JP2017164795A - Shape control method in cold rolling - Google Patents

Shape control method in cold rolling Download PDF

Info

Publication number
JP2017164795A
JP2017164795A JP2016053907A JP2016053907A JP2017164795A JP 2017164795 A JP2017164795 A JP 2017164795A JP 2016053907 A JP2016053907 A JP 2016053907A JP 2016053907 A JP2016053907 A JP 2016053907A JP 2017164795 A JP2017164795 A JP 2017164795A
Authority
JP
Japan
Prior art keywords
rolling
exit side
side tension
end portion
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016053907A
Other languages
Japanese (ja)
Other versions
JP6644592B2 (en
Inventor
相沢 敦
Atsushi Aizawa
敦 相沢
冨村 宏紀
Hiroki Tomimura
宏紀 冨村
康太 伊藤
Kota Ito
康太 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2016053907A priority Critical patent/JP6644592B2/en
Publication of JP2017164795A publication Critical patent/JP2017164795A/en
Application granted granted Critical
Publication of JP6644592B2 publication Critical patent/JP6644592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PURPOSE: To prevent both of drawing in slow rolling speed part at rolling start time and end time, and plate breaking in high rolling speed part, between stands in a cold tandem mill.CONSTITUTION: A shape control method in cold rolling comprises: determining a drawing limit value of tension at an outlet side of a plate end part that causes a drawing in a rolling material. and a break limit value of tension at the outlet side of the plate end part that causes plate breaking in the rolling material, in advance; calculating a prediction value of the tension at the outlet side of the plate end part, using a prediction formula representing the tension at the outlet side of the plate end part; calculating a control quantity for shape control means that makes the tension to be equal to or greater than the predetermined drawing limit value in slow rolling speed part at rolling start time and rolling end time, as well as to be equal to or less than the predetermined break limit value in high rolling speed part during rolling, on the basis of the calculated prediction value of the tension at the outlet side of the plate end part; and performing control of the tension at the at outlet side of the plate end part using the calculated control quantity of the shape control means.SELECTED DRAWING: Figure 11

Description

本発明は、圧延された金属帯が板破断および絞り込みを生じないように圧延条件を適正化する方法に関する。   The present invention relates to a method for optimizing rolling conditions so that a rolled metal strip does not cause sheet breakage and narrowing.

冷間圧延機において鋼帯を圧延する際には、鋼帯の厚さや圧延条件によって圧延形状の不良を引き起こし、製品の品質不良を発生させてしまう。圧延形状の不良とは具体的には、中伸び形状(圧延方向の長さの歪のうち、中央部分が延びてしまうこと)や耳伸び形状(圧延方向の長さの歪のうち、圧延材の両端部が延びてしまうこと)が挙げられる。   When rolling a steel strip in a cold rolling mill, a rolling shape defect is caused depending on the thickness of the steel strip and rolling conditions, resulting in poor product quality. Specifically, the rolling shape defect is a medium-elongation shape (the central portion of the length distortion in the rolling direction is extended) or an ear extension shape (of the length distortion in the rolling direction, the rolled material). For example, both ends of the end of the substrate may extend).

このような形状不良を抑制するため、冷間タンデムミルでは、ワークロールベンダー、中間ロールベンダー、中間ロールシフト等の形状制御手段の制御量を適正値に設定することにより、スタンド間の板形状が悪化しないように図られている。しかし、幅方向の板端部には微小な割れが存在することが多いため、平均出側張力が大きい場合やスタンド間の圧延材形状が中伸びの場合には板端部出側張力が過大となり、板破断を生じさせる場合がある。   In order to suppress such shape defects, in cold tandem mills, the plate shape between stands can be set by setting the control amount of the shape control means such as work roll bender, intermediate roll bender, intermediate roll shift to an appropriate value. It is designed not to get worse. However, there are many small cracks at the plate end in the width direction, so the plate end exit tension is excessive when the average exit tension is large or the shape of the rolled material between the stands is medium stretch. Thus, the plate may be broken.

そこで、特開平4−200904号公報では、冷間タンデムミルのスタンド間で金属帯端部の急峻度が耳割れの成長しない限界値以上の耳伸び形状となるように形状制御することで板破断を防止する冷間圧延方法が提案されている。これは、平均出側張力が小さい場合に、スタンド間の圧延形状が耳伸び形状となることにより板端部出側張力が小さくなることで、板破断を防止する方法である。   Therefore, in Japanese Patent Application Laid-Open No. 4-200904, the plate breaks by controlling the shape so that the steepness of the end of the metal band between the stands of the cold tandem mill is not less than the limit value where the ear crack does not grow. A cold rolling method for preventing the above has been proposed. This is a method of preventing plate breakage by reducing the plate end portion exit side tension when the average exit side tension is small and the rolled shape between the stands becomes an extended ear shape.

しかし、特開平4−200904号公報の方法では、平均出側張力が大きく耳伸びの程度が軽い場合に板端部出側張力が過大となり、板破断を生じる場合がある。   However, in the method disclosed in Japanese Patent Laid-Open No. 4-200904, the plate end portion exit side tension becomes excessive when the average exit side tension is large and the degree of ear extension is light, and the plate may break.

そこで、特開平8−141620号公報では、冷間リバース圧延機において形状検出器出力に基づいて算出される板端部出側張力が予め定めた値よりも大きくなった際に全張力を低減すること(平均出側張力を低減することと同一)により、板端部出側張力が予め定めた値以下として形状制御を行うことを特徴とする圧延機における形状制御方法が提案されている。   Therefore, in Japanese Patent Laid-Open No. 8-141620, the total tension is reduced when the plate end portion exit side tension calculated based on the output of the shape detector in the cold reverse rolling mill becomes larger than a predetermined value. Therefore, a shape control method in a rolling mill has been proposed in which shape control is performed with the sheet end portion exit side tension being equal to or less than a predetermined value.

特開平4−200904号公報Japanese Patent Laid-Open No. 4-200904 特開平8−141620号公報JP-A-8-141620

特許文献2の方法では、被圧延材の形状を形状検出器で検出し、幅方向のユニット張力の最大値及び特定の幅方向の位置ユニット張力の少なくとも一方が、それぞれの予め定めた値よりも大きくなった際に全張力を低減させることで板端部出側張力を小さくすることができ、それによって板破断を防止することができるものである。   In the method of Patent Document 2, the shape of the material to be rolled is detected by a shape detector, and at least one of the maximum value of the unit tension in the width direction and the position unit tension in the specific width direction is more than a predetermined value. By reducing the total tension when it becomes larger, the plate end portion exit side tension can be reduced, thereby preventing the plate from breaking.

しかし、特許文献2の方法では、板端部出側張力が過小となる場合があり、圧延材に絞り込みが生じる場合がある。圧延荷重は圧延速度により変化するものであり、一般的に、圧延速度が速くなると荷重は下がり、圧延速度が遅くなると荷重は上がる。圧延工程では、材料を入れ始めた時(圧延開始時)の低速状態(低速部)からやがて高速状態(高速部)となり、材料を抜く時(圧延終了時)は再び低速状態(低速部)になる。そうすると、板の先端と真ん中とでは荷重が変化し、板厚にも差異が生じることになる。   However, in the method of Patent Document 2, the plate end portion exit side tension may be too small, and the rolled material may be narrowed down. The rolling load varies depending on the rolling speed. Generally, the load decreases as the rolling speed increases, and increases as the rolling speed decreases. In the rolling process, when the material starts to be put (at the start of rolling), it gradually changes from the low speed state (low speed part) to the high speed state (high speed part), and when the material is pulled out (at the end of rolling), it again changes to the low speed state (low speed part). Become. If it does so, a load will change with the front-end | tip of a board, and the middle, and a difference will also arise in board thickness.

具体的には、圧延開始時と終了時における圧延速度の低速部では高速部に比べて圧延油の取り込み量が減少し、摩擦係数が大きくなるので、これにより圧延荷重が増加し、圧延材の圧延形状が耳伸び形状に変化する。ここで、圧延開始時と終了時の低速部には、図1に示すようなコイル同士を溶接して連続圧延する場合の1コイルの圧延開始時と終了時の低速部を含む。そこで、高速部における板破断を防止するため、板端部出側張力を小さくすると、低速部において、耳伸び形状に起因して板端部出側張力が過小となり、圧延材に絞り込みが生じる場合がある。   Specifically, the rolling oil uptake amount and the friction coefficient increase at the low speed part of the rolling speed at the start and end of rolling compared to the high speed part, thereby increasing the rolling load, and the rolling material. The rolled shape changes to an extended ear shape. Here, the low speed portion at the start and end of rolling includes a low speed portion at the start and end of rolling of one coil in the case of continuous rolling by welding coils as shown in FIG. Therefore, in order to prevent the plate breakage at the high speed part, if the plate end part exit side tension is reduced, the plate end part exit side tension becomes too low due to the shape of the ear extension at the low speed part, and the rolled material is narrowed down. There is.

本発明は、このような問題を解消すべく案出されたものであり、好適に板端部出側張力を制御し、圧延速度の低速部における絞り込みおよび高速部における板破断の両方を防止する形状制御方法を提供することを目的とする。   The present invention has been devised to solve such a problem, and suitably controls the sheet end portion exit side tension to prevent both narrowing at the low speed portion of the rolling speed and plate breakage at the high speed portion. An object is to provide a shape control method.

これらの目的を達成するため、請求項1に記載の発明は、圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値(張力下限値)および圧延材に板破断が生じる板端部出側張力の破断限界値(張力上限値)を予め求め、前記板端部出側張力を表す予測式を用いて該板端部出側張力の予測値を算出し、算出された前記板端部出側張力の予測値に基づいて、圧延開始時および圧延終了時の圧延速度の低速部においては予め求めた前記絞り込み限界値以上、且つ圧延中の圧延速度の高速部においては予め求めた前記破断限界値以下となるように形状制御手段の制御量を算出し、算出された前記形状制御手段の制御量を用いて前記板端部出側張力を制御することを特徴とする冷間圧延における形状制御方法である。   In order to achieve these objects, the invention according to claim 1 is characterized in that the narrowing limit value (tension lower limit value) of the plate end portion exit side tension at which narrowing occurs in the rolled material and the plate end portion exit at which plate breakage occurs in the rolled material. The fracture end value (tension upper limit value) of the side tension is obtained in advance, and the predicted value of the plate end portion exit side tension is calculated using a prediction formula representing the plate end portion exit side tension, and the calculated plate end portion Based on the predicted value of the exit side tension, the above-mentioned squeezing limit value is obtained in advance at the low speed portion of the rolling speed at the start and end of rolling, and the above-mentioned fracture is obtained in the high speed portion of the rolling speed during rolling. A shape in cold rolling, characterized in that a control amount of the shape control means is calculated so as to be equal to or less than a limit value, and the strip end side tension is controlled using the calculated control amount of the shape control means. It is a control method.

また、請求項2にかかる発明は、圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値および圧延材に板破断が生じる板端部出側張力の破断限界値を予め求め、平均出側張力、圧延荷重および形状制御手段の制御量を変数として前記板端部出側張力を表す予測式を予め作成し、平均出側張力と、圧延開始時および圧延終了時の圧延速度の低速部ならびに圧延中の圧延速度の高速部における圧延荷重の予測値とを前記予測式に代入し、圧延開始時および圧延終了時の圧延速度の低速部においては予め求めた前記絞り込み限界値以上、且つ圧延中の圧延速度の高速部においては前記破断限界値以下となるように形状制御手段の制御量を算出し、算出した前記形状制御手段の制御量を用いて前記板端部出側張力を制御することを特徴とする冷間圧延における形状制御方法である。   Further, the invention according to claim 2 obtains in advance the squeezing limit value of the sheet end portion exit side tension at which the rolled material is squeezed and the rupture limit value of the plate end portion exit side tension at which the rolled material is ruptured. Predicting formulas representing the end tension at the end of the plate end using the side tension, rolling load, and the control amount of the shape control means as variables are created in advance, and the average exit side tension and the low speed part of the rolling speed at the start and end of rolling. Further, the predicted value of the rolling load at the high speed part of the rolling speed during rolling is substituted into the prediction formula, and at the low speed part of the rolling speed at the start of rolling and at the end of rolling, it is equal to or higher than the above-mentioned narrowing limit value and rolling. The control amount of the shape control means is calculated so as to be equal to or less than the fracture limit value at the high speed portion of the rolling speed, and the plate end portion exit side tension is controlled using the calculated control amount of the shape control means. Cold A shape control method in the rolling.

さらに、請求項3にかかる発明は、圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値および圧延材に板破断が生じる板端部出側張力の破断限界値を予め求め、平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として板端部出側張力を表す予測式を予め作成し、平均出側張力と、素材クラウンの測定値と、圧延開始時および圧延終了時の圧延速度の低速部ならびに圧延中の圧延速度の高速部における圧延荷重の予測値とを前記予測式に代入し、前記板端部出側張力が圧延開始時および圧延終了時の低速部においては予め求めた前記絞り込み限界値以上、且つ圧延中の圧延速度の高速部においては予め求めた前記破断限界値以下となるように前記形状制御手段の制御量を算出し、算出した前記形状制御手段の制御量を用いて前記板端部出側張力を制御することを特徴とする冷間圧延における形状制御方法である。   Further, the invention according to claim 3 preliminarily obtains the limit value of the strip end side tension at which the rolling material is narrowed and the limit value of the strip end side tension at which the plate material is ruptured. Predictive formulas representing the strip edge exit side tension are created in advance using the side tension, rolling load, material crown amount and control amount of the shape control means as variables, and the average exit side tension, measured material crown value, and rolling start time And the predicted value of the rolling load at the low-speed part of the rolling speed at the end of rolling and the high-speed part of the rolling speed during rolling are substituted into the prediction formula, and the sheet end portion exit side tension is determined at the start of rolling and the end of rolling. In the low speed part, the control amount of the shape control means is calculated so as to be equal to or higher than the previously obtained narrowing limit value, and in the high speed part of the rolling speed during rolling, to be equal to or less than the predetermined fracture limit value. Shape control means A shape control method in a cold rolling and controlling the plate end exit side tension using the control amount.

以上に説明したように、本発明においては、冷間タンデムミルのスタンド間において、圧延開始時と終了時の圧延速度の低速部における絞り込みおよび圧延中の圧延速度の高速部における板破断の両方を防止することが可能となる。   As described above, in the present invention, between the cold tandem mill stands, both the narrowing at the low speed portion of the rolling speed at the start and end of rolling and the sheet breakage at the high speed portion of the rolling speed during rolling. It becomes possible to prevent.

圧延開始時と終了時の圧延速度の低速部および圧延中の圧延速度の高速部を説明する図である。It is a figure explaining the low speed part of the rolling speed at the time of the rolling start and completion | finish, and the high speed part of the rolling speed during rolling. 圧延荷重が板幅方向の平均値に対する板端部の伸び率差に及ぼす影響を表した図である。It is a figure showing the influence which a rolling load has on the elongation difference of the board edge part with respect to the average value of a board width direction. ワークロールベンダー力が板幅方向の平均値に対する板端部の伸び率差に及ぼす影響を表した図である。It is a figure showing the influence which the work roll bender force exerts on the elongation difference of the board edge part with respect to the average value of a board width direction. 中間ロールベンダー力が板幅方向の平均値に対する板端部の伸び率差に及ぼす影響を表した図である。It is a figure showing the influence which the intermediate roll bender force exerts on the elongation difference of the board edge part with respect to the average value of a board width direction. 中間ロールシフト位置が板幅方向の平均値に対する板端部の伸び率差に及ぼす影響を表した図である。It is a figure showing the influence which the intermediate | middle roll shift position has on the elongation difference of the board edge part with respect to the average value of a board width direction. 素材クラウン量が板幅方向の平均値に対する板端部の伸び率差に及ぼす影響を表した図である。It is a figure showing the influence which the amount of material crowns has on the elongation difference of the board edge part to the average value of the board width direction. 図8の条件1〜条件10の詳細を示す図である。It is a figure which shows the detail of the conditions 1-condition 10 of FIG. 板端部出側張力と絞り込みの有無との関係を表した図である。It is a figure showing the relationship between a board edge part exit side tension | tensile_strength and the presence or absence of narrowing. 図10の条件1〜条件10の詳細を示す図である。It is a figure which shows the detail of the conditions 1-condition 10 of FIG. 板端部出側張力と板破断の有無との関係を表した図である。It is a figure showing the relationship between board edge part exit side tension | tensile_strength and the presence or absence of board fracture. 実施例で使用した6段圧延機及び制御系統の概略図である。It is the schematic of the 6-high rolling mill and control system which were used in the Example.

本発明者らは、板端部出側張力を表す予測式を用いて板端部出側張力を算出するとともに、板端部出側張力が圧延開始時と終了時の圧延速度の低速部において絞り込み限界値以上且つ圧延中の圧延速度の高速部において破断限界値以下となるように形状制御手段の制御量を設定することにより板端部出側張力を制御し、低速部の絞り込みおよび高速部の板破断の両方を防止することが可能な形状制御方法を種々調査検討した。   The inventors calculated the plate end portion exit side tension using a prediction formula representing the plate end portion exit side tension, and the plate end portion exit side tension at the low speed part of the rolling speed at the start and end of rolling. By controlling the control amount of the shape control means so that it is below the limit value and below the fracture limit value at the high speed part of the rolling speed during rolling, the strip end side tension is controlled, and the low speed part is narrowed and the high speed part is controlled. Various investigations were conducted on shape control methods that can prevent both plate breaks.

その結果、板端部出側張力が平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量とほぼ線形関係にあることに着目し、平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として板端部出側張力を表す予測式を用いて形状制御手段の制御量を制御することにより、板端部出側張力を圧延速度の低速部において絞り込み限界値以上且つ圧延中の圧延速度の高速部において破断限界値以下とすることを可能とし、低速部の絞り込みおよび高速部の板破断の両方を防止可能であることを見出した。   As a result, paying attention to the fact that the plate end exit tension is almost linearly related to the average exit tension, rolling load, material crown amount, and control amount of the shape control means, the average exit side tension, rolling load, material crown amount And by controlling the control amount of the shape control means using a prediction formula that represents the tension at the edge of the plate end using the control amount of the shape control means as a variable, It has been found that it is possible to make the value not less than the value and not more than the fracture limit value at the high speed part of the rolling speed during rolling, and to prevent both narrowing of the low speed part and plate breaking of the high speed part.

以下、4スタンドからなる冷間タンデムミルのNo.3スタンドに設置された形状制御手段として、ワークロールベンダー、中間ロールベンダーおよび中間ロールシフトを有する6段圧延機を対象に本発明の形状制御方法について説明するが、他のスタンドに設置された圧延機や4段圧延機等の6段圧延機以外の圧延機に対しても同様に本発明が適用されることは勿論である。   Hereinafter, as a shape control means installed in No. 3 stand of a cold tandem mill consisting of 4 stands, the shape control method of the present invention is applied to a work roll bender, an intermediate roll bender and a 6-high rolling mill having an intermediate roll shift. However, it goes without saying that the present invention is similarly applied to a rolling mill other than a six-high rolling mill such as a rolling mill or a four-high rolling mill installed in another stand.

板端部出側張力Teは、式(1)のように平均出側張力Tavと圧延形状による張力差(板端部出側張力と平均出側張力の差)ΔTの和で表される。
Te=Tav+ΔT (1)
The plate end portion exit side tension Te is represented by the sum of the average exit side tension Tav and the tension difference (difference between the plate end portion exit side tension and the average exit side tension) ΔT as shown in the equation (1).
Te = Tav + ΔT (1)

そして、板幅方向の張力差から板幅方向の伸び率差を算出するという形状検出器の原理から明らかなように、ヤング率をE、板幅方向の平均値に対する板端部の伸び率差をΔεとすると、圧延形状による張力差ΔTは式(2)で表される。
ΔT=E・Δε・(−1) (2)
Then, as is apparent from the principle of the shape detector that calculates the elongation difference in the plate width direction from the tension difference in the plate width direction, the Young's modulus is E, and the difference in elongation at the plate edge relative to the average value in the plate width direction. Is Δε, the tension difference ΔT due to the rolling shape is expressed by equation (2).
ΔT = E · Δε · (−1) (2)

圧延材の形状に及ぼす影響要因としては、圧延材寸法、材質、潤滑状態、前後方張力、圧延荷重、形状制御手段の制御量、素材クラウン量、圧延前形状等がある。このうち、圧延材寸法については板厚、板幅毎にテーブル区分すると、区分内における圧延材寸法の変化が形状に及ぼす影響を小さくすることができる。材質、潤滑状態及び前後方張力は圧延材の形状に影響するが、その影響のほとんどは圧延荷重を介したロール撓みの変化によって生じる。   Factors affecting the shape of the rolled material include the rolled material size, material, lubrication state, front / rear tension, rolling load, control amount of the shape control means, material crown amount, pre-rolling shape, and the like. Of these, regarding the rolled material dimensions, if the table is divided for each plate thickness and width, the influence of the change in the rolled material size in the section on the shape can be reduced. The material, lubrication state, and front / rear tension affect the shape of the rolled material, but most of the effect is caused by changes in roll deflection through the rolling load.

また、スキンパス圧延のように圧下率が小さい場合には圧延前形状の影響は大きいが、圧下率5%以上の通常の冷間圧延においては圧延前形状の影響は小さい。したがって、形状変化に及ぼす主要因は、圧延荷重、素材クラウン量、形状制御手段の制御量ということができる。   In addition, when the rolling reduction is small as in skin pass rolling, the influence of the shape before rolling is large, but in normal cold rolling with a rolling reduction of 5% or more, the influence of the shape before rolling is small. Therefore, it can be said that the main factors affecting the shape change are the rolling load, the material crown amount, and the control amount of the shape control means.

そこで、圧延荷重、素材クラウン量、形状制御手段の制御量が圧延形状に及ぼす定量的な影響を検討した。ここで「形状制御手段」により制御される対象は、ロールベンダー、ロールシフト、圧下率・圧延荷重、スポットクラーント等の一部またはこれらの全部を指す。   Therefore, the quantitative effects of the rolling load, the material crown amount, and the control amount of the shape control means on the rolling shape were examined. Here, the object controlled by the “shape control means” refers to a part or all of a roll bender, a roll shift, a rolling reduction / rolling load, a spot clarant, and the like.

図2は、圧延荷重P(kN)が板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す。圧延荷重の変化がロール撓みの変化となって現れ、圧延材の形状を変化させる。圧延荷重とロール撓み量との関係は弾性領域における変形を対象としていることからほぼ線形的な関係にある。したがって、板幅方向の平均値に対する板端部の伸び率差Δεも圧延荷重Pと線形関係にある。   FIG. 2 shows the influence of the rolling load P (kN) on the elongation difference Δε at the plate edge with respect to the average value in the plate width direction. A change in rolling load appears as a change in roll deflection, which changes the shape of the rolled material. The relationship between the rolling load and the amount of roll deflection is almost linear since it is intended for deformation in the elastic region. Therefore, the elongation difference Δε at the plate end with respect to the average value in the plate width direction is also linearly related to the rolling load P.

図3は、ワークロールベンダー力Wb(kN)が板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す。形状制御手段であるワークロールベンダーも圧延荷重と同様にロール撓みを変化させて圧延形状を変化させるものであり、ワークロールベンダー力Wbと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にある。   FIG. 3 shows the influence of the work roll bender force Wb (kN) on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. The work roll bender, which is a shape control means, also changes the rolling shape by changing the roll deflection in the same manner as the rolling load, and the difference in elongation at the plate end Δε with respect to the average value in the work roll bender force Wb and the plate width direction. Is also in a linear relationship.

図4は、中間ロールベンダー力Ib(kN)が板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す。中間ロールベンダーも圧延荷重と同様にロール撓みを変化させて圧延形状を変化させるものであるので、中間ロールベンダー力Ibと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にある。   FIG. 4 shows the influence of the intermediate roll bender force Ib (kN) on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. Since the intermediate roll bender also changes the rolling shape by changing the roll deflection in the same manner as the rolling load, the intermediate roll bender force Ib and the elongation difference Δε at the plate end relative to the average value in the plate width direction are also included. It is in a linear relationship.

図5は、中間ロールシフト位置Ls(mm)が板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す。中間ロールシフト位置をテーパ開始点から板端までの距離で定義し、テーパ開始点が板端よりも内側にある場合を負、外側にある場合を正とする。中間ロールシフトもワークロールと中間ロール間の接触圧力分布を変化させることによりロール撓みを変化させて圧延形状を変化させるものであるので、中間ロールシフト位置Lsと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にある。   FIG. 5 shows the influence of the intermediate roll shift position Ls (mm) on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. The intermediate roll shift position is defined by the distance from the taper start point to the plate end. The case where the taper start point is inside the plate end is negative, and the case where the taper start point is outside is positive. Since the intermediate roll shift also changes the rolling shape by changing the roll pressure by changing the contact pressure distribution between the work roll and the intermediate roll, the sheet edge with respect to the intermediate roll shift position Ls and the average value in the sheet width direction. There is also a linear relationship with the elongation difference Δε of the part.

図6は、素材クラウン量Cr(μm)が板幅方向の平均値に対する板端部の伸び率差Δεに及ぼす影響を示す。素材クラウン量を板端部と板幅中央の板厚差で定義した。その結果、素材クラウン量Crと板幅方向の平均値に対する板端部の伸び率差Δεとの間も線形関係にあることがわかる。   FIG. 6 shows the influence of the material crown amount Cr (μm) on the elongation difference Δε at the plate end with respect to the average value in the plate width direction. The amount of material crown was defined by the difference in plate thickness between the plate edge and the plate width center. As a result, it can be seen that there is also a linear relationship between the material crown amount Cr and the elongation difference Δε at the plate end with respect to the average value in the plate width direction.

以上の各要因相互の関係から、ae、be、ce、de、ee、feを影響係数として、式(3)で板幅方向の平均値に対する板端部の伸び率差Δεを表すことができる。
Δε=ae・P+be・Cr+ce・Wb+de・Ib+ee・Ls+fe (3)
From the relationship between the above factors, the elongation difference Δε at the plate edge portion with respect to the average value in the plate width direction can be expressed by Equation (3) using ae, be, ce, de, ee, fe as influence coefficients. .
Δε = ae · P + be · Cr + ce · Wb + de · Ib + ee · Ls + fe (3)

影響係数ae、be、ce、de、ee、feは、板幅、板厚及び材質等の製造品種によって定まる定数であり、実験又はロールの弾性変形解析と素材の塑性変形解析とを連成させた解析モデルによるシミュレーションからそれぞれ求められる。各影響係数は、板幅、板厚、材質等の各区分毎にテーブル設定し、或いは板幅、板厚、材質等の関数として数式化される。   The influence coefficients ae, be, ce, de, ee, and fe are constants determined by the production type such as the plate width, plate thickness, and material, and are combined with the experiment or the elastic deformation analysis of the roll and the plastic deformation analysis of the material. It is obtained from the simulation by the analysis model. Each influence coefficient is set in a table for each section such as a plate width, a plate thickness, and a material, or expressed as a function as a function of the plate width, the plate thickness, the material, and the like.

各影響係数は具体的には、ae:圧延荷重と伸び率差の関係を表す直線の傾き(図2を参照)、be:素材クラウン量と伸び率差の関係を表す直線の傾き(図6参照)、ce:ワークロールベンダー力と伸び率差の関係を表す直線の傾き(図3参照)、de:中間ロールベンダー力と伸び率差の関係を表す直線の傾き(図4参照)、ee:中間ロールシフト位置と伸び率差の関係を表す直線の傾き(図5参照)、fe:定数項である。   Specifically, each influence coefficient includes: ae: slope of a straight line representing the relationship between rolling load and elongation difference (see FIG. 2); be: slope of a straight line representing the relationship between the amount of material crown and elongation difference (FIG. 6). See), ce: slope of a straight line representing the relationship between work roll bender force and elongation difference (see FIG. 3), de: slope of a straight line representing the relationship between intermediate roll bender force and elongation difference (see FIG. 4), ee : Slope of a straight line representing the relationship between the intermediate roll shift position and elongation difference (see FIG. 5), fe: constant term.

なお、ワークロール径400mm程度が一般的な6段圧延機やワークロール径100mm以下が一般的な20段圧延機等では、ワークロールに大きな撓み変形が生じやすい。そのため、圧延荷重が圧延材の形状に及ぼす影響は大きいが、素材クラウン量が圧延材の形状に及ぼす影響は小さくなりやすい。この場合には、式(3)において素材クラウン量Crをゼロとして素材クラウン量の影響項を無視することも可能である。   In a typical 6-high rolling mill having a work roll diameter of about 400 mm, a general 20-high rolling mill having a work roll diameter of 100 mm or less, and the like, the work roll is likely to be greatly deformed. Therefore, although the influence of the rolling load on the shape of the rolled material is large, the influence of the material crown amount on the shape of the rolled material tends to be small. In this case, it is also possible to ignore the influence term of the material crown amount by setting the material crown amount Cr to zero in the equation (3).

式(1)〜(3)より、平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として板端部出側張力を表す予測式は式(4)で表される。
Te=Tav−E(ae・P+be・Cr+ce・Wb+de・Ib+ee・Ls+fe) (4)
From Equations (1) to (3), a prediction equation representing the plate end portion exit side tension with the average exit side tension, rolling load, material crown amount and control amount of the shape control means as variables is expressed by Equation (4). .
Te = Tav−E (ae · P + be · Cr + ce · Wb + de · Ib + ee · Ls + fe) (4)

次に、タンデムミル出側の板厚0.3mm〜0.5mm、板幅850mm〜1050mmにおける板端部出側張力と絞り込みの有無との関係について調査した。図7には、圧延条件(条件1〜条件10)毎に各パラメータ(圧延荷重、素材クラウン量、平均出側張力、ワークロールベンダー力、中間ロールベンダー力、中間ロールシフト位置)が設定されている。そこで、条件毎に上記式(4)により板端部出側張力の予測値を計算し、絞り込みの有無を調査した。   Next, the relationship between the plate end portion exit side tension and the presence or absence of narrowing in the plate thickness of 0.3 mm to 0.5 mm and the plate width of 850 mm to 1050 mm on the tandem mill exit side was investigated. In FIG. 7, each parameter (rolling load, material crown amount, average delivery tension, work roll bender force, intermediate roll bender force, intermediate roll shift position) is set for each rolling condition (condition 1 to condition 10). Yes. Therefore, the predicted value of the plate end portion exit side tension was calculated according to the above formula (4) for each condition, and the presence or absence of narrowing was investigated.

その結果を図8に示す。図8に示すように、条件1〜5までは絞り込みは生じなかったものの、条件6〜10においては絞込みが生じた。つまり、板端部出側張力に絞り込み限界値が存在し、板端部出側張力が絞り込み限界値以下になると、絞り込みが生じることが判明した。このように、各条件と式(4)により、板端部出側張力の予測値を得ることができ、得られた予測値から絞り込みが生じるか否かを予測することができる。   The result is shown in FIG. As shown in FIG. 8, no narrowing occurred under conditions 1 to 5, but narrowing occurred under conditions 6 to 10. That is, it has been found that a narrowing limit value exists in the plate end portion exit side tension, and that narrowing occurs when the plate end portion exit side tension is equal to or less than the narrowing limit value. In this manner, the predicted value of the plate end portion exit side tension can be obtained from each condition and Expression (4), and it can be predicted whether or not narrowing will occur from the obtained predicted value.

換言すると、式(4)により算出される低速部の板端部出側張力が絞り込み限界値以上となるように形状制御手段の制御量を設定することで、圧延開始時と圧延終了時の低速部の絞り込みを防止することが可能となる。   In other words, by setting the control amount of the shape control means so that the plate end portion exit side tension of the low speed portion calculated by the equation (4) is equal to or greater than the narrowing limit value, the low speed at the start and end of rolling. It becomes possible to prevent narrowing of the part.

また、図8の場合と同様に、タンデムミル出側の板厚0.3mm〜0.5mm、板幅850mm〜1050mmにおける板端部出側張力と板破断の有無との関係について調査した。図9には、圧延条件(条件1〜条件10)毎に各パラメータ(圧延荷重、素材クラウン量、平均出側張力、ワークロールベンダー力、中間ロールベンダー力、中間ロールシフト位置)が設定されている。そこで、条件毎に上記式(4)により板端部出側張力の予測値を計算し、板破断の有無を調査した。   Similarly to the case of FIG. 8, the relationship between the plate end portion exit side tension and the presence or absence of plate breakage in the plate thickness of 0.3 mm to 0.5 mm and the plate width of 850 mm to 1050 mm on the tandem mill exit side was investigated. In FIG. 9, each parameter (rolling load, material crown amount, average delivery tension, work roll bender force, intermediate roll bender force, intermediate roll shift position) is set for each rolling condition (condition 1 to condition 10). Yes. Therefore, the predicted value of the plate end portion exit side tension was calculated according to the above formula (4) for each condition, and the presence or absence of plate breakage was investigated.

その結果を図10に示す。図10に示すように、条件1〜5までは板破断は生じなかったものの、条件6〜10においては板破断が生じた。つまり、板端部出側張力に破断限界値が存在し、板端部出側張力が破断限界値以上になると板破断を生じることが判明した。このように、各パラメータと式(4)により、板端部出側張力の予測値を得ることができ、得られた予測値から板破断が生じるか否かを予測することができる。   The result is shown in FIG. As shown in FIG. 10, plate breakage did not occur under conditions 1-5, but plate breakage occurred under conditions 6-10. In other words, it has been found that there is a break limit value in the plate end portion exit side tension, and that the plate end break occurs when the plate end portion exit side tension exceeds the break limit value. Thus, the predicted value of the plate end portion exit side tension can be obtained from each parameter and the equation (4), and it can be predicted from the obtained predicted value whether or not the plate breaks.

換言すると、式(4)により算出される圧延速度の高速部の板端部出側張力が破断限界値以下となるように形状制御手段の制御量を設定することで、高速部での板破断を防止することが可能となる。   In other words, by setting the control amount of the shape control means so that the plate end portion exit side tension of the high speed portion of the rolling speed calculated by the equation (4) is not more than the fracture limit value, the plate breakage at the high speed portion Can be prevented.

したがって、式(4)により算出される圧延速度の低速部の板端部出側張力が絞り込み限界値以上且つ高速部の板端部出側張力が破断限界値以下となるように形状制御手段の制御量を設定すれば、低速部の絞り込みおよび高速部の板破断の両方を防止することが可能となる。   Therefore, the shape control means of the shape control means so that the plate end portion exit side tension of the low speed portion of the rolling speed calculated by the equation (4) is not less than the narrowing limit value and the plate end portion exit side tension of the high speed portion is not more than the fracture limit value. If the control amount is set, it is possible to prevent both narrowing of the low speed part and plate breakage of the high speed part.

形状制御手段の設定に際しては、低速部における圧延荷重Plおよび高速部における圧延荷重Phを、Bland&Fordの式、Hillの式等の圧延荷重式を用いて予測し、平均出側張力Tav、低速部、高速部それぞれの圧延荷重の予測値Pl、Phおよび素材クラウンの測定値Crを板端部出側張力Teを表す予測式(4)に代入し、圧延速度の低速部の板端部出側張力Telが絞り込み限界値以上且つ高速部の板端部出側張力Tehが破断限界値以下となるように、ワークロールベンダー力Wb、中間ロールベンダー力Ibおよび中間ロールシフト位置Lsを算出し、設定する。   In setting the shape control means, the rolling load Pl in the low speed part and the rolling load Ph in the high speed part are predicted using a rolling load expression such as the Brand & Ford equation, the Hill equation, etc., and the average exit side tension Tav, the low speed portion, Substituting the predicted values Pl and Ph of the rolling load at each high speed part and the measured value Cr of the material crown into the prediction formula (4) representing the sheet end exit side tension Te, the sheet end end exit side tension at the low speed part of the rolling speed The work roll bender force Wb, the intermediate roll bender force Ib, and the intermediate roll shift position Ls are calculated and set so that Tel is equal to or greater than the narrowing limit value and the plate end portion exit side tension Teh of the high speed portion is equal to or less than the fracture limit value. .

以上の説明では、ワークロールベンダー、中間ロールベンダーおよび中間ロールシフトの三つの形状制御手段の制御量を設定することを前提としたが、使用する形状制御手段の組合せはワークロールベンダー、中間ロ−ルベンダーおよび中間ロールシフトの組合せに限ったものではなく、4段圧延機のように形状制御手段がワークロールベンダーのみの場合には、式(4)の代わりに式(5)を用い、圧延速度の低速部の板端部出側張力Telが絞り込み限界値以上且つ高速部の板端部出側張力Tehが破断限界値以下となるように、ワークロールベンダー力Wbを算出し、設定する。
Te=Tav−E(ae・P+be・Cr+ce・Wb+fe) (5)
In the above description, it is assumed that the control amounts of the three shape control means of the work roll bender, the intermediate roll bender, and the intermediate roll shift are set. However, the combination of the shape control means to be used is the work roll bender, the intermediate roll bender. When the shape control means is only a work roll bender as in the case of a four-high rolling mill, the formula (5) is used instead of the formula (4), and the rolling speed is not limited to the combination of the Le bender and the intermediate roll shift. The work roll bender force Wb is calculated and set so that the plate end exit side tension Tel of the low speed portion is not less than the narrowing limit value and the plate end exit side tension Teh of the high speed portion is not more than the fracture limit value.
Te = Tav−E (ae · P + be · Cr + ce · Wb + fe) (5)

4スタンドからなる冷間タンデムミルのNo.3スタンドに設置された6段圧延機においてタンデムミル出側の板厚0.3mm〜0.5mmの冷延鋼板500コイルを圧延する際に本発明を適用した例を説明する。   When rolling a cold rolled steel sheet 500 coil having a thickness of 0.3 mm to 0.5 mm on the outlet side of the tandem mill in a 6-high rolling mill installed in a No. 3 stand of a cold tandem mill consisting of 4 stands, the present invention is used. An applied example will be described.

6段圧延機1は、図11に示すように、ワークロールベンダー2、中間ロールベンダー3、中間ロールシフト4を形状制御手段として備えている。上位コンピュータ5には予め圧延条件(例えば、ワークロールの回転速度、ワークロール径、低速部および高速部の摩擦係数、板幅、入出側板厚、平均入出側張力、圧延材の変形抵抗等)が入力されており、圧延荷重式に従って低速部の圧延荷重Plと高速部の圧延荷重Phが算出される。   As shown in FIG. 11, the six-high rolling mill 1 includes a work roll bender 2, an intermediate roll bender 3, and an intermediate roll shift 4 as shape control means. The host computer 5 has in advance rolling conditions (for example, work roll rotation speed, work roll diameter, low and high speed friction coefficients, plate width, input / output side thickness, average input / output side tension, deformation resistance of the rolled material, etc.). The rolling load Pl of the low speed part and the rolling load Ph of the high speed part are calculated according to the rolling load equation.

プロセスコンピュータ6では板幅、板厚及び材質の区分毎に予め算出した影響係数(ae、be、ce、de、ee、fe)と素材クラウンCrの測定値を取り込んでおり、板端部出側張力Teを表す予測式(4)で圧延開始時と圧延終了時の圧延速度の低速部の板端部出側張力Telが絞り込み限界値以上且つ圧延速度の高速部の板端部出側張力Tehが破断限界値以下となるようにワークロールベンダー力Wb、中間ロールベンダー力Ibおよび中間ロールシフト位置Lsを算出し、設定した。そして、ワークロールベンダー力Wb、中間ロールベンダー力Ibおよび中間ロールシフト位置Lsの値を固定してそのまま圧延した。なお、絞り込み限界値については図7で求めた値を採用し、破断限界値については図9で求めた値を採用した。   The process computer 6 captures the influence coefficient (ae, be, ce, de, ee, fe) and the measured value of the material crown Cr that are calculated in advance for each of the plate width, plate thickness, and material classification, and the plate edge exit side In the prediction formula (4) representing the tension Te, the plate end portion exit side tension Tel at the low speed portion of the rolling speed at the start and end of rolling is equal to or greater than the narrowing limit value, and the plate end portion exit side tension Teh at the high speed portion of the rolling speed. The work roll bender force Wb, the intermediate roll bender force Ib, and the intermediate roll shift position Ls were calculated and set so that would be equal to or less than the breaking limit value. Then, the values of the work roll bender force Wb, the intermediate roll bender force Ib, and the intermediate roll shift position Ls were fixed and rolled as they were. In addition, the value calculated | required in FIG. 7 was employ | adopted about the narrowing-down limit value, and the value calculated | required in FIG. 9 was employ | adopted about the fracture limit value.

その結果、従来は500コイルにつき2コイルで絞り込みが生じ、3コイルで板破断を生じていたが、本発明を適用することにより、500コイルにつき絞り込みが生じたのは1コイルであり、板破断は生じなかった。   As a result, in the past, two coils per 500 coils were narrowed down, and three coils were ruptured. By applying the present invention, one coil was squeezed out of 500 coils, and the plate was broken. Did not occur.

このように、本発明の板端部出側張力を表す予測式を用いて板端部出側張力を算出するとともに、算出した圧延速度の低速部の板端部出側張力が絞り込み限界値以上且つ高速部の板端部出側張力が破断限界値以下となるように形状制御手段の制御量を設定することにより板端部出側張力を制御することで、冷間タンデムミルのスタンド間において、圧延開始と終了時の圧延速度の低速部の絞り込みの発生および高速部の板破断の発生の両方を防止することが可能となる。   As described above, the plate end portion exit side tension is calculated using the prediction formula representing the plate end portion exit side tension of the present invention, and the plate end portion exit side tension of the low speed portion of the calculated rolling speed is equal to or greater than the narrowing limit value. In addition, by controlling the plate end exit side tension by setting the control amount of the shape control means so that the plate end exit side tension of the high speed part is below the fracture limit value, between the cold tandem mill stands It is possible to prevent both the occurrence of narrowing at the low speed portion and the occurrence of plate breakage at the high speed portion at the start and end of rolling.

1:6段圧延機
2:ワークロールベンダー
3:中間ロールベンダー
4:中間ロールシフト
5:上位コンピュータ
6:プロセスコンピュータ
7:圧延材
8:ワークロール
9:中間ロール
10:バックアップロール
1: Six-high rolling mill 2: Work roll bender 3: Intermediate roll bender 4: Intermediate roll shift 5: Upper computer 6: Process computer 7: Rolled material 8: Work roll 9: Intermediate roll 10: Backup roll

Claims (3)

圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値および圧延材に板破断が生じる板端部出側張力の破断限界値を予め求め、
前記板端部出側張力を表す予測式を用いて該板端部出側張力の予測値を算出し、
算出された前記板端部出側張力の予測値に基づいて、圧延開始時および圧延終了時の圧延速度の低速部においては予め求めた前記絞り込み限界値以上、且つ圧延中の圧延速度の高速部においては予め求めた前記破断限界値以下となるように形状制御手段の制御量を算出し、
算出された前記形状制御手段の制御量を用いて前記板端部出側張力を制御する
ことを特徴とする冷間圧延における圧延材の形状制御方法。
Obtain in advance the limit value of the sheet end portion exit side tension that causes the rolling material to be squeezed and the rupture limit value of the sheet end portion exit side tension that causes the plate material to break.
Using the prediction formula representing the plate end portion exit side tension, the predicted value of the plate end portion exit side tension is calculated,
Based on the calculated predicted value of the sheet end portion exit side tension, at the rolling speed low speed portion at the start of rolling and at the end of rolling, the rolling speed at the rolling speed during rolling is higher than the above-described narrowing limit value. In the above, the control amount of the shape control means is calculated so as to be equal to or less than the predetermined fracture limit value,
The strip end portion exit side tension is controlled using the calculated control amount of the shape control means. A shape control method of a rolled material in cold rolling.
圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値および圧延材に板破断が生じる板端部出側張力の破断限界値を予め求め、
平均出側張力、圧延荷重および形状制御手段の制御量を変数として前記板端部出側張力を表す予測式を予め作成し、
平均出側張力と、圧延開始時および圧延終了時の圧延速度の低速部ならびに圧延中の圧延速度の高速部における圧延荷重の予測値とを前記予測式に代入し、
圧延開始時および圧延終了時の圧延速度の低速部においては予め求めた前記絞り込み限界値以上、且つ圧延中の圧延速度の高速部においては前記破断限界値以下となるように形状制御手段の制御量を算出し、
算出した前記形状制御手段の制御量を用いて前記板端部出側張力を制御する
ことを特徴とする冷間圧延における形状制御方法。
Obtain in advance the limit value of the sheet end portion exit side tension that causes the rolling material to be squeezed and the rupture limit value of the sheet end portion exit side tension that causes the plate material to break.
Preliminarily creating a prediction formula representing the sheet end portion exit side tension with the average exit side tension, rolling load and control amount of the shape control means as variables,
Substituting the average exit side tension and the rolling load predicted value at the low speed part of the rolling speed at the start and end of rolling and the high speed part of the rolling speed during rolling into the prediction formula,
The control amount of the shape control means so that it is not less than the above-mentioned limit value obtained in advance at the low speed part of the rolling speed at the start and end of rolling, and not more than the above breaking limit value in the high speed part of the rolling speed during rolling. To calculate
The shape control method in cold rolling characterized by controlling the sheet end portion exit side tension using the calculated control amount of the shape control means.
圧延材に絞り込みが生じる板端部出側張力の絞り込み限界値および圧延材に板破断が生じる板端部出側張力の破断限界値を予め求め、
平均出側張力、圧延荷重、素材クラウン量および形状制御手段の制御量を変数として板端部出側張力を表す予測式を予め作成し、
平均出側張力と、素材クラウンの測定値と、圧延開始時および圧延終了時の圧延速度の低速部ならびに圧延中の圧延速度の高速部における圧延荷重の予測値とを前記予測式に代入し、
前記板端部出側張力が圧延開始時および圧延終了時の低速部においては予め求めた前記絞り込み限界値以上、且つ圧延中の圧延速度の高速部においては予め求めた前記破断限界値以下となるように前記形状制御手段の制御量を算出し、
算出した前記形状制御手段の制御量を用いて前記板端部出側張力を制御する
ことを特徴とする冷間圧延における形状制御方法。
Obtain in advance the limit value of the sheet end portion exit side tension that causes the rolling material to be squeezed and the rupture limit value of the sheet end portion exit side tension that causes the plate material to break.
Preliminarily creating a prediction formula representing the plate end portion exit side tension with the average exit side tension, rolling load, material crown amount and control amount of the shape control means as variables,
Substituting the average exit side tension, the measured value of the material crown, and the rolling load predicted value at the low speed part of the rolling speed at the start and end of rolling and the high speed part of the rolling speed during rolling into the prediction formula,
The exit end tension of the plate end portion is not less than the previously obtained narrowing limit value at the low speed portion at the start of rolling and at the end of rolling, and not more than the previously determined fracture limit value at the high speed portion of the rolling speed during rolling. To calculate the control amount of the shape control means,
The shape control method in cold rolling characterized by controlling the sheet end portion exit side tension using the calculated control amount of the shape control means.
JP2016053907A 2016-03-17 2016-03-17 Shape control method in cold rolling Active JP6644592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053907A JP6644592B2 (en) 2016-03-17 2016-03-17 Shape control method in cold rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053907A JP6644592B2 (en) 2016-03-17 2016-03-17 Shape control method in cold rolling

Publications (2)

Publication Number Publication Date
JP2017164795A true JP2017164795A (en) 2017-09-21
JP6644592B2 JP6644592B2 (en) 2020-02-12

Family

ID=59908612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053907A Active JP6644592B2 (en) 2016-03-17 2016-03-17 Shape control method in cold rolling

Country Status (1)

Country Link
JP (1) JP6644592B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208204A (en) * 1992-01-31 1993-08-20 Nippon Steel Corp Method for controlling shape in strip rolling
JPH05261416A (en) * 1992-03-17 1993-10-12 Nippon Steel Corp Method for controlling plate profile
JPH08141620A (en) * 1994-11-18 1996-06-04 Kawasaki Steel Corp Method for controlling shape in rolling mill
JPH08238509A (en) * 1995-02-28 1996-09-17 Nisshin Steel Co Ltd Method for controlling edge drop at time of cold rolling
JP2002282918A (en) * 2001-03-26 2002-10-02 Nisshin Steel Co Ltd Shape control method for continuous cold rolling
JP2002292414A (en) * 2001-03-29 2002-10-08 Nisshin Steel Co Ltd Shape control method in cold rolling
JP2007203303A (en) * 2006-01-30 2007-08-16 Nisshin Steel Co Ltd Shape control method in cold rolling
JP2007283320A (en) * 2006-04-13 2007-11-01 Nippon Steel Corp Cold tandem rolling mill
US20090249849A1 (en) * 2004-12-22 2009-10-08 Siemens Vai Metals Technologies Sas Regulating flatness of a metal strip at the output of a roll housing
JP2014008520A (en) * 2012-06-29 2014-01-20 Nippon Steel & Sumitomo Metal Cold rolling method of metal plate and method of manufacturing metal plate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208204A (en) * 1992-01-31 1993-08-20 Nippon Steel Corp Method for controlling shape in strip rolling
JPH05261416A (en) * 1992-03-17 1993-10-12 Nippon Steel Corp Method for controlling plate profile
JPH08141620A (en) * 1994-11-18 1996-06-04 Kawasaki Steel Corp Method for controlling shape in rolling mill
JPH08238509A (en) * 1995-02-28 1996-09-17 Nisshin Steel Co Ltd Method for controlling edge drop at time of cold rolling
JP2002282918A (en) * 2001-03-26 2002-10-02 Nisshin Steel Co Ltd Shape control method for continuous cold rolling
JP2002292414A (en) * 2001-03-29 2002-10-08 Nisshin Steel Co Ltd Shape control method in cold rolling
US20090249849A1 (en) * 2004-12-22 2009-10-08 Siemens Vai Metals Technologies Sas Regulating flatness of a metal strip at the output of a roll housing
JP2007203303A (en) * 2006-01-30 2007-08-16 Nisshin Steel Co Ltd Shape control method in cold rolling
JP2007283320A (en) * 2006-04-13 2007-11-01 Nippon Steel Corp Cold tandem rolling mill
JP2014008520A (en) * 2012-06-29 2014-01-20 Nippon Steel & Sumitomo Metal Cold rolling method of metal plate and method of manufacturing metal plate

Also Published As

Publication number Publication date
JP6644592B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP2017164796A (en) Shape control method in cold rolling
JP5811051B2 (en) Method for cold rolling metal plate and method for producing metal plate
JP4948301B2 (en) Shape control method in cold rolling
JP4986463B2 (en) Shape control method in cold rolling
JP6644592B2 (en) Shape control method in cold rolling
JP6835008B2 (en) Cold rolling method of metal strip
JP6685785B2 (en) Shape control method in cold rolling
KR100758237B1 (en) Control method of edge drop of tendem mill
JP3649208B2 (en) Tandem rolling equipment control method and tandem rolling equipment
JP4623738B2 (en) Shape control method in cold rolling
CN109604350B (en) Method for improving tail quality of hot-rolled strip steel
JP4330134B2 (en) Shape control method in cold rolling
JP4813014B2 (en) Shape control method for cold tandem rolling mill
JP2020011297A (en) Meandering control method for rolled material, meandering control device for rolled material, and rolled material manufacturing method
JP2003001315A (en) Cold rolling method for steel strip
RU2225272C2 (en) Method for cold rolling of strips in multistand mill
JP3252751B2 (en) Strip width control method in cold tandem rolling
CN112974545B (en) Method for preventing and controlling S-shaped middle wave defect of extremely-thin T5 material
JP5761071B2 (en) Temper rolling method, temper rolling equipment and rolling line for high strength steel plate
JP3832216B2 (en) Sheet width control method in cold tandem rolling
JP2001179306A (en) Rolling method using cold tandem rolling mill
JP2020104123A (en) Metal strip rolling method
JP2023033788A (en) Meandering control method of rolled material
JP5293403B2 (en) Cold rolling method using dull work rolls
JP6354718B2 (en) Cold tandem rolling mill and manufacturing method of high strength cold rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200108

R150 Certificate of patent or registration of utility model

Ref document number: 6644592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350