JP2012045583A - Method for manufacturing high-cleanliness steel cast slab by continuous casting - Google Patents

Method for manufacturing high-cleanliness steel cast slab by continuous casting Download PDF

Info

Publication number
JP2012045583A
JP2012045583A JP2010190402A JP2010190402A JP2012045583A JP 2012045583 A JP2012045583 A JP 2012045583A JP 2010190402 A JP2010190402 A JP 2010190402A JP 2010190402 A JP2010190402 A JP 2010190402A JP 2012045583 A JP2012045583 A JP 2012045583A
Authority
JP
Japan
Prior art keywords
molten steel
weir
tundish
ladle
bowl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010190402A
Other languages
Japanese (ja)
Other versions
JP5516235B2 (en
Inventor
Kohei Komai
孝平 古米
Yuji Miki
祐司 三木
Takeshi Murai
剛 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010190402A priority Critical patent/JP5516235B2/en
Publication of JP2012045583A publication Critical patent/JP2012045583A/en
Application granted granted Critical
Publication of JP5516235B2 publication Critical patent/JP5516235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/003Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with impact pads

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To reliably perform floatation of inclusion as compared with that of a conventional one when performing continuous casting by using a tundish in which a weir including a wall part extending upward from a tundish bottom part, and a canopy-like part oriented to a molten steel injection part side on an upper end part of the wall part is installed.SOLUTION: In continuous casting of steel, a tundish is used which is provided, between a molten steel injection part 5 and molten steel outflow parts 6 of the tundish 1, with a weir 7 including a wall part 8 extending upward from a tundish bottom part by surrounding the molten steel injection part from four directions, and a canopy-like part 9 horizontally projected by being oriented to the molten steel injection part side at the upper end part of the wall part, wherein an opening area D×H of cutouts 10 penetrating the wall part and the canopy-like part and a volume V of a space surrounded by the weir satisfy the expression (1) 0.5≤V/(D×H)≤250, and a steel cast slab 14 is continuously cast while controlling a molten steel injection flow rate so that a molten injection flow rate Q from a ladle satisfies the relationship of the expression (2) 0.18≤Q/A≤6.8 with respect to an upper opening area A of the weir.

Description

本発明は、連続鋳造による高清浄度鋼鋳片の製造方法に関し、詳しくは、タンディッシュにおいて、脱酸生成物などの酸化物系非金属介在物の浮上分離を促進させて溶鋼の清浄性を高める方法に関する。   The present invention relates to a method for producing a high cleanliness steel slab by continuous casting. More specifically, the tundish promotes the floating separation of oxide-based non-metallic inclusions such as deoxidation products to improve the cleanliness of molten steel. It relates to how to increase.

鋼の連続鋳造では、取鍋内の溶鋼を一旦タンディッシュに注入し、タンディッシュ内に所定量の溶鋼を滞留させた状態で、タンディッシュから鋳型内に溶鋼を注入して鋳片を製造している。タンディッシュは、複数ヒートの連続鋳造を継続する際の取鍋交換時の溶鋼の供給機能、及び、複数の鋳型への溶鋼の分配機能を有するのみならず、タンディッシュ内に所定量の溶鋼を滞留させることで、タンディッシュから鋳型への溶鋼流出量が精度良く制御される、更には、溶鋼中に懸濁する脱酸生成物などの酸化物系非金属介在物(以下、単に「介在物」と記す)の浮上分離が促進されるなどの機能を有している。特に、近年の高品質の鉄鋼材料の要求から、タンディッシュにおいて介在物を効率的に浮上分離する技術が広く行われている。   In continuous casting of steel, the molten steel in the ladle is once poured into the tundish, and with a predetermined amount of molten steel retained in the tundish, the molten steel is poured into the mold from the tundish to produce a slab. ing. The tundish not only has the function of supplying molten steel at the time of ladle replacement when continuing continuous casting of multiple heats and the function of distributing molten steel to multiple molds, but also provides a predetermined amount of molten steel in the tundish. The amount of molten steel flowing out of the tundish from the mold to the mold is accurately controlled by the retention, and further, oxide-based nonmetallic inclusions such as deoxidation products suspended in the molten steel (hereinafter simply referred to as “inclusions”). )), And the like. In particular, due to the recent demand for high-quality steel materials, a technique for efficiently levitating and separating inclusions in tundish is widely used.

タンディッシュにおける介在物の浮上分離方法は、タンディッシュ内に堰を設置し、堰によって溶鋼の流動を制御する方法が一般的である。例えば、特許文献1には、下部に貫通孔を有し、タンディッシュの底部からタンディッシュ内の溶鋼湯面上にまで伸びる堰を、取鍋からの溶鋼の注入部位を挟んでタンディッシュ内の2箇所に相対して配置し、タンディッシュ内を受鋼領域と鋼準静止領域とに分離し、鋼準静止領域での介在物の浮上分離を目的とするタンディッシュが開示されている。   As a method for floating and separating inclusions in a tundish, a method is generally used in which a weir is installed in the tundish and the flow of molten steel is controlled by the weir. For example, in Patent Document 1, a weir that has a through hole in the lower part and extends from the bottom of the tundish to the surface of the molten steel in the tundish is placed inside the tundish with the molten steel injection site from the ladle interposed therebetween. There is disclosed a tundish that is disposed so as to be opposed to two places, and the inside of the tundish is separated into a steel receiving region and a steel quasi-static region, and the inclusions are separated and floated in the steel quasi-static region.

特許文献2には、タンディッシュの底部に接する2個の貫通孔を有する堰によりタンディッシュ内を受鋼側と出鋼側とに分離し、且つ、前記堰の下流側にダム状の堰(下堰という)を配置し、更に、タンディッシュの長辺長さLと短辺長さWとの比L/Wを2〜7、受鋼側の容積比率を全体の10〜40%とするタンディッシュが開示されている。   In Patent Document 2, the inside of the tundish is separated into the receiving steel side and the outgoing steel side by a weir having two through holes in contact with the bottom of the tundish, and a dam-like weir ( And the ratio L / W between the long side length L and the short side length W of the tundish is 2 to 7, and the volume ratio on the steel receiving side is 10 to 40% of the whole. A tundish is disclosed.

また、特許文献3には、耐熱性組成物から形成されるタンディッシュ衝突パッドであって、該パッドが衝突面を備えたベースと、該ベースから上方に伸び且つ前記溶融金属の流れを受け入れるための上側開口部を備えた内部空間を完全に囲む無端の外側側壁部とを有し、前記外側側壁部が前記開口部へ向けて内方に且つ上方に伸びる少なくとも第1部分を備えた環状の内面を含むタンディッシュ衝突パッドが開示されている。   Patent Document 3 discloses a tundish collision pad formed from a heat-resistant composition, the pad having a collision surface, and extending upward from the base and receiving the flow of the molten metal. An endless outer side wall that completely surrounds the internal space with the upper opening, and the outer side wall has an annular shape with at least a first portion extending inward and upward toward the opening A tundish impact pad including an inner surface is disclosed.

特許文献3の技術を改善する技術も提案されており、特許文献4には、取鍋から注入される溶融金属流がタンディッシュ底部に衝突する部分に設置される、タンディッシュ内溶融金属の流動制御パッドであって、溶融金属流の衝突部を囲んでタンディッシュの底部から上方へ伸びる壁部と、該壁部の上端部位から壁部の囲み中心へ向かって伸びる庇状部とを有し、タンディッシュの長辺内壁と対向する側の壁部に、切り欠きを有する流動制御パッドが開示されている。   A technique for improving the technique of Patent Document 3 has also been proposed. Patent Document 4 describes the flow of molten metal in a tundish that is installed in a portion where a molten metal flow injected from a ladle collides with the bottom of the tundish. A control pad having a wall portion extending upward from the bottom of the tundish surrounding the collision portion of the molten metal flow, and a hook-shaped portion extending from the upper end portion of the wall portion toward the surrounding wall center. The flow control pad which has a notch in the wall part on the side facing the long side inner wall of the tundish is disclosed.

また、特許文献5には、特許文献3の衝突パッドは一体構造の耐火物であることから、衝突パッドに代えて堰とするべく、取鍋からタンディッシュへの溶融金属流に相対してタンディッシュの底部から上方へ伸びる壁部と、該壁部の上端部位から溶融金属流へ向かって伸びる庇状部と、を有する流動制御用堰であって、前記壁部の高さh及び庇状部の幅dが、0.1≦d/h≦1.0なる関係式を満足する堰が開示されている。   Further, in Patent Document 5, since the collision pad of Patent Document 3 is a refractory having an integral structure, a tank is formed relative to the molten metal flow from the ladle to the tundish so as to be a weir instead of the collision pad. A flow control weir having a wall portion extending upward from the bottom of the dish and a hook-like portion extending from the upper end portion of the wall portion toward the molten metal flow, wherein the wall portion has a height h and a hook-like shape. A weir is disclosed in which the width d of the portion satisfies the relational expression of 0.1 ≦ d / h ≦ 1.0.

更に、特許文献6には、取鍋からタンディッシュへの溶鋼流がタンディッシュ底部に衝突する部分に、該溶鋼流の衝突部を囲んでタンディッシュの底部から上方へ伸びる壁部と、該壁部の上端部位から壁部の囲み中心へ向かって伸びる庇状部とを有する流動制御パッドの配置されたタンディッシュを用い、溶鋼注入速度Q(m3/min)と、庇状部を除いた流動制御パッド上面の面積S1(m2)と、流動制御パッド底面の面積S2(m2)とが、0.5<(Q/S2)×(S1/S2)<5.0なる関係式を満足する条件で連続鋳造する高清浄鋼鋳片の製造方法が開示されている。 Further, Patent Document 6 discloses that a portion of the molten steel flow from the ladle to the tundish collides with the bottom of the tundish, a wall portion surrounding the collision portion of the molten steel flow and extending upward from the bottom of the tundish; Using a tundish in which a flow control pad having a bowl-shaped portion extending from the upper end portion of the wall portion toward the surrounding center of the wall portion was used, the molten steel injection rate Q (m 3 / min) and the bowl-shaped portion were removed. An area S1 (m 2 ) on the top surface of the flow control pad and an area S2 (m 2 ) on the bottom surface of the flow control pad have a relational expression of 0.5 <(Q / S2) × (S1 / S2) <5.0. A method of manufacturing a highly clean steel slab that is continuously cast under satisfactory conditions is disclosed.

特開昭53−6231号公報JP-A-53-6231 特開平10−216909号公報Japanese Patent Laid-Open No. 10-216909 特表平9−505242号公報JP-T 9-505242 特開2004−1077号公報JP 2004-1077 A 特開2004−98066号公報JP 2004-98066 A 特開2004−154803号公報JP 2004-154803 A

特許文献1〜6によって、タンディッシュにおける介在物の浮上分離は大幅に改善され、堰を設置しない場合に比較して溶鋼の清浄性は大幅に向上した。特に、特許文献3〜6では、「開口部へ向けて内方に且つ上方に伸びる環状の内面」、または、「壁部の上端部位から壁部の囲み中心へ向かって伸びる庇状部」により、取鍋からタンディッシュへの溶鋼注入流は溶鋼の注入部位側に戻るように攪拌されることで、溶鋼注入流が減速され、介在物の浮上分離を阻害する、タンディッシュ内での短絡流及び高速流が解消されて、介在物の浮上に寄与している。   By patent documents 1-6, the floating separation of the inclusion in a tundish was improved significantly, and the cleanliness of the molten steel improved significantly compared with the case where a weir is not installed. In particular, in Patent Documents 3 to 6, “an annular inner surface extending inward and upward toward the opening portion” or “a hook-shaped portion extending from the upper end portion of the wall portion toward the surrounding center of the wall portion”. The molten steel injection flow from the ladle to the tundish is agitated so as to return to the molten steel injection site side, so that the molten steel injection flow is decelerated and the floating separation of inclusions is hindered. In addition, the high-speed flow is eliminated and the inclusions are lifted.

しかしながら、特許文献3〜6においても、未だ改善の余地がある。即ち、特許文献4を例にとれば、取鍋からの溶鋼注入流は、タンディッシュの底部から上方へ伸びる壁部に衝突することによって流れの向きを変え、更にその上部に存在する、壁部の上端部位から壁部の囲み中心へ向かって伸びる庇状部によって溶鋼注入部位側に戻るように攪拌されるが、この庇状部を有する堰で囲まれる空間の体積と壁部に設ける切り欠きの開口面積とが適切な関係でない場合、及び、庇状部を有する堰の形状に対して取鍋からの溶鋼注入流量が適切でない場合には、取鍋からの溶鋼注入流を均一に減速することができず、つまり、堰の効果を得られず、タンディッシュ内での介在物の浮上分離の促進は期待できない。   However, Patent Documents 3 to 6 still have room for improvement. That is, taking Patent Document 4 as an example, the molten steel injection flow from the ladle changes the flow direction by colliding with the wall portion extending upward from the bottom of the tundish, and further exists on the wall portion. It is agitated so as to return to the molten steel injection site side by a bowl-shaped part extending from the upper end part of the wall toward the wall enclosing center, but the volume of the space surrounded by the weir having this bowl-shaped part and the notch provided in the wall part When the molten steel injection flow rate from the ladle is not appropriate for the shape of the weir with the bowl-shaped portion, the molten steel injection flow from the ladle is uniformly decelerated. In other words, the effect of the weir cannot be obtained, and the promotion of the floating separation of inclusions in the tundish cannot be expected.

本発明はこのような事情に鑑みてなされたもので、その目的とするところは、タンディッシュの溶鋼注入部位と溶鋼流出口との間に、タンディッシュ底部から上方に伸びる壁部と、該壁部の上端部位に前記溶鋼注入部位側を向いて水平方向に突出した庇状部と、を有する堰を設置したタンディッシュを用いて連続鋳造するにあたり、庇状部を有する堰の形状を最適化するとともに、タンディッシュへの溶鋼注入流量を堰の形状に応じて制御することで、介在物の浮上分離を従来に比較して確実に行うことができ、その結果、介在物起因の製品欠陥を大幅に低減することのできる、連続鋳造による高清浄度鋼鋳片の製造方法を提供することである。   The present invention has been made in view of such circumstances, and an object thereof is to provide a wall portion extending upward from the bottom of the tundish between the molten steel injection site of the tundish and the molten steel outlet, and the wall. When continuously casting using a tundish equipped with a weir having a bowl-like part that protrudes in the horizontal direction facing the molten steel injection site side at the upper end part of the part, the shape of the weir having the bowl-like part is optimized In addition, by controlling the flow rate of molten steel injected into the tund according to the shape of the weir, the floating separation of inclusions can be performed more reliably than before, and as a result, product defects caused by inclusions can be reduced. To provide a method for producing a high cleanliness steel slab by continuous casting, which can be greatly reduced.

上記課題を解決するための第1の発明に係る連続鋳造による高清浄度鋼鋳片の製造方法は、アルミニウムで脱酸された溶鋼を取鍋から一旦タンディッシュに注入し、次いでタンディッシュから鋳型に注入して鋼鋳片を連続鋳造するにあたり、取鍋からの溶鋼注入流がタンディッシュ底部に衝突する溶鋼注入部位と、タンディッシュから鋳型への溶鋼流出口との間に、前記溶鋼注入部位を四方向から囲んでタンディッシュの底部から上方に伸びる壁部と、該壁部の上端部位に前記溶鋼注入部位側を向いて水平方向に突出した庇状部と、を有する堰であって、前記壁部及び前記庇状部を貫通する切り欠きの開口面積と、前記堰で囲まれる空間の体積とが、下記の(1)式の関係を満足する形状となる堰を配置したタンディッシュを使用し、取鍋からタンディッシュへの溶鋼注入流量が、前記堰の上部開口部面積に対して下記の(2)の関係を満足するように、取鍋からタンディッシュへの溶鋼注入流量を制御しながら鋼鋳片を連続鋳造することを特徴とする。
0.5≦V/(D×H)≦250…(1)
0.18≦Q/A≦6.8…(2)
但し、(1)式及び(2)式において、Vは、庇状部を有する堰で囲まれる空間の体積(m3)、Dは、切り欠きの開口幅(m)、Hは、堰の高さ(m)、Qは、取鍋からタンディッシュへの溶鋼注入流量(m3/min)、Aは、庇状部を有する堰の上部開口部面積(m2)である。
A method for producing a high cleanliness steel slab by continuous casting according to the first invention for solving the above-mentioned problem is as follows: molten steel deoxidized with aluminum is once poured into a tundish from a ladle, and then cast from the tundish to a mold. In the continuous casting of the steel slab by injecting into the molten steel, between the molten steel injection site where the molten steel injection flow from the ladle collides with the bottom of the tundish and the molten steel outlet from the tundish to the mold, the molten steel injection site A weir having a wall extending from the bottom of the tundish upward from the four directions, and a hook-like portion protruding in the horizontal direction toward the molten steel injection site at the upper end portion of the wall, A tundish in which a weir is arranged in which the opening area of the notch penetrating the wall and the bowl-shaped portion and the volume of the space surrounded by the weir satisfy the relationship of the following expression (1): Use and ladle The steel slab is adjusted while controlling the flow rate of molten steel injected from the ladle to the tundish so that the flow rate of molten steel injected into the tundish satisfies the following relationship (2) with respect to the upper opening area of the weir. It is characterized by continuous casting.
0.5 ≦ V / (D × H) ≦ 250 (1)
0.18 ≦ Q / A ≦ 6.8 (2)
However, in the formulas (1) and (2), V is the volume of the space (m 3 ) surrounded by the weir having the hook-shaped part, D is the opening width (m) of the notch, and H is the weir of the weir Height (m), Q is the molten steel injection flow rate from the ladle to the tundish (m 3 / min), and A is the upper opening area (m 2 ) of the weir having the bowl-shaped portion.

第2の発明に係る連続鋳造による高清浄度鋼鋳片の製造方法は、第1の発明において、前記堰は、壁部の溶鋼注入部位側の面と庇状部の下面側の面とが半径をRとする円弧によって結ばれた形状であり、該円弧の半径Rが前記庇状部の突出長に対して下記の(3)式の関係を満足することを特徴とする。
R≦3Y…(3)
但し、(3)式において、Rは、壁部の溶鋼注入部位側の面と庇状部の下面側の面とを結ぶ円弧の半径(m)、Yは、庇状部の突出長(m)である。
In the method for producing a high cleanliness steel slab by continuous casting according to the second invention, in the first invention, the weir has a surface on the molten steel injection site side of the wall portion and a surface on the lower surface side of the bowl-shaped portion. It is a shape connected by an arc having a radius R, and the radius R of the arc satisfies the relationship of the following expression (3) with respect to the protrusion length of the bowl-shaped portion.
R ≦ 3Y (3)
However, in the formula (3), R is a radius (m) of an arc connecting a surface of the wall portion on the molten steel injection site side and a surface on the lower surface side of the bowl-shaped portion, and Y is a projection length (m ).

本発明によれば、庇状部を有する堰の形状を最適化し、更に、取鍋からタンディッシュへの溶鋼の注入流量を、堰の形状に応じた注入流量に制御するので、タンディッシュにおける介在物の浮上分離が促進され、鋳型に注入される溶鋼の清浄性が高まり、連続鋳造される鋼鋳片の清浄度が向上して、介在物起因の製品欠陥を大幅に低減することが実現される。   According to the present invention, the shape of the weir having the bowl-shaped portion is optimized, and furthermore, the injection flow rate of the molten steel from the ladle to the tundish is controlled to the injection flow rate according to the shape of the weir. Floating separation of objects is promoted, the cleanliness of molten steel injected into the mold is improved, the cleanliness of continuously cast steel slabs is improved, and product defects caused by inclusions are greatly reduced. The

本発明の実施の形態を示す図であって、連続鋳造設備のタンディッシュ及び鋳型の部分を正面から見た断面概略図である。It is a figure which shows embodiment of this invention, Comprising: It is the cross-sectional schematic which looked at the part of the tundish and casting_mold | template of a continuous casting installation from the front. 図1に示すタンディッシュの平面図である。It is a top view of the tundish shown in FIG. 図1に示すタンディッシュの側面図である。It is a side view of the tundish shown in FIG. 図1に示すタンディッシュに配置した堰の拡大断面図である。It is an expanded sectional view of the weir arrange | positioned at the tundish shown in FIG. 鋼板での介在物起因の欠陥発生密度に及ぼす比(V/(D×H))の影響の調査結果を示す図である。It is a figure which shows the investigation result of the influence of the ratio (V / (DxH)) which acts on the defect generation density resulting from the inclusion in a steel plate. 鋼板での介在物起因の欠陥発生密度に及ぼす比(Q/A)の影響の調査結果を示す図である。It is a figure which shows the investigation result of the influence of ratio (Q / A) which acts on the defect generation density by the inclusion in a steel plate. 鋼板での介在物起因の欠陥発生密度に及ぼす半径Rの影響の調査結果を示す図である。It is a figure which shows the investigation result of the influence of the radius R on the defect generation density by the inclusion in a steel plate.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明の実施の形態を示す図であって、連続鋳造設備のタンディッシュ及び鋳型の部分を示す正面断面概略図、図2は、図1に示すタンディッシュの平面図、図3は、図1に示すタンディッシュの側面図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. 1 is a diagram showing an embodiment of the present invention, and is a schematic front sectional view showing a tundish and a mold part of a continuous casting facility, FIG. 2 is a plan view of the tundish shown in FIG. FIG. 2 is a side view of the tundish shown in FIG. 1.

図1〜3において、符号1はタンディッシュ、2は鋳型、3は取鍋(図示せず)の底部に取り付けられたロングノズル、4はタンディッシュの底部に取り付けられた浸漬ノズルであり、予めアルミニウムで脱酸され、取鍋内に収容された溶鋼13がロングノズル3を介してタンディッシュ1に注入されながら、タンディッシュ内に所定量の溶鋼13を滞留させた状態で、タンディッシュ内の溶鋼13が浸漬ノズル4を介して鋳型2に注入されて、鋼鋳片14が製造されている。これらの図は、2台の鋳型2で、2条(2ストランド)のスラブ鋳片を連続鋳造する図である。   1-3, reference numeral 1 is a tundish, 2 is a mold, 3 is a long nozzle attached to the bottom of a ladle (not shown), 4 is an immersion nozzle attached to the bottom of the tundish, While the molten steel 13 deoxidized with aluminum and accommodated in the ladle is poured into the tundish 1 through the long nozzle 3, a predetermined amount of molten steel 13 is retained in the tundish. Molten steel 13 is injected into the mold 2 through the immersion nozzle 4 to produce a steel slab 14. These drawings are diagrams in which two slab slabs are continuously cast with two molds 2.

本発明で使用するタンディッシュ1は、図1〜3に示すように、取鍋(図示せず)からロングノズル3を介してタンディッシュ1に注入される溶鋼注入流がタンディッシュ1の底部に衝突する位置である溶鋼注入部位5と、タンディッシュ1から鋳型2への溶鋼流出口6との間に、タンディッシュ1の底部から鉛直方向上方に伸びる壁部8と、壁部8の上端部位に溶鋼注入部位側を向いて水平方向に突出した庇状部9と、を有する堰7が配置されている。この堰7の縦断面の拡大図を図4に示す。図4に示すように、堰7は、壁部8の溶鋼注入部位側の面と、庇状部9の下面側の面とが、半径をRとする凹状の円弧により滑らかに結ばれた形状となっている。更に詳しく説明すれば、壁部8の溶鋼注入部位側の面の下端点Cを通る鉛直線Zと、庇状部9の先端部の下端点Eを通る水平線Xと、の交点Pを通り、前記の点C、点P、点Eにより形成される角CPEの二等分線上に中心位置Oを置く半径Rの円弧によって、壁部8の溶鋼注入部位側の面と庇状部9の下面側の面とが形成されている。尚、半径Rの円弧は、鉛直線Z及び水平線Xと接することはあっても、鉛直線Z及び水平線Xを越えて堰7の内面側まで至ることはない。このような形状とすることで、壁部8と庇状部9との境界での応力集中を防止することができ、堰7の長寿命化が得られる。但し、本発明において、円弧の部分を設けることは必須条件ではなく、壁部8の溶鋼注入部位側の面と、庇状部9の下面側の面とが、直交する形状であっても構わない。つまり、半径Rをゼロとしても構わない。図4において、符号Yは、庇状部9の突出長を示している。   As shown in FIGS. 1 to 3, the tundish 1 used in the present invention has a molten steel injection flow injected into the tundish 1 from the ladle (not shown) through the long nozzle 3 at the bottom of the tundish 1. Between the molten steel injection | pouring site | part 5 which is a collision position, and the molten steel outflow port 6 from the tundish 1 to the casting_mold | template 2, the wall part 8 extended in the perpendicular direction upward from the bottom part of the tundish 1, and the upper end part of the wall part 8 A weir 7 having a hook-like portion 9 facing the molten steel injection site side and protruding in the horizontal direction is disposed. An enlarged view of the longitudinal section of the weir 7 is shown in FIG. As shown in FIG. 4, the weir 7 has a shape in which the surface on the molten steel injection site side of the wall portion 8 and the surface on the lower surface side of the bowl-shaped portion 9 are smoothly connected by a concave arc whose radius is R. It has become. More specifically, it passes through the intersection P of the vertical line Z passing through the lower end point C of the surface of the wall 8 on the molten steel injection site side and the horizontal line X passing through the lower end point E of the tip of the bowl-shaped portion 9, The surface of the wall portion 8 on the molten steel injection site side and the bottom surface of the bowl-shaped portion 9 are formed by an arc having a radius R that places the center position O on the bisector of the angle CPE formed by the points C, P, and E. A side surface is formed. In addition, although the circular arc of radius R may touch the vertical line Z and the horizontal line X, it does not reach the inner surface side of the weir 7 beyond the vertical line Z and the horizontal line X. By setting it as such a shape, the stress concentration in the boundary of the wall part 8 and the bowl-shaped part 9 can be prevented, and the lifetime of the weir 7 can be extended. However, in the present invention, it is not an essential condition to provide a circular arc portion, and the surface of the wall 8 on the molten steel injection site side and the surface of the lower surface side of the bowl-shaped portion 9 may be orthogonal to each other. Absent. That is, the radius R may be zero. In FIG. 4, the symbol Y indicates the protruding length of the bowl-shaped portion 9.

堰7は、溶鋼注入部位5を囲むように、タンディッシュ1の長辺面側にも配置されている。つまり、溶鋼注入部位5は、平面形状の外殻が正方形或いは長方形の四角形である堰7によって四方向から囲まれている。但し、堰7には、壁部8及び庇状部9を貫通する切り欠き10が少なくも一箇所は設けられており、鋳造終了時には、堰7で囲まれる空間内の溶鋼13が、切り欠き10を通り、溶鋼流出口6に向いて排出されるように構成されている。図1〜3に示すタンディッシュ1では、二箇所に切り欠き10が配置されているが、三箇所以上であっても構わない。また、図2では、切り欠き10がタンディッシュ1の長辺面側に設置されているが、切り欠き10の設置位置はタンディッシュ1の長辺面側に限る必要はなく、タンディッシュ1の短辺面側を向いた面に設置しても構わない。ここで、切り欠き10の開口幅が0.5mm未満では、切り欠き10を通過する溶鋼流量が少なすぎ、堰7で囲まれる空間内に溶鋼13が残留する恐れがあることから、切り欠き10の開口幅は0.5mm以上を確保することが好ましい。   The weir 7 is also arranged on the long side surface side of the tundish 1 so as to surround the molten steel injection site 5. That is, the molten steel injection | pouring site | part 5 is enclosed from the four directions by the weir 7 whose outer shell of a planar shape is a square or a rectangular quadrangle. However, the weir 7 is provided with at least one notch 10 penetrating the wall portion 8 and the bowl-shaped portion 9, and the molten steel 13 in the space surrounded by the weir 7 is notched at the end of casting. 10 is configured to be discharged toward the molten steel outlet 6. In the tundish 1 shown in FIGS. 1 to 3, the notches 10 are arranged in two places, but there may be three or more places. In FIG. 2, the notch 10 is installed on the long side surface side of the tundish 1, but the installation position of the notch 10 is not limited to the long side surface side of the tundish 1. You may install in the surface which faced the short side surface side. Here, if the opening width of the notch 10 is less than 0.5 mm, the flow rate of the molten steel passing through the notch 10 is too small, and the molten steel 13 may remain in the space surrounded by the weir 7. It is preferable to secure an opening width of 0.5 mm or more.

ロングノズル3を介して溶鋼注入部位5に注入された溶鋼13は、溶鋼注入部位5に衝突した後、溶鋼注入流の落下エネルギーによってタンディッシュ1の底面に沿って四方を向いて流れるが、堰7の壁部8に衝突して上向き方向となり、更に、堰7の上端部の庇状部9によって溶鋼注入部位5を向いた流れになる。溶鋼注入部位5を向いた、四方から来る流れは、互いに衝突し合い、運動エネルギーを消費して減速する。即ち、堰7によって、ロングノズル3を介して注入された高速の溶鋼流は大幅に減速されると同時に、タンディッシュ内の溶鋼流が均一化される。これにより、タンディッシュ内での短絡流及び高速流が解消されて、これらの流れに随伴して溶鋼流出口6から鋳型2に流出する介在物が減少する。つまり、タンディッシュ1における介在物の浮上分離が促進される。   After the molten steel 13 injected into the molten steel injection site 5 through the long nozzle 3 collides with the molten steel injection site 5, it flows in four directions along the bottom surface of the tundish 1 due to the falling energy of the molten steel injection flow. 7 and collides with the wall portion 8 in the upward direction, and further flows toward the molten steel injection site 5 by the flange 9 at the upper end of the weir 7. Flows coming from four directions facing the molten steel injection site 5 collide with each other and consume kinetic energy and decelerate. That is, the high-speed molten steel flow injected through the long nozzle 3 is greatly decelerated by the weir 7, and at the same time, the molten steel flow in the tundish is made uniform. Thereby, the short circuit flow and the high-speed flow in the tundish are eliminated, and the inclusions flowing out from the molten steel outlet 6 to the mold 2 are reduced accompanying these flows. That is, the floating separation of inclusions in the tundish 1 is promoted.

但し、この堰7による作用・効果を得るためには、堰7の形状を最適化すると同時に堰7の形状に応じた流量で溶鋼を注入する必要があることを知見した。   However, in order to obtain the action and effect of the weir 7, it has been found that it is necessary to inject molten steel at a flow rate corresponding to the shape of the weir 7 at the same time as optimizing the shape of the weir 7.

即ち、堰7を配置したタンディッシュ1において、堰7で囲まれる空間の体積、切り欠き10の開口面積、取鍋からタンディッシュ1への溶鋼注入流量、堰7の上部開口部面積の鋼清浄化に及ぼす影響を調査した結果、特に、堰7で囲まれる空間の体積と切り欠き10の開口面積との比、並びに、取鍋からタンディッシュ1への溶鋼注入流量と堰7の上部開口部面積との比が、溶鋼13の清浄性に大きく影響することが分った。堰7で囲まれる空間の体積をV(m3)、切り欠き10の開口面積をB(m2)、取鍋からタンディッシュ1への溶鋼注入流量をQ(m3/min)、堰7の上部開口部面積をA(m2)として、以下に調査結果を説明する。尚、切り欠き10の開口面積Bは、切り欠き10の開口幅をD(m)とし、堰7の高さをH(m)とすると、B=D×Hで表される。この開口幅Dは全ての切り欠き10の開口幅の合計値である。また、堰7で囲まれる空間の体積Vとは、タンディッシュ1の底面と、堰7の壁部8と、堰7の庇状部9の下面とで囲まれる空間の体積であり、堰7の上部開口部面積Aとは、四方を庇状部9で囲まれた範囲の面積である。 That is, in the tundish 1 where the weir 7 is disposed, the volume of the space surrounded by the weir 7, the opening area of the notch 10, the flow rate of molten steel injected from the ladle into the tundish 1, and the steel cleanness of the upper opening area of the weir 7 As a result of investigating the influence on crystallization, in particular, the ratio of the volume of the space surrounded by the weir 7 and the opening area of the notch 10, the flow rate of molten steel injected from the ladle into the tundish 1, and the upper opening of the weir 7 It has been found that the ratio with the area greatly affects the cleanliness of the molten steel 13. The volume of the space surrounded by the weir 7 is V (m 3 ), the opening area of the notch 10 is B (m 2 ), the molten steel injection flow rate from the ladle to the tundish 1 is Q (m 3 / min), and the weir 7 The results of the investigation will be described below with the area of the upper opening of A being A (m 2 ). The opening area B of the notch 10 is expressed as B = D × H, where D (m) is the opening width of the notch 10 and H (m) is the height of the weir 7. This opening width D is the total value of the opening widths of all the notches 10. The volume V of the space surrounded by the weir 7 is the volume of the space surrounded by the bottom surface of the tundish 1, the wall portion 8 of the weir 7, and the lower surface of the bowl-shaped portion 9 of the weir 7. The upper opening area A is an area in a range surrounded by the hook-shaped portion 9 on all four sides.

図5に、溶鋼注入流量Qと上部開口部面積Aとの比(Q/A)を3.3の一定とした条件下で、鋼板での介在物起因の欠陥の発生密度に及ぼす、空間体積Vと切り欠き開口面積B(=D×H)との比(V/(D×H))の影響を調査した結果を示す。図5に示すように、V/(D×H)が下記の(1)式の関係を満足する場合に、介在物性欠陥の発生が少なくなることが分った。つまり、堰7による前述した作用・効果を得るためには、配置する堰7は、空間体積Vと、切り欠き開口面積B(=D×H)とが、下記の(1)式の関係を満足する形状であることが必要である。
0.5≦V/(D×H)≦250…(1)
V/(D×H)は、注入された溶鋼13の堰7の内部空間内における運動量減衰度を示す因子であり、堰7による介在物浮上分離の尺度と考えることができる。V/(D×H)が0.5未満の場合は、切り欠き10からの溶鋼13の上昇流速度が大きくなりすぎ、タンディッシュ内の溶鋼湯面を荒らし、該溶鋼湯面上に存在するスラグの巻き込みなどを引き起こす恐れがあり、一方、V/(D×H)が250を超える場合は、堰内での溶鋼運動量の減衰度が小さくなり、介在物の浮上分離効果が乏しくなる。
FIG. 5 shows the spatial volume that affects the density of defects due to inclusions in the steel sheet under the condition that the ratio (Q / A) of the molten steel injection flow rate Q to the upper opening area A is 3.3. The result of investigating the influence of the ratio (V / (D × H)) between V and the notch opening area B (= D × H) is shown. As shown in FIG. 5, it has been found that when V / (D × H) satisfies the relationship of the following formula (1), the occurrence of inclusion physical defect is reduced. That is, in order to obtain the above-mentioned action / effect by the weir 7, the weir 7 to be arranged has a relationship between the spatial volume V and the notch opening area B (= D × H) in the following formula (1). The shape must be satisfactory.
0.5 ≦ V / (D × H) ≦ 250 (1)
V / (D × H) is a factor indicating the degree of momentum attenuation in the internal space of the weir 7 of the injected molten steel 13, and can be considered as a measure of inclusion floating separation by the weir 7. When V / (D × H) is less than 0.5, the ascending flow speed of the molten steel 13 from the notch 10 becomes too large, and the molten steel surface in the tundish is roughened and exists on the molten steel surface. On the other hand, when V / (D × H) exceeds 250, the attenuation of molten steel momentum in the weir becomes small, and the floating separation effect of inclusions becomes poor.

図6は、比(V/(D×H))を30の一定とした条件下で、鋼板での介在物起因の欠陥の発生密度に及ぼす、溶鋼注入流量Qと上部開口部面積Aとの比(Q/A)の影響を調査した結果を示す。図6に示すように、Q/Aが下記の(2)式の関係を満足する場合に、介在物性欠陥の発生が少なくなることが分った。つまり、堰7による前述した作用・効果を得るためには、取鍋からタンディッシュ1への溶鋼注入流量Qが、堰7の上部開口部面積Aに対して下記の(2)の関係を満足するように、取鍋からタンディッシュ1への溶鋼注入流量を制御する必要がある。
0.18≦Q/A≦6.8…(2)
Q/Aは、注入された溶鋼13の堰内からの上昇度合いを示し、溶鋼中介在物の上昇しやすさの尺度を示す因子であり、V/(D×H)と同様に、堰7による介在物浮上分離の尺度と考えることができる。Q/Aが0.18未満の場合は、堰内での溶鋼運動量の減衰度が小さいために介在物の浮上分離効果が乏しくなり、清浄性の高い溶鋼を得ることができない。一方、Q/Aが6.8を超える場合は、堰内からの上昇速度が大きくなりすぎ、タンディッシュ内の溶鋼湯面を荒らし、該溶鋼湯面上に存在するスラグの巻き込みなどを引き起こす恐れがある。
FIG. 6 shows the relationship between the molten steel injection flow rate Q and the upper opening area A on the density of defects caused by inclusions in the steel sheet under the condition that the ratio (V / (D × H)) is constant at 30. The result of having investigated the influence of ratio (Q / A) is shown. As shown in FIG. 6, it has been found that when Q / A satisfies the relationship of the following formula (2), the occurrence of inclusion physical defect is reduced. That is, in order to obtain the above-described action / effect by the weir 7, the molten steel injection flow rate Q from the ladle to the tundish 1 satisfies the following relationship (2) with respect to the upper opening area A of the weir 7. Thus, it is necessary to control the molten steel injection flow rate from the ladle to the tundish 1.
0.18 ≦ Q / A ≦ 6.8 (2)
Q / A is a factor indicating the degree of rise of the injected molten steel 13 from the inside of the weir, and is a factor indicating a measure of the ease with which the inclusions in the molten steel rise. Like V / (D × H), the weir 7 It can be thought of as a measure of inclusion flotation separation. When Q / A is less than 0.18, since the attenuation of molten steel momentum in the weir is small, the floating separation effect of inclusions is poor, and molten steel with high cleanliness cannot be obtained. On the other hand, when Q / A exceeds 6.8, the ascending speed from the inside of the weir becomes too large, and the molten steel surface in the tundish may be roughened, and the slag existing on the molten steel surface may be involved. There is.

ここで、堰7は、上方に溶鋼13が存在することを前提とした堰であり、従って、堰7の高さは、少なくとも、堰7を配置する位置でのタンディッシュ内の溶鋼深さ未満とすることが必要である。また、好ましくは、堰7の高さは、堰7を配置する位置でのタンディッシュ内の溶鋼深さの1/2以下とする。一方、堰7の高さが余りに低いと、堰7の効果が得られないので、堰7の高さは100mm以上確保することが好ましい。   Here, the weir 7 is a weir on the assumption that the molten steel 13 exists above, and therefore the height of the weir 7 is at least less than the molten steel depth in the tundish at the position where the weir 7 is disposed. Is necessary. Preferably, the height of the weir 7 is not more than ½ of the molten steel depth in the tundish at the position where the weir 7 is disposed. On the other hand, if the height of the weir 7 is too low, the effect of the weir 7 cannot be obtained. Therefore, the height of the weir 7 is preferably secured to 100 mm or more.

また、実際の溶鋼注入部位5は「点」ではなく、或る程度の面積を持っており、このような溶鋼注入部位を四方から囲むと同時に、堰7で囲まれる空間の絶対量を確保するために、堰7の上部開口部のタンディッシュ長手方向の長さを、少なくともロングノズル3の下端部内径と同等とし、好ましくはそれ以上とする。尚、図1では、面積を有する溶鋼注入部位の中心位置を、溶鋼注入部位5として表示している。   In addition, the actual molten steel injection site 5 is not a “point” but has a certain area, and such a molten steel injection site is surrounded from all sides, and at the same time, the absolute amount of the space surrounded by the weir 7 is ensured. For this purpose, the length of the upper opening of the weir 7 in the tundish longitudinal direction is at least equal to the inner diameter of the lower end of the long nozzle 3, preferably more than that. In addition, in FIG. 1, the center position of the molten steel injection | pouring site | part which has an area is displayed as the molten steel injection | pouring site | part 5. FIG.

また、本発明で使用するタンディッシュ1には、堰7と溶鋼流出口6との間に、下方に開口部を有する上堰11が配置され、更に、上堰11と溶鋼流出口6との間に、上方に開口部を有する下堰12が、タンディッシュ1の溶鋼注入部位5を挟んだ両側に配置されている。   Moreover, in the tundish 1 used in the present invention, an upper weir 11 having an opening portion is disposed between the weir 7 and the molten steel outlet 6, and further, the upper weir 11 and the molten steel outlet 6 In the middle, lower weirs 12 having openings at the top are arranged on both sides of the molten steel injection site 5 of the tundish 1.

上記形状の堰7及び上堰11、下堰12を有するタンディッシュ1を使用し、溶鋼注入流量Qが(2)式の関係式を満足するように、溶鋼注入流量を制御しながら溶鋼13を連続鋳造すると、ロングノズル3から注入された溶鋼中の介在物は、堰7により上向き方向の流動を得て、タンディッシュ内の溶鋼湯面に浮上分離する。また、溶鋼湯面に浮上しなかった介在物は、その後、溶鋼流に乗って上堰11の溶鋼湯面近傍の壁部に至り、溶鋼流は、上堰11によって上向き及び下向きの流れに別れる。上向き流れの溶鋼中の介在物は、溶鋼湯面に浮上し、一方、下向き流れの溶鋼中の介在物は、上堰11のタンディッシュ底部近傍の開口部分から溶鋼流出口6の方向に流れ出る。その後、上堰11の外側にある下堰12により、溶鋼の流れが上向き方向となり、溶鋼湯面への介在物の浮上が促進される。つまり、堰7、上堰11及び下堰12によって溶鋼中の介在物の浮上分離が促進される。但し、上堰11及び下堰12の設置は、本発明を実施する上で必須の条件ではなく、堰7のみであっても介在物の浮上分離は促進される。   Using the tundish 1 having the weir 7 and the upper weir 11 and the lower weir 12 having the above shape, the molten steel 13 is controlled while controlling the molten steel injection flow rate so that the molten steel injection flow rate Q satisfies the relational expression (2). When continuous casting is performed, inclusions in the molten steel injected from the long nozzle 3 obtain an upward flow by the weir 7 and float and separate to the molten steel surface in the tundish. The inclusions that have not floated on the molten steel surface then ride on the molten steel flow and reach the wall near the molten steel surface of the upper weir 11, and the molten steel flow is separated into upward and downward flows by the upper weir 11. . Inclusions in the upward flowing molten steel float on the surface of the molten steel, while inclusions in the downward flowing molten steel flow out from the opening near the bottom of the tundish of the upper weir 11 toward the molten steel outlet 6. Thereafter, the lower weir 12 on the outer side of the upper weir 11 causes the flow of the molten steel to be directed upward, and promotes the floating of inclusions on the molten steel surface. That is, the weir 7, the upper weir 11 and the lower weir 12 promote the floating separation of inclusions in the molten steel. However, the installation of the upper weir 11 and the lower weir 12 is not an essential condition for carrying out the present invention, and even if only the weir 7 is used, the floating separation of inclusions is promoted.

ここで、壁部8の溶鋼注入部位側の面と庇状部9の下面側の面とを結ぶ、凹状の円弧の半径Rは、堰内に注入された溶鋼13の運動量減衰に大きく影響する。つまり、半径Rの大小によって溶鋼13の流速は大きく変化し、介在物の浮上分離に大きく影響する。そこで、比(Q/A)を3.3の一定、比(V/(D×H))を30の一定とし、且つ、庇状部9の突出長Yを0.12mの一定として半径Rを変化させ、鋼板での介在物起因の欠陥の発生密度に及ぼす半径Rの影響を調査した。調査結果を図7に示す。図7に示すように、円弧の半径Rが、庇状部9の突出長Yに対して下記の(3)式の関係を満足する場合に、つまり、半径Rが突出長Yの3倍以下の場合に、介在物性欠陥の発生が少なくなることが分った。但し、下記の(3)式において、Rは、壁部8の溶鋼注入部位側の面と庇状部9の下面側の面とを結ぶ円弧の半径(m)、Yは、庇状部9の突出長(m)である(図4参照)。
R≦3Y…(3)
半径Rが突出長Yの3倍を超える場合には、堰内での溶鋼の運動量減衰効果が著しく低下するため好ましくない。即ち、円弧の半径Rと庇状部9の突出長Yとが、上記の(3)式の関係を満足するように、堰7の形状を決めることが好ましい。
Here, the radius R of the concave arc connecting the surface of the wall portion 8 on the molten steel injection site side and the surface on the lower surface side of the bowl-shaped portion 9 greatly affects the momentum attenuation of the molten steel 13 injected into the weir. . That is, the flow velocity of the molten steel 13 varies greatly depending on the size of the radius R, which greatly affects the floating separation of inclusions. Accordingly, the radius (R) is set such that the ratio (Q / A) is constant at 3.3, the ratio (V / (D × H)) is constant at 30, and the protrusion length Y of the flange 9 is constant at 0.12 m. The effect of the radius R on the density of defects due to inclusions in the steel sheet was investigated. The survey results are shown in FIG. As shown in FIG. 7, when the radius R of the arc satisfies the relationship of the following expression (3) with respect to the protrusion length Y of the bowl-shaped portion 9, that is, the radius R is not more than three times the protrusion length Y. In this case, it was found that the occurrence of inclusion physical defect is reduced. However, in the following formula (3), R is the radius (m) of the arc connecting the surface of the wall 8 on the molten steel injection site side and the surface of the bottom surface of the flange 9, and Y is the flange 9 Is a protrusion length (m) (see FIG. 4).
R ≦ 3Y (3)
When the radius R exceeds 3 times the protrusion length Y, the effect of damping the molten steel momentum in the weir is significantly reduced, which is not preferable. That is, it is preferable to determine the shape of the weir 7 so that the radius R of the arc and the protruding length Y of the bowl-shaped portion 9 satisfy the relationship of the above expression (3).

以上説明したように、本発明によれば、庇状部9を有する堰7の形状を最適化し、更に、取鍋からタンディッシュ1への溶鋼13の注入流量を、堰7の形状に応じた注入流量に制御するので、タンディッシュ1における介在物の浮上分離が促進され、鋳型2に注入される溶鋼13の清浄性が高まり、連続鋳造される鋼鋳片14の清浄度が向上して、介在物起因の製品欠陥を大幅に低減することが実現される。   As described above, according to the present invention, the shape of the weir 7 having the bowl-shaped portion 9 is optimized, and the injection flow rate of the molten steel 13 from the ladle to the tundish 1 is set according to the shape of the weir 7. Since the injection flow rate is controlled, the floating separation of inclusions in the tundish 1 is promoted, the cleanliness of the molten steel 13 injected into the mold 2 is increased, and the cleanness of the continuously cast steel slab 14 is improved. It is possible to significantly reduce product defects due to inclusions.

転炉での溶銑の脱炭精錬及びその後のRH真空脱ガス装置での真空脱ガス精錬によって溶製した約250トンのアルミキルド極低炭素鋼を、図1に示す構成の容量70トンのタンディッシュを有するスラブ連続鋳造機を用いて鋼のスラブ鋳片に連続鋳造する試験を実施した。   About 250 tons of aluminum-killed ultra-low carbon steel melted by decarburization and refining of hot metal in the converter and subsequent vacuum degassing and refining in the RH vacuum degassing unit, is a tundish with a capacity of 70 tons having the configuration shown in FIG. A test for continuously casting a slab slab of steel using a slab continuous casting machine having a slab was carried out.

その際に、堰7で囲まれる空間の体積Vと切り欠きの開口面積D×Hとの比(V/(D×H))、取鍋からタンディッシュへの溶鋼注入流量Qと堰7の上部開口部面積Aとの比(Q/A)を変更して鋳造した(水準1〜9)。上堰11及び下堰12は全ての試験鋳造でタンディッシュの同一箇所に同一サイズのものを設置した。また、全てのタンディッシュで、庇状部の突出長Yを0.12m、壁部と庇状部とを結ぶ円弧の半径Rを0.06mとした。また、比較のために、堰7を設置していない以外は試験鋳造と同一のタンディッシュを使用した鋳造試験も実施した(水準10:従来例)。鋳造後、超音波探傷測定により鋳片の介在物数を調査した。   At that time, the ratio (V / (D × H)) of the volume V of the space surrounded by the weir 7 and the opening area D × H of the notch, the flow rate Q of molten steel from the ladle to the tundish and the weir 7 Casting was performed by changing the ratio (Q / A) with the upper opening area A (levels 1 to 9). The upper weir 11 and the lower weir 12 were installed in the same location on the tundish in all test castings. In all tundishes, the protrusion length Y of the hook-shaped portion was 0.12 m, and the radius R of the arc connecting the wall portion and the hook-shaped portion was 0.06 m. For comparison, a casting test was also performed using the same tundish as in the test casting except that no weir 7 was installed (level 10: conventional example). After casting, the number of inclusions in the slab was examined by ultrasonic flaw detection.

表1に、使用したタンディッシュの堰7の形状、溶鋼注入流量、比(Q/A)及び鋳片の介在物調査結果を示す。ここで、介在物調査結果は、堰7を配置していないタンディッシュを使用した水準10の測定値を基準として指数化して表示した。尚、表1に示す切り欠きの開口幅Dは、二箇所に設置した切り欠きでの合計値である。また、表1の備考欄には、水準1〜9において本発明の範囲の試験は「本発明例」と表示し、それ以外は「比較例」と表示した。   Table 1 shows the shape of the tundish weir 7 used, the molten steel injection flow rate, the ratio (Q / A), and the slab inclusion investigation results. Here, the inclusion investigation result was indexed and displayed based on the measurement value of level 10 using a tundish in which no weir 7 was arranged. In addition, the opening width D of the notch shown in Table 1 is the total value at the notch installed in two places. Further, in the remarks column of Table 1, tests in the scope of the present invention are indicated as “examples of the present invention” at levels 1 to 9, and “comparative examples” are indicated otherwise.

Figure 2012045583
Figure 2012045583

表1に示すように、本発明を適用することで、スラブ鋳片の介在物数を大幅に削減できることが確認できた。つまり、本発明を適用することにより、タンディッシュにおける介在物の浮上効果を大幅に促進できることが確認できた。   As shown in Table 1, it was confirmed that the number of inclusions in the slab slab can be significantly reduced by applying the present invention. That is, by applying the present invention, it has been confirmed that the floating effect of inclusions in the tundish can be greatly promoted.

1 タンディッシュ
2 鋳型
3 ロングノズル
4 浸漬ノズル
5 溶鋼注入部位
6 溶鋼流出口
7 堰
8 壁部
9 庇状部
10 切り欠き
11 上堰
12 下堰
13 溶鋼
14 鋼鋳片
DESCRIPTION OF SYMBOLS 1 Tundish 2 Mold 3 Long nozzle 4 Immersion nozzle 5 Molten steel injection | pouring site 6 Molten steel outlet 7 Weir 8 Wall part 9 Ridge part 10 Notch 11 Upper weir 12 Lower weir 13 Molten steel 14 Steel slab

Claims (2)

アルミニウムで脱酸された溶鋼を取鍋から一旦タンディッシュに注入し、次いでタンディッシュから鋳型に注入して鋼鋳片を連続鋳造するにあたり、取鍋からの溶鋼注入流がタンディッシュ底部に衝突する溶鋼注入部位と、タンディッシュから鋳型への溶鋼流出口との間に、前記溶鋼注入部位を四方向から囲んでタンディッシュの底部から上方に伸びる壁部と、該壁部の上端部位に前記溶鋼注入部位側を向いて水平方向に突出した庇状部と、を有する堰であって、前記壁部及び前記庇状部を貫通する切り欠きの開口面積と、前記堰で囲まれる空間の体積とが、下記の(1)式の関係を満足する形状となる堰を配置したタンディッシュを使用し、取鍋からタンディッシュへの溶鋼注入流量が、前記堰の上部開口部面積に対して下記の(2)の関係を満足するように、取鍋からタンディッシュへの溶鋼注入流量を制御しながら鋼鋳片を連続鋳造することを特徴とする、連続鋳造による高清浄度鋼鋳片の製造方法。
0.5≦V/(D×H)≦250…(1)
0.18≦Q/A≦6.8…(2)
但し、(1)式及び(2)式において、Vは、庇状部を有する堰で囲まれる空間の体積(m3)、Dは、切り欠きの開口幅(m)、Hは、堰の高さ(m)、Qは、取鍋からタンディッシュへの溶鋼注入流量(m3/min)、Aは、庇状部を有する堰の上部開口部面積(m2)である。
When molten steel deoxidized with aluminum is once poured into the tundish from the ladle and then poured into the mold from the tundish to continuously cast the steel slab, the molten steel pouring stream from the ladle collides with the bottom of the tundish. Between the molten steel injection portion and the molten steel outlet from the tundish to the mold, a wall portion surrounding the molten steel injection portion from four directions and extending upward from the bottom of the tundish, and the molten steel at the upper end portion of the wall portion A weir having a flange-like portion that faces the injection site side and protrudes in the horizontal direction, and an opening area of a notch that penetrates the wall portion and the saddle-like portion, and a volume of a space surrounded by the weir, However, using a tundish in which a weir having a shape satisfying the relationship of the following equation (1) is used, the flow rate of molten steel injected from the ladle to the tundish is as follows with respect to the upper opening area of the weir: (2) Seki So as to satisfy the, characterized by continuously casting a steel slab at a controlled molten steel injection flow to the tundish from a ladle, a manufacturing method of a high cleanliness steel slabs by continuous casting.
0.5 ≦ V / (D × H) ≦ 250 (1)
0.18 ≦ Q / A ≦ 6.8 (2)
However, in the formulas (1) and (2), V is the volume of the space (m 3 ) surrounded by the weir having the hook-shaped part, D is the opening width (m) of the notch, and H is the weir of the weir Height (m), Q is the molten steel injection flow rate from the ladle to the tundish (m 3 / min), and A is the upper opening area (m 2 ) of the weir having the bowl-shaped portion.
前記堰は、壁部の溶鋼注入部位側の面と庇状部の下面側の面とが半径をRとする円弧によって結ばれた形状であり、該円弧の半径Rが前記庇状部の突出長に対して下記の(3)式の関係を満足することを特徴とする、請求項1に記載の連続鋳造による高清浄度鋼鋳片の製造方法。
R≦3Y…(3)
但し、(3)式において、Rは、壁部の溶鋼注入部位側の面と庇状部の下面側の面とを結ぶ円弧の半径(m)、Yは、庇状部の突出長(m)である。
The weir has a shape in which a surface on the molten steel injection site side of the wall portion and a surface on the lower surface side of the bowl-shaped portion are connected by an arc having a radius R, and the radius R of the arc is a protrusion of the bowl-shaped portion. The method for producing a high cleanliness steel slab by continuous casting according to claim 1, wherein the relationship of the following expression (3) is satisfied with respect to the length.
R ≦ 3Y (3)
However, in the formula (3), R is a radius (m) of an arc connecting a surface of the wall portion on the molten steel injection site side and a surface on the lower surface side of the bowl-shaped portion, and Y is a projection length (m ).
JP2010190402A 2010-08-27 2010-08-27 Manufacturing method of high cleanliness steel slab by continuous casting Active JP5516235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010190402A JP5516235B2 (en) 2010-08-27 2010-08-27 Manufacturing method of high cleanliness steel slab by continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010190402A JP5516235B2 (en) 2010-08-27 2010-08-27 Manufacturing method of high cleanliness steel slab by continuous casting

Publications (2)

Publication Number Publication Date
JP2012045583A true JP2012045583A (en) 2012-03-08
JP5516235B2 JP5516235B2 (en) 2014-06-11

Family

ID=45901084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010190402A Active JP5516235B2 (en) 2010-08-27 2010-08-27 Manufacturing method of high cleanliness steel slab by continuous casting

Country Status (1)

Country Link
JP (1) JP5516235B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190799A1 (en) * 2012-06-18 2013-12-27 Jfeスチール株式会社 Method for manufacturing high-purity steel casting, and tundish
CN104390467A (en) * 2014-10-20 2015-03-04 何本科 Smelting water receiving and residue filtering tank
JP2017166026A (en) * 2016-03-16 2017-09-21 新日鐵住金株式会社 Manufacturing method of high cleanliness steel
CN110315060A (en) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 A kind of flow control formula tundish structure may filter that the field trash in molten steel
CN113510237A (en) * 2021-07-14 2021-10-19 东北大学 Tundish with slag avoiding function under protective atmosphere and use method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190799A1 (en) * 2012-06-18 2013-12-27 Jfeスチール株式会社 Method for manufacturing high-purity steel casting, and tundish
KR20150006859A (en) * 2012-06-18 2015-01-19 제이에프이 스틸 가부시키가이샤 Method for manufacturing high-purity steel casting, and tundish
CN104364032A (en) * 2012-06-18 2015-02-18 杰富意钢铁株式会社 Method for manufacturing high-purity steel casting, and tundish
KR101684382B1 (en) * 2012-06-18 2016-12-08 제이에프이 스틸 가부시키가이샤 Method for manufacturing high-purity steel casting, and tundish
CN104390467A (en) * 2014-10-20 2015-03-04 何本科 Smelting water receiving and residue filtering tank
CN104390467B (en) * 2014-10-20 2016-07-06 何本科 A kind of smelting water receiving strainer tub
JP2017166026A (en) * 2016-03-16 2017-09-21 新日鐵住金株式会社 Manufacturing method of high cleanliness steel
CN110315060A (en) * 2018-03-30 2019-10-11 宝山钢铁股份有限公司 A kind of flow control formula tundish structure may filter that the field trash in molten steel
JP2021517070A (en) * 2018-03-30 2021-07-15 宝山鋼鉄股▲分▼有限公司 Flow-controlled tundish structure that can filter inclusions in molten steel
JP7171756B2 (en) 2018-03-30 2022-11-15 宝山鋼鉄股▲分▼有限公司 Flow control type tundish structure that can filter inclusions in molten steel
CN113510237A (en) * 2021-07-14 2021-10-19 东北大学 Tundish with slag avoiding function under protective atmosphere and use method

Also Published As

Publication number Publication date
JP5516235B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5807719B2 (en) High cleanliness steel slab manufacturing method and tundish
JP5516235B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP4714539B2 (en) Tundish for continuous casting
JP5751078B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5556465B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
KR20090089360A (en) Molten metal continuous casting method
JP5831124B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5556421B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
JP5831138B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP5831163B2 (en) Manufacturing method of high cleanliness steel
JP2006239746A (en) Tundish for continuous casting of steel
JP4998705B2 (en) Steel continuous casting method
JP5206591B2 (en) Tundish for continuous casting
JP5125663B2 (en) Continuous casting method of slab slab
JP4319072B2 (en) Tundish with excellent inclusion levitation
JP5053226B2 (en) Tundish for continuous casting
WO2023210201A1 (en) Tundish and continuous casting method using same
JP5440933B2 (en) Immersion nozzle and continuous casting method using the same
KR102033642B1 (en) Processing apparatus for molten material
JP2011194420A (en) Method of producing high cleanliness steel
JPH04238658A (en) Immersion nozzle for continuous casting
JP2008132504A (en) Tundish for continuous casting
JP2019206018A (en) Method for feeding molten steel
JP2023066965A (en) nozzle system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R150 Certificate of patent or registration of utility model

Ref document number: 5516235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250