも多くのサンプリングを行い、分解能を向上させるオーバサンプリングが行われる。
しかし、オーバサンプリングを行うと、所望の観測標的以外の観測標的からの信号が漏れ込む。これにより、サンプリング信号に基づき算出された推定値には推定誤差が含まれる。推定誤差は、逆行列演算などにより取り除くことができるが、オーバサンプリング数の増加に伴い、逆行列演算の演算量が増加する、または逆行列演算の結果が不安定になるという問題が生ずる。
米国特許第8736484号明細書
T.Yu, et. al.,"Resolution Enhancement Technique Using Range Oversampling," J.Atmos.Oceanic.Technol., vol.23, February 2006.
本発明の実施形態は、オーバサンプリングによる生じる推定誤差を低減させる気象レーダ装置を提供する。
本発明の一実施形態に係るレーダ装置は、受信信号をオーバサンプリングすることにより、サンプリング信号を取得するオーバサンプリング部と、前記サンプリング信号と、波形情報行列とに基づき、ウェイトベクトルを算出するウェイトベクトル算出部と、前記ウェイトベクトルと、前記波形情報行列とに基づき、観測標的の気象パラメータの推定値を算出する気象パラメータ算出部と、前記気象パラメータの推定値に含まれる推定誤差または前記推定誤差に基づく誤差影響度により、第1の観測標的を選択する誤差影響度算出部と、前記第1の観測標的が第2の観測標的の気象パラメータの推定値に与える推定誤差を、前記第2の観測標的の気象パラメータの推定値から減算する誤差低減部と、を備える。
第1の実施形態に係るレーダ装置の概略構成の一例を示すブロック図 時間的なオーバサンプリングを説明する図。 本実施形態の性能を説明する図。 本実施形態に係るレーダ装置の受信信号に対する処理のフローチャート。 第2の実施形態に係るレーダ装置の概略構成の一例を示すブロック図。 空間的なオーバサンプリングを説明する図。 本発明の一実施形態に係るレーダ装置を実現したハードウェア構成の一例を示すブロック図。
以下、図面を参照しながら、本発明の実施形態について説明する。
(第1の実施形態)
図1は、第1の実施形態に係るレーダ装置の概略構成の一例を示すブロック図である。本実施形態に係るレーダ装置1は、アンテナ装置101と、オーバサンプリング部102と、ウェイトベクトル算出部103と、気象パラメータ算出部104と、誤差影響度算出部105と、誤差低減部106とを備える。
第1の実施形態に係るレーダ装置1は、送信ビーム(送信信号)を観測標的に向けて放射し、観測標的により反射された電波(反射波)に基づいて標的を観測する。また、レーダ装置1は、反射波に含まれる受信信号に対しオーバサンプリングを行うことにより、レーダ装置1の分解能を高める。また、レーダ装置1は、オーバサンプリングにより発生する推定誤差を低減させる処理を行う。詳細は、内部構成とともに説明する。
なお、レーダ装置1から観測標的へ放射された送信ビームの方向をレンジ方向と称する。また、レンジ方向に対する水平方向をセル方向と称する。また、レンジ方向の分解能はレンジ分解能と、セル方向の分解能はセル分解能と称する。
以下、レーダ装置1の各部について説明する。
アンテナ装置101は、送信信号(送信パルス)を観測標的に向けて放射し、観測標的で反射された反射波を受信する。また、アンテナ装置101は、反射波から、観測標的の信号(受信信号)を抽出する。アンテナ装置101は、これらの処理を行うことができる公知のアンテナ装置101を用いればよい。
オーバサンプリング部102は、分解能を向上させるために、受信信号に対しオーバサンプリングを行う。本実施形態では、レンジ分解能を向上させるために、時間的なオーバサンプリングが行われることを想定する。時間的なオーバサンプリングでは、受信信号の基である送信信号のパルス幅よりも短い時間間隔にてサンプリングを行う。これにより、通常のサンプリングにて得られる信号よりも多くの信号を得ることになる。
図2は、時間的なオーバサンプリングを説明する図である。図2上側に示される矩形は観測標的201から206を示す。各観測標的はレンジ方向に分布していると想定する。
図2の波形は、サンプリングタイミング301から304を示す。サンプリングタイミング301から304は、パルス幅τの理想矩形波によるサンプリングタイミングである。オーバサンプリングを行わない場合は、パルス幅τの間隔にて信号がサンプリングされるため、サンプリングタイミングは、サンプリングタイミング301と304になる。
各サンプリングタイミングでは、レンジ方向においてcτ/2の幅(距離)からの信号が得られる。cは光速を示す。ここで、図2におけるcτ/2は、各観測標的の3倍の幅とする。図2に示すように、cτ/2の幅内に3つの観測標的が含まれる。すなわち、オーバサンプリングを行わない場合は、サンプリングタイミング301により、観測標的201から203までの信号を1まとめに取得し、サンプリングタイミング304により、観測標的204から206までの信号を1まとめに取得する。したがって、各観測標的の信号を区別することができない。すなわち、オーバサンプリングを行わない場合の分割能は、所望の分解能よりも3倍小さいと言える。
一方、オーバサンプリングを行う場合は、オーバサンプリング時間A1ごとにサンプリングが行われる。図2では、サンプリングタイミング301から304の全てがオーバサンプリングを行う場合のサンプリングタイミングである。図2では、cτ/2の幅内に3つの観測標的が含まれるため、オーバサンプリング時間A1をτ/3にすれば、各サンプリングタイミングによる距離のずれはcτ/6となる。ゆえに、サンプリングタイミング301、302、303にて取得した信号により、観測標的201、202、203からの各信号を区別することができる。このように、サンプリングタイミングを増やすことにより、各観測標的の信号を区別できるようにする。
なお、オーバサンプリング時間A1は、オーバサンプリング係数Lを用いて、A1=τ/Lと表される。オーバサンプリング係数Lは、所望の分解能とオーバサンプリングしない場合の分解能の比で表される。図2では、オーバサンプリング係数L=3となる。
オーバサンプリング部102は、オーバサンプリング係数Lまたはオーバサンプリング時間A1に基づき、オーバサンプリングを行う。オーバサンプリング係数Lまたはオーバサンプリング時間A1は、オーバサンプリング部102に予め定められていてもよいし、ユーザまたは他の装置から図示されていない入力装置などを介して、指定されてもよい。または、ユーザまたは他の装置から、レンジ方向の幅が指定され、オーバサンプリング部102が、指定されたレンジ方向の幅とパルス幅τに基づき、オーバサンプリング係数Lとオーバサンプリング時間A1を算出してもよい。パルス幅τは、オーバサンプリング部102に予め定められていてもよいし、アンテナ装置101から取得してもよい。
ただし、オーバサンプリングを行う場合には、オーバサンプリングを行わない場合と比較して、L倍の数の信号を得ることなる。
図2の例において、オーバサンプリングにより取得されたサンプリング信号と観測標的の信号との関係は、行列式を用いて、次式のように表される。
Figure 2017166930
式(1)のVは、サンプリング信号の行列式を示す。サンプリング信号Vの要素であるVからVは、それぞれサンプリングタイミング301から303により取得された信号を示す。
式(1)のSは、サンプリングタイミング301から303により取得される各観測標的の信号の行列式を示す。観測標的の信号Sの要素であるSからSは、それぞれ観測標的201から205の信号を示す。また、ここでは、観測標的の信号を気象パラメータと称する。
気象パラメータは、受信電力、ドップラー速度などが想定されるが、レーダにより観測することができるものであれば任意に定めてよい。例えば、二重偏波レーダを用いる場合には、偏波間の信号電力差または位相差などでもよい。
例えば、気象パラメータを受信電力とすると、観測標的内の雨量を算出することができる。また、気象パラメータをドップラー速度とすると、雲の移動速度および方向、つまり風速および方向を算出することができる。詳細は、気象パラメータ算出部104とともに後述する。
気象パラメータSに乗積されている行列は、波形情報行列Qと称する。波形情報行列Qの値は、各サンプリングタイミングにて取得される信号の範囲に基づき、導出される。各サンプリングタイミングにて取得される信号の範囲は、送信パルス波形とフィルタ係数にて定まる。例えば、図2のサンプリングタイミング301においては、観測標的201から203までの信号を取得する、つまり気象パラメータS1からS3までの合成信号を取得する。したがって、式(1)にて示すように、波形情報行列Qの1行目の値は、{11100}となる。このようにして、波形情報行列Qの各値が決定する。
ウェイトベクトル算出部103は、サンプリング信号Vと波形情報行列Qとに基づき、ウェイトベクトルΩを算出する。ウェイトベクトルΩは、気象パラメータを算出するために、サンプリング信号Vに乗積されるものである。
ウェイトベクトルΩの算出方法は、公知の計算手法を用いればよい。例えば、Capon法、フーリエ法、MMSE(Minimum mean square error)に基づく方法などがあるが、いずれを用いてもよい。例えば、Capon法を用いるとすると、ウェイトベクトルΩの要素である、j番目の観測標的に対するウェイトベクトルωは、次式で表される。
Figure 2017166930
Rはサンプリング信号Vの相関行列である。R−1はRの逆行列を意味する。qは波形情報行列Qのj列目のベクトルである。q はqの複素共役を表す。
気象パラメータ算出部104は、気象パラメータ推定式を用いて、ウェイトベクトルΩと波形情報行列Qに基づき、観測標的の気象パラメータの推定値を算出する。
一例として、気象パラメータを信号電力とした場合の、気象パラメータの推定値を算出する方法を説明する。なお、推定値を表す記号として^(ハット)を用いて説明する。また^(ハット)が付された記号をハット記号と称することとする。例えば、j番目の観測標的の信号電力の推定値は、ハットPと表わされる。ハットPは次の気象パラメータ推定式により算出することができる。
Figure 2017166930
はn番目の観測標的の真の信号電力(信号電力の真値)である。Ejnは、波形情報行列Qの共役転置Qと、j番目の観測標的のウェイトベクトルωとの積の2乗したもののn番目の要素である。Nはオーバサンプリングにより観測可能な観測標的の数であり、オーバサンプリング係数LによりN=2L−1と表される。
気象パラメータ算出部104は、Pに仮の真値を代入し、推定値を算出する。仮の真値は、所定の値でもよいし、サンプリング信号Vに基づいて算出してもよい。なお、後述するが、気象パラメータ算出部104は、誤差低減部106から渡された新たな気象パラメータの推定値を、上式のPに代入し、新たなハットPを得る。
また他の一例として、気象パラメータをドップラー速度とした場合の、気象パラメータの推定値を算出する方法を説明する。j番目の観測標的のドップラー速度の推定値をハットvとすると、ハットvは次の気象パラメータ推定式により算出することができる。
Figure 2017166930
λは送信パルスの波長、Tはパルス繰返し周期(PRI:Pulse repetition interval)、Rtjはサンプリング信号間の相関係数である。
式(4)のarg(Rtj)は、次式により計算できる。
Figure 2017166930
atanはtanの逆三角関数を示す。またφは、φ=−4πv/λにて表される。φの計算式内のvは、n番目の観測標的における風速を示す。
しかしながら、上記のようにして算出された気象パラメータの推定値には、各観測標的が他の観測標的から受ける影響が含まれる。
誤差影響度算出部105は、気象パラメータ算出部104が出力した気象パラメータに含まれる推定誤差を算出する。推定誤差とは、気象パラメータの真の値と推定値の差であり、他の観測標的からの影響に基づく誤差である。具体的には、誤差影響度算出部105は、気象パラメータの種類ごとに予め定められた推定誤差算出式を用いて、気象パラメータの推定値と、ウェイトベクトルと、波形情報行列に基づき、推定誤差を算出する。
例えば、気象パラメータが信号電力である場合は、誤差影響度算出部105は、次の推定誤差算出式より、信号電力の推定誤差を算出することができる。
Figure 2017166930
σpjは、j番目の観測標的が他の観測標的から受ける影響により、j番目の観測標的の信号電力の推定値ハットPに生じる推定誤差である。ハットPなど、その他のパラメータは、式(3)と同様である。
また、例えば、気象パラメータがドップラー速度である場合は、誤差影響度算出部105は、次の推定誤差算出式よりドップラー速度の推定誤差を算出することができる。
Figure 2017166930
σvjはj番目の観測標的が他の観測標的から受ける影響により、ドップラー速度の推定値に生じる推定誤差である。
これらのように、誤差影響度算出部105は、気象パラメータの種類に基づき、用いる推定誤差算出式を選択し、気象パラメータ算出部104が算出した気象パラメータの値を推定誤差算出式に代入する。これにより、推定誤差を算出することができる。
さらに、誤差影響度算出部105は、算出した各観測標的の推定誤差に基づく誤差影響度を算出する。誤差影響度は、誤差低減部106が推定誤差を軽減する際に、基準となる観測標的を選ぶ指針となる。誤差影響度の算出方法は、任意に定めてよい。例えば、推定誤差そのものでもよい。また、推定値の大きさの影響を受けにくくするために、推定誤差を当該観測標的の気象パラメータの推定値にて除算した値でもよい。
誤差影響度に基づき、1つの観測標的(第1観測標的)が選択される。観測標的を選択する条件は、任意に定めてよい。例えば、最終的な処理結果の正確性、処理の負荷などを考慮して定めればよい。例えば、誤差影響度が最も小さい観測標的を選択することが考えられる。
誤差低減部106は、選択された観測標的(第1観測標的)以外の観測標的(第2観測標的)の気象パラメータの推定値から、第1観測標的が第2観測標的に与える推定誤差を減算する。当該減算は、第1観測標的以外の観測標的それぞれに対し行われる。これにより、選択された観測標的が他の観測標的の気象パラメータの推定値に与える影響が軽減され、真値に近づくことを意味する。
なお、誤差低減部106は、選択された観測標的が他の観測標的に与える推定誤差を、誤差影響度算出部105から取得してもよいし、新たに算出してもよい。
誤差低減部106は、減算により算出した各観測標的の気象パラメータの推定値を、気象パラメータ算出部104に渡す。または、図示しない出力部を介して出力する。気象パラメータ算出部104は、渡された気象パラメータの推定値を仮の真値として、式(3)などの算出式に入力し、新たな気象パラメータの推定値を算出する。そして、再度、誤差影響度算出部105に新たな気象パラメータの推定値を渡す。これにより、新たな気象パラメータの推定値に基づいて、誤差影響度算出部105の処理と誤差低減部106の処理が再び行われる。なお、誤差影響度計算部105は、2回目以降の処理では、1度選択された観測標的以外の観測標的のうちから1つの観測標的を選択する。これらの処理が繰り返されることにより、各観測標的が及ぼす推定誤差が削減されていき、推定誤差の少ないデータを取得することができる。
図3は、本実施形態の性能を説明する図である。図3(A)は、観測標的の真の信号電力を示す。図3(B)は、オーバサンプリングを行わない場合の信号電力を示す。図3(C)は、オーバサンプリングのみを行う場合の信号電力を示す。図3(D)は、本実施形態により算出された推定値(信号電力)を示す。各図の横軸は最大距離で規格化した相対的なレンジ、縦軸は平均電力を示す。
なお、図3は、送信パルスは理想矩形波であり、受信信号は理想受信フィルタにて受信され、受信信号に乗積するウェイトベクトルはCapon法を用いて算出されたものとする。ウェイトベクトルを計算する際に利用される相関行列は、理想スナップショット数から算出したものとする。また、オーバサンプリング係数Lは10とする。
図3(A)には、レンジ0.4から0.6までの間に2つのピークが存在している。図3(B)に示すように、オーバサンプリングを行わない場合は、2つのピークを判別することはできない。図3(C)では、当該2つのピークを判別することはできるが、レンジ0.3付近に、図3(A)の真の信号電力には存在しないピークが存在する。このように、オーバサンプリングのみを行う場合は、図3(C)のレンジ0.3付近のような推定誤差が生じてしまう。一方、図3(D)においては、レンジ0.4から0.6までの間に2つのピークが存在し、レンジ0.3付近にピークは存在しない。したがって、第1の実施の形態は分解能が向上されており、かつ推定誤差による影響が低減されたデータを取得可能なことが分かる。
次に、本実施形態に係るレーダ装置の処理のフローについて説明する。図4は、本実施形態に係るレーダ装置の受信信号に対する処理のフローチャートである。本フローの開始のタイミングは、任意でよく、オーバサンプリング部102が受信信号を取得した際でもよいし、所定のタイミングで自動的に開始されてもよい。
オーバサンプリング部102が、取得した受信信号に対し、オーバサンプリングを実施する(S101)。オーバサンプリングに必要な情報、例えば、パルス幅τ、観測標的のレンジ幅、またはオーバサンプリング係数Lなどは、予め取得または算出されているものとする。オーバサンプリングにより取得されたサンプリング信号Vは、ウェイトベクトル算出部103に送られる。
ウェイトベクトル算出部103は、所定の算出式を用いて、送られたサンプリング信号Vと波形情報行列Qとに基づき、ウェイトベクトルΩを算出する(S102)。波形情報行列Qは、予めウェイトベクトル算出部103に定められていてもよいし、オーバサンプリング部102から取得してもよいし、ウェイトベクトル算出部103が算出してもよい。ウェイトベクトルΩとサンプリング信号Vと波形情報行列Qは、気象パラメータ算出部104に送られる。また、ウェイトベクトルΩと波形情報行列Qは、誤差影響度算出部105にも送られる。
気象パラメータ算出部104は、所定の算出式を用いて、送られたウェイトベクトルΩと波形情報行列Qとに基づき、所定の気象パラメータを算出する(S103)。気象パラメータの算出に必要なその他の情報は、予め気象パラメータ算出部104に定められていてもよいし、ウェイトベクトル算出部103またはオーバサンプリング部102から取得してもよい。例えば、推定値の初期値、送信パルスの波長λ、パルス繰返し周期T、相関係数Rtjなどがある。算出された気象パラメータの推定値は、誤差影響度算出部105に送られる。
誤差影響度算出部105は、所定の算出式を用いて、気象パラメータの推定値とウェイトベクトルΩと波形情報行列Qに基づき、推定誤差を算出する(S104)。推定誤差の算出に必要なその他の情報は、誤差影響度算出部105に予め定められていてもよいし、気象パラメータ算出部104または他の部から取得してもよい。
また、誤差影響度算出部105は、各観測標的の気象パラメータの推定誤差に基づき、各観測標的の気象パラメータの誤差影響度を算出する(S105)。そして、誤差影響度と所定の条件に基づき、基準となる観測標的を選択する(S106)。算出された推定誤差と選択された観測標的を識別する情報は、誤差低減部106に送られる。
誤差低減部106は、各観測標的の気象パラメータの各推定値に対し、選択された観測標的が各観測標的に与える各推定誤差を減算する(S107)。そして、誤差低減部106は、終了条件を確認し、終了条件を満たさない場合(S108のNO)は、更新された気象パラメータの推定値を気象パラメータ算出部104に送る。そして、S103からS107までの処理が繰り返される。終了条件を満たす場合(S106のYES)は、本フローは終了となる。なお、誤差低減部106は、図示しない出力部などを介して、更新された気象パラメータの推定値を出力してもよい。
繰り返し処理の終了条件は、S103からS107までの処理を繰り返した回数としてもよいし、推定誤差、気象パラメータの増減量などの値を条件としてもよい。
なお、本フローチャートは一例であり、更新された気象パラメータを算出できれば、これに限られるものではない。例えば、基準となる観測標的を選択するのは、誤差影響度算出部105ではなく、誤差低減部106が行ってもよい。また、例えば、終了条件を満たすかの判定は、誤差低減部106ではなく、気象パラメータ算出部104が行ってもよい。
以上のように、本実施形態によれば、時間的なオーバサンプリングを行うことにより、レンジ方向の分解能を高めつつ、推定値に含まれる推定誤差を減少させ、推定誤差の少ない気象パラメータを算出することができる。
(第2の実施形態)
第1の実施形態では、レンジ分解能を向上させるために、時間的なオーバサンプリングを行う。第2の実施形態では、空間方向の分解能すなわちセル分解能を向上させるために空間的なオーバサンプリングを行う。
図5は、第2の実施形態に係るレーダ装置の概略構成の一例を示すブロック図である。本実施形態に係るレーダ装置1は、アンテナ装置101がアレイアンテナ装置107であることと、デジタルビームフォーミング(DBF:Degital Beam Forming)部108をさらに備える点が第1の実施形態の送電装置1と異なる。第1の実施形態と同一の部分および処理については、説明を省略する。
アレイアンテナ装置107は、複数のアンテナ素子を備えたアンテナであり、ビームの送信と受信を行う。例えば、フェーズドアレイアンテナ装置107などである。
DBF部108は、アレイアンテナ装置107が受信した信号に対し、デジタルビームフォーミングを行う。デジタルビームフォーミングとは、アンテナ素子が受信した信号をデジタル処理することにより、複数のアンテナビームを形成することを意味する。これにより、送信されたビームのビーム幅よりも小さい複数のビーム(マルチビーム)を形成する。
オーバサンプリング部102は、デジタルビームフォーミングにより生成されたマルチビームに対し、空間的なオーバサンプリングを行う。
図6は、空間的なオーバサンプリングを説明する図である。図6は、縦軸がレンジ方向、横軸がセル方向を示し、観測標的を上から見た平面図である。図6に示されている矩形が、観測標的206から211である。各観測標的はセル方向に分布しているとする。また図6の点線にて示されている扇形の領域は、形成されたビーム401から405である。各ビームの角度はθとする。
DBF部108は、各ビームが重ならないようにマルチビームを形成する。図6の例では、ビーム401から403までが形成される。形成されたビームは、図6に示すように、観測標的2つ分ほどの幅があるとする。DBF部108のサンプリングによる分解能は、所望の分解能よりも2倍小さい。したがって、このままでは、観測標的を正確に観測することができない。
これに対し、オーバサンプリング部102は、各ビームの一部が重なる(オーバラップする)ようなビームを形成する。図6の例では、ビーム404と405がさらに形成される。これにより、オーバサンプリングを行わない場合よりも2倍の分解能を得ることができる。このように、空間的にオーバサンプリングを行うことにより、分解能を向上させる。
なお、各ビームをオーバラップさせる位置または量は、第1の実施形態と同様、オーバサンプリング係数Lにて設定される。レーダ装置1から観測標的までの距離をrとすると、ビームの角度(ビーム幅)はθのため、観測標的が存在する地点において、セル方向の分解能の幅Δは、Δ=θrで求められる。ゆえに、例えば図6のように、ユーザまたは他の装置から指定されたセル方向の幅が、セル方向の分解能の幅Δの半分である場合には、オーバサンプリング係数LはL=2と求められる。ゆえに、図6の場合では、ビーム404がビーム401と402の中間に位置し、ビーム405がビーム402と403の中間に位置する。
オーバサンプリング部102は、上記のようにオーバサンプリングを行うことにより、サンプリング信号を取得する。ウェイトベクトル算出部103は、第1の実施形態同様、ウェイトベクトルΩを算出するが、算出に用いられる波形情報行列Qは、送信パルスの波形ではなく、送信ビームの波形に基づく。送信ビームの波形は、アレイアンテナ装置107から取得してもよいし、予め定められておいてもよい。
その他の各部の処理および本実施形態のフローは、第1の実施形態と同様であるため省略する。第1の実施形態と同様に処理が行われるため、本実施形態により算出された推定値も、第1の形態と同様に、オーバサンプリングを行わない場合よりも高分解能で、推定誤差による影響が低減される。
以上のように、本実施形態によれば、空間的なオーバサンプリングを行うことにより、セル方向の分解能を高めつつ、推定値に含まれる推定誤差を減少させて、推定誤差の少ない気象パラメータを算出することができる。
なお、これまでに説明した実施形態は、ビームの送信と反射波の受信を行うレーダ装置を想定したが、これまでに説明した実施形態の受信信号を処理する各部、すなわちオーバサンプリング部102から誤差低減部106までを備えた受信信号処理装置としてもよい。受信信号処理装置では、外部装置がビームの送信と反射波の受信と受信信号の抽出を行い、受信信号処理装置は受信信号を受け付ける事を想定する。
また、上記に説明した実施形態における各処理は、ソフトウェア(プログラム)によって実現することが可能である。よって、上記に説明した実施形態におけるレーダ装置、送信処理装置、受信処理装置は、例えば、汎用のコンピュータ装置を基本ハードウェアとして用い、コンピュータ装置に搭載されたプロセッサにプログラムを実行させることにより実現することが可能である。
図7は、本発明の一実施形態におけるハードウェア構成の一例を示すブロック図である。レーダ装置1は、プロセッサ501、主記憶装置502、補助記憶装置503、ネットワークインタフェース504、デバイスインタフェース505、入力装置506、出力装置507を備え、これらがバス508を介して接続されたコンピュータ装置として実現できる。
プロセッサ501が、補助記憶装置503からプログラムを読み出して、主記憶装置502に展開して、実行することで、オーバサンプリング部102と、ウェイトベクトル算出部103と、気象パラメータ算出部104と、誤差影響度算出部105と、誤差低減部106と、DBF部108の機能を実現することができる。
プロセッサ501は、コンピュータの制御装置及び演算装置を含む電子回路である。プロセッサ501は、例えば、汎用目的プロセッサ、中央処理装置(CPU)、マイクロプロセッサ、デジタル信号プロセッサ(DSP)、コントローラ、マイクロコントローラ、状態マシン、特定用途向け集積回路、フィールドプログラマブルゲートアレイ(FPGA)、プログラム可能論理回路(PLD)、及びこれらの組合せを用いることができる。
本実施形態におけるレーダ装置1、送信処理装置2、受信処理装置3は、各装置で実行されるプログラムをコンピュータ装置に予めインストールすることで実現してもよいし、プログラムをCD−ROMなどの記憶媒体に記憶して、あるいはネットワークを介して配布して、コンピュータ装置に適宜インストールすることで実現してもよい。
主記憶装置502は、プロセッサ501が実行する命令、および各種データ等を一時的に記憶するメモリ装置であり、DRAM等の揮発性メモリでも、MRAM等の不揮発性メモリでもよい。補助記憶装置503は、プログラムやデータ等を永続的に記憶する記憶装置であり、例えば、フラッシュメモリ等がある。
ネットワークインタフェース504は、無線または有線により、通信ネットワークに接続するためのインタフェースである。ネットワークインタフェース504を介して、出力結果などを他の通信装置に送信してもよい。ここではネットワークインタフェース504を1つのみ示しているが、複数のネットワークインタフェース504が搭載されていてもよい。
デバイスインタフェース505は、出力結果などを記録する外部記憶媒体6と接続するUSBなどのインタフェースである。外部記憶媒体6は、HDD、CD−R、CD−RW、DVD−RAM、DVD−R、SAN(Storage area network)等の任意の記録媒体でよい。また、デバイスインタフェース505を介して、図示しない外部装置などと接続されていてもよい。
入力装置506は、コンピュータに情報を入力するための装置である。入力装置506は、例えば、キーボード、マウスなどがあるが、これに限られない。ユーザは、入力装置506を用いることにより、使用する窓関数などを入力することができる。
出力装置507は、出力結果を出力するための装置である。例えば、画像を表示するための表示装置でもよいし、音声などを出力する装置などでもよい。出力装置507は、例えば、LCD(液晶ディスプレイ)、CRT(ズマディスプレイ)、スピーカなどであるが、これらに限られない。出力信号生成部35の出力信号などは、出力装置507により確認することができる。
主記憶装置502は、プロセッサ501が実行する命令、および各種データ等を一時的に記憶するメモリ装置であり、DRAM等の揮発性メモリでも、MRAM等の不揮発性メモリでもよい。補助記憶装置503は、プログラムやデータ等を永続的に記憶する記憶装置であり、例えば、HDDまたはSSD等がある。
また、レーダ装置1の信号を処理する各部は、プロセッサ501などを実装している半導体集積回路などの専用のハードウェアにて構成されてもよい。
上記に、本発明の一実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 レーダ装置1
101 アンテナ装置
102 オーバサンプリング部
103 ウェイトベクトル算出部
104 気象パラメータ算出部
105 誤差影響度算出部
106 誤差低減部
107 アレイアンテナ装置
108 デジタルビームフォーミング(DBF)部
201、202、203、204、205 レンジ方向の観測標的
206、207、208、209、210、211 セル方向の観測標的
301、302、303 送信パルス
401、402、403、404、405 形成されたビーム
5 コンピュータ装置
501 プロセッサ
502 主記憶装置
503 補助記憶装置
504 ネットワークインタフェース
505 デバイスインタフェース
506 入力装置
507 出力装置
508 バス
6 外部記憶媒体

Claims (10)

  1. 受信信号をオーバサンプリングすることにより、サンプリング信号を取得するオーバサンプリング部と、
    前記サンプリング信号と、波形情報行列とに基づき、ウェイトベクトルを算出するウェイトベクトル算出部と、
    前記ウェイトベクトルと、前記波形情報行列とに基づき、観測標的の気象パラメータの推定値を算出する気象パラメータ算出部と、
    前記気象パラメータの推定値に含まれる推定誤差または前記推定誤差に基づく誤差影響度により、第1の観測標的を選択する誤差影響度算出部と、
    前記第1の観測標的が第2の観測標的の気象パラメータの推定値に与える推定誤差を、前記第2の観測標的の気象パラメータの推定値から減算する誤差低減部と、
    を備えるレーダ装置。
  2. 前記オーバサンプリング部は、前記受信信号の基である送信信号のパルス幅よりも短いサンプリング時間にてサンプリングを行うという時間的なオーバサンプリングを行う
    請求項1に記載のレーダ装置。
  3. 前記オーバサンプリング部は、前記送信信号のパルス幅と、オーバサンプリング係数または指定されたレンジ方向の幅とに基づき、前記サンプリング時間を決定する
    請求項2に記載のレーダ装置。
  4. 複数のアンテナ素子を有するアレイアンテナ装置と、
    前記アレイアンテナ装置の複数のアンテナ素子が受信した信号に対し、デジタルビームフォーミングを行うデジタルビームフォーミング部と、
    をさらに備え、
    前記オーバサンプリング部は、前記デジタルビームフォーミング部が形成したビームと一部が重なるようなビームを形成することにより、空間的なオーバサンプリングを行う
    請求項1に記載のレーダ装置。
  5. 前記オーバサンプリング部は、前記観測標的までのレンジ方向の距離と、前記デジタルビームフォーミング部が形成したビームのビーム幅と、オーバサンプリング係数または指定されたセル方向の幅とに基づき、形成するビームの位置を決定する
    請求項4に記載のレーダ装置。
  6. 前記第1の観測標的は、前記推定誤差または前記誤差影響度が最も小さい観測標的である
    請求項1ないし5のいずれか一項に記載のレーダ装置。
  7. 前記ウェイトベクトル算出部は、Capon法、フーリエ法、MMSE(Minimum mean square error)法に基づき、前記ウェイトベクトルを算出する
    請求項1ないし6のいずれか一項に記載のレーダ装置。
  8. 前記気象パラメータは、信号電力またはドップラー速度を示すものである
    請求項1ないし7のいずれか一項に記載のレーダ装置。
  9. 受信信号をオーバサンプリングすることにより、サンプリング信号を取得するオーバサンプリングステップと、
    前記サンプリング信号と、波形情報行列とに基づき、ウェイトベクトルを算出するウェイトベクトル算出ステップと、
    前記ウェイトベクトルと、前記波形情報行列とに基づき、観測標的の気象パラメータの推定値を算出する気象パラメータ算出ステップと、
    前記気象パラメータの推定値に含まれる推定誤差または前記推定誤差に基づく誤差影響度により、第1の観測標的を選択する誤差影響度算出ステップと、
    前記第1の観測標的が第2の観測標的の気象パラメータの推定値に与える推定誤差を、前記第2の観測標的の気象パラメータの推定値から減算する誤差低減ステップと、
    をコンピュータが実行する観測方法。
  10. 受信信号をオーバサンプリングすることにより、サンプリング信号を取得するオーバサンプリングステップと、
    前記サンプリング信号と、波形情報行列とに基づき、ウェイトベクトルを算出するウェイトベクトル算出ステップと、
    前記ウェイトベクトルと、前記波形情報行列とに基づき、観測標的の気象パラメータの推定値を算出する気象パラメータ算出ステップと、
    前記気象パラメータの推定値に含まれる推定誤差または前記推定誤差に基づく誤差影響度により、第1の観測標的を選択する誤差影響度算出ステップと、
    前記第1の観測標的が第2の観測標的の気象パラメータの推定値に与える推定誤差を、前記第2の観測標的の気象パラメータの推定値から減算する誤差低減ステップと、
    をコンピュータに実行させるためのプログラム。
JP2016051589A 2016-03-15 2016-03-15 レーダ装置、観測方法およびプログラム Pending JP2017166930A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016051589A JP2017166930A (ja) 2016-03-15 2016-03-15 レーダ装置、観測方法およびプログラム
US15/394,071 US20170269206A1 (en) 2016-03-15 2016-12-29 Radar apparatus, observing method and non-transitory computer readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016051589A JP2017166930A (ja) 2016-03-15 2016-03-15 レーダ装置、観測方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2017166930A true JP2017166930A (ja) 2017-09-21

Family

ID=59847016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016051589A Pending JP2017166930A (ja) 2016-03-15 2016-03-15 レーダ装置、観測方法およびプログラム

Country Status (2)

Country Link
US (1) US20170269206A1 (ja)
JP (1) JP2017166930A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019180821A1 (ja) * 2018-03-20 2020-06-18 三菱電機株式会社 レーダ信号処理装置
JP2021527823A (ja) * 2018-06-21 2021-10-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh レーダ信号を評価するための方法および装置
JP2021527814A (ja) * 2018-06-21 2021-10-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh レーダ信号の評価のための装置および方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10447504B1 (en) * 2018-05-16 2019-10-15 Orta Dogu Tekník Üníversítesí Quantized detection in uplink MIMO with oversampling
CN112379342B (zh) * 2020-11-02 2023-04-11 上海无线电设备研究所 一种星载测云雷达回波模拟及回波特征参数精度估算方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502625A (ja) * 2002-10-02 2006-01-19 インターディジタル テクノロジー コーポレイション デジタルタイミング調整のための最適補間器方法および装置
JP2008021119A (ja) * 2006-07-13 2008-01-31 Neuro Solution Corp デジタルフィルタおよびこれを用いた画像処理装置
US20120038504A1 (en) * 2010-08-11 2012-02-16 Lockheed Martin Corporation Enhanced-resolution phased array radar
JP2012220267A (ja) * 2011-04-06 2012-11-12 Toshiba Corp レーダ装置及び受信データ処理方法
JP2014103486A (ja) * 2012-11-19 2014-06-05 Ricoh Co Ltd 画像処理装置、画像処理方法、プログラムおよび記録媒体
JP2014192586A (ja) * 2013-03-26 2014-10-06 Nippon Hoso Kyokai <Nhk> 画像処理装置、画像処理方法及び画像処理プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071096A2 (en) * 2001-03-02 2002-09-12 Massachusetts Institute Of Technology High-definition imaging apparatus and method
US7881671B2 (en) * 2006-04-18 2011-02-01 Wisconsin Alumni Research Foundation Method and system for retrieving information from wireless sensor nodes
US8362948B2 (en) * 2010-08-13 2013-01-29 Trex Enterprises Corp Long range millimeter wave surface imaging radar system
US9829568B2 (en) * 2013-11-22 2017-11-28 VertoCOMM, Inc. Radar using hermetic transforms
US10624612B2 (en) * 2014-06-05 2020-04-21 Chikayoshi Sumi Beamforming method, measurement and imaging instruments, and communication instruments

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502625A (ja) * 2002-10-02 2006-01-19 インターディジタル テクノロジー コーポレイション デジタルタイミング調整のための最適補間器方法および装置
JP2008021119A (ja) * 2006-07-13 2008-01-31 Neuro Solution Corp デジタルフィルタおよびこれを用いた画像処理装置
US20120038504A1 (en) * 2010-08-11 2012-02-16 Lockheed Martin Corporation Enhanced-resolution phased array radar
JP2012220267A (ja) * 2011-04-06 2012-11-12 Toshiba Corp レーダ装置及び受信データ処理方法
JP2014103486A (ja) * 2012-11-19 2014-06-05 Ricoh Co Ltd 画像処理装置、画像処理方法、プログラムおよび記録媒体
JP2014192586A (ja) * 2013-03-26 2014-10-06 Nippon Hoso Kyokai <Nhk> 画像処理装置、画像処理方法及び画像処理プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIAN-YOU YU: "Resolution Enhancement Technique Using Range Oversampling", JOUNAL OF ATOMOSPHERIC AND OCEANIC TECHNOLOGY, vol. Vol.23, JPN7019000656, 1 February 2006 (2006-02-01), US, pages 228-240 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019180821A1 (ja) * 2018-03-20 2020-06-18 三菱電機株式会社 レーダ信号処理装置
JP2021527823A (ja) * 2018-06-21 2021-10-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh レーダ信号を評価するための方法および装置
JP2021527814A (ja) * 2018-06-21 2021-10-14 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh レーダ信号の評価のための装置および方法
JP7221310B2 (ja) 2018-06-21 2023-02-13 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング レーダ信号を評価するための方法および装置
JP7221309B2 (ja) 2018-06-21 2023-02-13 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング レーダ信号の評価のための装置および方法
US11598843B2 (en) 2018-06-21 2023-03-07 Robert Bosch Gmbh Apparatus and method for analyzing radar signals
US11835641B2 (en) 2018-06-21 2023-12-05 Robert Bosch Gmbh Method and device for evaluating radar signals

Also Published As

Publication number Publication date
US20170269206A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP2017166930A (ja) レーダ装置、観測方法およびプログラム
US10042046B2 (en) System and method for radar imaging using distributed arrays and compressive sensing
JP6911861B2 (ja) 物体検知装置および物体検知方法
JP5686920B1 (ja) アレイアンテナビーム幅内の量子化多重・狭ビーム形成方法、アレイアンテナビーム幅内の量子化多重・狭ビーム形成装置およびレーダシステム
EP3367120B1 (en) Data processing method and the measurement device
US9482753B2 (en) Split row-column addressing method for three-dimensional ultrasound imaging
JP2012132687A (ja) 物標探知方法、物標探知プログラム、物標探知装置、およびレーダ装置
CN109375227B (zh) 一种解卷积波束形成三维声成像方法
CN110865346A (zh) 一种基于直接定位算法的星载sar时间参数标定方法
JP6678554B2 (ja) アンテナ測定装置
CN105334435A (zh) 一种基于任意阵形的自适应局部放电超声监测方法
JP5664869B2 (ja) 測定装置、測定システム、測定方法、及びプログラム
JP6246338B2 (ja) 測角装置及び測角方法
KR102099388B1 (ko) 안테나 어레이 외삽을 이용한 레이더 수신신호의 도착방향 추정 방법 및 장치
Xin et al. A multiarray refocusing approach for through-the-wall imaging
JP2011047936A5 (ja)
JP2011047936A (ja) 実ビームのレーダ画像のクロスレンジ向上のための方法
JP6147617B2 (ja) レーダ装置及びその信号処理方法
CN105181805A (zh) 一种基于时反music的多滤波超声成像方法
CN111007510B (zh) 合成孔径雷达成像算法的性能检测方法及装置
JP2009000361A (ja) 超音波診断装置及び超音波画像生成方法
JP6088165B2 (ja) 探知装置、探知方法及び探知プログラム
JP6829801B2 (ja) 超音波アレイセンサシステム
JP6939981B2 (ja) 物体検知装置、及び物体検知方法
JP6415392B2 (ja) 信号処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903