JP2017166026A - Manufacturing method of high cleanliness steel - Google Patents

Manufacturing method of high cleanliness steel Download PDF

Info

Publication number
JP2017166026A
JP2017166026A JP2016052428A JP2016052428A JP2017166026A JP 2017166026 A JP2017166026 A JP 2017166026A JP 2016052428 A JP2016052428 A JP 2016052428A JP 2016052428 A JP2016052428 A JP 2016052428A JP 2017166026 A JP2017166026 A JP 2017166026A
Authority
JP
Japan
Prior art keywords
molten steel
slag
steel
inclusions
tundish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016052428A
Other languages
Japanese (ja)
Other versions
JP6593233B2 (en
Inventor
健一郎 宮本
Kenichiro Miyamoto
健一郎 宮本
卓巳 五所
Takumi Gosho
卓巳 五所
秀司 鈴木
Hideji Suzuki
秀司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59912783&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2017166026(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016052428A priority Critical patent/JP6593233B2/en
Publication of JP2017166026A publication Critical patent/JP2017166026A/en
Application granted granted Critical
Publication of JP6593233B2 publication Critical patent/JP6593233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a high cleanliness steel capable of reducing the number of alumina inclusions compared to conventional ones, especially reducing the number of alumina inclusions having particle diameter of 20 μm or less.SOLUTION: There is provided a method for continuously casting a molten steel by pouring the same to a tundish 10 after manufacturing the molten steel by primarily purifying, tapping and ladle treating, a slag is modification treated by inputting caustic lime during tapping and adding metal Al and/or flux containing the same to make total of Fe concentration and MnO concentration at 5 mass% or less and molten presence oxygen concentration of the molten steel at 100 to 300 ppm, then conducting a deoxidation treatment by adding the metal Al and stirring for 3 to 10 min, standing the molten steel for 10 min or more and tapping to the tundish 10 having a weir 16 separating a heat retaining part 13 retaining the molten steel and a heat discharging part 15 inputting the molten steel to a mold 14 for continuously casting inside and height at 0.3 to 0.8 times of molten steel depth H.SELECTED DRAWING: Figure 1

Description

本発明は、高清浄鋼の製造方法に係り、更に詳細には、Al脱酸による高清浄鋼の製造方法に関する。   The present invention relates to a method for producing high-clean steel, and more particularly to a method for producing high-clean steel by Al deoxidation.

転炉等で大気圧下で吹酸脱炭して製造した一次精錬終了後の溶鋼は、鋼中の溶存酸素濃度が高いため、脱酸処理が施された後に鋳造され、製品としての特性を得ている。
脱酸には、酸素と結合して酸化物を生成する元素の添加が一般に行われており、Al(アルミニウム)の他、Si(珪素)、C(炭素)、Ti(チタン)、Ca(カルシウム)、Zr(ジルコニウム)、REM(希土類金属)等を、脱酸材として用いることが知られている。
このうち、脱酸材として用いるAlは、安価で、かつ、強い脱酸効果があり、これを用いて製造した鋼材は、飲料缶の用途を含めて使用実績があるため、汎用性が高い。
The molten steel after the primary refining manufactured by blowing acid decarburization at atmospheric pressure in a converter etc. has a high dissolved oxygen concentration in the steel, so it is cast after deoxidation treatment and has the characteristics as a product. It has gained.
In deoxidation, an element that forms an oxide by combining with oxygen is generally added. In addition to Al (aluminum), Si (silicon), C (carbon), Ti (titanium), and Ca (calcium). ), Zr (zirconium), REM (rare earth metal) and the like are known to be used as deoxidizers.
Among these, Al used as a deoxidizing material is inexpensive and has a strong deoxidizing effect, and a steel material produced using this has a high versatility because it has a track record of use including beverage cans.

しかし、Alによる脱酸反応後に生成するアルミナ(Al)は、凝固後の鋼材(連続鋳造して得た鋳片)中に介在物として残存し、製品品質を損なう原因となる場合がある。例えば、飲料缶の素材として用いる際の製缶加工時の割れの原因となるため、品質の向上を図る上で、アルミナ介在物の悪影響を排除する必要がある。
更に、溶鋼中にアルミナが多量に存在すると、鋳造時において、浸漬ノズル内面へのアルミナの付着や凝集が促進され、鋳型(モールド)内での偏流発生やノズル閉塞が生じることに起因して、湯面の変動量が大きくなり、モールドパウダーの混入(パウダー系介在物)による品質劣化の原因となる。
なお、脱酸材としてAl以外の金属を用いた場合でも、生成した金属酸化物(介在物)は製品品質を損なう可能性があり、この点ではAlと同様である。
However, the alumina (Al 2 O 3 ) produced after the deoxidation reaction with Al remains as inclusions in the steel material after solidification (slab obtained by continuous casting), which may cause a deterioration in product quality. is there. For example, it causes cracking during can-making when used as a material for beverage cans, and therefore it is necessary to eliminate the adverse effects of alumina inclusions in order to improve quality.
Furthermore, when a large amount of alumina is present in the molten steel, during casting, adhesion and aggregation of alumina to the inner surface of the immersion nozzle is promoted, resulting in occurrence of drift in the mold (mold) and nozzle clogging. The amount of fluctuation of the molten metal surface becomes large, which causes quality deterioration due to mixing of mold powder (powder inclusions).
Even when a metal other than Al is used as the deoxidizer, the generated metal oxide (inclusions) may impair the product quality, and this is the same as Al.

そこで、以下の方法が提案されている。
例えば、特許文献1には、スラグ改質後にガス吹込み用ランスにより、不活性ガスと共にCaO(生石灰)とAlからなる粒状フラックスを吹付け、溶鋼中に浮遊しているスラグ系介在物と合体させ、更に取鍋底部よりArガス(アルゴンガス)を吹込み、スラグとの接触を避けながら不活性ガス下で脱酸を行うことにより、溶鋼中の介在物の浮上を促進して低減させる方法が開示されている。
詳細には、転炉内にCaOを投入し、スラグを固化させて取鍋へ出鋼し、取鍋上スラグに均一にAlを散布して、スラグ中の酸化鉄濃度を3質量%以下に改質する。更に、脱酸材として金属Alを添加し、生成する介在物の改質剤としてCaOを活用し、溶鋼の撹拌により介在物を浮上させる。
Therefore, the following method has been proposed.
For example, Patent Document 1 discloses a slag-based intervening floating in molten steel by spraying granular flux composed of CaO (quick lime) and Al 2 O 3 together with an inert gas by a gas blowing lance after slag reforming. Incorporation of the material, and further blowing Ar gas (argon gas) from the bottom of the ladle and deoxidizing under inert gas while avoiding contact with the slag, promotes the rise of inclusions in the molten steel A method of reducing is disclosed.
Specifically, CaO is put into the converter, the slag is solidified and steel is discharged to the ladle, and Al is uniformly sprayed on the slag on the ladle, so that the iron oxide concentration in the slag is 3 mass% or less. Reform. Furthermore, metal Al is added as a deoxidizer, CaO is utilized as a modifier for the inclusions to be generated, and inclusions are floated by stirring the molten steel.

また、特許文献2には、生成したアルミナ介在物のスラグへの吸着除去を促進するために、出鋼後から鋳造開始までの間の取鍋スラグの酸素ポテンシャルを低く抑えて、スラグによる溶鋼の再酸化を防止すると共に、スラグの成分組成をAl吸収能に優れたものに調整する技術が開示されている。
詳細には、精錬炉からの出鋼時に、出鋼流に向けて所定量のCaOを投入し、次いで出鋼後の取鍋スラグにスラグ改質剤として、金属Alを単体又は金属Alを含むフラックスの形態で添加する。更に、RH脱ガス設備で脱ガス処理を実施し、脱ガス処理中及び/又は脱ガス処理後に、CaO又はAlを取鍋内スラグに添加し、スラグの(wt%CaO)/(wt%Al)の値を0.4〜0.7の範囲内、SiO濃度を2〜15wt%の範囲内に調整し、かつ、T.Fe濃度を3.0wt%以下に維持することにより、スラグ中の酸素による再酸化を防止する。
In addition, in Patent Document 2, in order to promote the adsorption removal of the generated alumina inclusions to the slag, the oxygen potential of the ladle slag from after the steel output to the start of casting is suppressed to a low level, A technique for preventing reoxidation and adjusting the component composition of slag to one having excellent Al 2 O 3 absorption capacity is disclosed.
Specifically, at the time of steel output from the refining furnace, a predetermined amount of CaO is introduced toward the steel output flow, and then the ladle slag after steel output contains single metal or metal Al as a slag modifier. Add in the form of flux. Further, degassing treatment is carried out in the RH degassing equipment, and during and / or after the degassing treatment, CaO or Al 2 O 3 is added to the slag in the pan, and (wt% CaO) / ( wt% Al 2 O 3 ) within the range of 0.4 to 0.7, SiO 2 concentration within the range of 2 to 15 wt%, and T.W. By maintaining the Fe concentration at 3.0 wt% or less, reoxidation due to oxygen in the slag is prevented.

そして、特許文献3には、真空脱ガス装置を使用した溶鋼の脱炭処理、及び、これに続く脱酸処理において、脱炭に必要な溶存酸素を適正に保持すると同時に、Alの形成を抑制する方法が開示されている。
詳細には、出鋼時にスラグ改質剤を添加してスラグ中の低級酸化物の濃度を調整し、溶鋼環流式の脱ガス装置を用いて脱炭処理した後、Al脱酸処理の前及び/又は後で、スラグ改質剤を添加する。
Then, Patent Document 3, decarburization of the molten steel using a vacuum degassing apparatus, and, in the deacidification subsequent thereto, at the same time properly to hold the dissolved oxygen necessary for decarburization, the Al 2 O 3 A method of inhibiting formation is disclosed.
Specifically, the slag modifier is added at the time of steel output to adjust the concentration of the lower oxide in the slag, and after decarburization using a molten steel recirculation type degassing apparatus, before the Al deoxidation treatment and At a later time, a slag modifier is added.

特開平7−300612号公報Japanese Patent Laid-Open No. 7-300612 特開平11−21614号公報Japanese Patent Laid-Open No. 11-21614 特開平10−298629号公報JP-A-10-298629

しかしながら、本発明者らの知見では、前記従来の技術ではいずれも、粒径が大きなアルミナ介在物(例えば、70μm以上)を減少させる効果は望めるものの、粒径が小さなアルミナ介在物(5〜50μm程度)を減少させる効果が少ないことを明らかにした。   However, according to the knowledge of the present inventors, all of the conventional techniques can reduce the effect of reducing alumina inclusions having a large particle size (for example, 70 μm or more), but alumina inclusions having a small particle size (5 to 50 μm). It was clarified that there was little effect to reduce the degree).

本発明はかかる事情に鑑みてなされたもので、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減可能な高清浄鋼の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a method for producing highly clean steel that can reduce the number of alumina inclusions compared to the prior art, and in particular, can reduce the number of alumina inclusions having a particle size of 20 μm or less. The purpose is to do.

前記目的に沿う本発明に係る高清浄鋼の製造方法は、大気圧下で吹酸脱炭する一次精錬を行った溶鋼を、少なくとも出鋼工程と合金添加を含む取鍋処理工程で順次処理して溶製した後、連続鋳造工程でタンディッシュに注湯して連続鋳造する高清浄鋼の製造方法において、
前記出鋼工程での溶鋼の出鋼の際に、溶鋼及びスラグのいずれか一方又は双方に生石灰を投入すると共に、金属アルミニウム及び金属アルミニウムを含むフラックスのいずれか一方又は双方を添加して、スラグを改質処理し、スラグのT.Fe濃度とMnO濃度の合計を5質量%以下、かつ、溶鋼の溶存酸素濃度を100ppm以上300ppm以下の範囲とした後、
前記取鍋処理工程で溶鋼に金属アルミニウムを更に添加し、該溶鋼を3分以上10分以下撹拌処理して脱酸処理し、該脱酸処理から前記連続鋳造工程で連続鋳造を開始するまでに10分以上静置して、
前記連続鋳造工程では、溶鋼を受け入れる受湯部と、該溶鋼を連続鋳造する鋳型に注入する排湯部とに仕切る堰が内部に設けられ、該堰の高さを溶鋼深さの0.3倍以上0.8倍以下とした前記タンディッシュに、前記脱酸処理後に静置した溶鋼を注湯する。
The method for producing a high clean steel according to the present invention that meets the above-mentioned object is to sequentially process molten steel that has undergone primary refining that is blown acid decarburized at atmospheric pressure in a ladle treatment process that includes at least a steelmaking process and alloy addition. In the manufacturing method of high clean steel, after pouring into a tundish in the continuous casting process and continuously casting,
At the time of discharging the molten steel in the steel extraction step, lime is added to one or both of the molten steel and slag, and either one or both of the flux containing metal aluminum and metal aluminum is added to form slag. Is reformed, and the slag T.I. After making the total of Fe concentration and MnO concentration 5 mass% or less, and making dissolved oxygen concentration of molten steel into the range of 100 ppm or more and 300 ppm or less,
In the ladle treatment step, metallic aluminum is further added to the molten steel, the molten steel is stirred for 3 minutes to 10 minutes and deoxidized, and from the deoxidation treatment to the start of continuous casting in the continuous casting step. Let stand for more than 10 minutes,
In the continuous casting process, a weir for partitioning into a hot water receiving part for receiving molten steel and a hot water discharging part for pouring the molten steel into a mold for continuously casting the molten steel is provided inside, and the height of the weir is set to 0.3 of the molten steel depth. The molten steel that has been allowed to stand after the deoxidation treatment is poured into the tundish that has been doubled to 0.8 times.

ここで、上記した出鋼工程での溶鋼の出鋼の際に生石灰等(生石灰と、金属アルミニウム及び/又はこれを含むフラックス)を添加するとは、溶鋼の出鋼時あるいは出鋼後に、生石灰等を添加することを意味する。例えば、溶鋼の出鋼時とは、溶鋼の出鋼中に生石灰等を添加することを意味し、溶鋼の出鋼後とは、予め生石灰等を入れた取鍋に溶鋼を出鋼する場合や、取鍋内への溶鋼の出鋼後に速やかに(出鋼直後)生石灰等を添加する場合を意味する。
また、生石灰等の添加は、出鋼の状況等に応じ、溶鋼及びスラグの一方又は双方に対して行われる。
そして、生石灰と金属アルミニウムやこれを含むフラックス(以下、金属Al等ともいう)の添加は、同時に行ってもよく、また、別々に行ってもよい。この生石灰と金属Al等の添加方法は、操業状況によって種々変更できるが、例えば、出鋼時と出鋼後のいずれか一方のみで、生石灰と金属Al等の双方を添加してもよく、また、出鋼時に、生石灰と金属Al等の双方を添加し、更に出鋼後に、生石灰と金属Al等のいずれか一方のみを添加することもできる。
Here, adding quick lime or the like (quick lime and metallic aluminum and / or a flux containing the same) at the time of steel discharge of the molten steel in the steel output process described above means that quick lime or the like is applied during or after the steel discharge of the molten steel. Is added. For example, when the molten steel is discharged, it means adding quick lime etc. during the molten steel, and after the molten steel is discharged, when the molten steel is discharged into a ladle containing quick lime, etc. It means the case where quick lime or the like is added immediately after the molten steel is poured into the ladle.
Moreover, addition of quicklime etc. is performed with respect to one or both of molten steel and slag according to the condition etc. of steel output.
And addition of quicklime, metal aluminum, and the flux (henceforth metal Al etc.) containing this may be performed simultaneously, and may be performed separately. The method of adding quick lime and metal Al can be variously changed depending on the operation status.For example, both quick lime and metal Al etc. may be added only at the time of steel output or after steel output. In addition, both quick lime and metal Al can be added at the time of steel output, and only one of quick lime and metal Al can be added after the steel output.

本発明に係る高清浄鋼の製造方法は、一次精錬終了直後の、スラグのT.Fe濃度及びMnO濃度と溶鋼の溶存酸素濃度が高い状態において、出鋼の際に、生石灰を投入すると共に、金属Al等を添加して、スラグを改質処理するので、この処理の際に生成したアルミナ系介在物を低融点のカルシウムアルミネートとして浮上除去できる。更に、スラグの改質処理により、スラグのT.Fe濃度とMnO濃度の合計を5質量%以下、かつ、溶鋼の溶存酸素濃度を100〜300ppm以下に低下させた状態で、溶鋼に更に金属アルミニウムを添加するので、アルミナ介在物の生成を抑制できる。
このとき、溶鋼には小さなアルミナ介在物が生成するが、その生成量が抑制されているため、この溶鋼を所定時間撹拌処理することで、生成した小さなアルミナ介在物を凝集させ合体させる(凝集合体)効果を促進できるものと考えられる。また、撹拌処理(脱酸処理)後の溶鋼を所定時間静置することで、粒径が大きなアルミナ介在物の浮上除去を促進でき、粒径が小さなアルミナ介在物の凝集合体の促進に伴う個数減少を促進できるものと考えられる。
そして、この溶鋼を、受湯部と排湯部とに仕切る所定高さの堰が設けられたタンディッシュに注湯して連続鋳造するので、このタンディッシュにおいて、凝集合体させたアルミナ介在物の浮上除去効果が得られる。
従って、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減できる。
The method for producing high-clean steel according to the present invention is based on the slag T.S. In the state where the Fe concentration and MnO concentration and the dissolved oxygen concentration of the molten steel are high, quick lime is added at the time of steel output and metal slag is added to reform the slag. The alumina inclusions can be levitated and removed as a low melting point calcium aluminate. Further, by the slag reforming treatment, the slag T.I. In the state where the total of Fe concentration and MnO concentration is 5 mass% or less and the dissolved oxygen concentration of molten steel is reduced to 100 to 300 ppm or less, metallic aluminum is further added to the molten steel, so the formation of alumina inclusions can be suppressed. .
At this time, although small alumina inclusions are generated in the molten steel, the amount of generation is suppressed, and thus the molten steel is agitated for a predetermined time to agglomerate and coalesce the generated small alumina inclusions (aggregation coalescence). ) It is thought that the effect can be promoted. In addition, by allowing the molten steel after stirring treatment (deoxidation treatment) to stand for a predetermined time, the floating removal of alumina inclusions with a large particle size can be promoted, and the number associated with the promotion of agglomeration and coalescence of alumina inclusions with a small particle size It is thought that the decrease can be promoted.
And, since this molten steel is poured continuously into a tundish provided with a weir with a predetermined height for partitioning into a hot water receiving part and a hot water discharging part, in this tundish, the aggregated and coalesced alumina inclusions A floating removal effect is obtained.
Therefore, the number of alumina inclusions can be reduced as compared with the conventional case, and in particular, the number of alumina inclusions having a particle size of 20 μm or less can be reduced.

本発明の一実施の形態に係る高清浄鋼の製造方法を適用するタンディッシュの説明図である。It is explanatory drawing of the tundish which applies the manufacturing method of the highly clean steel which concerns on one embodiment of this invention. 同タンディッシュの堰の正面図である。It is a front view of the weir of the same tundish. 取鍋での静置後における溶鋼中のアルミナ介在物の粒径頻度分布を示すグラフである。It is a graph which shows the particle size frequency distribution of the alumina inclusion in molten steel after standing in a ladle. 連続鋳造した鋳片中のアルミナ介在物の粒径個数分布を示すグラフである。It is a graph which shows the particle size number distribution of the alumina inclusion in the slab cast continuously.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の高清浄鋼の製造方法に想到した経緯について説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the background of the high clean steel manufacturing method of the present invention will be described.

(1)アルミナ介在物の生成に関する知見
アルミナ介在物(以下、単に介在物ともいう)は、スラグ中のFeO、MnOや、溶鋼の溶存酸素などと、脱酸材であるAlとが反応することで生成する。
このため、転炉からの出鋼時(及び/又は出鋼後)のスラグ(及び/又は溶鋼)に、金属アルミニウム等を含むフラックス(スラグ改質剤)を添加するスラグ改質処理(一次脱酸処理又は一次脱酸ともいう)を行い、その後に行う脱酸処理(以下、最終脱酸ともいう)前にスラグのFeOやMnOの濃度を低下させる、即ちスラグの酸化度を下げることは、Alの生成量を抑制するために有効である。
(1) Knowledge about the formation of alumina inclusions The alumina inclusions (hereinafter, also simply referred to as inclusions) react with FeO, MnO in slag, dissolved oxygen in molten steel, and Al, which is a deoxidizer. Generate with
For this reason, a slag reforming process (primary removal) in which a flux (slag modifier) containing metallic aluminum or the like is added to slag (and / or molten steel) at the time of (and / or after) the steel from the converter. Reducing the concentration of FeO or MnO in the slag before the subsequent deoxidation treatment (hereinafter also referred to as final deoxidation), that is, reducing the oxidation degree of the slag, This is effective for suppressing the amount of Al 2 O 3 produced.

従って、スラグ改質後の溶鋼の再酸化を回避するため、スラグ酸化度としては、「(質量%T.Fe)+(質量%MnO)」を5質量%以下とする。なお、(質量%T.Fe)と(質量%MnO)はそれぞれ、スラグ中のFe濃度とMnO濃度であり、この(質量%T.Fe)は、スラグ中の全ての酸化鉄(例えば、FeOやFe)をFeに換算したFe濃度を示している。
しかしながら、上記したスラグ改質を実施しても、溶鋼中に溶存酸素(フリー酸素)が残存するため、Alの生成を完全に抑制することは不可能である。なお、生成当初のアルミナ介在物は、その粒径が小さく(20μm以下)、時間の経過によらずそのまま溶鋼内に残留する場合と、生成した介在物が時間経過と共に緩やかに凝集する場合とがある。
Therefore, in order to avoid re-oxidation of the molten steel after slag reforming, “(mass% T. Fe) + (mass% MnO)” is set to 5 mass% or less as the degree of slag oxidation. In addition, (mass% T.Fe) and (mass% MnO) are respectively the Fe concentration and MnO density | concentration in slag, and this (mass% T.Fe) is all the iron oxides (for example, FeO in slag). And Fe 2 O 3 ) converted to Fe.
However, even if the above-described slag reforming is performed, dissolved oxygen (free oxygen) remains in the molten steel, and thus it is impossible to completely suppress the production of Al 2 O 3 . The alumina inclusions at the beginning of production have a small particle size (20 μm or less), and remain in the molten steel as they are regardless of the passage of time, and when the produced inclusions aggregate gradually over time. is there.

転炉吹錬等の一次精錬直後では、一般に溶鋼の溶存酸素濃度(以下、溶鋼中溶存酸素濃度ともいう)が600〜900ppm程度と高く、この状態で金属アルミニウムの添加による脱酸処理を行うと、極めて多量の微細なアルミナが生成することとなる。この生成した微細なアルミナの一部は、前記したように、時間経過と共に凝集合体して粗大化し、浮上除去されるものもあるが、鋳造までの限られた時間内に、全ての介在物、特に20μm以下クラスの介在物を、完全に浮上除去させることは事実上不可能である。
一方、前記した最終脱酸時のアルミナ生成量は、脱酸対象となる溶鋼中溶存酸素濃度と金属アルミニウムの添加量に支配される。即ち、最終脱酸前の溶鋼中溶存酸素濃度を低下させた上で、金属アルミニウムの添加量を低減し、溶鋼中溶存酸素以外(スラグ中のFeOやMnO)の酸素によるアルミニウム酸化(スラグなど)を抑制することが、極めて重要である。
Immediately after primary refining such as converter blowing, the dissolved oxygen concentration of molten steel (hereinafter also referred to as dissolved oxygen concentration in molten steel) is as high as about 600 to 900 ppm, and in this state, deoxidation treatment by adding metallic aluminum is performed. An extremely large amount of fine alumina is produced. As described above, some of the fine alumina thus produced is aggregated and coalesced with the passage of time to become coarse and lifted and removed, but within a limited time until casting, all inclusions, In particular, it is practically impossible to completely lift and remove inclusions of a class of 20 μm or less.
On the other hand, the amount of alumina produced during the final deoxidation is governed by the dissolved oxygen concentration in the molten steel to be deoxidized and the amount of metal aluminum added. That is, after reducing the dissolved oxygen concentration in the molten steel before final deoxidation, the amount of metal aluminum added is reduced, and aluminum oxidation (such as slag) by oxygen other than dissolved oxygen in the molten steel (FeO and MnO in the slag) It is extremely important to suppress this.

以上のことから、一次精錬終了直後のスラグ酸化度と溶鋼中溶存酸素濃度が高い状態(スラグ酸化度:15質量%以上、溶鋼中溶存酸素濃度:600〜900ppm)において、出鋼の際(出鋼時あるいは出鋼後)に、溶鋼及び/又はスラグに生石灰を投入すると共に、金属Al及び/又は金属Alを含むフラックスを添加するスラグ改質処理を行い、当該処理時に生成したアルミナ系介在物を低融点のカルシウムアルミネート(CaO−Al)として浮上除去させる。更に、スラグ改質実施後の溶鋼中溶存酸素濃度を低下させた状態(100〜300ppm)で、金属アルミニウムによる最終脱酸を行うことで、溶鋼中に残存するアルミナの量を低減させることができる。
上記したように、スラグ改質実施後の溶鋼中溶存酸素濃度を300ppm以下とすることで、金属アルミニウムによる最終脱酸までの時間帯で、微小介在物が生成することを抑制でき、本発明の課題解決に有効である。
From the above, in the state where the slag oxidation degree immediately after the end of primary refining and the dissolved oxygen concentration in molten steel are high (slag oxidation degree: 15 mass% or more, dissolved oxygen concentration in molten steel: 600 to 900 ppm) Alumina inclusions produced during the treatment by adding lime to molten steel and / or slag and adding metal Al and / or flux containing metal Al during or after steelmaking Is floated and removed as a low melting point calcium aluminate (CaO—Al 2 O 3 ). Furthermore, the amount of alumina remaining in the molten steel can be reduced by performing final deoxidation with metallic aluminum in a state where the dissolved oxygen concentration in the molten steel after the slag reforming is reduced (100 to 300 ppm). .
As described above, by setting the dissolved oxygen concentration in the molten steel after the slag reforming to 300 ppm or less, it is possible to suppress the formation of fine inclusions in the time zone until the final deoxidation with metallic aluminum, Effective for solving problems.

上記したAl系介在物の浮上除去は、最終的にはスラグに吸着(吸収)されることとなるが、スラグ改質剤として金属Alや金属Alを含むフラックスを添加すると、アルミニウムによるスラグ中低級酸化物(FeO、MnO)の還元反応が起こり、スラグ中のAl成分の活量が高くなる。また、スラグ中のAl活量が高いと、スラグへのAlの吸収能が下がるため、浮上したAl粒子がスラグ内に吸着されず、溶鋼中に再懸濁する可能性が高くなる。
これを防止するために、上記した改質処理時にスラグ改質剤としての生石灰を投入し、スラグ中のAl成分の活量を下げることで、スラグへのAlの吸収能を確保することができるため、生石灰の添加は有効である。なお、介在物が微小になるほど(例えば、20μm以下)、溶鋼への再度の混入が発生する可能性が高くなることから、生石灰の添加は、本発明のように微小な介在物の低減を課題とする発明にとって有効である。
The above-described levitation removal of the Al 2 O 3 inclusions will eventually be adsorbed (absorbed) by the slag, but if a flux containing metal Al or metal Al is added as a slag modifier, it will be caused by aluminum. A reduction reaction of lower oxides (FeO, MnO) in the slag occurs, and the activity of the Al 2 O 3 component in the slag increases. In addition, when the Al 2 O 3 activity in the slag is high, the ability to absorb Al 2 O 3 into the slag decreases, so that the floating Al 2 O 3 particles are not adsorbed in the slag and resuspended in the molten steel. Is more likely to do.
In order to prevent this, by adding quick lime as a slag modifier during the above-described reforming treatment and reducing the activity of the Al 2 O 3 component in the slag, the ability to absorb Al 2 O 3 in the slag Therefore, the addition of quicklime is effective. In addition, since the possibility of re-mixing into the molten steel increases as the inclusions become minute (for example, 20 μm or less), the addition of quick lime has a problem of reducing minute inclusions as in the present invention. This is effective for the invention.

(2)溶鋼の撹拌処理に関する知見
取鍋を用いた溶鋼の撹拌処理は、一般に取鍋底部よりArガスを溶鋼中に吹込み、ガス気泡の浮上効果を用いることで行われ、取鍋内の溶鋼の成分や温度の均一化、また、介在物の浮上除去に用いられている。
本発明者らは、溶鋼の撹拌処理を行うに際し、アルミナの生成量(最終脱酸直後の介在物の存在状況)によって撹拌の寄与形態が異なることを、数々の実験等から知見した。その状況は、以下の通りである。
(2) Knowledge about stirring process of molten steel The stirring process of molten steel using a ladle is generally performed by blowing Ar gas into the molten steel from the bottom of the ladle and using the floating effect of gas bubbles. It is used to equalize the composition and temperature of molten steel, and to remove inclusions.
The present inventors have found from a number of experiments and the like that when the molten steel is stirred, the contribution form of stirring varies depending on the amount of alumina produced (the presence of inclusions immediately after the final deoxidation). The situation is as follows.

溶鋼中のアルミナ介在物が比較的多い場合(スラグ改質を行うことなく脱酸処理を施した場合)、撹拌処理による介在物個数の絶対値改善効果は小さい。
この場合、取鍋でのガス撹拌によるエネルギーは、その大半が既生成の粗大介在物の浮上運動に費やされるため、微小介在物の顕著な個数減少効果が小さい。また、微細な(20μm以下の)アルミナ介在物の個数が多いため、撹拌を行わずとも粒子同士の衝突頻度が高くなり、生成したアルミナ介在物は時間の経過と共に凝集合体による浮上が進む。しかし、取鍋での金属アルミニウムの添加により生成するアルミナ介在物の個数が多過ぎるため、粒径が増加していない介在物は、依然として溶鋼中に残存する。
このように、アルミナ介在物が比較的多い場合、撹拌による介在物除去の効果が不明瞭であると共に、所定の撹拌処理を行っても凝集合体しきれない微細な介在物の除去が困難であるため、撹拌処理の有無による介在物の粒度分布の大幅な変化が認められない。
When the amount of alumina inclusions in the molten steel is relatively large (when deoxidation treatment is performed without performing slag reforming), the effect of improving the absolute value of the number of inclusions by the stirring treatment is small.
In this case, most of the energy generated by gas stirring in the ladle is spent on the floating movement of the coarse inclusions that have already been generated, so the effect of significantly reducing the number of minute inclusions is small. Moreover, since the number of fine alumina inclusions (20 μm or less) is large, the collision frequency between the particles increases without stirring, and the generated alumina inclusions rise by aggregation and coalescence over time. However, since the number of alumina inclusions produced by the addition of metallic aluminum in the ladle is too large, inclusions whose particle size has not increased still remain in the molten steel.
Thus, when there are relatively many alumina inclusions, the effect of inclusion removal by stirring is unclear, and it is difficult to remove fine inclusions that cannot be aggregated and coalesced even if a predetermined stirring treatment is performed. Therefore, no significant change in the particle size distribution of inclusions due to the presence or absence of the stirring treatment is observed.

一方、溶鋼中のアルミナ介在物が比較的少ない場合(スラグ改質を実施し、スラグ酸化度と溶鋼の溶存酸素濃度を所定量以下に低減した場合)、取鍋での金属アルミニウムの添加によりアルミナ介在物が生成しても、溶鋼中溶存酸素濃度を低減しているため、溶鋼中のアルミナ介在物量の増加には限界があり、撹拌処理による微細な介在物粒子の衝突頻度が増加するため、介在物の粒径分布はやや増加する(粒径が大きくなる)。
この場合、撹拌処理により、粒径が5〜20μmクラスの微小介在物の個数が減少し、30〜50μmクラスの介在物の個数が増加することを知見した。
これは、スラグ改質実施後の溶鋼に金属アルミニウムを添加し、この金属アルミニウムの添加直後にガス撹拌を施すことで、生成した、個数が少ない微細なアルミナ介在物のガス気泡による捕捉効果と、撹拌(流動)による介在物粒子の衝突に伴う凝集合体の効果が得られたことに起因するものと考えられる。
On the other hand, when there are relatively few alumina inclusions in the molten steel (when slag reforming is performed and the slag oxidation degree and the dissolved oxygen concentration of the molten steel are reduced below a predetermined amount), the addition of metallic aluminum in the ladle Even if inclusions are generated, the dissolved oxygen concentration in the molten steel is reduced, so there is a limit to the increase in the amount of alumina inclusions in the molten steel, and the frequency of collision of fine inclusion particles due to stirring treatment increases, The particle size distribution of inclusions slightly increases (the particle size increases).
In this case, it was found that the number of fine inclusions having a particle size of 5 to 20 μm decreased and the number of inclusions of 30 to 50 μm class increased by stirring treatment.
This is by adding metal aluminum to the molten steel after slag reforming, and by performing gas stirring immediately after the addition of this metal aluminum, the effect of trapping the generated small alumina inclusions by gas bubbles, This is considered to be due to the effect of agglomeration and coalescence accompanying the collision of inclusion particles by stirring (flow).

従って、スラグ改質によりスラグ酸化度と溶鋼の溶存酸素濃度を低減させた状態で、更に金属アルミニウムを添加することと、その直後に撹拌処理を所定時間行うことが重要である。   Therefore, it is important to further add metallic aluminum and to carry out the stirring treatment for a predetermined time immediately after the slag oxidation degree and the dissolved oxygen concentration of the molten steel are reduced by slag reforming.

(3)溶鋼の静置に関する知見
上記した撹拌処理によって凝集合体による浮上効果を更に高めるためには、撹拌処理(最終脱酸)後の静置が有効である。
凝集合体による粗大化により、介在物自体の浮力は大きくなるが、撹拌処理時はバブリングによる上昇流の形成と共に、それに相当する下降流も生じているため、撹拌処理のみでは介在物の浮上除去に不十分な場合がある。このため、撹拌処理後から連続鋳造開始までの間に10分以上、好ましくは30分以上の静置時間をとることで、介在物の浮上除去を著しく促進できる。
この浮上除去の促進は、特に粒径が70μm以上の介在物に有効である。なお、粒径が5〜50μm程度の介在物では、顕著な浮上除去効果は認められにくいが、凝集合体の促進効果は認められ、5〜20μmの介在物の個数減少には効果がある。
ここで、静置とは、例えば、溶鋼へガス吹込みや合金材投入を行うことなく、取鍋内の溶鋼に何らかの処理を施さない状態を指す。なお、取鍋へ保温材を投入することは、溶鋼の処理ではないため、静置中に保温材を投入しても差し支えない。
(3) Findings regarding the standing of molten steel In order to further enhance the floating effect by agglomeration by the above-described stirring treatment, the standing after the stirring treatment (final deoxidation) is effective.
Increasing the buoyancy of inclusions due to coarsening due to agglomeration and coalescence, but during the stirring process, an upward flow is formed by bubbling, and a corresponding downward flow also occurs. It may be insufficient. For this reason, the floating removal of inclusions can be remarkably accelerated by taking a standing time of 10 minutes or more, preferably 30 minutes or more after the stirring treatment until the start of continuous casting.
This promotion of floating removal is particularly effective for inclusions having a particle size of 70 μm or more. In addition, with inclusions having a particle size of about 5 to 50 μm, a remarkable floating removal effect is hardly recognized, but an effect of promoting aggregation and coalescence is recognized and effective in reducing the number of inclusions having a particle size of 5 to 20 μm.
Here, standing refers to a state in which some treatment is not performed on the molten steel in the ladle, for example, without blowing gas into the molten steel or charging the alloy material. In addition, since it is not a process of molten steel to introduce | transduce a heat insulating material into a ladle, even if it inserts a heat insulating material, it does not interfere.

(4)タンディッシュに関する知見
連続鋳造においては、連続鋳造速度に対応する量で溶鋼がタンディッシュに注湯されるため(例えば、8トン/分以下程度の量)、タンディッシュ内での溶鋼の流動速度が、取鍋のガス撹拌における溶鋼の撹拌流速よりも小さく、介在物の凝集合体の効果が望みにくい。
しかし、タンディッシュの内部に堰(下堰)を立設し、タンディッシュ内の溶鋼に上昇流を発生させると、タンディッシュ内の湯面に存在するスラグの撹拌効果を抑制した状態で、30〜50μm程度の粒子径を有する溶鋼中の介在物を浮上させ、これをスラグに捕捉させる効果が期待できる。
(4) Knowledge about tundish In continuous casting, molten steel is poured into the tundish in an amount corresponding to the continuous casting speed (for example, an amount of about 8 tons / min or less). The flow rate is smaller than the stirring flow rate of the molten steel in the gas stirring of the ladle, and it is difficult to expect the effect of inclusion aggregation.
However, when a weir (lower weir) is erected inside the tundish and an upward flow is generated in the molten steel in the tundish, the stirring effect of the slag present on the molten metal surface in the tundish is suppressed, It can be expected that the inclusions in the molten steel having a particle diameter of about 50 μm are levitated and captured by the slag.

従って、タンディッシュの内部に、受湯部と排湯部を分割(独立して配置)する堰を立設する必要がある。   Therefore, it is necessary to erect a weir that divides (independently arranges) the hot water receiving portion and the hot water discharging portion inside the tundish.

以上の知見に基づき、本発明者らは、スラグ改質と最終脱酸の各処理を施した溶鋼を静置する精錬の効果を、タンディッシュの効果で補完する、高清浄鋼の製造方法に想到した。具体的には、精錬の効果、即ち、粒径5〜20μmクラスの微小介在物の個数減少に伴う、粒径30〜50μmクラスの介在物の個数増加と、粒径70μm以上の介在物の浮上除去の促進を、タンディッシュの効果、即ち、粒径が30〜50μm程度の介在物の浮上除去の促進で、補完することにより、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数が低減可能となる。
以下、図1、図2を参照しながら、詳しく説明する。
本発明の一実施の形態に係る高清浄鋼の製造方法は、大気圧下で吹酸脱炭する一次精錬を行った(転炉で処理した)溶鋼を、少なくとも出鋼工程と合金添加を含む取鍋処理工程で順次処理して溶製した後、連続鋳造工程でタンディッシュ10に注湯して連続鋳造する方法である。
Based on the above findings, the present inventors have developed a highly clean steel production method that complements the effect of refining by leaving the molten steel subjected to slag reforming and final deoxidation treatment by the effect of tundish. I came up with it. Specifically, the effect of refining, that is, the increase in the number of inclusions with a particle size of 30-50 μm accompanying the decrease in the number of fine inclusions with a particle size of 5-20 μm, and the rise of inclusions with a particle size of 70 μm or more By supplementing the promotion of removal with the effect of tundish, that is, the promotion of floating removal of inclusions having a particle size of about 30 to 50 μm, the number of alumina inclusions can be reduced as compared with the conventional case. The number of alumina inclusions of 20 μm or less class can be reduced.
Hereinafter, it will be described in detail with reference to FIGS.
A method for producing a high clean steel according to an embodiment of the present invention includes at least a steelmaking step and an alloy addition for a molten steel subjected to primary refining (treated in a converter) by blowing acid decarburization under atmospheric pressure. This is a method of performing continuous casting by pouring the tundish 10 in a continuous casting process after sequentially processing and melting in the ladle processing process.

まず、一次精錬を行った溶鋼を、出鋼工程で、取鍋へ供給する。
転炉吹錬等の一次精錬終了直後の転炉内のスラグ酸化度と溶鋼の溶存酸素濃度は、高い状態(スラグ酸化度:15質量%以上、溶鋼中溶存酸素濃度:600〜900ppm)である。
そこで、出鋼工程において、スラグ改質処理を行う。
具体的には、転炉内の溶鋼を取鍋に出鋼する際(出鋼時あるいは出鋼後)に、溶鋼及びスラグのいずれか一方又は双方に生石灰を投入すると共に、金属アルミニウム(単体)及び金属アルミニウムを含むフラックスのいずれか一方又は双方を添加する。
First, molten steel that has undergone primary refining is supplied to the ladle in the steelmaking process.
The slag oxidation degree and the dissolved oxygen concentration in the molten steel immediately after the end of the primary refining such as converter blowing are in a high state (slag oxidation degree: 15 mass% or more, dissolved oxygen concentration in molten steel: 600 to 900 ppm). .
Therefore, a slag reforming process is performed in the steel output process.
Specifically, when putting molten steel in the converter into a ladle (at the time of or after steelmaking), quick lime is added to one or both of the molten steel and slag, and metallic aluminum (single unit) And either one or both of fluxes containing metallic aluminum.

これにより、スラグのT.Fe濃度とMnO濃度の合計を5質量%以下、かつ、溶鋼中の溶存酸素濃度を100ppm以上300ppm以下の範囲とする。
なお、スラグのT.Fe濃度とMnO濃度の合計は、前記した知見から5質量%以下(好ましくは3質量%以下、更に好ましくは2質量%以下)であればよく、その下限値については特に規定していないが、現実的には、例えば、0.5質量%程度である。
As a result, the T.O. The total of the Fe concentration and the MnO concentration is 5% by mass or less, and the dissolved oxygen concentration in the molten steel is in the range of 100 ppm to 300 ppm.
In addition, T. of slag. The total of the Fe concentration and the MnO concentration may be 5% by mass or less (preferably 3% by mass or less, more preferably 2% by mass or less) based on the above findings, and the lower limit value is not particularly defined. Actually, it is about 0.5 mass%, for example.

そして、取鍋処理工程において、溶鋼の溶存酸素濃度とスラグ酸化度を低下させた状態(溶鋼中溶存酸素濃度:100〜300ppm、スラグ酸化度:5質量%以下)で、取鍋内の溶鋼に、更に金属アルミニウムを添加する。
なお、溶鋼への金属アルミニウムの添加量は、アルミナ生成量の減少につなげるため少なくすることが好ましく、溶鋼中の溶存酸素量に応じて、例えば、溶鋼1トンあたり0.1〜2.4kg程度添加するのがよい。
この取鍋処理工程では、溶鋼の成分調整(最終成分)を考慮して、金属アルミニウムの添加と合金材の添加が行われる。
And in the ladle treatment process, the dissolved oxygen concentration and the slag oxidation degree of the molten steel are reduced (the dissolved oxygen concentration in the molten steel: 100 to 300 ppm, the slag oxidation degree: 5 mass% or less). Further, metallic aluminum is added.
In addition, it is preferable to reduce the amount of metallic aluminum added to the molten steel to reduce the amount of alumina produced. Depending on the amount of dissolved oxygen in the molten steel, for example, about 0.1 to 2.4 kg per ton of molten steel It is good to add.
In this ladle treatment process, the addition of metal aluminum and the addition of alloy material are performed in consideration of the component adjustment (final component) of the molten steel.

上記した金属アルミニウムが添加された溶鋼を3分以上10分以下(好ましくは、下限を4分、上限を8分)の範囲で撹拌処理して最終脱酸を行う。
なお、溶鋼の撹拌処理には、取鍋の底部からAr(アルゴン)などの不活性ガスを吹込むガス撹拌(バブリング)を使用できる。
ここで、撹拌処理の時間(撹拌時間)が3分未満の場合、前記した撹拌の作用効果が顕著に得られない。一方、撹拌時間が10分超の場合、溶鋼の温度低下が大きくなり、新たなアルミナ介在物粒子が生成し易くなる。これは、溶鋼の温度低下に伴い、「2Al+3→Al」の反応の溶解度積が低下することに起因する。
これにより、溶鋼中に生成した小さなアルミナ介在物の凝集合体の効果を促進できる。
The molten steel to which the above-described metallic aluminum is added is stirred for 3 minutes to 10 minutes (preferably, the lower limit is 4 minutes, and the upper limit is 8 minutes) to perform final deoxidation.
In addition, the gas stirring (bubbling) which blows inert gas, such as Ar (argon), from the bottom part of a ladle can be used for the stirring process of molten steel.
Here, when the time (stirring time) of the stirring treatment is less than 3 minutes, the above-described action and effect of stirring cannot be remarkably obtained. On the other hand, when the stirring time exceeds 10 minutes, the temperature drop of the molten steel becomes large, and new alumina inclusion particles are easily generated. This is because the solubility product of the reaction of “2 Al +3 O → Al 2 O 3 ” decreases as the temperature of the molten steel decreases.
Thereby, the effect of the aggregation coalescence of the small alumina inclusion produced | generated in molten steel can be accelerated | stimulated.

以上のように、溶鋼中溶存酸素濃度とスラグ酸化度を低下させた状態の溶鋼に、更に金属アルミニウムを添加して最終脱酸を行うことで、溶鋼中に残存するアルミナの量を低減させることができる。
なお、上記した最終脱酸、即ち金属アルミニウムの添加や撹拌処理は、例えば、簡易取鍋精錬設備(CAS)を用いて大気圧下で行われ、真空脱ガス設備(RH)を用いた真空下で行うものではない。このため、製造コストの低減が図れる。
As described above, the amount of alumina remaining in the molten steel is reduced by further adding metal aluminum to the molten steel in a state in which the dissolved oxygen concentration and slag oxidation degree in the molten steel are reduced, and performing final deoxidation. Can do.
The final deoxidation, that is, the addition of metal aluminum and the stirring process are performed under atmospheric pressure using, for example, a simple ladle refining equipment (CAS) and under vacuum using a vacuum degassing equipment (RH). Is not something you do. For this reason, the manufacturing cost can be reduced.

次に、脱酸処理の終了から連続鋳造工程で連続鋳造を開始するまでに、溶鋼を取鍋に入れた状態で、10分以上(好ましくは30分以上)静置する。
なお、溶鋼の静置時間は、前記した知見から10分以上(好ましくは30分以上)であればよく、その上限値については特に規定していないが、静置時間が長くなるに伴い、溶鋼の温度低下が大きくなり、新たなアルミナ介在物粒子が生成し易くなることから、現実的には、例えば、60分程度である。
これにより、上記した撹拌処理の凝集合体による浮上効果を更に高めることができる。
Next, it is allowed to stand for 10 minutes or more (preferably 30 minutes or more) in a state where the molten steel is put in a ladle from the end of the deoxidation treatment to the start of continuous casting in the continuous casting step.
In addition, the standing time of molten steel should just be 10 minutes or more (preferably 30 minutes or more) from the above-mentioned knowledge, and although it does not prescribe | regulate especially the upper limit, as stationary time becomes long, molten steel In practice, for example, it takes about 60 minutes.
Thereby, the floating effect by the above-mentioned agglomeration coalescence of the stirring treatment can be further enhanced.

続いて、金属アルミニウムの添加後に撹拌処理し静置した溶鋼を、溶鋼鍋(上記した取鍋)11から、ロングノズル12を介してタンディッシュ10に注湯する(図1参照)。
タンディッシュ10には、その内部を、溶鋼鍋11からロングノズル12を介して溶鋼を受け入れる受湯部13と、溶鋼を連続鋳造する鋳型14に注入する排湯部15とに仕切る堰(下堰)16が設けられている。なお、排湯部15の底部には浸漬ノズル17が設けられ、排湯部15内の溶鋼を浸漬ノズル17を介して鋳型14に注入している。
堰16は、タンディッシュ10の底面18から浴面(湯面)に向かうように立設されたものであり、その高さを、溶鋼深さ(浴深)H(m)の0.3倍(0.3×H)以上0.8倍(0.8×H)以下にしたものである。なお、溶鋼深さH(m)とは、堰16を配置した部分のタンディッシュ10の底面18から浴面までの距離を意味する。
Subsequently, the molten steel that has been agitated and allowed to stand after the addition of metal aluminum is poured from the molten steel pan (the ladle described above) 11 into the tundish 10 via the long nozzle 12 (see FIG. 1).
The tundish 10 has a weir (lower weir) that divides the interior into a hot water receiving portion 13 that receives molten steel from a molten steel pan 11 through a long nozzle 12 and a hot water discharging portion 15 that is poured into a mold 14 for continuously casting molten steel. ) 16 is provided. An immersion nozzle 17 is provided at the bottom of the hot water discharge section 15, and molten steel in the hot water discharge section 15 is poured into the mold 14 through the immersion nozzle 17.
The weir 16 is erected so as to go from the bottom surface 18 of the tundish 10 to the bath surface (bath surface), and its height is 0.3 times the molten steel depth (bath depth) H (m). (0.3 × H) or more and 0.8 times (0.8 × H) or less. The molten steel depth H (m) means the distance from the bottom surface 18 of the tundish 10 where the weir 16 is disposed to the bath surface.

前記したように、タンディッシュ内で溶鋼の上昇流を有効に作用させるには、堰の高さを、溶鋼深さの0.3倍以上にする必要がある。一方、堰の高さが溶鋼深さの0.8倍を超える場合、上昇流がタンディッシュ内の湯面スラグを撹拌する可能性があり好ましくない。
従って、堰16の高さを、溶鋼深さH(m)の0.3倍(好ましくは、0.4倍)以上0.8倍(好ましくは、0.7倍)以下にした。
なお、堰は、タンディッシュ内の溶鋼の流れ方向に、間隔を有して複数設置することもできる。この場合、溶鋼の流れ方向に隣り合う堰の間に、溶鋼に下降流を形成するための上堰を設置して、溶鋼の流れを側面視して上下方向にジグザグ状にし、タンディッシュ内での溶鋼の滞留時間を長くすることもできる。
As described above, the height of the weir needs to be 0.3 times or more the depth of the molten steel in order for the upward flow of the molten steel to act effectively in the tundish. On the other hand, when the height of the weir exceeds 0.8 times the depth of the molten steel, the upward flow may undesirably stir the hot water surface slag in the tundish.
Therefore, the height of the weir 16 is set to 0.3 times (preferably 0.4 times) or more and 0.8 times (preferably 0.7 times) or less of the molten steel depth H (m).
A plurality of weirs can be installed at intervals in the flow direction of the molten steel in the tundish. In this case, an upper weir is installed between the weirs adjacent in the flow direction of the molten steel to form a downward flow in the molten steel, and the flow of the molten steel is zigzag in the vertical direction as viewed from the side, It is possible to increase the residence time of the molten steel.

また、堰16の底部近傍には、使用後のタンディッシュ10内の残湯の排出を容易にするため、一般に貫通孔19を設けている(図2参照)。この貫通孔19の形状は、正面視して四角形であり、浴面の幅をWとすると、高さ方向の内幅W1が1/5×W、幅方向の内幅W2が1/5×Wである。なお、貫通孔の構成は、残湯の排出を容易にできる構成であれば、特に限定されるものではなく、例えば、高さ方向の内幅W1を1/5×W以下の範囲で、また、幅方向の内幅W2を1/5×W以下の範囲で、それぞれ調整できる。
この貫通孔19は、堰16に2個(1個又は複数個でもよい)形成されているが、この程度の貫通孔19であれば、前記した溶鋼に上昇流を発生させる作用効果は得られる。また、上記した貫通孔と開口面積が同等か、それ以下の貫通孔であれば、タンディッシュ内の溶鋼に上昇流を発生させることが可能であり、本発明の作用効果は得られるものと考えられる。
In addition, a through hole 19 is generally provided near the bottom of the weir 16 in order to facilitate the discharge of the remaining hot water in the used tundish 10 (see FIG. 2). The shape of the through hole 19 is a quadrangle when viewed from the front. When the width of the bath surface is W, the inner width W1 in the height direction is 1/5 × W and the inner width W2 in the width direction is 1/5 ×. W. The configuration of the through hole is not particularly limited as long as the remaining hot water can be easily discharged. For example, the inner width W1 in the height direction is within a range of 1/5 × W or less. The inner width W2 in the width direction can be adjusted within a range of 1/5 × W or less.
The through-holes 19 are formed in the weir 16 in two pieces (one or a plurality of through-holes 19). However, if the through-holes 19 are of this level, the effect of generating an upward flow in the molten steel can be obtained. . Further, if the above-described through-hole has an opening area equal to or less than that, it is possible to generate an upward flow in the molten steel in the tundish, and the effect of the present invention can be obtained. It is done.

これにより、タンディッシュ10内の溶鋼に上昇流を発生させ、凝集合体した30〜50μm程度の粒子径を有するアルミナ介在物を浮上させて、これを湯面上のスラグに捕捉させる効果が得られる。
従って、得られた溶鋼を連続鋳造することで、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減した鋼材(鋳片)を製造できる。特に、この鋼材は、介在物の含有量規制に対して最も要求の厳しい飲料缶用鋼板などの製造時においても、介在物に起因する製品不合を著しく低減できることが可能となる。
As a result, an upward flow is generated in the molten steel in the tundish 10, and the aggregated and aggregated alumina inclusions having a particle diameter of about 30 to 50 μm are levitated, and the effect of capturing this in the slag on the molten metal surface is obtained. .
Therefore, by continuously casting the obtained molten steel, the number of alumina inclusions can be reduced as compared with the prior art, and in particular, a steel material (slab) with a reduced number of alumina inclusions having a particle size of 20 μm or less can be produced. In particular, this steel material can remarkably reduce product mismatch caused by inclusions even in the production of steel plates for beverage cans, etc., which are the most demanding for inclusion content regulation.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、以下の方法を基本として各条件を変更し、鋳片の清浄性の評価を行った。
350トンの転炉にて一次精錬を行った後、取鍋内に出鋼した(出鋼後の)溶鋼(炭素濃度:0.037質量%、溶鋼中溶存酸素濃度:700ppm)に、溶鋼1トンあたり0.9kgの生石灰を投入し、同時に、金属アルミニウムを含むフラックス(アルミドロス)を、溶鋼1トンあたり1.4kg添加した。その後、簡易取鍋精錬設備(CAS)にて、取鍋内の溶鋼に金属アルミニウムを、溶鋼1トンあたり0.1〜2.4kg添加し、更に2〜14分間の取鍋バブリング処理(撹拌処理)を施した後、鋳造開始まで6〜49分間静置した。
そして、この取鍋内の溶鋼を、浴深H(m)に対して0.2×H〜0.9×Hの高さの下堰を有するタンディッシュに注湯し、連続鋳造を実施した。
試験条件とその結果及び評価を、表1に示す。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, each condition was changed based on the following method, and the cleanliness of the slab was evaluated.
After primary refining in a 350-ton converter, the molten steel (carbon concentration: 0.037 mass%, dissolved oxygen concentration in molten steel: 700 ppm) that was steeled in the ladle (after steelmaking) 0.9 kg of quicklime was introduced per ton, and simultaneously, 1.4 kg of flux (aluminum dross) containing metallic aluminum was added per ton of molten steel. Thereafter, in a simple ladle refining equipment (CAS), 0.1 to 2.4 kg of metal aluminum is added to the molten steel in the ladle, and ladle bubbling treatment (stirring treatment) for 2 to 14 minutes. ), And then allowed to stand for 6 to 49 minutes until the start of casting.
And the molten steel in this ladle was poured into a tundish having a lower weir at a height of 0.2 × H to 0.9 × H with respect to the bath depth H (m), and continuous casting was performed. .
Table 1 shows the test conditions, the results, and the evaluation.

Figure 2017166026
Figure 2017166026

表1において、「スラグ改質の有無」の欄には、スラグ改質、即ち出鋼後の生石灰の投入とフラックスの添加の有無を記載しており、この両方を行った場合を「有」とし、この両方を行わなかった場合を「無」とした。
また、「最終脱酸前」の欄には、撹拌処理直前の金属アルミニウム添加前(スラグ改質を行った場合は改質後)のスラグ酸化度((%T.Fe)+(%MnO))と溶鋼の溶存酸素濃度([O](ppm))を記載している。
そして、「取鍋」の欄には、取鍋での撹拌処理の時間(撹拌時間)と静置時間を記載している。なお、「静置後T.[O]」の欄には、取鍋で撹拌処理して静置した後の溶鋼のトータル酸素濃度(T.[O](ppm))を記載している。
更に、「鋳片」の欄のうち、「T.[O](ppm)」の欄には、連続鋳造を行った後の鋳片のトータル酸素濃度を記載し、「介在物個数」の欄には、代表位置から切り出したサンプル(25mm角)を光学顕微鏡で調査した結果(アルミナ介在物の個数)を記載している。
なお、「評価」は、「介在物個数」の結果が1.00(個/cm)以下の場合を清浄性が良好(○)と判断し、1.00(個/cm)超の場合を清浄性が悪い(×)と判断した。
In Table 1, in the column “Presence / absence of slag reforming”, slag reforming, that is, whether or not to add quick lime after steelmaking and whether or not to add flux is described. The case where both of these were not performed was determined as “None”.
Further, in the column “before final deoxidation”, the slag oxidation degree ((% T. Fe) + (% MnO)) before the addition of metal aluminum immediately before the stirring treatment (after the slag modification, after the modification) ) And the dissolved oxygen concentration ([O] (ppm)) of the molten steel.
And in the column of "Ladle", the time (stirring time) and the standing time of the stirring process in the ladle are described. In the column of “T. [O] after standing”, the total oxygen concentration (T. [O] (ppm)) of the molten steel after being left to stand by stirring in a ladle is described.
Further, in the “cast slab” column, the “T. [O] (ppm)” column describes the total oxygen concentration of the slab after continuous casting, and the “inclusion number” column. Shows the results (number of alumina inclusions) of a sample (25 mm square) cut out from the representative position, which was examined with an optical microscope.
Incidentally, "evaluation" is the "inclusion number" result is determined to 1.00 (pieces / cm 2) or less of the case where good cleanability (○), 1.00 (pieces / cm 2) greater than The case was judged to be poor (×).

表1中の実施例1〜8は、スラグ改質を行うことで、スラグ酸化度と溶鋼の溶存酸素濃度を適正範囲内(スラグ酸化度:5質量%以下、溶鋼中溶存酸素濃度:100〜300ppm)とした溶鋼に、更に金属アルミニウムを添加し、適正範囲内の時間(3〜10分の範囲)で撹拌処理して、適正範囲内の時間(10分以上)で静置した後、適正範囲内の高さ(0.3×H〜0.8×Hの範囲)の下堰を有するタンディッシュへ注湯して、連続鋳造した結果である。
この場合、スラグ改質によるアルミナ系介在物(カルシウムアルミネート)の浮上除去効果、スラグ改質後の最終脱酸によるアルミナ介在物の生成抑制効果、溶鋼の撹拌処理による小さなアルミナ介在物の凝集合体効果、溶鋼の静置による大きなアルミナ介在物の浮上除去効果、及び、タンディッシュの下堰による溶鋼への上昇流付与効果が得られた。
その結果、表1に示すように、鋳片のトータル酸素濃度を低減できると共に、鋳片中に存在するアルミナ介在物の個数を低減でき、鋳片の清浄性を良好にできた(評価:○)。
In Examples 1 to 8 in Table 1, by performing slag reforming, the slag oxidation degree and the dissolved oxygen concentration of the molten steel are within an appropriate range (slag oxidation degree: 5 mass% or less, dissolved oxygen concentration in the molten steel: 100 to After adding metal aluminum to the molten steel (300 ppm) and stirring it for a time within the appropriate range (3 to 10 minutes) and allowing it to stand for a time within the appropriate range (10 minutes or more), It is the result of pouring into a tundish having a lower weir with a height within the range (range of 0.3 × H to 0.8 × H) and continuously casting.
In this case, the floating removal effect of alumina inclusions (calcium aluminate) by slag modification, the suppression effect of formation of alumina inclusions by final deoxidation after slag modification, agglomeration of small alumina inclusions by stirring treatment of molten steel The effect, the floating removal effect of large alumina inclusions by standing the molten steel, and the effect of imparting the upward flow to the molten steel by the lower weir of the tundish were obtained.
As a result, as shown in Table 1, the total oxygen concentration of the slab could be reduced, the number of alumina inclusions present in the slab could be reduced, and the cleanliness of the slab could be improved (evaluation: ○ ).

一方、比較例9は、実施例1の条件において、一次精錬後に、スラグ改質を施すことなく脱酸処理を行った場合の結果である。
この場合、スラグ改質を施さなかったため、溶鋼に添加する金属アルミニウム量を多くしなければならず、アルミナ介在物が多く生成し、溶鋼の撹拌処理による小さなアルミナ介在物の凝集合体効果や、静置によるアルミナ介在物の浮上除去効果が十分に得られなかった。
その結果、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(評価:×)。
On the other hand, the comparative example 9 is a result at the time of performing a deoxidation process without performing slag modification | reformation after primary refining on the conditions of Example 1. FIG.
In this case, since the slag modification was not performed, the amount of metallic aluminum added to the molten steel had to be increased, so that a large amount of alumina inclusions were formed, and the effect of agglomeration and coalescence of small alumina inclusions by the stirring treatment of the molten steel, The effect of floating and removing alumina inclusions by placing was not sufficiently obtained.
As a result, as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanability of the slab deteriorated (evaluation: x).

比較例10、11は、最終脱酸時の金属アルミニウムを添加した溶鋼の撹拌時間を、適正範囲外の時間(比較例10:2分、比較例11:14分)とした場合の結果である(実施例1、4、5との比較)。
この場合、比較例10においては、撹拌時間が不足して撹拌処理による小さなアルミナ介在物の凝集合体効果が十分に得られず、また、比較例11においては、撹拌時間の長期化に伴い溶鋼温度が低下して多くのアルミナ介在物が生成した。
その結果、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(評価:×)。
Comparative Examples 10 and 11 are the results when the stirring time of the molten steel to which metallic aluminum was added during the final deoxidation was set to a time outside the appropriate range (Comparative Example 10: 2 minutes, Comparative Example 11: 14 minutes). (Comparison with Examples 1, 4, and 5).
In this case, in Comparative Example 10, the agitation time is insufficient and the effect of agglomeration and coalescence of small alumina inclusions by the agitation treatment cannot be sufficiently obtained. In Comparative Example 11, the temperature of the molten steel is increased as the agitation time is prolonged. Decreased and many alumina inclusions were produced.
As a result, as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanability of the slab deteriorated (evaluation: x).

比較例12は、最終脱酸後の溶鋼の静置時間を、適正範囲外の時間(6分)とした場合の結果である。
この場合、静置時間が不足して、静置によるアルミナ介在物の浮上除去に要する時間を十分に確保できず、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなって、鋳片の清浄性が悪くなった(評価:×)。
The comparative example 12 is a result when the stationary time of the molten steel after the final deoxidation is set to a time outside the appropriate range (6 minutes).
In this case, the standing time is insufficient, and the time required for the floating and removal of the alumina inclusions by standing cannot be sufficiently secured. As shown in Table 1, the number of alumina inclusions present in the slab is large. As a result, the cleanability of the slab deteriorated (evaluation: x).

比較例13は、最終脱酸時の金属アルミニウムを添加した溶鋼を撹拌処理しなかった場合の結果である。
この場合、撹拌処理による小さなアルミナ介在物の凝集合体効果が得られず、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(評価:×)。
The comparative example 13 is a result at the time of not stirring the molten steel which added the metal aluminum at the time of final deoxidation.
In this case, the effect of agglomeration and coalescence of small alumina inclusions by the stirring treatment was not obtained, and as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanability of the slab deteriorated. (Evaluation: x).

比較例14、15は、タンディッシュに設けられた下堰を、適正範囲外の高さ(比較例14:0.2×H、比較例15:0.9×H)とした場合の結果である(実施例1、7、8との比較)。
この場合、比較例14においては、下堰の高さが低過ぎてタンディッシュ内で溶鋼の上昇流を有効に作用させることができず、また、比較例15においては、下堰の高さが高過ぎて上昇流がタンディッシュ内の湯面スラグを撹拌した。
その結果、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(評価:×)。
Comparative Examples 14 and 15 are the results when the lower weir provided in the tundish is set to a height outside the appropriate range (Comparative Example 14: 0.2 × H, Comparative Example 15: 0.9 × H). (Comparison with Examples 1, 7, and 8)
In this case, in Comparative Example 14, the height of the lower weir is too low to allow the upward flow of molten steel to effectively act in the tundish. In Comparative Example 15, the height of the lower weir is Too high and the upward flow stirred the hot water surface slag in the tundish.
As a result, as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanability of the slab deteriorated (evaluation: x).

従来法は、一次精錬後に、スラグ改質を施すことなく金属アルミニウムが添加された溶鋼を、撹拌と静置を行うことなく、タンディッシュに注湯して連続鋳造した場合の結果である。
この場合、スラグ改質を施さなかったため、溶鋼に添加する金属アルミニウム量が多くなり、アルミナ介在物が多く生成し、また、溶鋼の撹拌処理や静置による効果も得られなかった。
その結果、表1に示すように、鋳片中に存在するアルミナ介在物の個数が多くなり、鋳片の清浄性が悪くなった(評価:×)。
The conventional method is a result in the case where molten steel to which metallic aluminum is added without performing slag reforming is poured into a tundish and continuously cast after primary refining without stirring and standing.
In this case, since slag reforming was not performed, the amount of metal aluminum added to the molten steel increased, a large amount of alumina inclusions were produced, and the effects of stirring and standing the molten steel were not obtained.
As a result, as shown in Table 1, the number of alumina inclusions present in the slab increased, and the cleanability of the slab deteriorated (evaluation: x).

ここで、上記した従来法と実施例5について、取鍋での静置後における溶鋼中のアルミナ介在物の粒径頻度分布を調査した結果を図3に、連続鋳造した鋳片中のアルミナ介在物の粒径個数分布を調査した結果を図4に、それぞれ示す。なお、図3の縦軸は、全てのアルミナ介在物(粒径範囲が5μm以上20μm以下、20μm超30μm以下、30μm超50μm以下、及び、50μm超)の合計個数を100%としたときの各粒径範囲のアルミナ介在物の個数割合を示している。   Here, with respect to the above-described conventional method and Example 5, the results of investigating the particle size frequency distribution of the alumina inclusions in the molten steel after standing in the ladle are shown in FIG. 3, and the alumina inclusions in the continuously cast slab are shown in FIG. The results of investigating the particle number distribution of the products are shown in FIG. The vertical axis in FIG. 3 represents each of the total number of alumina inclusions (particle size range of 5 μm to 20 μm, more than 20 μm to 30 μm, more than 30 μm to 50 μm, and more than 50 μm) as 100%. The number ratio of alumina inclusions in the particle size range is shown.

図3に示すように、アルミナ介在物の粒径範囲が、5μm以上20μm以下と20μm超30μm以下の個数割合はともに、実施例5が従来法より低くなっているが、30μm超50μm以下の個数割合は、実施例5が従来法より高くなっている。
即ち、5μm以上20μm以下と20μm超30μm以下の個数割合の、実施例5の従来法に対する減少分が、30μm超50μm以下の個数割合の、実施例5の従来法に対する増加分に相当する。これは、実施例5が、最終脱酸前にスラグ改質を行っているため、溶鋼中のアルミナ介在物量を少なくでき、その結果、溶鋼の撹拌処理と静置による小さなアルミナ介在物の凝集合体効果が得られたことに起因するものと考えられる。
As shown in FIG. 3, the particle size range of the alumina inclusion is 5 μm or more and 20 μm or less and the number ratio of 20 μm or more and 30 μm or less is lower in Example 5 than the conventional method, but the number of particles exceeding 30 μm and 50 μm or less. The ratio of Example 5 is higher than that of the conventional method.
That is, the decrease in the number ratio of 5 μm or more and 20 μm or less and more than 20 μm and 30 μm or less with respect to the conventional method of Example 5 corresponds to the increase of the number ratio of more than 30 μm and 50 μm or less with respect to the conventional method of Example 5. This is because Example 5 performs slag reforming before the final deoxidation, so that the amount of alumina inclusions in the molten steel can be reduced. As a result, agglomeration and coalescence of small alumina inclusions by stirring and standing of the molten steel This is probably due to the effect.

そして、上記した溶鋼を、所定高さの堰を有するタンディッシュに注湯し、連続鋳造することで、実施例5については、タンディッシュの排湯部内の対流効果が得られ、図4に示すように、アルミナ介在物の粒径範囲が30μm超50μm以下の検出個数も、従来法よりも低くできた。
なお、ここでは、出鋼後の溶鋼に、生石灰とフラックスを同時に添加した場合について説明したが、出鋼の際(出鋼時及び/又は出鋼後)に生石灰及び/又はフラックス(金属アルミニウム単体でもよい)を添加すれば、添加の形態に影響されることなく、略同様の傾向が得られた。
従って、本発明の高清浄鋼の製造方法を用いることで、従来よりもアルミナ介在物の個数を低減でき、特に粒径が20μm以下クラスのアルミナ介在物の個数を低減できることを確認できた。
And by pouring the above-mentioned molten steel into a tundish having a weir of a predetermined height and continuously casting, for Example 5, the convection effect in the hot water discharge part of the tundish is obtained, which is shown in FIG. As described above, the number of detected alumina inclusions having a particle size range of more than 30 μm and 50 μm or less could be made lower than that of the conventional method.
In addition, although the case where quick lime and a flux were simultaneously added to the molten steel after steel extraction was demonstrated here, quick lime and / or a flux (metal aluminum simple substance) at the time of steel extraction (at the time of steel output and / or after steel output) However, the same tendency was obtained without being affected by the form of addition.
Therefore, it was confirmed that the number of alumina inclusions can be reduced by using the method for producing the high clean steel of the present invention, and in particular, the number of alumina inclusions having a particle size of 20 μm or less can be reduced.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の高清浄鋼の製造方法を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、一次精錬を行った溶鋼を、出鋼工程と取鍋処理工程で順次処理して溶製した後、連続鋳造工程で連続鋳造した場合について説明したが、連続鋳造工程前に、必要に応じて、出鋼工程と取鍋処理工程以外の工程を行ってもよい。
更に、前記実施の形態においては、スラグ改質と最終脱酸の際に、金属アルミニウムの添加を行った場合について説明したが、スラグ改質と最終脱酸の間に、更に1回又は2回以上の複数回、金属アルミニウムの添加を行ってもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the manufacturing method of the high clean steel of the present invention is configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the molten steel which performed the primary refining was processed sequentially in the steel-making process and the ladle process process, it demonstrated the case where it casts continuously in a continuous casting process, but continuous casting. Prior to the process, a process other than the steel exit process and the ladle treatment process may be performed as necessary.
Further, in the above embodiment, the case where metallic aluminum is added during slag reforming and final deoxidation has been described. However, one or two more times between slag reforming and final deoxidation. Metal aluminum may be added a plurality of times as described above.

10:タンディッシュ、11:溶鋼鍋、12:ロングノズル、13:受湯部、14:鋳型、15:排湯部、16:堰、17:浸漬ノズル、18:底面、19:貫通孔 10: Tundish, 11: Molten steel pan, 12: Long nozzle, 13: Hot water receiving part, 14: Mold, 15: Hot water discharging part, 16: Weir, 17: Immersion nozzle, 18: Bottom surface, 19: Through hole

Claims (1)

大気圧下で吹酸脱炭する一次精錬を行った溶鋼を、少なくとも出鋼工程と合金添加を含む取鍋処理工程で順次処理して溶製した後、連続鋳造工程でタンディッシュに注湯して連続鋳造する高清浄鋼の製造方法において、
前記出鋼工程での溶鋼の出鋼の際に、溶鋼及びスラグのいずれか一方又は双方に生石灰を投入すると共に、金属アルミニウム及び金属アルミニウムを含むフラックスのいずれか一方又は双方を添加して、スラグを改質処理し、スラグのT.Fe濃度とMnO濃度の合計を5質量%以下、かつ、溶鋼の溶存酸素濃度を100ppm以上300ppm以下の範囲とした後、
前記取鍋処理工程で溶鋼に金属アルミニウムを更に添加し、該溶鋼を3分以上10分以下撹拌処理して脱酸処理し、該脱酸処理から前記連続鋳造工程で連続鋳造を開始するまでに10分以上静置して、
前記連続鋳造工程では、溶鋼を受け入れる受湯部と、該溶鋼を連続鋳造する鋳型に注入する排湯部とに仕切る堰が内部に設けられ、該堰の高さを溶鋼深さの0.3倍以上0.8倍以下とした前記タンディッシュに、前記脱酸処理後に静置した溶鋼を注湯することを特徴とする高清浄鋼の製造方法。
The molten steel that has undergone primary refining, which is blown acid decarburized under atmospheric pressure, is sequentially processed in the ladle processing process that includes at least the steelmaking process and alloy addition, and then poured into the tundish in the continuous casting process. In the manufacturing method of high clean steel that continuously casts
At the time of discharging the molten steel in the steel extraction step, lime is added to one or both of the molten steel and slag, and either one or both of the flux containing metal aluminum and metal aluminum is added to form slag. Is reformed, and the slag T.I. After making the total of Fe concentration and MnO concentration 5 mass% or less, and making dissolved oxygen concentration of molten steel into the range of 100 ppm or more and 300 ppm or less,
In the ladle treatment step, metallic aluminum is further added to the molten steel, the molten steel is stirred for 3 minutes to 10 minutes and deoxidized, and from the deoxidation treatment to the start of continuous casting in the continuous casting step. Let stand for more than 10 minutes,
In the continuous casting process, a weir for partitioning into a hot water receiving part for receiving molten steel and a hot water discharging part for pouring the molten steel into a mold for continuously casting the molten steel is provided inside, and the height of the weir is set to 0.3 of the molten steel depth. A method for producing highly clean steel, characterized in that molten steel that has been allowed to stand after the deoxidation treatment is poured into the tundish that has been doubled to 0.8 times.
JP2016052428A 2016-03-16 2016-03-16 Manufacturing method of high clean steel Active JP6593233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016052428A JP6593233B2 (en) 2016-03-16 2016-03-16 Manufacturing method of high clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016052428A JP6593233B2 (en) 2016-03-16 2016-03-16 Manufacturing method of high clean steel

Publications (2)

Publication Number Publication Date
JP2017166026A true JP2017166026A (en) 2017-09-21
JP6593233B2 JP6593233B2 (en) 2019-10-23

Family

ID=59912783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016052428A Active JP6593233B2 (en) 2016-03-16 2016-03-16 Manufacturing method of high clean steel

Country Status (1)

Country Link
JP (1) JP6593233B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017218649A1 (en) * 2017-10-19 2019-04-25 Sms Group Gmbh Intermediate container for slag separation
JP2020012157A (en) * 2018-07-18 2020-01-23 日本製鉄株式会社 Method of smelling steel into high cleaned steel
JP2020012158A (en) * 2018-07-18 2020-01-23 日本製鉄株式会社 Method of smelling steel into high cleaned steel
CN113373278A (en) * 2021-05-25 2021-09-10 江苏省沙钢钢铁研究院有限公司 RH vacuum furnace slag surface feeding device and furnace slag modification method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150217A (en) * 1993-08-31 1995-06-13 Nkk Corp Production of steel material for hydrogen induced cracking resistance
JPH10330829A (en) * 1997-05-29 1998-12-15 Sumitomo Metal Ind Ltd Method for melting high cleanliness extra-low carbon steel
JP2005023420A (en) * 2003-06-10 2005-01-27 Jfe Steel Kk Method of producing highly clean steel
JP2009113086A (en) * 2007-11-07 2009-05-28 Nippon Steel Corp Method for continuously casting of extra-low carbon steel
JP2012045583A (en) * 2010-08-27 2012-03-08 Jfe Steel Corp Method for manufacturing high-cleanliness steel cast slab by continuous casting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07150217A (en) * 1993-08-31 1995-06-13 Nkk Corp Production of steel material for hydrogen induced cracking resistance
JPH10330829A (en) * 1997-05-29 1998-12-15 Sumitomo Metal Ind Ltd Method for melting high cleanliness extra-low carbon steel
JP2005023420A (en) * 2003-06-10 2005-01-27 Jfe Steel Kk Method of producing highly clean steel
JP2009113086A (en) * 2007-11-07 2009-05-28 Nippon Steel Corp Method for continuously casting of extra-low carbon steel
JP2012045583A (en) * 2010-08-27 2012-03-08 Jfe Steel Corp Method for manufacturing high-cleanliness steel cast slab by continuous casting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017218649A1 (en) * 2017-10-19 2019-04-25 Sms Group Gmbh Intermediate container for slag separation
JP2020012157A (en) * 2018-07-18 2020-01-23 日本製鉄株式会社 Method of smelling steel into high cleaned steel
JP2020012158A (en) * 2018-07-18 2020-01-23 日本製鉄株式会社 Method of smelling steel into high cleaned steel
JP7035872B2 (en) 2018-07-18 2022-03-15 日本製鉄株式会社 Melting method of high-clean steel
JP7035873B2 (en) 2018-07-18 2022-03-15 日本製鉄株式会社 Melting method of high-clean steel
CN113373278A (en) * 2021-05-25 2021-09-10 江苏省沙钢钢铁研究院有限公司 RH vacuum furnace slag surface feeding device and furnace slag modification method
CN113373278B (en) * 2021-05-25 2022-06-21 江苏省沙钢钢铁研究院有限公司 RH vacuum furnace slag surface feeding device and furnace slag modification method

Also Published As

Publication number Publication date
JP6593233B2 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
JP6686837B2 (en) Highly clean steel manufacturing method
JP6593233B2 (en) Manufacturing method of high clean steel
JP6428307B2 (en) Manufacturing method of high clean steel
JP5958152B2 (en) Manufacturing method of high cleanliness steel
JP6202776B2 (en) Manufacturing method of high cleanliness steel
JP7035872B2 (en) Melting method of high-clean steel
JP6443200B2 (en) Manufacturing method of high clean steel
JP6686838B2 (en) Highly clean steel manufacturing method
JP6547638B2 (en) Method of manufacturing high purity steel
JP7035873B2 (en) Melting method of high-clean steel
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
JP5217478B2 (en) Method of melting ultra-low carbon steel
JP4882249B2 (en) Manufacturing method of high clean steel
JP2007092159A (en) Method for producing extremely low carbon steel excellent in cleanliness
JP4502944B2 (en) Thin steel plate rich in ductility and method for producing steel ingot to obtain the steel plate
JP6443192B2 (en) Slag reforming method using FeSi alloy grains
JP3640167B2 (en) Manufacturing method of high cleanliness steel
JP2001105101A (en) Melting method of steel plate for thin sheet
JPH07224317A (en) Production of high cleanliness steel
JP7468567B2 (en) Method for denitrification of molten steel
JP7035871B2 (en) Melting method of high-clean steel
JP5515651B2 (en) Desulfurization method for molten steel
JP2006225727A (en) Method for producing extra-low-carbon steel
KR100979023B1 (en) Method for Continuous-Continuous-Casting Molten Steel
JP2000239729A (en) Production of extra-low carbon steel excellent in cleanliness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190909

R151 Written notification of patent or utility model registration

Ref document number: 6593233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151