JP2006225727A - Method for producing extra-low-carbon steel - Google Patents

Method for producing extra-low-carbon steel Download PDF

Info

Publication number
JP2006225727A
JP2006225727A JP2005041591A JP2005041591A JP2006225727A JP 2006225727 A JP2006225727 A JP 2006225727A JP 2005041591 A JP2005041591 A JP 2005041591A JP 2005041591 A JP2005041591 A JP 2005041591A JP 2006225727 A JP2006225727 A JP 2006225727A
Authority
JP
Japan
Prior art keywords
mass
molten steel
concentration
added
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005041591A
Other languages
Japanese (ja)
Other versions
JP4392364B2 (en
Inventor
Katsuhiro Sasai
勝浩 笹井
Wataru Ohashi
渡 大橋
Wataru Yamada
亘 山田
Hajime Hasegawa
一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005041591A priority Critical patent/JP4392364B2/en
Publication of JP2006225727A publication Critical patent/JP2006225727A/en
Application granted granted Critical
Publication of JP4392364B2 publication Critical patent/JP4392364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an extra-low-carbon steel by which the surface flaw can surely be prevented by preventing an agglomerated body of inclusions in molten steel and finely dispersing inclusions in a steel plate. <P>SOLUTION: This method for producing the extra-low-carbon steel is characterpzed in that in the decarburize-treatment of the extra-low-carbon steel by using a vacuum-degassing apparatus, when the carbon concentration reaches to 0.005-0.01 mass%, a pre-deoxidation is performed by adding Al into the molten steel, and further decarburization is performed to ≤0.004 mass% carbon concentration while controlling dissolved oxygen concentration to 0.025-0.045 mass%, then the pre-deoxidation-strengthening is performed by further adding Al into the molten steel to control the dissolved oxygen concentration in the molten steel within 0.005 mass% to <0.025 mass%, thereafter the molten steel in which the Ti is added, further at least La and Ce are added, is cast. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、加工性、成形性に優れ、表面疵も発生し難い極低炭素鋼材の製造方法に関するものである。   The present invention relates to a method for producing an ultra-low carbon steel material that is excellent in workability and formability and hardly generates surface defects.

転炉や真空処理容器で精錬された溶鋼中には、多量の溶存酸素が含まれており、この過剰酸素は酸素との親和力が強い強脱酸元素であるAlにより脱酸されるのが一般的である。しかし、Alは脱酸によりAl23介在物を生成し、これが凝集合体して数100μm以上の粗大なアルミナクラスターとなる。 The molten steel refined in a converter or vacuum processing vessel contains a large amount of dissolved oxygen, and this excess oxygen is generally deoxidized by Al, a strong deoxidizing element with a strong affinity for oxygen. Is. However, Al generates Al 2 O 3 inclusions by deoxidation, and these aggregate and coalesce into coarse alumina clusters of several hundred μm or more.

このアルミナクラスターは、鋼板製造時に表面疵発生の原因となり、薄鋼板の品質を大きく劣化させる。特に、炭素濃度が低く、精錬後の溶存酸素濃度が高い薄鋼板用素材である極低炭素溶鋼では、アルミナクラスターの量が非常に多く、表面疵の発生率が極めて高く、Al23介在物の低減対策は大きな課題となっている。 This alumina cluster causes surface flaws during the production of the steel sheet and greatly deteriorates the quality of the thin steel sheet. In particular, ultra-low carbon molten steel, which is a material for thin steel sheets with a low carbon concentration and a high dissolved oxygen concentration after refining, has a very high amount of alumina clusters, a very high rate of surface defects, and Al 2 O 3 intervening. Measures to reduce things are a major issue.

これに対して、従来は特許文献1の介在物吸着用フラックスを溶鋼表面に添加してAl23介在物を除去する方法、或いは特許文献2の注入流を利用してCaOフラックスを溶鋼中に添加し、これによりAl23介在物を吸着除去する方法が提案、実施されてきた。 On the other hand, conventionally, the inclusion adsorption flux of Patent Document 1 is added to the surface of the molten steel to remove Al 2 O 3 inclusions, or the CaO flux is injected into the molten steel using the injection flow of Patent Document 2. A method of adsorbing and removing Al 2 O 3 inclusions has been proposed and implemented.

一方、Al23介在物を除去するのではなく、生成させない方法として、特許文献3にあるように溶鋼をMgで脱酸し、Alでは殆ど脱酸しない薄鋼板用溶鋼の溶製方法も開示されている。 On the other hand, as a method that does not remove the Al 2 O 3 inclusions but does not generate them, there is also a method for melting molten steel for thin steel sheets that is deoxidized with Mg and hardly deoxidized with Al as disclosed in Patent Document 3. It is disclosed.

特開平5−104219号公報JP-A-5-104219 特開昭63−149057号公報JP 63-149057 A 特開平5−302112号公報Japanese Patent Laid-Open No. 5-302112

しかしながら、特許文献1および特許文献2に開示されているようなAl23介在物を除去する方法では、極低炭素溶鋼中に多量に生成したAl23介在物を表面疵が発生しない程度まで低減することは非常に難しい。 However, in the method of removing Al 2 O 3 inclusions disclosed in Patent Document 1 and Patent Document 2, surface flaws are not generated in Al 2 O 3 inclusions generated in a large amount in ultra-low carbon molten steel. It is very difficult to reduce to the extent.

また、特許文献3に開示されているようなAl23介在物を全く生成しないMg脱酸では、Mgの蒸気圧が高く、溶鋼への歩留まりが非常に低いため、極低炭素鋼のように溶存酸素濃度が高い溶鋼をMgだけで脱酸するには多量のMgを必要とし、製造コストを考えると実用的なプロセスとは言えない。 In addition, Mg deoxidation that does not generate Al 2 O 3 inclusions as disclosed in Patent Document 3 has a high vapor pressure of Mg and a very low yield to molten steel. In order to deoxidize molten steel having a high dissolved oxygen concentration with only Mg, a large amount of Mg is required.

これらの問題を鑑み、本発明は溶鋼中介在物の凝集合体を防止し鋼板中に介在物を微細分散させることにより、確実に表面疵を防止できる極低炭素鋼材の製造方法を提示することを目的とする。   In view of these problems, the present invention presents a method for producing an ultra-low carbon steel material that can reliably prevent surface flaws by preventing aggregation and coalescence of inclusions in molten steel and finely dispersing inclusions in the steel sheet. Objective.

ここで、溶鋼を鋳造して得られる鋳片、鋳片を熱間圧延して得られる熱延鋼板、熱延鋼板を冷間圧延して得られる冷延鋼板等の鋼材料を合わせて、本発明では鋼材と定義する。   Here, steel materials such as a slab obtained by casting molten steel, a hot-rolled steel plate obtained by hot-rolling the slab, and a cold-rolled steel plate obtained by cold-rolling the hot-rolled steel plate are combined, In the invention, it is defined as a steel material.

上記課題を解決するために、本発明は以下の構成を要旨とする。
(1)真空脱ガス装置を用いた極低炭素溶鋼の脱炭処理において、炭素濃度が0.005〜0.01質量%に到達した時点で、該溶鋼にAlを添加して予備脱酸を行い、溶存酸素濃度を0.025〜0.045質量%に制御しつつ炭素濃度をさらに0.004質量%以下まで脱炭した後、該溶鋼に、さらにAlを添加して予備脱酸強化を行い、溶鋼中の溶存酸素濃度を0.005質量%以上0.025質量%未満とし、次いで、Tiを添加し、さらに、少なくともLa、Ceを添加した溶鋼を鋳造することを特徴とする極低炭素鋼材の製造方法。
In order to solve the above-described problems, the present invention has the following configuration.
(1) In decarburization processing of ultra-low carbon molten steel using a vacuum degassing apparatus, when the carbon concentration reaches 0.005 to 0.01 mass%, Al is added to the molten steel and preliminary deoxidation is performed. The carbon concentration is further decarburized to 0.004% by mass or less while controlling the dissolved oxygen concentration to 0.025 to 0.045% by mass, and further Al is added to the molten steel for preliminary deoxidation strengthening. And the dissolved oxygen concentration in the molten steel is 0.005 mass% or more and less than 0.025 mass%, then Ti is added, and further molten steel to which at least La and Ce are added is cast. A method for producing carbon steel.

(2)真空脱ガス装置を用いた極低炭素溶鋼の脱炭処理において、炭素濃度が0.005〜0.01質量%に到達した時点で、該溶鋼にAlを添加して予備脱酸を行い、溶存酸素濃度を0.025〜0.045質量%に制御しつつ炭素濃度をさらに0.004質量%以下まで脱炭した後、該溶鋼に、さらにAlを添加して予備脱酸強化を行い、溶鋼中の溶存酸素濃度を0.005質量%以上0.025質量%未満とし、次いで、Tiを添加してTi濃度を0.003〜0.4質量%とし、さらに、少なくともLa、Ceを添加しCeとLaの合計濃度を0.0005〜0.03質量%とした溶鋼を鋳造することを特徴とする極低炭素鋼材の製造方法。   (2) In the decarburization process of ultra-low carbon molten steel using a vacuum degassing apparatus, when the carbon concentration reaches 0.005 to 0.01% by mass, Al is added to the molten steel and preliminary deoxidation is performed. And after decarburizing to a carbon concentration of 0.004% by mass or less while controlling the dissolved oxygen concentration to 0.025 to 0.045% by mass, further adding Al to the molten steel for preliminary deoxidation strengthening And the dissolved oxygen concentration in the molten steel is 0.005 mass% or more and less than 0.025 mass%, then Ti is added to make the Ti concentration 0.003-0.4 mass%, and at least La, Ce Is added to cast a molten steel having a total concentration of Ce and La of 0.0005 to 0.03% by mass.

(3)真空脱ガス装置を用いた極低炭素溶鋼の脱炭処理において、炭素濃度が0.005〜0.01質量%に到達した時点で、該溶鋼にAlを添加して予備脱酸を行い、溶存酸素濃度を0.025〜0.045質量%に制御しつつ炭素濃度をさらに0.004質量%以下まで脱炭した後、該溶鋼に、さらにAlを添加して予備脱酸強化を行うと共に、3分以上攪拌を行い、溶鋼中の溶存酸素濃度を0.005質量%以上0.025質量%未満とし、次いで、Tiを添加してTi濃度を0.003〜0.4質量とし、さらに、少なくともLa、Ceを添加しCeとLaの合計濃度を0.0005〜0.03質量%とした溶鋼を鋳造することを特徴とする極低炭素鋼材の製造方法。   (3) In decarburization processing of ultra-low carbon molten steel using a vacuum degassing device, when the carbon concentration reaches 0.005 to 0.01 mass%, Al is added to the molten steel and preliminary deoxidation is performed. And after decarburizing to a carbon concentration of 0.004% by mass or less while controlling the dissolved oxygen concentration to 0.025 to 0.045% by mass, further adding Al to the molten steel for preliminary deoxidation strengthening And stirring for 3 minutes or more to make the dissolved oxygen concentration in the molten steel 0.005 mass% or more and less than 0.025 mass%, and then adding Ti to make the Ti concentration 0.003 to 0.4 mass Furthermore, a method for producing an ultra-low carbon steel material characterized by casting molten steel in which at least La and Ce are added and the total concentration of Ce and La is 0.0005 to 0.03% by mass.

(4)前記溶鋼を鋳造するに際し、1300℃における粘性が4poise以上のモールドフラックスを用いて鋳造することを特徴とする前記(1)〜(3)のいずれかに記載の極低炭素鋼材の製造方法。   (4) When the molten steel is cast, the ultra low carbon steel material according to any one of (1) to (3), wherein the molten steel is cast using a mold flux having a viscosity at 1300 ° C. of 4 poise or more. Method.

(5)前記溶鋼を鋳造するに際し、連続鋳造することを特徴とする前記(1)〜(4)のいずれかに記載の極低炭素鋼材の製造方法。   (5) The method for producing an ultra-low carbon steel material according to any one of (1) to (4), wherein the molten steel is continuously cast when the molten steel is cast.

本発明によると、溶鋼中の介在物を微細分散させることができるため、確実に表面疵を防止できる加工性、成形性に優れた極低炭素鋳片および極低炭素鋼板を製造することが可能となる。   According to the present invention, since inclusions in molten steel can be finely dispersed, it is possible to produce ultra-low carbon cast slabs and ultra-low carbon steel sheets with excellent workability and formability that can reliably prevent surface flaws. It becomes.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

転炉や真空処理容器で脱炭処理された溶鋼中には、多量の溶存酸素が含まれており、この溶存酸素は通常Alの添加により殆ど脱酸される([式1]の反応)ため、多量のAl23介在物を生成する。
2Al+3O=Al23 [式1]
The molten steel decarburized in the converter or vacuum processing vessel contains a large amount of dissolved oxygen, and this dissolved oxygen is usually almost deoxidized by the addition of Al (reaction of [Formula 1]). A large amount of Al 2 O 3 inclusions are produced.
2Al + 3O = Al 2 O 3 [Formula 1]

これらの介在物は、脱酸直後からお互いに凝集合体し、数100μm以上の粗大なアルミナクラスターとなり、鋼板製造時に表面欠陥の原因となる。   These inclusions aggregate and coalesce with each other immediately after deoxidation to form coarse alumina clusters of several hundred μm or more, which cause surface defects during the production of the steel sheet.

一方、アルミナクラスターを生成させないために、脱炭処理後の溶存酸素をAl以外の脱酸材、例えば、Mg等で脱酸することも考えられるが、この場合高価な脱酸元素を多量に使用することになり、製造コストの面から実用的なプロセスとは言えない。   On the other hand, in order not to generate alumina clusters, it may be possible to deoxidize the dissolved oxygen after decarburization treatment with a deoxidation material other than Al, such as Mg, but in this case, a large amount of expensive deoxidation element is used. Therefore, it is not a practical process in terms of manufacturing cost.

そこで、本発明者らは、脱炭中に溶存酸素の一部を脱炭反応を阻害しない範囲でAlにより予備脱酸し、さらに、脱炭終了後にも溶存酸素を全部Alで脱酸するのではなく、溶存酸素を残すようにAlを追加添加して予備脱酸を強化することにより、害にならない程度までAl23介在物量を短時間で浮上除去した後、改めてTiと少なくともCeとLaを添加して脱酸することを考案し、品質向上と製造コスト低減を両立させた。 Therefore, the present inventors preliminarily deoxidize part of the dissolved oxygen during the decarburization with Al as long as the decarburization reaction is not inhibited, and further deoxidize all the dissolved oxygen with Al after the decarburization is completed. Instead, by adding additional Al so as to leave dissolved oxygen and strengthening the preliminary deoxidation, the amount of inclusions of Al 2 O 3 is levitated and removed in a short time to such an extent that it does not cause harm, and then Ti and at least Ce We devised deoxidation by adding La, and achieved both quality improvement and manufacturing cost reduction.

ここで、上記の少なくともCeとLaを添加するとは、Ceを添加する、Laを添加する、CeとLaの両方を添加するのいずれかということを意味している。   Here, the addition of at least Ce and La means that either Ce is added, La is added, or both Ce and La are added.

通常、真空脱ガス装置を用いて、例えば、C濃度を0.04質量%から極低炭素領域の0.004質量%以下まで脱炭する場合、脱炭速度確保の観点から溶存酸素濃度を0.05質量%以上として処理されるのが通常である。   Normally, when decarburization is performed using a vacuum degassing apparatus, for example, from 0.04 mass% to 0.004 mass% or less in the extremely low carbon region, the dissolved oxygen concentration is reduced to 0 from the viewpoint of securing the decarburization speed. Usually, it is processed as 0.05 mass% or more.

しかし、C濃度が0.01質量%以下になると、それ以降の脱炭反応に対して0.05質量%以上の溶存酸素は過剰となるため、脱炭末期にAlを添加して予備脱酸を行い、溶存酸素濃度を0.025〜0.045質量%にしても十分に炭素濃度0.004質量%以下の極低炭素溶鋼を溶製できる。   However, when the C concentration is 0.01% by mass or less, since 0.05% by mass or more of dissolved oxygen becomes excessive with respect to the subsequent decarburization reaction, Al is added at the end of decarburization to perform preliminary deoxidation. Thus, even if the dissolved oxygen concentration is 0.025 to 0.045% by mass, an extremely low carbon molten steel having a carbon concentration of 0.004% by mass or less can be melted.

一方、脱炭末期に添加した予備脱酸Alは、過剰の溶存酸素と反応してアルミナ介在物を生成するが、脱炭中であるため真空脱ガス装置の真空度が高く溶鋼の攪拌力が非常に大きいこと、さらに、脱炭反応で生成したCOガス気泡がアルミナ介在物を捕捉して溶鋼中を浮上するため、非常に効率的にアルミナ介在物を分離除去できる。   On the other hand, preliminary deoxidized Al added at the end of decarburization reacts with excess dissolved oxygen to produce alumina inclusions. However, since decarburization is in progress, the vacuum degree of the vacuum degasser is high and the stirring power of the molten steel is high. Further, since the CO gas bubbles generated by the decarburization reaction capture the alumina inclusions and float in the molten steel, the alumina inclusions can be separated and removed very efficiently.

以上のように、本発明者らは、通常Alを添加すると必ず脱炭反応を阻害すると考えられた脱炭末期に脱炭反応を阻害しない溶存酸素濃度の範囲が存在すること、さらに、その範囲内でできるだけAl予備脱酸を実施するとアルミナ介在物を極めて効率的に除去できることを新たに見いだし、これら知見に基づいて、以下に示すAl予備脱酸方法の発明がなされた。   As described above, the present inventors usually have a range of dissolved oxygen concentration that does not inhibit the decarburization reaction at the end of the decarburization, which is considered to always inhibit the decarburization reaction when Al is added. In the present invention, it was newly found that alumina inclusions can be removed very efficiently by carrying out Al predeoxidation as much as possible. Based on these findings, the following Al predeoxidation method was invented.

脱炭中における予備脱酸Alの添加時期は、炭素濃度が0.005〜0.01質量%の範囲にある脱炭末期である。炭素濃度が0.005質量%未満では、脱炭終了までの時間が短か過ぎるため十分にアルミナ介在物を浮上分離できず、炭素濃度が0.01質量%超では予備脱酸Alの添加時期が早くなり過ぎるため脱炭反応が阻害される。   The addition time of preliminary deoxidized Al during decarburization is the end of decarburization when the carbon concentration is in the range of 0.005 to 0.01 mass%. If the carbon concentration is less than 0.005% by mass, the time until completion of decarburization is too short, so that the alumina inclusions cannot be sufficiently floated and separated. If the carbon concentration exceeds 0.01% by mass, the pre-deoxidized Al is added. Is too early, and the decarburization reaction is hindered.

脱炭末期における予備脱酸Alは、溶存酸素濃度が0.025〜0.045質量%になるように添加する必要がある。   The preliminary deoxidized Al at the end of decarburization needs to be added so that the dissolved oxygen concentration is 0.025 to 0.045% by mass.

溶存酸素濃度が0.025質量%未満では脱炭反応を阻害するため、溶存酸素濃度が0.045質量%超では、脱炭終了後に予備脱酸強化用として添加するAl量が増加し、アルミナ介在物の浮上効率が低下するためである。   If the dissolved oxygen concentration is less than 0.025% by mass, the decarburization reaction is inhibited. Therefore, if the dissolved oxygen concentration exceeds 0.045% by mass, the amount of Al added for preliminary deoxidation strengthening after decarburization is increased, and alumina is added. This is because the floating efficiency of inclusions decreases.

脱炭末期にAl予備脱酸処理した溶鋼中では、脱炭終了時にアルミナ介在物は殆ど浮上分離されているが、溶存酸素が0.025質量%以上残存している。このため、脱炭終了後にさらにAlを追加添加し予備脱酸を強化するが、Al予備脱酸を強化して溶存酸素濃度を0.005質量%未満に低下させると溶鋼中にアルミナ介在物が多量に生成し、浮上分離しきれずに残留してしまう。   In the molten steel subjected to Al preliminary deoxidation treatment at the end of decarburization, alumina inclusions are almost floated and separated at the end of decarburization, but dissolved oxygen remains at 0.025% by mass or more. For this reason, Al is further added after the decarburization to strengthen the preliminary deoxidation, but when the Al preliminary deoxidation is strengthened and the dissolved oxygen concentration is reduced to less than 0.005% by mass, alumina inclusions are contained in the molten steel. It is produced in large quantities and remains without being able to float and separate.

このため、脱炭終了後のAl予備脱酸強化は溶存酸素濃度が0.005質量%以上0.025質量%未満とする必要がある。   For this reason, the Al preliminary deoxidation strengthening after the end of decarburization needs to have a dissolved oxygen concentration of 0.005 mass% or more and less than 0.025 mass%.

上記Al予備脱酸とAl予備脱酸強化の処理を実施した溶鋼中には、まだ溶存酸素が0.005質量%以上残っているため、極低炭素鋼板として十分な材質を確保できない。そこで、本発明者らは、アルミナ介在物を生成させないように、Al予備脱酸強化後の溶鋼をTiで脱酸する。   In the molten steel subjected to the Al pre-deoxidation and Al pre-deoxidation strengthening treatments, dissolved oxygen still remains in an amount of 0.005% by mass or more, so that a sufficient material as an ultra-low carbon steel sheet cannot be secured. Therefore, the present inventors deoxidize the molten steel after the Al predeoxidation strengthening with Ti so as not to generate alumina inclusions.

しかし、Tiで脱酸した溶鋼中には、Al予備脱酸と予備脱酸強化により溶存酸素濃度を低下させていてもチタニア介在物が生成している。このチタニア介在物は取鍋からタンディッシュに溶鋼を注入する際、取鍋ノズルを閉塞させるといった問題を生じる。   However, in the molten steel deoxidized with Ti, titania inclusions are formed even if the dissolved oxygen concentration is lowered by Al preliminary deoxidation and preliminary deoxidation strengthening. This titania inclusion causes a problem that the ladle nozzle is blocked when molten steel is poured from the ladle into the tundish.

本発明者らは、取鍋ノズルやタンディッシュノズルが閉塞しないようにチタニア介在物を改質する元素を種々検討した結果、CeとLaが有効であり、チタニア介在物をCe酸化物−チタニア系、La酸化物−チタニア系、Ce酸化物−La酸化物−チタニア系複合介在物に改質することで取鍋ノズルやタンディッシュノズルへの付着が抑制されることを見いだした。   As a result of various studies on elements that modify titania inclusions so that the ladle nozzle and tundish nozzle are not blocked, Ce and La are effective, and the titania inclusions are converted to Ce oxide-titania system. It was found that adhesion to ladle nozzles and tundish nozzles was suppressed by modifying to La oxide-titania and Ce oxide-La oxide-titania composite inclusions.

チタニア介在物に比べてCe酸化物−チタニア系、La酸化物−チタニア系、Ce酸化物−La酸化物−チタニア系複合介在物は溶鋼との界面エネルギーを低く維持できるため、取鍋ノズルやタンディッシュノズルに付着し難くなるだけでなく、介在物同士も溶鋼中で凝集合体し難くなり、表面欠陥の原因となるクラスター状介在物の生成も防止できる。   Not only is it difficult to adhere to the dish nozzle, but also the inclusions are less likely to agglomerate and coalesce in the molten steel, thereby preventing the formation of cluster-like inclusions that cause surface defects.

これらの知見から、取鍋ノズルやタンディッシュノズルの閉塞を防止した上で介在物を溶鋼中に微細分散させるためには、Al予備脱酸強化後の溶鋼にTiを添加し、さらに、少なくともLa、Ceを添加して溶鋼中の介在物をCe酸化物−チタニア系、La酸化物−チタニア系、Ce酸化物−La酸化物−チタニア系複合介在物に改質することが非常に有効である。   From these findings, in order to finely disperse inclusions in the molten steel while preventing clogging of the ladle nozzle and tundish nozzle, Ti is added to the molten steel after Al predeoxidation strengthening, and at least La It is very effective to add Ce to modify inclusions in molten steel to Ce oxide-titania, La oxide-titania, and Ce oxide-La oxide-titania composite inclusions. .

このような溶鋼を鋳造することにより、介在物を微細に分散させた鋼材を製造できる。   By casting such molten steel, a steel material in which inclusions are finely dispersed can be produced.

上記の脱酸処理において、Tiの添加量、および、少なくともLa、Ceの添加量は介在物の凝集性や材質に影響を与えるため、好ましい添加範囲が存在する。Ti濃度が0.003質量%未満では極低炭素鋼板の材質が低下し易いため、Ti濃度が0.4質量%超ではCeやLaを添加しても介在物改質が不十分となり易いため、Ti濃度は0.003〜0.4質量%にすることが好ましい。   In the above deoxidation treatment, the addition amount of Ti and at least the addition amounts of La and Ce affect the cohesiveness and material of inclusions, and therefore there is a preferable addition range. If the Ti concentration is less than 0.003% by mass, the material of the ultra-low carbon steel sheet is likely to deteriorate. If the Ti concentration exceeds 0.4% by mass, inclusion modification is likely to be insufficient even if Ce or La is added. The Ti concentration is preferably 0.003 to 0.4 mass%.

また、CeとLaの合計濃度が0.0005質量%未満では介在物の改質が不十分となり易いため、CeとLaの合計濃度が0.03質量%超では過改質でCe酸化物−チタニア系、La酸化物−チタニア系、Ce酸化物−La酸化物−チタニア系複合介在物となり難いため、CeとLaの合計濃度を0.0005〜0.03質量%にすることが望ましい。   Further, if the total concentration of Ce and La is less than 0.0005% by mass, the modification of inclusions is likely to be insufficient. Therefore, if the total concentration of Ce and La exceeds 0.03% by mass, over-reforming causes Ce oxides— Since it is difficult to become a titania-based, La oxide-titania-based, Ce oxide-La oxide-titania-based composite inclusion, the total concentration of Ce and La is preferably 0.0005 to 0.03% by mass.

また、脱炭終了後のAl予備脱酸強化でAlを添加した後、直ちにTiを添加して脱酸しても良いが、溶鋼中に残留するアルミナ介在物をさらに低減する必要がある場合には、予備脱酸強化のAl添加から3分以上の攪拌時間を設けてアルミナ介在物の浮上分離を促進することもできる。これは、攪拌時間が3分未満ではアルミナ介在物の低減効果が見られ難いためである。   In addition, after Al is added by Al preliminary deoxidation strengthening after completion of decarburization, Ti may be immediately added to deoxidize, but when it is necessary to further reduce alumina inclusions remaining in the molten steel Can promote the floating separation of alumina inclusions by providing a stirring time of 3 minutes or more from the addition of Al for preliminary deoxidation strengthening. This is because if the stirring time is less than 3 minutes, it is difficult to see the effect of reducing alumina inclusions.

本発明の溶鋼を連続鋳造する場合、鋳造時間の経過と共にCe酸化物−チタニア系、La酸化物−チタニア系、Ce酸化物−La酸化物−チタニア系複合介在物がモールドフラックス中に吸収され、それと共にモールドフラックスの粘性が低下する可能性がある。モールドフラックスの粘性低下は、フラックス巻き込みを助長し、モールドフラックス起因の欠陥を引き起こす原因となる。   When continuously casting the molten steel of the present invention, Ce oxide-titania, La oxide-titania, Ce oxide-La oxide-titania composite inclusions are absorbed in the mold flux with the lapse of casting time, At the same time, the viscosity of the mold flux may decrease. The decrease in the viscosity of the mold flux promotes flux entrainment and causes defects due to the mold flux.

このため、本発明の溶鋼を連続鋳造する場合、介在物吸収による粘性低下を考慮して、モールドフラックス粘性を予め高めに設計しておくことが有効である。実験的知見により、1300℃におけるモールドフラックスの粘性を4poise以上にしておけば、モールドフラックス起因の欠陥は発生しないため好ましい。   For this reason, when continuously casting the molten steel of the present invention, it is effective to design the mold flux viscosity high in advance in consideration of viscosity reduction due to inclusion absorption. From experimental knowledge, it is preferable to set the viscosity of the mold flux at 1300 ° C. to 4 poise or more because defects due to the mold flux do not occur.

また、モールドフラックスはモールドと鋳片間の潤滑機能を有しており、その機能が損なわれない程度であれば、特に粘性の上限値を規定するものではない。   Further, the mold flux has a lubrication function between the mold and the slab, and does not particularly define the upper limit of viscosity as long as the function is not impaired.

本発明は、インゴット鋳造および連続鋳造でも可能であり、連続鋳造であれば通常の250mm厚み程度のスラブ連続鋳造に適用されるだけでなく、連続鋳造機の鋳型厚みがそれより薄い、例えば150mm以下の薄スラブ連続鋳造に対しても十分な効果が発現し、極めて表面疵の少ない鋳片を得ることができる。   The present invention is also applicable to ingot casting and continuous casting. If continuous casting is used, the present invention is not only applied to a slab continuous casting having a thickness of about 250 mm, but the mold thickness of the continuous casting machine is thinner, for example, 150 mm or less A sufficient effect is exhibited even for continuous casting of a thin slab, and it is possible to obtain a slab with extremely little surface flaws.

また、上記方法で得られた鋳片を、熱間圧延、冷間圧延等の通常の方法により、鋼板を製造できる。   Moreover, a steel plate can be manufactured from the slab obtained by the said method by normal methods, such as hot rolling and cold rolling.

以下に、実施例及び比較例を挙げて、本発明について説明する。   Hereinafter, the present invention will be described with reference to examples and comparative examples.

実施例1:真空脱ガス装置を用いて溶存酸素濃度0.06質量%、炭素濃度0.04質量%の溶鋼300tを脱炭処理した。炭素濃度が0.007質量%に達した時点で、溶鋼中に予備脱酸Alを70kg添加して溶存酸素濃度を0.04質量%に維持し、最終的に炭素濃度を0.003質量%まで脱炭した。   Example 1: Using a vacuum degassing apparatus, 300 t of molten steel having a dissolved oxygen concentration of 0.06% by mass and a carbon concentration of 0.04% by mass was decarburized. When the carbon concentration reaches 0.007% by mass, 70 kg of predeoxidized Al is added to the molten steel to maintain the dissolved oxygen concentration at 0.04% by mass, and finally the carbon concentration is 0.003% by mass. Until decarburized.

その後、予備脱酸強化Alを120kg添加して、溶存酸素を0.006質量%まで低減した。次いで、Tiを40kg添加してTi濃度0.01質量%とし、さらにLa−Ce合金を15kg添加してLaとCeの合計濃度0.003質量%の溶鋼を溶製した。   Thereafter, 120 kg of preliminary deoxidized strengthened Al was added to reduce dissolved oxygen to 0.006% by mass. Next, 40 kg of Ti was added to obtain a Ti concentration of 0.01% by mass, and 15 kg of La—Ce alloy was further added to melt molten steel having a total concentration of La and Ce of 0.003% by mass.

この溶鋼を連続鋳造法で厚み250mm、幅1800mmのスラブに鋳造した。鋳造の際に使用したモールドフラックスの1300℃における粘性は6poiseであった。鋳造した鋳片は8500mm長さに切断し、1コイル単位とした。このようにして得られたスラブは、常法により熱間圧延、冷間圧延し、最終的には0.7mm厚みで幅1800mmコイルの冷延鋼板とした。   This molten steel was cast into a slab having a thickness of 250 mm and a width of 1800 mm by a continuous casting method. The viscosity at 1300 ° C. of the mold flux used for casting was 6 poise. The cast slab was cut to a length of 8500 mm to make one coil unit. The slab thus obtained was hot-rolled and cold-rolled by a conventional method, and finally formed into a cold-rolled steel sheet having a thickness of 0.7 mm and a coil width of 1800 mm.

鋳片品質については、冷間圧延後の検査ラインで目視観察を行い、1コイル当たりに発生する表面欠陥の発生個数を評価した。その結果、表面欠陥は発生しなかった。   Regarding the slab quality, visual observation was performed on the inspection line after cold rolling, and the number of surface defects generated per coil was evaluated. As a result, no surface defects occurred.

また、鋳造中には取鍋ノズルとタンディッシュノズルの開度変化を調査したが、ノズル閉塞時にノズル開度が開いていくような現象は見られず、一定のノズル開度で安定操業できた。   In addition, we investigated changes in the opening of the ladle nozzle and the tundish nozzle during casting, but there was no phenomenon that the nozzle opening opened when the nozzle was closed, and stable operation was possible with a constant nozzle opening. .

実施例2:真空脱ガス装置を用いて溶存酸素濃度0.07質量%、炭素濃度0.045質量%の溶鋼300tを脱炭処理した。炭素濃度が0.005質量%に達した時点で、溶鋼中に予備脱酸Alを150kg添加して溶存酸素濃度を0.027質量%に維持し、最終的に炭素濃度を0.0025質量%まで脱炭した。   Example 2: 300t of molten steel having a dissolved oxygen concentration of 0.07 mass% and a carbon concentration of 0.045 mass% was decarburized using a vacuum degassing apparatus. When the carbon concentration reaches 0.005 mass%, 150 kg of predeoxidized Al is added to the molten steel to maintain the dissolved oxygen concentration at 0.027 mass%, and finally the carbon concentration is 0.0025 mass%. Until decarburized.

その後、予備脱酸強化Alを27kg添加して、溶存酸素を0.02質量%まで低減すると共に、3分間溶鋼を環流して攪拌した。次いで、Tiを150kg添加してTi濃度0.04質量%とし、さらにCe合金を35kg添加してCeの濃度0.01質量%の溶鋼を溶製した。この溶鋼を連続鋳造法で厚み70mm、幅1800mmの薄スラブに鋳造した。鋳造の際に使用したモールドフラックスの1300℃における粘性は5poiseであった。   Thereafter, 27 kg of preliminary deoxidized strengthened Al was added to reduce dissolved oxygen to 0.02 mass%, and the molten steel was refluxed for 3 minutes and stirred. Next, 150 kg of Ti was added to a Ti concentration of 0.04% by mass, and 35 kg of Ce alloy was further added to melt a molten steel having a Ce concentration of 0.01% by mass. This molten steel was cast into a thin slab having a thickness of 70 mm and a width of 1800 mm by a continuous casting method. The viscosity of the mold flux used at the time of casting at 1300 ° C. was 5 poise.

鋳造した鋳片は10000mm長さに切断し、1コイル単位とした。このようにして得られた薄スラブは、常法により熱間圧延、冷間圧延し、最終的には0.7mm厚みで幅1800mmコイルの冷延鋼板とした。   The cast slab was cut into a length of 10,000 mm to form one coil unit. The thin slab thus obtained was hot-rolled and cold-rolled by a conventional method, and finally formed into a cold-rolled steel sheet having a thickness of 0.7 mm and a coil width of 1800 mm.

鋳片品質については、冷間圧延後の検査ラインで目視観察を行い、1コイル当たりに発生する表面欠陥の発生個数を評価した。その結果、表面欠陥は発生しなかった。   Regarding the slab quality, visual observation was performed on the inspection line after cold rolling, and the number of surface defects generated per coil was evaluated. As a result, no surface defects occurred.

また、鋳造中における取鍋ノズルとタンディッシュノズルの開度変化はほぼ一定しており、両ノズルの閉塞はなく、操業は安定していた。   Moreover, the opening changes of the ladle nozzle and the tundish nozzle during casting were almost constant, the nozzles were not blocked, and the operation was stable.

比較例1:真空脱ガス装置を用いて溶存酸素濃度0.06質量%、炭素濃度0.04質量%の溶鋼300tを炭素濃度0.003質量%まで一挙に脱炭した。その後、Alを330kg添加して、Al濃度0.04質量%の溶鋼を溶製した。   Comparative Example 1: Using a vacuum degassing apparatus, 300 t of molten steel having a dissolved oxygen concentration of 0.06% by mass and a carbon concentration of 0.04% by mass was decarburized all at once to a carbon concentration of 0.003% by mass. Thereafter, 330 kg of Al was added to produce molten steel having an Al concentration of 0.04% by mass.

この溶鋼を連続鋳造法で厚み250mm、幅1800mmのスラブに鋳造した。鋳造の際に使用したモールドフラックスの粘性は1300℃で2poiseであった。鋳造した鋳片は8500mm長さに切断し、1コイル単位とした。このようにして得られたスラブは、常法により熱間圧延、冷間圧延し、最終的には0.7mm厚みで幅1800mmコイルの冷延鋼板とした。   This molten steel was cast into a slab having a thickness of 250 mm and a width of 1800 mm by a continuous casting method. The viscosity of the mold flux used at the time of casting was 2 poise at 1300 ° C. The cast slab was cut to a length of 8500 mm to make one coil unit. The slab thus obtained was hot-rolled and cold-rolled by a conventional method, and finally formed into a cold-rolled steel sheet having a thickness of 0.7 mm and a coil width of 1800 mm.

鋳片品質については、冷間圧延後の検査ラインで目視観察を行い、1コイル当たりに発生する表面欠陥の発生個数を評価した。その結果、スラブ平均で5個/コイルの表面欠陥が発生した。   Regarding the slab quality, visual observation was performed on the inspection line after cold rolling, and the number of surface defects generated per coil was evaluated. As a result, surface defects of 5 pieces / coil were generated on average on the slab.

また、鋳造中には取鍋ノズルとタンディッシュノズルの開度変化を調査したが、鋳造時間の経過と共にタンディッシュノズルの開度が開いていき、ノズル閉塞が発生した。このため、鋳型内の湯面変動が大きくなっており、操業性は悪化した。   During the casting, the changes in the opening of the ladle nozzle and the tundish nozzle were investigated. As the casting time passed, the opening of the tundish nozzle opened and the nozzle was clogged. For this reason, the molten metal surface fluctuation | variation in a casting_mold | template has become large, and operativity deteriorated.

Claims (5)

真空脱ガス装置を用いた極低炭素溶鋼の脱炭処理において、炭素濃度が0.005〜0.01質量%に到達した時点で、該溶鋼にAlを添加して予備脱酸を行い、溶存酸素濃度を0.025〜0.045質量%に制御しつつ炭素濃度をさらに0.004質量%以下まで脱炭した後、該溶鋼に、さらにAlを添加して予備脱酸強化を行い、溶鋼中の溶存酸素濃度を0.005質量%以上0.025質量%未満とし、次いで、Tiを添加し、さらに、少なくともLa、Ceを添加した溶鋼を鋳造することを特徴とする極低炭素鋼材の製造方法。   In the decarburization process of ultra-low carbon molten steel using a vacuum degassing device, when the carbon concentration reaches 0.005 to 0.01% by mass, Al is added to the molten steel and preliminary deoxidation is performed. After decarburizing to a carbon concentration of 0.004% by mass or less while controlling the oxygen concentration to 0.025 to 0.045% by mass, Al is further added to the molten steel for preliminary deoxidation strengthening. An ultra-low carbon steel material characterized in that the dissolved oxygen concentration in the steel is 0.005 mass% or more and less than 0.025 mass%, then Ti is added, and at least La and Ce are cast. Production method. 真空脱ガス装置を用いた極低炭素溶鋼の脱炭処理において、炭素濃度が0.005〜0.01質量%に到達した時点で、該溶鋼にAlを添加して予備脱酸を行い、溶存酸素濃度を0.025〜0.045質量%に制御しつつ炭素濃度をさらに0.004質量%以下まで脱炭した後、該溶鋼に、さらにAlを添加して予備脱酸強化を行い、溶鋼中の溶存酸素濃度を0.005質量%以上0.025質量%未満とし、次いで、Tiを添加してTi濃度を0.003〜0.4質量%とし、さらに、少なくともLa、Ceを添加しCeとLaの合計濃度を0.0005〜0.03質量%とした溶鋼を鋳造することを特徴とする極低炭素鋼材の製造方法。   In the decarburization process of ultra-low carbon molten steel using a vacuum degassing device, when the carbon concentration reaches 0.005 to 0.01% by mass, Al is added to the molten steel and preliminary deoxidation is performed. After decarburizing to a carbon concentration of 0.004% by mass or less while controlling the oxygen concentration to 0.025 to 0.045% by mass, Al is further added to the molten steel for preliminary deoxidation strengthening. The dissolved oxygen concentration is 0.005 mass% or more and less than 0.025 mass%, then Ti is added to make the Ti concentration 0.003-0.4 mass%, and at least La and Ce are added. A method for producing an ultra-low carbon steel material, comprising casting molten steel having a total concentration of Ce and La of 0.0005 to 0.03 mass%. 真空脱ガス装置を用いた極低炭素溶鋼の脱炭処理において、炭素濃度が0.005〜0.01質量%に到達した時点で、該溶鋼にAlを添加して予備脱酸を行い、溶存酸素濃度を0.025〜0.045質量%に制御しつつ炭素濃度をさらに0.004質量%以下まで脱炭した後、該溶鋼に、さらにAlを添加して予備脱酸強化を行うと共に、3分以上攪拌を行い、溶鋼中の溶存酸素濃度を0.005質量%以上0.025質量%未満とし、次いで、Tiを添加してTi濃度を0.003〜0.4質量とし、さらに、少なくともLa、Ceを添加しCeとLaの合計濃度を0.0005〜0.03質量%とした溶鋼を鋳造することを特徴とする極低炭素鋼材の製造方法。   In the decarburization process of ultra-low carbon molten steel using a vacuum degassing device, when the carbon concentration reaches 0.005 to 0.01% by mass, Al is added to the molten steel and preliminary deoxidation is performed. After decarburizing the carbon concentration to 0.004% by mass or less while controlling the oxygen concentration to 0.025 to 0.045% by mass, further adding Al to the molten steel to perform preliminary deoxidation strengthening, Stir for 3 minutes or more, and make dissolved oxygen concentration in molten steel 0.005 mass% or more and less than 0.025 mass%, then add Ti to make Ti concentration 0.003-0.4 mass, A method for producing an ultra-low carbon steel material, characterized in that at least La and Ce are added to cast molten steel having a total concentration of Ce and La of 0.0005 to 0.03% by mass. 前記溶鋼を鋳造するに際し、1300℃における粘性が4poise以上のモールドフラックスを用いて鋳造することを特徴とする請求項1〜3のいずれか1項に記載の極低炭素鋼材の製造方法。   The method for producing an extremely low carbon steel material according to any one of claims 1 to 3, wherein the molten steel is cast using a mold flux having a viscosity at 1300 ° C of 4 poise or more. 前記溶鋼を鋳造するに際し、連続鋳造することを特徴とする請求項1〜4のいずれか1項に記載の極低炭素鋼材の製造方法。   The method for producing an ultra-low carbon steel material according to any one of claims 1 to 4, wherein the molten steel is continuously cast when the molten steel is cast.
JP2005041591A 2005-02-18 2005-02-18 Method for producing ultra-low carbon steel Active JP4392364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041591A JP4392364B2 (en) 2005-02-18 2005-02-18 Method for producing ultra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041591A JP4392364B2 (en) 2005-02-18 2005-02-18 Method for producing ultra-low carbon steel

Publications (2)

Publication Number Publication Date
JP2006225727A true JP2006225727A (en) 2006-08-31
JP4392364B2 JP4392364B2 (en) 2009-12-24

Family

ID=36987348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041591A Active JP4392364B2 (en) 2005-02-18 2005-02-18 Method for producing ultra-low carbon steel

Country Status (1)

Country Link
JP (1) JP4392364B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023045A (en) * 2008-07-15 2010-02-04 Nippon Steel Corp Continuous casting method for low-carbon steel
CN102575308A (en) * 2009-07-30 2012-07-11 塔塔钢铁艾默伊登有限责任公司 Process for producing an ultra-low-carbon steel slab, strip or sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023045A (en) * 2008-07-15 2010-02-04 Nippon Steel Corp Continuous casting method for low-carbon steel
JP4571994B2 (en) * 2008-07-15 2010-10-27 新日本製鐵株式会社 Low carbon steel continuous casting method
US9149867B2 (en) 2008-07-15 2015-10-06 Nippon Steel & Sumitomo Metal Corporation Low-carbon steel slab producing method
EP2298470A4 (en) * 2008-07-15 2016-11-02 Nippon Steel & Sumitomo Metal Corp Process for production of cast slab of low-carbon steel
CN102575308A (en) * 2009-07-30 2012-07-11 塔塔钢铁艾默伊登有限责任公司 Process for producing an ultra-low-carbon steel slab, strip or sheet

Also Published As

Publication number Publication date
JP4392364B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US8048197B2 (en) Low carbon steel sheet and low carbon steel slab and process for producing same
JP2004143510A (en) Method for melting steel sheet for extra low carbon or low carbon thin sheet having excellent surface quality, and continuously cast slab
JP6645214B2 (en) Method for producing low carbon steel thin cast slab, low carbon steel thin cast slab, and method for producing low carbon steel thin steel plate
JP4392364B2 (en) Method for producing ultra-low carbon steel
JP2006257542A (en) Extremely low carbon steel sheet and extremely low carbon cast slab excellent in surface characteristic, workability and formability, and producing method therefor
JP3686579B2 (en) Method of melting steel sheet for thin plate and slab cast using the same
JP3742619B2 (en) Low carbon steel slab manufacturing method
JP6547638B2 (en) Method of manufacturing high purity steel
JP2018015794A (en) Manufacturing method of low carbon steel thin slab, low carbon steel thin slab, and manufacturing method of low carbon steel thin steel sheet
JP6825507B2 (en) Manufacturing method of low carbon steel thin wall slab and manufacturing method of low carbon steel thin wall slab and low carbon steel thin steel sheet
JP2001105101A (en) Melting method of steel plate for thin sheet
JP4227478B2 (en) Low carbon steel slab manufacturing method
JP2010023045A (en) Continuous casting method for low-carbon steel
JP3760144B2 (en) Ultra-low carbon steel sheet, ultra-low carbon steel slab and method for producing the same
JP4392365B2 (en) Method for producing ultra-low carbon steel
JP2001032014A (en) Method for manufacturing steel plate for sheet steel
JP4660037B2 (en) Method for melting steel sheet for thin plate and cast piece thereof
JP4035081B2 (en) Method for producing ultra-low carbon steel slab
JP4477971B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
JP2005139492A (en) Reforming agent for inclusion in molten steel, and method for producing low carbon steel cast slab
JPH07224317A (en) Production of high cleanliness steel
JP2004195522A (en) Low carbon thin-walled cast steel piece and low carbon steel sheet obtained by twin drum type continuous casting process, and method for manufacturing the same
JP2002003930A (en) Method for melting steel plate for thin sheet
JP4520653B2 (en) Casting method for thin plate slab
JP2002249818A (en) Method for refining thin steel sheet, and slab cast by using the steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4392364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350