JP2017159228A - Decomposition catalyst for hydrogen peroxide for sterilization of contact lens and manufacturing method therefor - Google Patents

Decomposition catalyst for hydrogen peroxide for sterilization of contact lens and manufacturing method therefor Download PDF

Info

Publication number
JP2017159228A
JP2017159228A JP2016045312A JP2016045312A JP2017159228A JP 2017159228 A JP2017159228 A JP 2017159228A JP 2016045312 A JP2016045312 A JP 2016045312A JP 2016045312 A JP2016045312 A JP 2016045312A JP 2017159228 A JP2017159228 A JP 2017159228A
Authority
JP
Japan
Prior art keywords
carrier
hydrogen peroxide
catalyst
platinum
contact lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016045312A
Other languages
Japanese (ja)
Other versions
JP6710409B2 (en
Inventor
雄司 大久保
Yuji Okubo
雄司 大久保
和也 山村
Kazuya Yamamura
和也 山村
智史 清野
Tomohito Kiyono
智史 清野
智紀 青木
Tomonori Aoki
智紀 青木
理 森
Osamu Mori
理 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Menicon Co Ltd
Osaka University NUC
Original Assignee
Menicon Co Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Menicon Co Ltd, Osaka University NUC filed Critical Menicon Co Ltd
Priority to JP2016045312A priority Critical patent/JP6710409B2/en
Publication of JP2017159228A publication Critical patent/JP2017159228A/en
Application granted granted Critical
Publication of JP6710409B2 publication Critical patent/JP6710409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decomposition catalyst for hydrogen peroxide capable of sufficiently sterilizing contact lens as well as sufficiently reducing hydrogen peroxide residual concentration after a predetermined time has passed when being coexisted with contact lens in hydrogen peroxide solution and being manufactured simply.SOLUTION: There is provided a decomposition catalyst of hydrogen peroxide for sterilization of contact lens containing a carrier and a fine particle containing platinum fixed on a surface of the carrier and having average particle diameter of the fine particle of 1000 nm or less, preferably 300 nm or less. There is provided a catalyst having platinum carrying weight of 1 μg to 300 μg. There is provided a manufacturing method of the decomposition catalyst of hydrogen peroxide for sterilization of contact lens including contacting a solution for irradiation containing a platinum ion with a carrier to adhere the solution for irradiation to the carrier and irradiating electron beam to the carrier to which the solution for irradiation is adhered to fix the fine particle containing platinum to the carrier surface.SELECTED DRAWING: Figure 1

Description

本発明は、コンタクトレンズ消毒用過酸化水素を分解するための触媒およびその製造方法等に関する。   The present invention relates to a catalyst for decomposing hydrogen peroxide for contact lens disinfection, a production method thereof, and the like.

従来、過酸化水素の高い殺菌力を利用したコンタクトレンズの消毒技術が、種々検討されている。該消毒技術においては、十分に高い濃度で過酸化水素を含む消毒液にコンタクトレンズを浸漬して消毒する一方で、消毒後においては、コンタクトレンズを眼に装着した際に刺激感を生じさせない観点から、消毒液中の過酸化水素が十分に低い濃度まで分解されていることが望まれる。したがって、過酸化水素の分解(2H→2HO+O)には、消毒の開始から所定時間は十分に高い過酸化水素濃度を維持する一方で、所定時間経過後には十分に低い過酸化水素濃度を実現することが要求される。 Conventionally, various contact lens disinfection techniques using the high bactericidal power of hydrogen peroxide have been studied. In this disinfection technique, the contact lens is immersed in a disinfectant solution containing hydrogen peroxide at a sufficiently high concentration to disinfect, but after disinfection, the contact lens is not irritated when worn on the eye. Therefore, it is desired that hydrogen peroxide in the disinfectant is decomposed to a sufficiently low concentration. Therefore, for the decomposition of hydrogen peroxide (2H 2 O 2 → 2H 2 O + O 2 ), a sufficiently high hydrogen peroxide concentration is maintained for a predetermined time from the start of disinfection, while a sufficiently low level is exceeded after the predetermined time has elapsed. Realization of hydrogen oxide concentration is required.

上記過酸化水素の分解処理としては、白金等の過酸化水素分解活性を有する活性金属を担持した触媒を用いることにより過酸化水素の分解を促進することが知られている。例えば、特許文献1〜3には、コンタクトレンズと過酸化水素の分解触媒とを過酸化水素溶液に浸漬することにより、過酸化水素によるコンタクトレンズの消毒を有効に行いつつ、過酸化水素の分解を行うことが開示されている。   As the hydrogen peroxide decomposition treatment, it is known to promote the decomposition of hydrogen peroxide by using a catalyst supporting an active metal having hydrogen peroxide decomposition activity such as platinum. For example, in Patent Documents 1 to 3, the contact lens and the hydrogen peroxide decomposition catalyst are immersed in a hydrogen peroxide solution to effectively disinfect the contact lens with hydrogen peroxide while decomposing the hydrogen peroxide. Is disclosed.

特開平6−226098号公報JP-A-6-226098 特開平7−232072号公報Japanese Patent Laid-Open No. 7-232072 特開2013−13868号公報JP 2013-13868 A

しかしながら、過酸化水素溶液にコンタクトレンズと過酸化水素の分解触媒とを共存させて、消毒および過酸化水素の分解を同時に進行させる場合、従来の触媒ではコンタクトレンズに対する高い消毒効果と所定時間経過後の低い過酸化水素残留濃度とを高いレベルで両立することが困難であった。具体的には、所定時間経過後の過酸化水素残留濃度を低くするために、メッキ法等によって得られる活性金属の含有量が多い触媒や幾何学的表面積(幾何学的形状に基づいて求めた表面積)が大きい触媒を使用すると、過酸化水素が短時間のうちに分解してしまい、消毒効果が不十分となるという問題がある。一方、消毒効果を高めるために、活性金属の含有量が少ない触媒や幾何学的表面積が小さい触媒を使用すると、所定時間経過後の過酸化水素残留濃度を一定のレベル以下にまで低減することができなくなるという問題がある。また、特許文献3の触媒は、処理液への浸漬処理および/または焼成処理を含む担体の準備工程および200℃〜500℃での活性金属の還元処理工程を経て得られるものであり、その製造方法は簡便とは言えない。   However, when a contact lens and a hydrogen peroxide decomposition catalyst coexist in a hydrogen peroxide solution and disinfection and decomposition of hydrogen peroxide proceed simultaneously, the conventional catalyst has a high disinfection effect on the contact lens and a predetermined time has elapsed. It was difficult to achieve both a low residual hydrogen peroxide concentration at a high level. Specifically, in order to reduce the residual hydrogen peroxide concentration after a predetermined time, the catalyst and the geometric surface area (which is obtained based on the geometric shape) having a high active metal content obtained by plating or the like are obtained. When a catalyst having a large surface area is used, hydrogen peroxide is decomposed in a short time, and there is a problem that the disinfection effect becomes insufficient. On the other hand, if a catalyst with a low active metal content or a catalyst with a small geometric surface area is used to enhance the disinfection effect, the residual hydrogen peroxide concentration after a predetermined time may be reduced to a certain level or less. There is a problem that it cannot be done. Further, the catalyst of Patent Document 3 is obtained through a carrier preparation step including immersion treatment in a treatment liquid and / or a calcination treatment, and an active metal reduction treatment step at 200 ° C. to 500 ° C., and its production. The method is not convenient.

本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、過酸化水素溶液中にコンタクトレンズと共存させた際に、コンタクトレンズを十分に消毒できるとともに、所定時間経過後には過酸化水素残留濃度を十分に低減でき、かつ、簡便に製造され得る過酸化水素の分解触媒を提供することにある。   The present invention has been made in order to solve the above-described conventional problems. The main object of the present invention is to sufficiently disinfect a contact lens when it coexists with a contact lens in a hydrogen peroxide solution, and a predetermined time has elapsed. It is an object of the present invention to provide a hydrogen peroxide decomposition catalyst that can sufficiently reduce the residual concentration of hydrogen peroxide and can be easily produced.

本発明のコンタクトレンズ消毒用過酸化水素の分解触媒は、担体と、該担体表面に固定化された白金を含む微粒子と、を含み、該微粒子の平均粒子径が、1000nm以下である。
1つの実施形態においては、上記微粒子の平均粒子径が、300nm以下である。
1つの実施形態においては、上記担体が、有機系材料を含む。
1つの実施形態においては、上記触媒の白金担持重量が、1μg〜300μgである。
本発明の別の局面によれば、上記コンタクトレンズ消毒用過酸化水素の分解触媒の製造方法が提供される。該製造方法は、白金イオンを含む照射用溶液を担体に接触させて、該照射用溶液を該担体に付着させること、および、該照射用溶液が付着した担体に電子線を照射して、白金を含む微粒子を該担体表面に固定化することを含む。
1つの実施形態においては、上記製造方法は、電子線を照射する前に、上記担体表面を改質処理することをさらに含む。
1つの実施形態においては、上記製造方法は、電子線を照射する前に、上記担体をエッチング処理することをさらに含む。
1つの実施形態においては、上記照射用溶液が、粒子径制御剤をさらに含む。
本発明のさらに別の局面によれば、コンタクトレンズの消毒方法が提供される。該消毒方法は、コンタクトレンズと、上記コンタクトレンズ消毒用過酸化水素の分解触媒とを、過酸化水素を含むコンタクトレンズ消毒液に浸漬することを含む。
The decomposition catalyst for hydrogen peroxide for disinfecting contact lenses of the present invention includes a carrier and fine particles containing platinum immobilized on the surface of the carrier, and the average particle size of the fine particles is 1000 nm or less.
In one embodiment, the average particle diameter of the fine particles is 300 nm or less.
In one embodiment, the carrier includes an organic material.
In one embodiment, the platinum carrying | support weight of the said catalyst is 1 microgram-300 micrograms.
According to another aspect of the present invention, a method for producing a hydrogen peroxide decomposition catalyst for disinfecting contact lenses is provided. The production method includes contacting an irradiation solution containing platinum ions with a carrier, attaching the irradiation solution to the carrier, and irradiating the carrier to which the irradiation solution is adhered with an electron beam to form platinum. And immobilizing microparticles containing the carrier on the surface of the carrier.
In one embodiment, the manufacturing method further includes modifying the support surface before irradiating the electron beam.
In one embodiment, the manufacturing method further includes etching the carrier before irradiating the electron beam.
In one embodiment, the irradiation solution further contains a particle size controlling agent.
According to still another aspect of the present invention, a method for disinfecting a contact lens is provided. The disinfection method includes immersing the contact lens and the decomposition catalyst for hydrogen peroxide for disinfecting the contact lens in a contact lens disinfecting solution containing hydrogen peroxide.

本発明によれば、白金を含み、かつ、所定の粒子径を有する微粒子を担体に固定化することにより、過酸化水素溶液中でコンタクトレンズと共存させた際に、コンタクトレンズを十分に消毒でき、かつ、所定時間経過後には過酸化水素の残留濃度を十分に低減できる過酸化水素の分解触媒が提供される。該触媒は、電子線照射還元法を用いることにより、簡便に製造され得る。   According to the present invention, by immobilizing fine particles containing platinum and having a predetermined particle diameter on a carrier, the contact lens can be sufficiently disinfected when coexisting with the contact lens in a hydrogen peroxide solution. In addition, a hydrogen peroxide decomposition catalyst capable of sufficiently reducing the residual concentration of hydrogen peroxide after a predetermined time has elapsed is provided. The catalyst can be easily produced by using an electron beam irradiation reduction method.

実施例で得られた触媒の透過型電子顕微鏡(TEM)写真である。It is a transmission electron microscope (TEM) photograph of the catalyst obtained in the Example. 担体上に固定化された微粒子の粒子径分布を示すグラフである。It is a graph which shows the particle size distribution of the fine particle fix | immobilized on the support | carrier. 触媒の耐久性評価の結果を示すグラフである。It is a graph which shows the result of durability evaluation of a catalyst.

以下、本発明の実施形態について説明するが、本発明は該実施形態には限定されない。   Hereinafter, although embodiment of this invention is described, this invention is not limited to this embodiment.

[A.触媒]
本発明の触媒は、コンタクトレンズ消毒用の過酸化水素の分解を促進する触媒である。本発明の触媒は、担体と、該担体表面に固定化された白金(Pt)を含む微粒子(以下、「白金含有微粒子」と称する場合がある)と、を含む。
[A. catalyst]
The catalyst of this invention is a catalyst which accelerates | stimulates decomposition | disassembly of the hydrogen peroxide for contact lens disinfection. The catalyst of the present invention includes a carrier and fine particles containing platinum (Pt) immobilized on the surface of the carrier (hereinafter sometimes referred to as “platinum-containing fine particles”).

本発明の触媒は、常温(約25℃)において、10mLの過酸化水素溶液に浸漬された際に、6時間の浸漬期間で、浸漬前の過酸化水素濃度の好ましくは1%以下、より好ましくは0.5%以下、さらに好ましくは0.2%以下の濃度まで(例えば、3.5重量%(35000ppm)の過酸化水素溶液に浸漬された場合は、好ましくは350ppm以下、より好ましくは175ppm以下、さらに好ましくは70ppm以下の濃度まで)過酸化水素を分解し得る。   When the catalyst of the present invention is immersed in 10 mL of a hydrogen peroxide solution at room temperature (about 25 ° C.), the hydrogen peroxide concentration before immersion is preferably 1% or less, more preferably, in an immersion period of 6 hours. Is preferably not more than 350 ppm, more preferably 175 ppm when immersed in a hydrogen peroxide solution at a concentration of 0.5% or less, more preferably 0.2% or less (for example, 3.5% by weight (35000 ppm)). Hereinafter, hydrogen peroxide can be decomposed (more preferably to a concentration of 70 ppm or less).

本発明の触媒1つあたりの担体上に固定化された白金の総重量(以下、「触媒の白金担持重量」と称する場合がある)は、好ましくは1μg〜300μg、より好ましくは1μg〜100μgである。また、本発明の触媒において、担体の幾何学的表面積あたりの固定化された白金の重量は、好ましくは0.01μg/cm〜300μg/cm、より好ましくは0.01μg/cm〜100μg/cmである。このように白金の固定化量が少ないにも関わらず、優れた過酸化水素分解活性を発揮し得ることは、本発明の触媒の特徴の1つである。なお、このような効果が奏される理由は定かではないが、以下のように推測される。すなわち、白金を含む活性金属が薄膜状ではなく、微粒子形状を有するように形成されていることから、活性金属の比表面積が増大して触媒活性も増大され得ると推測される。さらに、白金を含む活性金属が特定の平均粒子径を有する微粒子形状に形成されていることから、過酸化水素の分解時に生じる酸素気泡の付着が抑制され、その結果、該気泡の付着に起因する経時的な触媒活性の低下が防止されて、所定時間経過後の過酸化水素濃度を十分に低減し得ると推測される。 The total weight of platinum immobilized on the carrier per catalyst of the present invention (hereinafter sometimes referred to as “the platinum loading weight of the catalyst”) is preferably 1 μg to 300 μg, more preferably 1 μg to 100 μg. is there. In the catalyst of the present invention, the weight of immobilized platinum per geometric surface area of the support is preferably 0.01 μg / cm 2 to 300 μg / cm 2 , more preferably 0.01 μg / cm 2 to 100 μg. / Cm 2 . It is one of the characteristics of the catalyst of the present invention that it can exhibit excellent hydrogen peroxide decomposition activity despite the small amount of platinum immobilized. The reason for such an effect is not clear, but is presumed as follows. That is, since the active metal containing platinum is formed not to be a thin film but to have a fine particle shape, it is estimated that the specific surface area of the active metal can be increased and the catalytic activity can be increased. Furthermore, since the active metal containing platinum is formed in a fine particle shape having a specific average particle diameter, the adhesion of oxygen bubbles generated during the decomposition of hydrogen peroxide is suppressed, and as a result, the bubbles are attached. It is presumed that the decrease in catalytic activity over time can be prevented, and the hydrogen peroxide concentration after a predetermined time can be sufficiently reduced.

[A−1.担体]
担体を形成する材料としては、任意の適切な材料が用いられ得る。担体の形成材料としては、従来用いられている金属、ガラス、セラミック等の無機材料だけでなく、合成樹脂等の有機材料を好ましく用いることができる。合成樹脂等の有機材料は、成形性、操作性、価格等において無機材料よりも有利であり得る。また、高温での焼成を必要としないことも利点の1つである。
[A-1. Carrier]
Any appropriate material can be used as the material forming the carrier. As the material for forming the carrier, not only inorganic materials such as conventionally used metals, glass and ceramics but also organic materials such as synthetic resins can be preferably used. Organic materials such as synthetic resins can be more advantageous than inorganic materials in terms of moldability, operability, cost, and the like. Another advantage is that no firing at high temperatures is required.

合成樹脂の具体例としては、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリウレタン樹脂、変性ポリフェニレンエーテル樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリ塩化ビニル樹脂、ポリエーテルイミド樹脂、ポリサルホン樹脂、ポリメチルメタクリレート樹脂およびこれらの共重合樹脂が挙げられる。中でも、成形性、価格、過酸化水素に対する耐久性、白金含有微粒子の付着性等の観点から、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂およびこれらの共重合樹脂が好ましい。上記材料は、単独でまたは二種以上を組み合わせて用いられ得る。   Specific examples of synthetic resins include acrylonitrile / butadiene / styrene (ABS) resin, polyethylene (PE) resin, polypropylene (PP) resin, polyurethane resin, modified polyphenylene ether resin, polystyrene resin, polycarbonate resin, polyethylene terephthalate (PET) resin. , Polybutylene terephthalate (PBT) resin, polyvinyl chloride resin, polyetherimide resin, polysulfone resin, polymethyl methacrylate resin, and copolymer resins thereof. Above all, from the viewpoints of moldability, cost, durability against hydrogen peroxide, adhesion of platinum-containing fine particles, acrylonitrile / butadiene / styrene (ABS) resin, polyethylene (PE) resin, polypropylene (PP) resin and their co-polymers. Polymerized resins are preferred. The said material may be used individually or in combination of 2 or more types.

担体の形状は、目的等に応じて適切に設定され得る。担体は、例えば、角板状、円板状、角柱状、円柱状等であり得る。また、幾何学的表面積の増大の観点から、正弦波、矩形波、三角波等の波形状を有するように成形されてもよい。   The shape of the carrier can be appropriately set according to the purpose and the like. The carrier can be, for example, a prismatic shape, a disc shape, a prismatic shape, a cylindrical shape, or the like. Further, from the viewpoint of increasing the geometric surface area, it may be formed to have a wave shape such as a sine wave, a rectangular wave, a triangular wave, or the like.

担体は、その表面が粗面化されていてもよい。表面を粗面化することにより、比表面積を増大することができる。また、白金含有微粒子を担体により強固に固定化することができる。担体の比表面積は、例えば3cm/g〜200cm/g、好ましくは10cm/g〜100cm/gであり得る。 The surface of the carrier may be roughened. The surface area can be increased by roughening the surface. Further, the platinum-containing fine particles can be firmly fixed by the carrier. The specific surface area of the support is, for example, 3cm 2 / g~200cm 2 / g, may be preferably 10cm 2 / g~100cm 2 / g.

担体は、その表面が正の電荷を帯びていることが好ましい。表面が正の電荷を帯びることにより、白金含有微粒子を担体により強固に固定化することができる。   It is preferable that the surface of the carrier is positively charged. When the surface is positively charged, the platinum-containing fine particles can be firmly fixed by the carrier.

[A−2.微粒子]
微粒子は、白金を含む。必要に応じて、他の成分をさらに含んでもよい。微粒子中における白金の含有量は、好ましくは80重量%〜100重量%、より好ましくは90重量%〜100重量%、さらに好ましくは95重量%〜100重量%であり得る。
[A-2. Fine particles]
The fine particles include platinum. If necessary, other components may be further included. The content of platinum in the fine particles is preferably 80% to 100% by weight, more preferably 90% to 100% by weight, and still more preferably 95% to 100% by weight.

微粒子に含まれ得る他の成分としては、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、オスミウム(Os)等の過酸化水素分解活性を有する活性金属が挙げられる。これらの成分は、単独でまたは二種以上を組み合わせて用いられ得る。   Other components that can be included in the fine particles include active metals having hydrogen peroxide decomposition activity, such as palladium (Pd), iridium (Ir), ruthenium (Ru), rhodium (Rh), and osmium (Os). These components may be used alone or in combination of two or more.

微粒子の平均粒子径は、1000nm以下であり、好ましくは300nm以下、より好ましくは20nm以下、さらに好ましくは15nm以下、さらにより好ましくは10nm以下である。また、該平均粒子径は、好ましくは1nm以上であり、より好ましくは1.5nm以上、さらに好ましくは2nm以上、さらにより好ましくは2.5nm以上である。このような平均粒子径とすることにより、白金等の活性金属の使用量を抑えつつ、その比表面積を増大させることができる。また、活性金属の使用量が少ないことに起因して、過酸化水素溶液に触媒とコンタクトレンズとを共存させた際に、初期段階で過酸化水素の分解が過度に促進されることを防止し得る。さらに、上記範囲の平均粒子径であることに起因して、過酸化水素の分解で発生する酸素の気泡径が適度な大きさとなる。その結果、該気泡に起因する過酸化水素溶液の還流が緩やかになって、初期段階で過酸化水素が過度に分解されることを防止し得る。また、従来の触媒では、時間の経過に伴って酸素気泡が触媒表面に付着してその一部を不活性化してしまう現象が見られるが、本発明の触媒は、粒子径が小さいことにより、酸素気泡の付着が抑制され得る。その結果、最後まで触媒活性を有効に発揮して、所定時間経過後の過酸化水素残留濃度を十分に低いレベルにまで低減することができる。一方、微粒子の平均粒子径が上記範囲外である場合、本発明の効果が得られなくなるおそれがある。例えば、微粒子の平均粒子径が大き過ぎる場合、白金等の使用量が増加する。また、平均粒子径が小さ過ぎる場合には、バルク金属としての触媒活性が消失するおそれや耐久性が低下するおそれがある。   The average particle diameter of the fine particles is 1000 nm or less, preferably 300 nm or less, more preferably 20 nm or less, still more preferably 15 nm or less, and even more preferably 10 nm or less. The average particle diameter is preferably 1 nm or more, more preferably 1.5 nm or more, still more preferably 2 nm or more, and even more preferably 2.5 nm or more. By setting it as such an average particle diameter, the specific surface area can be increased, suppressing the usage-amount of active metals, such as platinum. In addition, due to the small amount of active metal used, the decomposition of hydrogen peroxide is prevented from being excessively accelerated in the initial stage when the catalyst and contact lens coexist in the hydrogen peroxide solution. obtain. Furthermore, due to the average particle size in the above range, the bubble size of oxygen generated by the decomposition of hydrogen peroxide becomes an appropriate size. As a result, it is possible to prevent the hydrogen peroxide solution from being excessively decomposed in the initial stage by slowing the reflux of the hydrogen peroxide solution caused by the bubbles. Further, in the conventional catalyst, with the passage of time, a phenomenon that oxygen bubbles adhere to the catalyst surface and inactivate a part thereof is seen, but the catalyst of the present invention has a small particle diameter, The adhesion of oxygen bubbles can be suppressed. As a result, the catalytic activity can be effectively exhibited until the end, and the residual hydrogen peroxide concentration after a predetermined time can be reduced to a sufficiently low level. On the other hand, when the average particle diameter of the fine particles is out of the above range, the effects of the present invention may not be obtained. For example, when the average particle size of the fine particles is too large, the amount of platinum or the like used increases. Moreover, when an average particle diameter is too small, there exists a possibility that the catalytic activity as a bulk metal may lose | disappear and durability may fall.

微粒子の平均粒子径は、例えば、後述する製造方法において、照射用溶液中の活性金属イオン濃度を変化させることによって調節できる。具体的には、照射用溶液中の活性金属イオン濃度を高くすることにより平均粒子径を大きくすることができ、該濃度を低くすることにより平均粒子径を小さくすることができる。なお、微粒子の平均粒子径は、後述する実施例に記載の方法によって決定され得る。   The average particle diameter of the fine particles can be adjusted, for example, by changing the active metal ion concentration in the irradiation solution in the production method described later. Specifically, the average particle size can be increased by increasing the concentration of active metal ions in the irradiation solution, and the average particle size can be decreased by decreasing the concentration. The average particle size of the fine particles can be determined by the method described in Examples described later.

微粒子は、担体表面に点在した状態で固定化されていることが好ましい。各微粒子が点在することにより、微粒子が連なっている場合や、活性金属が層状に形成されている場合に比べて、活性金属の比表面積を増大できるとともに、酸素気泡の付着をより好適に抑制することができる。   The fine particles are preferably immobilized in a state of being scattered on the surface of the carrier. By interspersing each fine particle, the specific surface area of the active metal can be increased and the adhesion of oxygen bubbles can be suppressed more appropriately than when the fine particles are continuous or when the active metal is formed in layers. can do.

[B.製造方法]
本発明のコンタクトレンズ消毒用過酸化水素の分解触媒の製造方法は、白金イオンを含む照射用溶液を担体に接触させて、該照射用溶液を該担体に付着させること(接触工程)、および、該白金イオンを含む照射用溶液が付着した担体に電子線を照射して、白金を含む微粒子を該担体表面に固定化すること(電子線照射工程)を含む。該製造方法は、必要に応じて、担体をエッチング処理すること(エッチング工程)および/または担体表面を改質処理すること(表面改質工程)をさらに含み得る。該製造方法によれば、電子線照射によって照射用溶液中の水が放射線分解されてHラジカル、水和電子等の還元種が生成し、該還元種によって白金イオンが還元されて担体上に白金含有微粒子が形成および固定化される。該製造方法によれば、メッキ法のように有毒な還元剤を使用することなく、簡便にA項に記載の触媒を製造することができる。
[B. Production method]
The method for producing a decomposition catalyst for hydrogen peroxide for disinfecting contact lenses of the present invention comprises bringing an irradiation solution containing platinum ions into contact with a carrier, and attaching the irradiation solution to the carrier (contacting step); The method includes irradiating an electron beam onto a carrier on which the irradiation solution containing platinum ions is adhered, and immobilizing fine particles containing platinum on the surface of the carrier (electron beam irradiation step). The production method may further include etching the carrier (etching step) and / or modifying the carrier surface (surface modifying step) as necessary. According to the production method, water in the irradiation solution is radiolyzed by electron beam irradiation to generate reducing species such as H radicals and hydrated electrons, and platinum ions are reduced by the reducing species to form platinum on the carrier. Containing fine particles are formed and immobilized. According to the production method, the catalyst described in the item A can be produced easily without using a toxic reducing agent as in the plating method.

[B−1.接触工程]
接触工程においては、白金イオンを含む照射用溶液を担体に接触させて、該照射用溶液を該担体に付着させる。接触方法としては、例えば、照射用溶液に担体を浸漬させる方法、照射用溶液に担体を塗工する方法、照射用溶液を担体に噴霧する方法等が挙げられる。照射用溶液に担体を浸漬させる方法が好ましい。照射用溶液が良好に担体に付着し得るからである。
[B-1. Contact process]
In the contacting step, the irradiation solution containing platinum ions is brought into contact with the carrier, and the irradiation solution is adhered to the carrier. Examples of the contact method include a method of immersing the carrier in the irradiation solution, a method of applying the carrier to the irradiation solution, and a method of spraying the irradiation solution onto the carrier. A method of immersing the carrier in the irradiation solution is preferred. This is because the irradiation solution can adhere to the carrier satisfactorily.

白金イオンを含む照射用溶液は、ヘキサクロリド白金(IV)酸、ヘキサクロリド白金(IV)酸カリウム、アセチルアセトナト白金(II)等の白金の可溶性化合物またはその塩を水に溶解することによって調製され得る。照射用溶液中における白金イオンの濃度は、好ましくは1mM〜200mM、より好ましくは1mM〜100mM、さらに好ましくは1mM〜10mMである。該照射用溶液は、白金以外の過酸化水素分解活性を有する活性金属のイオンを含んでいてもよい。該活性金属としては、A項に記載したとおりである。他の活性金属イオンを含む場合、照射用溶液中の活性金属イオン(白金イオンを含む)の合計濃度は、好ましくは1mM〜200mM、より好ましくは1mM〜150mM、さらに好ましくは1mM〜100mMである。当該範囲であれば、所望の粒子径を有する微粒子が好適に得られ得る。   A solution for irradiation containing platinum ions is prepared by dissolving a soluble compound of platinum such as hexachloride platinum (IV) acid, potassium hexachloride platinum (IV), platinum acetylacetonate (II) or a salt thereof in water. Can be done. The concentration of platinum ions in the irradiation solution is preferably 1 mM to 200 mM, more preferably 1 mM to 100 mM, and even more preferably 1 mM to 10 mM. The irradiation solution may contain ions of active metal having hydrogen peroxide decomposition activity other than platinum. The active metal is as described in the section A. When other active metal ions are included, the total concentration of active metal ions (including platinum ions) in the irradiation solution is preferably 1 mM to 200 mM, more preferably 1 mM to 150 mM, and even more preferably 1 mM to 100 mM. If it is the said range, the microparticles | fine-particles which have a desired particle diameter can be obtained suitably.

白金イオンを含む照射用溶液は、代表的には、メタノール、エタノール、イソプロピルアルコール等の炭素数1〜3のアルコールをさらに含む。アルコールが還元補助剤として機能することにより、白金イオンが好適に還元され得る。該照射用溶液中におけるアルコールの含有量は、好ましくは0.1体積%〜30体積%、より好ましくは0.5体積%〜10体積%である。   The irradiation solution containing platinum ions typically further contains an alcohol having 1 to 3 carbon atoms such as methanol, ethanol, isopropyl alcohol and the like. The platinum ion can be suitably reduced by the alcohol functioning as a reduction aid. The content of alcohol in the irradiation solution is preferably 0.1% by volume to 30% by volume, more preferably 0.5% by volume to 10% by volume.

白金イオンを含む照射用溶液は、好ましくは粒子径制御剤をさらに含む。粒子径制御剤としては、白金等の活性金属と、該金属同士よりもエネルギー的に安定な結合を形成し得る化合物(例えば、白金等の活性金属同士の混合熱よりも小さな混合熱を与える化合物)が好ましく用いられ得る。その具体例としては、ホスフィン酸ナトリウム(NaPH)、ホスホン酸ナトリウム(NaPHO)等のリン化合物、亜硝酸ナトリウム(NaNO2)、チオ硫酸ナトリウム(Na)等の窒素化合物、亜硫酸ナトリウム(NaSO)等の硫黄化合物が挙げられる。例えば、白金イオンおよび該リン化合物を含む照射用溶液に電子線を照射すると、白金含有微粒子とリン化合物とが反応してPt−P結合を形成し、核となった白金含有微粒子に次の白金原子が結合することが阻害される。このように、粒子径制御剤を含むことにより、白金含有微粒子の成長が抑制されて、微粒子をより微細化することができる。照射用溶液中における粒子径制御剤の濃度は、好ましくは0.05mM〜50mM、より好ましくは0.1mM〜10mMである。 The irradiation solution containing platinum ions preferably further contains a particle size controlling agent. As the particle size control agent, an active metal such as platinum and a compound capable of forming a bond that is more stable in energy than the metal (for example, a compound that gives a heat of mixing smaller than the heat of mixing of active metals such as platinum) ) May be preferably used. Specific examples thereof include phosphorus compounds such as sodium phosphinate (NaPH 2 O 2 ) and sodium phosphonate (NaPH 3 ), nitrogen such as sodium nitrite (NaNO 2 ) and sodium thiosulfate (Na 2 S 2 O 3 ). And sulfur compounds such as sodium sulfite (Na 2 SO 3 ). For example, when an irradiation solution containing platinum ions and the phosphorus compound is irradiated with an electron beam, the platinum-containing fine particles and the phosphorus compound react to form a Pt-P bond, and the platinum-containing fine particles serving as nuclei have the next platinum. Atoms are inhibited from bonding. Thus, by including a particle diameter control agent, the growth of platinum-containing fine particles is suppressed, and the fine particles can be further refined. The concentration of the particle size controlling agent in the irradiation solution is preferably 0.05 mM to 50 mM, more preferably 0.1 mM to 10 mM.

白金イオンを含む照射用溶液は、必要に応じて、pH調整剤、キレート剤等の任意の構成成分をさらに含有していてもよい。任意の構成成分の具体例としては、水酸化ナトリウム、アンモニア、酒石酸、クエン酸等が挙げられる。   The irradiation solution containing platinum ions may further contain optional components such as a pH adjuster and a chelating agent as necessary. Specific examples of optional constituents include sodium hydroxide, ammonia, tartaric acid, citric acid and the like.

接触条件は、目的等に応じて適切に設定され得る。   The contact condition can be appropriately set according to the purpose and the like.

[B−2.電子線照射工程]
電子線照射工程においては、白金イオンを含む照射用溶液が付着した担体に電子線を照射する。これにより、白金イオンが担体表面で還元されて、白金含有微粒子が担体表面に固定化される。電子線照射は、照射用溶液に浸漬された状態の担体に対して行われてもよく、照射用溶液に浸漬後に引き上げられ、表面が濡れた状態の担体に対して行われてもよく(ディップEB法)、また、照射用溶液に浸漬後に引き上げられ、外観的に乾燥した状態の担体に対して行われてもよい(ドライEB法)。ディップEB法を用いた場合は、照射用溶液のコストが抑えられるという利点がある。
[B-2. Electron beam irradiation process]
In the electron beam irradiation step, the electron beam is irradiated onto the carrier to which the irradiation solution containing platinum ions is attached. Thereby, platinum ions are reduced on the surface of the carrier, and the platinum-containing fine particles are immobilized on the surface of the carrier. The electron beam irradiation may be performed on the carrier immersed in the irradiation solution, or may be performed on the carrier whose surface is wet after being immersed in the irradiation solution (dip). EB method), or may be carried out on a carrier that is pulled up after being immersed in an irradiation solution and dried in appearance (dry EB method). When the dip EB method is used, there is an advantage that the cost of the irradiation solution can be suppressed.

照射される電子線の加速エネルギーは、好ましくは0.5MeV〜10MeV、より好ましくは1MeV〜8MeVである。また、電子線照射における担体への吸収線量は、好ましくは1kGy〜100kGy、より好ましくは10kGy〜50kGyである。このように電子線を照射することにより、所望の粒子径を有する微粒子が好適に得られ得る。   The acceleration energy of the irradiated electron beam is preferably 0.5 MeV to 10 MeV, more preferably 1 MeV to 8 MeV. Further, the absorbed dose to the carrier in the electron beam irradiation is preferably 1 kGy to 100 kGy, more preferably 10 kGy to 50 kGy. By irradiating with an electron beam in this way, fine particles having a desired particle diameter can be suitably obtained.

電子線照射条件は、目的等に応じて適切に設定され得る。例えば、電子線の照射は、大気圧および室温条件で行うことができる。照射時間は、活性金属イオン濃度、電子線の線量等に応じて適切に設定され得る。照射時間は、例えば1秒〜1分、好ましくは2秒〜30秒、より好ましくは3秒〜10秒程度であり得る。電子線は、連続的に照射されてもよく、間欠的に照射されてもよい。間欠的に照射される場合、上記照射時間は、その合計である。   The electron beam irradiation conditions can be appropriately set according to the purpose and the like. For example, the electron beam irradiation can be performed under atmospheric pressure and room temperature conditions. The irradiation time can be appropriately set according to the active metal ion concentration, the electron beam dose, and the like. The irradiation time may be, for example, 1 second to 1 minute, preferably 2 seconds to 30 seconds, more preferably about 3 seconds to 10 seconds. The electron beam may be irradiated continuously or intermittently. When irradiating intermittently, the said irradiation time is the sum total.

照射用溶液に浸漬された状態の担体に電子線照射を行う場合、電子線照射に先立って、照射用溶液中の溶存酸素を窒素ガス、アルゴンガス等の不活性ガスで置換することがより好ましい。   When performing electron beam irradiation on the carrier immersed in the irradiation solution, it is more preferable to replace the dissolved oxygen in the irradiation solution with an inert gas such as nitrogen gas or argon gas prior to the electron beam irradiation. .

上記のとおり、電子線の照射時間は極めて短時間であり、照射の際にはバッチ式だけでなく、ベルトコンベアー式も採用することができる。よって、本発明の製造方法は、A項に記載の触媒の大量生産に非常に好適である。   As described above, the irradiation time of the electron beam is extremely short, and not only a batch type but also a belt conveyor type can be adopted for irradiation. Therefore, the production method of the present invention is very suitable for mass production of the catalyst described in the section A.

[B−3.エッチング工程]
エッチング工程においては、担体をエッチング処理する。エッチング処理により、担体表面を粗面化してその比表面積を増加させることができる。エッチング工程は、電子線照射工程の前に行われ、好ましくは接触工程の前に行われる。
[B-3. Etching process]
In the etching step, the carrier is etched. The specific surface area can be increased by roughening the carrier surface by etching. An etching process is performed before an electron beam irradiation process, Preferably it is performed before a contact process.

エッチング処理は、化学的または電気化学的に行われ得る。化学的エッチング処理は、代表的には、担体表面をエッチング液で処理することによって行われる。エッチング液としては、担体の形成材料等に応じて任意の適切なエッチング液が用いられ得る。例えば、過マンガン酸、クロム酸、過ヨウ素酸、硫酸、硝酸、カルボン酸、クロロ酢酸、またはこれらの塩;アミン;またはこれらの混合物;を含む溶液が挙げられ、その具体例としては、WO2008/132926、WO2015/060196等に記載のエッチング液が挙げられる。   The etching process can be performed chemically or electrochemically. The chemical etching treatment is typically performed by treating the carrier surface with an etching solution. Any appropriate etching solution can be used as the etching solution depending on the carrier forming material and the like. For example, a solution containing permanganic acid, chromic acid, periodic acid, sulfuric acid, nitric acid, carboxylic acid, chloroacetic acid, or a salt thereof; an amine; or a mixture thereof; specific examples thereof include WO2008 / 132926, WO2015 / 060196 etc. are mentioned.

化学的エッチング処理としては、担体表面をエッチング液に接触させる処理であればよく、噴霧、塗布、浸漬等が挙げられる。接触させる際のエッチング液の液温は、例えば0℃〜100℃、好ましくは35℃〜55℃である。接触時間は、例えば1分〜60分間、好ましくは5分〜30分間である。   The chemical etching process may be a process for bringing the carrier surface into contact with the etching solution, and includes spraying, coating, dipping and the like. The temperature of the etching solution at the time of contact is, for example, 0 ° C. to 100 ° C., preferably 35 ° C. to 55 ° C. The contact time is, for example, 1 minute to 60 minutes, preferably 5 minutes to 30 minutes.

必要に応じて、化学的エッチング処理を行った後に、無機酸を用いた後処理を行ってもよい。後処理を行うことにより、マンガン等の担体表面における付着物を除去することができる。無機酸としては、例えば、硫酸、塩酸、硝酸、リン酸、フッ化水素酸、ホウ酸等を単独で、または、二種以上組み合わせて用いることができる。   If necessary, after chemical etching treatment, post-treatment using an inorganic acid may be performed. By performing post-treatment, deposits on the surface of the carrier such as manganese can be removed. As the inorganic acid, for example, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, hydrofluoric acid, boric acid and the like can be used alone or in combination of two or more.

なお、エッチング処理は、担体の比表面積を増大させるだけでなく、エッチング処理によって生じた微細な凹凸によるアンカー効果や、担体表面にヒドロキシル基、カルボキシル基等の官能基が露出することによる化学的または物理的相互作用により、微粒子の固定化をより強固にする効果を発揮し得る。   The etching treatment not only increases the specific surface area of the carrier, but also has an anchor effect due to fine irregularities generated by the etching treatment, and chemical or chemical by exposing functional groups such as hydroxyl groups and carboxyl groups on the surface of the carrier. The effect of strengthening the immobilization of the fine particles can be exhibited by physical interaction.

[B−4.表面改質工程]
表面改質工程においては、白金含有微粒子がより好適に固定化されるように担体表面を改質処理する(ただし、上述のエッチング処理は除く)。表面改質工程は、電子線照射工程前に行われる。好ましくは、表面改質処理は、エッチング工程の後であって接触工程の前に行われる。
[B-4. Surface modification process]
In the surface modification step, the support surface is modified so that the platinum-containing fine particles are more suitably immobilized (however, the above-described etching treatment is excluded). The surface modification step is performed before the electron beam irradiation step. Preferably, the surface modification treatment is performed after the etching step and before the contact step.

1つの実施形態においては、カチオン系界面活性剤で担体を処理することにより、担体表面が正電荷を帯びるように改質する。これにより、白金含有微粒子がより好適に固定化され得る。このような効果が奏される理由としては、以下のように推測される。すなわち、照射用溶液中において、負イオンが白金イオンを取り囲むように配位している。該溶液を表面が正電荷を帯びる担体に接触させると、負イオンが担体表面と静電的相互作用を生じ、白金イオンも担体表面に吸着される。この状態で電子線照射を行うことにより、白金イオンの還元が担体表面で進行し、結果として、白金含有微粒子が担体表面に好適に固定化され得る。   In one embodiment, the support surface is modified to have a positive charge by treating the support with a cationic surfactant. Thereby, platinum-containing fine particles can be more suitably immobilized. The reason why such an effect is achieved is estimated as follows. That is, the negative ions are coordinated so as to surround the platinum ions in the irradiation solution. When the solution is brought into contact with a carrier whose surface is positively charged, negative ions cause an electrostatic interaction with the carrier surface, and platinum ions are also adsorbed on the carrier surface. By performing electron beam irradiation in this state, the reduction of platinum ions proceeds on the surface of the carrier, and as a result, the platinum-containing fine particles can be suitably immobilized on the surface of the carrier.

カチオン系界面活性剤としては、水に溶解した際に親水基部分がカチオンに電離し得るものであれば、任意の適切な界面活性剤が用いられ得る。例えば、脂肪族アミン塩型または第四級アンモニウム塩型の界面活性剤が用いられ得る。脂肪族アミン塩型の界面活性剤の具体例としては、モノメチルアミン塩酸塩、ジメチルアミン塩酸塩、トリメチルアミン塩酸塩およびドデシルアミン塩酸塩等が挙げられる。第四級アンモニウム塩型界面活性剤の具体例としては、塩化テトラメチルアンモニウム、水酸化テトラメチルアンモニウム、塩化テトラブチルアンモニウム、塩化オクチルトリメチルアンモニウム、塩化デシルトリメチルアンモニウム、塩化ドデシルトリメチルアンモニウム、塩化テトラデシルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化ジステアリルジメチルアンモニウムおよび塩化ヘキサデシルトリメチルアンモニウム等の脂肪族第四級アンモニウム塩、塩化ドデシルジメチルベンジルアンモニウム、塩化ベンジルトリメチルアンモニウム、塩化ベンジルトリエチルアンモニウム、塩化ベンザルコニウム、臭化ベンザルコニウムおよび塩化ベンゼトニウム等の芳香族第四級アンモニウム塩、塩化ブチルピリジニウム、塩化ドデシルピリジニウム(1−ドデシルピリジニウムクロリド)および塩化セチルピリジニウム等の複素環第四級アンモニウム塩等が挙げられる。   As the cationic surfactant, any appropriate surfactant can be used as long as the hydrophilic group portion can be ionized into a cation when dissolved in water. For example, an aliphatic amine salt type or quaternary ammonium salt type surfactant may be used. Specific examples of the aliphatic amine salt type surfactant include monomethylamine hydrochloride, dimethylamine hydrochloride, trimethylamine hydrochloride and dodecylamine hydrochloride. Specific examples of the quaternary ammonium salt type surfactant include tetramethylammonium chloride, tetramethylammonium hydroxide, tetrabutylammonium chloride, octyltrimethylammonium chloride, decyltrimethylammonium chloride, dodecyltrimethylammonium chloride, and tetradecyltrimethyl chloride. Aliphatic quaternary ammonium salts such as ammonium, cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, didecyldimethylammonium chloride, distearyldimethylammonium chloride and hexadecyltrimethylammonium chloride, dodecyldimethylbenzylammonium chloride, benzyltrimethylammonium chloride, Benzyltriethylammonium chloride, benzalkonium chloride, benzalkonium bromide and Aromatic quaternary ammonium salts such as benzethonium chloride, butyl pyridinium chloride, heterocyclic quaternary ammonium salts such as chloride dodecyl pyridinium (1-dodecyl pyridinium chloride) and cetylpyridinium chloride.

カチオン系界面活性剤を用いた担体の処理方法としては、担体表面をカチオン系界面活性剤に接触させる処理であればよく、カチオン系界面活性剤を含む水溶液を用いた噴霧、塗布、浸漬等が挙げられる。接触させる際の水溶液の液温は、例えば0℃〜100℃、好ましくは35℃〜55℃であり、接触時間は、例えば1分間〜30分間、好ましくは3分間〜15分間である。また、水溶液中におけるカチオン系界面活性剤の濃度は、例えば1体積%〜10体積%、好ましくは3体積%〜8体積%である。担体表面にカチオン系界面活性剤を接触させることにより、カチオン系界面活性剤の疎水基部分が担体表面に吸着される一方で、カチオンである親水基部分が表面に露出するので、担体表面が正に帯電し得る。   The treatment method of the carrier using the cationic surfactant may be any treatment in which the carrier surface is brought into contact with the cationic surfactant, and spraying, coating, dipping, etc. using an aqueous solution containing the cationic surfactant may be used. Can be mentioned. The liquid temperature of the aqueous solution at the time of contact is, for example, 0 ° C. to 100 ° C., preferably 35 ° C. to 55 ° C., and the contact time is, for example, 1 minute to 30 minutes, preferably 3 minutes to 15 minutes. Moreover, the density | concentration of the cationic surfactant in aqueous solution is 1 volume%-10 volume%, for example, Preferably they are 3 volume%-8 volume%. By bringing the cationic surfactant into contact with the carrier surface, the hydrophobic group portion of the cationic surfactant is adsorbed on the carrier surface, while the hydrophilic group portion that is a cation is exposed on the surface, so that the carrier surface is normal. Can be charged.

上記の各工程間、または、最終工程後においては、必要に応じて、担体または担体/白金含有微粒子を洗浄し得る。洗浄液としては、水、アルコール等が用いられ得る。   Between the above steps or after the final step, the carrier or the carrier / platinum-containing fine particles can be washed as necessary. Water, alcohol, or the like can be used as the cleaning liquid.

[C.消毒方法]
本発明のコンタクトレンズの消毒方法は、コンタクトレンズと、A項に記載の触媒とを、過酸化水素を含むコンタクトレンズ消毒液に浸漬することを含む。
[C. Disinfection method]
The contact lens disinfection method of the present invention includes immersing the contact lens and the catalyst described in Item A in a contact lens disinfecting solution containing hydrogen peroxide.

コンタクトレンズ消毒液における過酸化水素の濃度は、例えば1.0重量%〜5.0重量%、好ましくは2.5重量%〜4.0重量%である。   The concentration of hydrogen peroxide in the contact lens disinfectant is, for example, 1.0% to 5.0% by weight, preferably 2.5% to 4.0% by weight.

コンタクトレンズ消毒液は、必要に応じて、任意の適切な添加成分を含み得る。該添加成分としては、例えば、キレート剤、界面活性剤、等張化剤、緩衝剤、増粘剤、防腐剤等が挙げられる。これらの添加成分は、単独で、あるいは、2種以上組み合わされて用いられ得る。消毒液における各添加成分の濃度は、目的等に応じて適切に設定され得る。   The contact lens disinfecting solution may contain any appropriate additive component as required. Examples of the additive component include chelating agents, surfactants, tonicity agents, buffers, thickeners, preservatives, and the like. These additive components may be used alone or in combination of two or more. The concentration of each additive component in the disinfectant can be appropriately set according to the purpose and the like.

キレート剤は、消毒液の安定性を向上させて、その長期保存の点で有効である。キレート剤としては、EDTA(エチレンジアミン四酢酸)またはその塩、エチドロン酸またはその塩、DTPMP[ジエチレントリアミンペンタ(メチレンホスホン酸)]、スズ酸ナトリウム等が挙げられる。消毒液におけるキレート剤の濃度は、一般に、0.01重量%〜0.5重量%程度である。   Chelating agents improve the stability of the disinfectant and are effective in terms of long-term storage. Examples of the chelating agent include EDTA (ethylenediaminetetraacetic acid) or a salt thereof, etidronic acid or a salt thereof, DTPMP [diethylenetriaminepenta (methylenephosphonic acid)], sodium stannate, and the like. The concentration of the chelating agent in the disinfectant is generally about 0.01% to 0.5% by weight.

界面活性剤は、コンタクトレンズ消毒液に、脂質の除去作用等の有効なコンタクトレンズ洗浄効果を付与し得る。界面活性剤としては、コンタクトレンズ用液剤等に一般的に用いられている公知のアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤、およびカチオン系界面活性剤が用いられ得る。具体例としては、高級アルコールのポリエチレングリコールエーテル、高級脂肪酸のポリエチレングリコールエステル、高級脂肪酸のポリグリセリンエステル、アルキルフェノールのポリエチレングリコールエーテル、ポリエチレングリコールソルビタンアルキルエステル、ポリオキシエチレン−ポリオキシプロピレングリコール(ポロクサマー)、エチレンジアミンテトラポリオキシエチレンポリオキシプロピレン(ポロキサミン)等が挙げられる。中でも、ポリオキシエチレンとポリオキシプロピレンのブロックコポリマーまたはその誘導体(ポロクサマーまたはポロキサミン)が好ましく用いられる。   The surfactant can impart an effective contact lens cleaning effect such as lipid removal action to the contact lens disinfectant. As the surfactant, known anionic surfactants, nonionic surfactants, amphoteric surfactants, and cationic surfactants that are generally used in contact lens solutions and the like can be used. Specific examples include polyethylene glycol ethers of higher alcohols, polyethylene glycol esters of higher fatty acids, polyglycerol esters of higher fatty acids, polyethylene glycol ethers of alkylphenols, polyethylene glycol sorbitan alkyl esters, polyoxyethylene-polyoxypropylene glycol (poloxamer), Examples include ethylenediaminetetrapolyoxyethylenepolyoxypropylene (poloxamine). Among these, a block copolymer of polyoxyethylene and polyoxypropylene or a derivative thereof (poloxamer or poloxamine) is preferably used.

等張化剤は、コンタクトレンズ消毒液(消毒前および消毒後)の浸透圧の調整を目的として添加される。等張化剤としては、コンタクトレンズ用液剤等に一般的に用いられている公知の等張化剤が用いられ得る。   The isotonic agent is added for the purpose of adjusting the osmotic pressure of the contact lens disinfectant (before and after disinfection). As the tonicity agent, a known tonicity agent generally used for a contact lens solution or the like can be used.

コンタクトレンズ消毒液は、水系媒体中に、各成分を溶解または分散させることによって調製され得る。水系媒体としては、水、生理食塩水等が挙げられる。添加順序に制限はなく、各成分を順次または同時に添加して、それぞれ、分散または溶解させることによって、目的とする消毒液を容易に得ることが出来る。   The contact lens disinfecting solution can be prepared by dissolving or dispersing each component in an aqueous medium. Examples of the aqueous medium include water and physiological saline. There is no restriction | limiting in the addition order, The target disinfection liquid can be easily obtained by adding each component sequentially or simultaneously, and each making it disperse | distribute or melt | dissolve.

コンタクトレンズ消毒液の使用量は、コンタクトレンズと触媒とを浸漬可能な量であればよい。該使用量は、例えば、5.0mL〜20mLである。1つの実施形態においては、コンタクトレンズ消毒液の使用量は、触媒に担持される白金1μgあたり、例えば0.01mL〜20mL、好ましくは0.05mL〜10mL、より好ましくは0.1mL〜5mLであり得る。   The usage amount of the contact lens disinfectant may be an amount that can immerse the contact lens and the catalyst. The amount used is, for example, 5.0 mL to 20 mL. In one embodiment, the usage amount of the contact lens disinfectant is, for example, 0.01 mL to 20 mL, preferably 0.05 mL to 10 mL, more preferably 0.1 mL to 5 mL per 1 μg of platinum supported on the catalyst. obtain.

消毒対象であるコンタクトレンズとしては、含水性または非含水性、いわゆるソフトまたはハードの材質等にかかわらず、すべての種類のコンタクトレンズが適用可能である。本発明の消毒方法は、ソフトコンタクトレンズに特に好適である。ソフトコンタクトレンズとしては、含水性のハイドロゲルからなるものが知られており、例えば、2−ヒドロキシエチルメタクリレート、N,N−ジメチルアクリルアミド、N−ビニル−2−ピロリドン、メタクリル酸等の親水性モノマーの重合体または共重合体にて形成されたもの、該親水性モノマーに、シリコーンを含有する疎水性のモノマーを組み合わせて、共重合することにより製造される共重合体にて形成されたもの等が挙げられる。   As contact lenses to be disinfected, all types of contact lenses can be applied regardless of whether they are hydrous or non-hydrous, so-called soft or hard materials. The disinfection method of the present invention is particularly suitable for soft contact lenses. As soft contact lenses, those made of a hydrous hydrogel are known. For example, hydrophilic monomers such as 2-hydroxyethyl methacrylate, N, N-dimethylacrylamide, N-vinyl-2-pyrrolidone, and methacrylic acid. Formed from a polymer or copolymer of the above, or formed from a copolymer produced by copolymerizing the hydrophilic monomer with a hydrophobic monomer containing silicone, etc. Is mentioned.

本発明の消毒方法においては、過酸化水素によるコンタクトレンズの消毒と触媒による過酸化水素の分解とが好適に両立され得る。触媒とコンタクトレンズとは、最初から消毒液中に共存させてもよく、コンタクトレンズを浸漬した後に触媒を加えて両者を共存させてもよい。いずれの場合であっても、触媒の消毒液への浸漬時間が、例えば30分〜480分、好ましくは120分〜360分となるように浸漬することが望ましい。浸漬温度は、好ましくは5℃〜40℃であり、より好ましくは10℃〜30℃である。   In the disinfection method of the present invention, both disinfection of contact lenses with hydrogen peroxide and decomposition of hydrogen peroxide with a catalyst can be suitably achieved. The catalyst and the contact lens may coexist in the disinfecting solution from the beginning, or the catalyst may be added after the contact lens is immersed to coexist both. In either case, it is desirable to immerse the catalyst so that the immersion time in the disinfectant is, for example, 30 minutes to 480 minutes, preferably 120 minutes to 360 minutes. The immersion temperature is preferably 5 ° C to 40 ° C, more preferably 10 ° C to 30 ° C.

1つの実施形態において、消毒後の消毒液における過酸化水素の濃度は、例えば150ppm以下、好ましくは100ppm以下である。該過酸化水素残留濃度であれば、消毒後のコンタクトレンズをそのまま装着したとしても痛み、刺激感等の発生を回避し得る。   In one embodiment, the concentration of hydrogen peroxide in the disinfectant after disinfection is, for example, 150 ppm or less, preferably 100 ppm or less. With the hydrogen peroxide residual concentration, it is possible to avoid the occurrence of pain, irritation and the like even if the contact lens after disinfection is mounted as it is.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれら実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited by these Examples.

≪平均粒子径の測定≫
実施例で得られた触媒の表面を透過型電子顕微鏡(日本電子社製、製品番号「JEM−2100」)で観察および撮像した。得られた画像中の任意の50個の微粒子についてその一次粒子径を測定し、これらの平均値(相乗平均)を平均粒子径として算出した。なお、微粒子が真球形状でない場合は、長径を測定した。
≪白金濃度の測定≫
実施例で得られた触媒(Pt/ABS)を王水8mL(HCl:HNO=3:1)に浸漬させ、白金含有微粒子を溶解した。得られた溶液4mLを超純水で50mLに希釈して試料溶液とした。該試料溶液を用いて誘導結合プラズマ原子発光分析法(島津製作所社製、製品番号「ICPE−9000」)により白金濃度を測定した。得られた濃度に基づいて担体の幾何学的表面積あたりの固定化された白金の重量を算出した。
≪過酸化水素濃度の測定≫
硫酸チタン溶液(30%、和光純薬工業株式会社)を5%に希釈して過酸化水素を含む試料と混合し、407nmにおける吸光度を測定することで過酸化水素濃度を測定した。
≪Measurement of average particle diameter≫
The surface of the catalyst obtained in the examples was observed and imaged with a transmission electron microscope (manufactured by JEOL Ltd., product number “JEM-2100”). The primary particle size of any 50 fine particles in the obtained image was measured, and the average value (synergistic average) of these was calculated as the average particle size. In addition, when fine particle was not a true spherical shape, the major axis was measured.
≪Measurement of platinum concentration≫
The catalyst (Pt / ABS) obtained in the example was immersed in 8 mL of aqua regia (HCl: HNO 3 = 3: 1) to dissolve platinum-containing fine particles. 4 mL of the obtained solution was diluted to 50 mL with ultrapure water to obtain a sample solution. Using this sample solution, the platinum concentration was measured by inductively coupled plasma atomic emission spectrometry (manufactured by Shimadzu Corporation, product number “ICPE-9000”). Based on the concentration obtained, the weight of immobilized platinum per geometric surface area of the support was calculated.
≪Measurement of hydrogen peroxide concentration≫
A titanium sulfate solution (30%, Wako Pure Chemical Industries, Ltd.) was diluted to 5%, mixed with a sample containing hydrogen peroxide, and the absorbance at 407 nm was measured to measure the hydrogen peroxide concentration.

≪実施例1A≫
ポリプロピレン製の容器に、超純水4.55mL、2−プロパノール0.05mLおよび0.05M HPtCl 0.4mLを加え、混合することにより、照射用溶液を調製した。該照射用溶液に、担体(長さ20mm×幅15mm×厚み1mmのABS樹脂板(AS−ONE社製、型番「2−9229−01」)、幾何学的表面積:6.7cm)を浸漬し、次いで、加速エネルギー4.8MeV、線量20kGy、照射時間約7秒の照射条件で電子線照射を行った。白金微粒子が固定化された担体を取り出し、超純水に浸漬させて10分間超音波洗浄した。これにより、過酸化水素の分解触媒1Aを得た。該触媒1AのTEM写真を図1(a)に示す。
<< Example 1A >>
An irradiation solution was prepared by adding 4.55 mL of ultrapure water, 0.05 mL of 2-propanol, and 0.4 mL of 0.05 MH 2 PtCl 6 to a polypropylene container and mixing them. A carrier (20 mm long × 15 mm wide × 1 mm thick ABS resin plate (AS-ONE, model number “2-9229-01”), geometric surface area: 6.7 cm 2 ) is immersed in the irradiation solution. Then, electron beam irradiation was performed under irradiation conditions of an acceleration energy of 4.8 MeV, a dose of 20 kGy and an irradiation time of about 7 seconds. The carrier on which the platinum fine particles were immobilized was taken out, immersed in ultrapure water, and subjected to ultrasonic cleaning for 10 minutes. Thus, a hydrogen peroxide decomposition catalyst 1A was obtained. A TEM photograph of the catalyst 1A is shown in FIG.

図1(a)に示されるとおり、担体表面には、白金微粒子が固定化されていた。また、該白金微粒子の粒子径分布を図2に示す。図2に示されるとおり、固定化された白金微粒子は4nm〜10nmの粒子径を有しており、その平均粒子径は、6.2nmであった。また、触媒1Aの担体の幾何学的表面積あたりの固定化された白金の重量は0.87μg/cmであった。 As shown in FIG. 1A, platinum fine particles were immobilized on the surface of the carrier. The particle size distribution of the platinum fine particles is shown in FIG. As shown in FIG. 2, the immobilized platinum fine particles had a particle size of 4 nm to 10 nm, and the average particle size was 6.2 nm. Further, the weight of platinum immobilized per geometric surface area of the support of the catalyst 1A was 0.87 μg / cm 2 .

≪実施例2A≫
実施例1Aと同様のABS樹脂板を、0.16mM 過マンガン酸カリウムおよび3.6mM 硫酸を含む水溶液(エッチング液)に20分間浸漬することによりエッチングし、次いで、超純水で洗浄した。該ABS樹脂板を照射用溶液に浸漬したこと以外は実施例1Aと同様にして過酸化水素の分解触媒2Aを得た。触媒2Aにおける担体の幾何学的表面積あたりの固定化された白金の重量は1.82μg/cmであった。
<< Example 2A >>
The same ABS resin plate as in Example 1A was etched by immersing it in an aqueous solution (etching solution) containing 0.16 mM potassium permanganate and 3.6 mM sulfuric acid for 20 minutes, and then washed with ultrapure water. A hydrogen peroxide decomposition catalyst 2A was obtained in the same manner as in Example 1A, except that the ABS resin plate was immersed in the irradiation solution. The weight of immobilized platinum per geometric surface area of the support in Catalyst 2A was 1.82 μg / cm 2 .

≪実施例3A≫
実施例1Aと同様のABS樹脂板を、カチオン系界面活性剤であるヘキサデシルトリメチルアンモニウムクロリド(奥野工業社製、製品番号「コンディライザーFRコンク」)を5重量%の濃度で含む水溶液に5分間浸漬することにより表面改質処理した。該ABS樹脂板を照射用溶液に浸漬したこと以外は実施例1Aと同様にして過酸化水素の分解触媒3Aを得た。触媒3Aにおける担体の幾何学的表面積あたりの固定化された白金の重量は1.31μg/cmであった。
Example 3A
An ABS resin plate similar to that of Example 1A was placed in an aqueous solution containing a cationic surfactant hexadecyltrimethylammonium chloride (Okuno Kogyo Co., Ltd., product number “Condizer FR Conch”) at a concentration of 5% by weight for 5 minutes. Surface modification treatment was performed by dipping. A hydrogen peroxide decomposition catalyst 3A was obtained in the same manner as in Example 1A, except that the ABS resin plate was immersed in the irradiation solution. The weight of immobilized platinum per geometric surface area of the support in Catalyst 3A was 1.31 μg / cm 2 .

≪実施例4A≫
実施例1Aと同様のABS樹脂板を0.16mM 過マンガン酸カリウムおよび3.6mM 硫酸を含む水溶液に20分間浸漬することによりエッチングし、超純水で洗浄した後、カチオン系界面活性剤であるヘキサデシルトリメチルアンモニウムクロリド(奥野工業社製、製品番号「コンディライザーFRコンク」)を5重量%の濃度で含む水溶液に5分間浸漬することにより表面改質処理した。該ABS樹脂板を照射用溶液に浸漬したこと以外は実施例1Aと同様にして過酸化水素の分解触媒4Aを得た。触媒4Aにおける担体の幾何学的表面積あたりの固定化された白金の重量は1.73μg/cmであった。
Example 4A
It is a cationic surfactant after etching by immersing an ABS resin plate similar to Example 1A in an aqueous solution containing 0.16 mM potassium permanganate and 3.6 mM sulfuric acid for 20 minutes, washing with ultrapure water. Surface modification treatment was carried out by immersing in an aqueous solution containing hexadecyltrimethylammonium chloride (manufactured by Okuno Kogyo Co., Ltd., product number “Condizer FR Conch”) at a concentration of 5% by weight for 5 minutes. A hydrogen peroxide decomposition catalyst 4A was obtained in the same manner as in Example 1A except that the ABS resin plate was immersed in the irradiation solution. The weight of immobilized platinum per geometric surface area of the support in Catalyst 4A was 1.73 μg / cm 2 .

≪実施例5A≫
超純水4.54mL、2−プロパノール0.05mL、0.05M HPtCl 0.4mLおよび0.25M NaPH 0.01mLを混合することによって照射用溶液を調製したこと以外は実施例1Aと同様にして過酸化水素の分解触媒5Aを得た。該触媒5AのTEM写真を図1(b)に示す。図1(a)および(b)を比較すると、粒子径制御剤を用いずに調製された触媒1Aよりも粒子径制御剤を用いて調製された触媒5Aにおいて、より微細な白金微粒子がより多く固定化されていることが確認できる。なお、触媒5Aにおける担体の幾何学的表面積あたりの固定化された白金の重量は0.76μg/cmであり、白金微粒子の平均粒子径は、4.9nmであった。
Example 5A
Except that the solution for irradiation was prepared by mixing 4.54 mL of ultrapure water, 0.05 mL of 2-propanol, 0.4 mL of 0.05 MH 2 PtCl 6 and 0.01 mL of 0.25M NaPH 2 O 2 In the same manner as in Example 1A, a hydrogen peroxide decomposition catalyst 5A was obtained. A TEM photograph of the catalyst 5A is shown in FIG. Comparing FIGS. 1 (a) and 1 (b), the catalyst 5A prepared using the particle size control agent has more finer platinum fine particles than the catalyst 1A prepared without using the particle size control agent. It can be confirmed that it is fixed. The weight of platinum immobilized per geometric surface area of the support in the catalyst 5A was 0.76 μg / cm 2 , and the average particle size of the platinum fine particles was 4.9 nm.

≪比較例1≫
市販のコンタクトレンズ消毒用過酸化水素の分解触媒(アルコン社製のコンタクトレンズケア製品(製品名「AOSEPT」)に付属のディスポカップに収納されている中和ディスク)を過酸化水素の分解触媒C1として用いた。触媒C1は、無機材料で形成された担体と該担体表面にメッキ法によって薄膜状に固定化された白金層とを有する。触媒C1の白金含有量は約1500μgであった。なお、触媒C1の担体は、円筒部と、該円筒部の外表面から略放射状に突出する凸部とを有し、その幾何学的表面積は約10.4cmであった。
≪Comparative example 1≫
A hydrogen peroxide decomposition catalyst (neutralizing disc stored in a disposable cup attached to a contact lens care product (product name “AOSEPT”) manufactured by Alcon Co.) is used as a hydrogen peroxide decomposition catalyst C1. Used as. The catalyst C1 has a carrier formed of an inorganic material and a platinum layer fixed in a thin film on the surface of the carrier by a plating method. The platinum content of catalyst C1 was about 1500 μg. The support of the catalyst C1 had a cylindrical portion and convex portions protruding substantially radially from the outer surface of the cylindrical portion, and the geometric surface area was about 10.4 cm 2 .

≪実施例1B≫
角板状のABS樹脂板の代わりに、触媒C1の担体と同様の形状に成形したABS樹脂(幾何学的表面積:約12.4cm)を用いたこと以外は実施例1Aと同様にして、触媒1Bを得た。
<< Example 1B >>
Instead of the square plate-shaped ABS resin plate, the same procedure as in Example 1A was performed except that an ABS resin (geometric surface area: about 12.4 cm 2 ) molded in the same shape as the catalyst C1 support was used. Catalyst 1B was obtained.

≪実施例2B≫
角板状のABS樹脂板の代わりに、触媒C1の担体と同様の形状に成形したABS樹脂(幾何学的表面積:約12.4cm)を用いたこと以外は実施例2Aと同様にして、触媒2Bを得た。
<< Example 2B >>
In the same manner as in Example 2A except that an ABS resin (geometric surface area: about 12.4 cm 2 ) molded in the same shape as the support of the catalyst C1 was used instead of the square plate-shaped ABS resin plate, Catalyst 2B was obtained.

≪実施例3B≫
角板状のABS樹脂板の代わりに、触媒C1の担体と同様の形状に成形したABS樹脂(幾何学的表面積:約12.4cm)を用いたこと以外は実施例3Aと同様にして、触媒3Bを得た。
Example 3B
In the same manner as in Example 3A, except that an ABS resin (geometric surface area: about 12.4 cm 2 ) formed in the same shape as the support of the catalyst C1 was used instead of the square plate-shaped ABS resin plate Catalyst 3B was obtained.

≪実施例4B≫
角板状のABS樹脂板の代わりに、触媒C1の担体と同様の形状に成形したABS樹脂(幾何学的表面積:約12.4cm)を用いたこと以外は実施例4Aと同様にして、触媒4Bを得た。
Example 4B
Instead of the square plate-shaped ABS resin plate, the same procedure as in Example 4A was performed except that an ABS resin (geometric surface area: about 12.4 cm 2 ) formed in the same shape as the support of the catalyst C1 was used. Catalyst 4B was obtained.

[過酸化水素分解触媒活性の評価1]
触媒1Bと触媒C1の過酸化水素分解活性を次のようにして調べた。各触媒を、25℃の恒温器内で3.5重量%(35000ppm)の過酸化水素水溶液5mLに浸漬させ、10分後、20分後、30分後、および360分後の残留過酸化水素濃度を測定した。結果を表1に示す。
[Evaluation of hydrogen peroxide decomposition catalytic activity 1]
The hydrogen peroxide decomposition activities of Catalyst 1B and Catalyst C1 were examined as follows. Each catalyst was immersed in 5 mL of a 3.5 wt% (35000 ppm) hydrogen peroxide aqueous solution in a thermostat at 25 ° C., and residual hydrogen peroxide after 10, 20, 30, and 360 minutes Concentration was measured. The results are shown in Table 1.

表1に示されるとおり、触媒C1によれば、浸漬から20分後には過酸化水素濃度が当初の10%以下にまで低下した。これに対し、実施例の触媒1Bによれば、浸漬から20分後において、当初の30%程度の過酸化水素濃度を維持しつつ、浸漬から6時間後には、8ppmという極めて低い残留過酸化水素濃度を達成した。   As shown in Table 1, according to the catalyst C1, the hydrogen peroxide concentration decreased to 10% or less of the initial value after 20 minutes from the immersion. On the other hand, according to the catalyst 1B of the example, the residual hydrogen peroxide concentration as extremely low as 8 ppm was maintained after 6 hours of immersion while maintaining the initial hydrogen peroxide concentration of about 30% after 20 minutes of immersion. Concentration was achieved.

[耐久性評価]
触媒1B〜4Bの耐久性を次のようにして調べた。各触媒を3.5重量%の過酸化水素水溶液10mLに浸漬させ、6時間後の残留過酸化水素濃度を測定した。その後、各触媒をNガンで乾燥させて、再度、3.5重量%の過酸化水素水溶液10mLに浸漬させ、6時間後の残留過酸化水素濃度を測定した。該浸漬および乾燥を計5回行った。残留過酸化水素濃度の変化を図3に示す。
[Durability evaluation]
The durability of the catalysts 1B to 4B was examined as follows. Each catalyst was immersed in 10 mL of a 3.5% by weight aqueous hydrogen peroxide solution, and the residual hydrogen peroxide concentration after 6 hours was measured. Thereafter, each catalyst was dried with an N 2 gun and immersed again in 10 mL of a 3.5 wt% aqueous hydrogen peroxide solution, and the residual hydrogen peroxide concentration after 6 hours was measured. The immersion and drying were performed 5 times in total. The change in residual hydrogen peroxide concentration is shown in FIG.

図3に示されるとおり、エッチング処理も表面改質処理も行わなかった触媒1Bは、繰り返して使用すると残留過酸化水素濃度が上昇した。一方、エッチング処理のみを行った触媒2B、表面改質処理のみを行った触媒3Bおよびその両方を行った触媒4Bはそれぞれ、5回繰り返して使用しても、残留過酸化水素濃度は20ppm以下であり、十分な触媒活性を維持していた。   As shown in FIG. 3, the residual hydrogen peroxide concentration increased when the catalyst 1B that was not subjected to the etching treatment or the surface modification treatment was repeatedly used. On the other hand, even if the catalyst 2B subjected only to the etching treatment, the catalyst 3B subjected to only the surface modification treatment, and the catalyst 4B subjected to both are used repeatedly 5 times, the residual hydrogen peroxide concentration is 20 ppm or less. And sufficient catalytic activity was maintained.

[過酸化水素分解触媒活性の評価2]
実施例で得られた触媒1Aおよび触媒5Aをそれぞれ、25℃の恒温器内で3.5重量%(35000ppm)の過酸化水素水溶液5mLに浸漬させ、360分後の残留過酸化水素濃度を測定した。その結果、触媒5Aの残留過酸化水素濃度は、触媒1Aの残留過酸化水素濃度の5分の1以下であった。このことから、粒子径制御剤の使用により、触媒活性が向上したことがわかる。
[Evaluation of hydrogen peroxide decomposition catalytic activity 2]
The catalyst 1A and the catalyst 5A obtained in the examples were each immersed in 5 mL of a 3.5 wt% (35000 ppm) hydrogen peroxide aqueous solution in a thermostat at 25 ° C., and the residual hydrogen peroxide concentration after 360 minutes was measured. did. As a result, the residual hydrogen peroxide concentration of the catalyst 5A was 1/5 or less of the residual hydrogen peroxide concentration of the catalyst 1A. From this, it can be seen that the catalytic activity was improved by using the particle size control agent.

本発明の触媒は、コンタクトレンズの消毒において好適に用いられ得る。   The catalyst of the present invention can be suitably used in contact lens disinfection.

Claims (9)

担体と、該担体表面に固定化された白金を含む微粒子と、を含み、
該微粒子の平均粒子径が、1000nm以下である、コンタクトレンズ消毒用過酸化水素の分解触媒。
A carrier, and fine particles containing platinum immobilized on the surface of the carrier,
A catalyst for decomposing hydrogen peroxide for contact lens disinfection, wherein the average particle size of the fine particles is 1000 nm or less.
前記微粒子の平均粒子径が、300nm以下である、請求項1記載の触媒。   The catalyst according to claim 1, wherein an average particle size of the fine particles is 300 nm or less. 前記担体が、有機系材料を含む、請求項1または2に記載の触媒。   The catalyst according to claim 1 or 2, wherein the support contains an organic material. 白金担持重量が、1μg〜300μgである、請求項1から3のいずれかに記載の触媒。   The catalyst according to any one of claims 1 to 3, wherein a platinum supporting weight is 1 µg to 300 µg. 白金イオンを含む照射用溶液を担体に接触させて、該照射用溶液を該担体に付着させること、および
該照射用溶液が付着した担体に電子線を照射して、白金を含む微粒子を該担体表面に固定化すること
を含む、請求項1から4のいずれかに記載のコンタクトレンズ消毒用過酸化水素の分解触媒の製造方法。
An irradiation solution containing platinum ions is brought into contact with a carrier, and the irradiation solution is attached to the carrier, and the carrier to which the irradiation solution is attached is irradiated with an electron beam to convert platinum-containing fine particles into the carrier. The manufacturing method of the decomposition catalyst of the hydrogen peroxide for contact lens disinfection in any one of Claim 1 to 4 including fix | immobilizing on the surface.
電子線を照射する前に、前記担体表面を改質処理することをさらに含む、請求項5に記載の製造方法。   The manufacturing method according to claim 5, further comprising modifying the surface of the carrier before irradiating the electron beam. 電子線を照射する前に、前記担体をエッチング処理することをさらに含む、請求項5または6に記載の製造方法。   The manufacturing method according to claim 5, further comprising etching the carrier before irradiating the electron beam. 前記照射用溶液が、粒子径制御剤をさらに含む、請求項5から7のいずれかに記載の製造方法。   The production method according to claim 5, wherein the irradiation solution further contains a particle size controlling agent. コンタクトレンズと、請求項1から4のいずれかに記載のコンタクトレンズ消毒用過酸化水素の分解触媒とを、過酸化水素を含むコンタクトレンズ消毒液に浸漬することを含む、コンタクトレンズの消毒方法。   A contact lens disinfection method comprising immersing a contact lens and a decomposition catalyst for hydrogen peroxide for contact lens disinfection according to any one of claims 1 to 4 in a contact lens disinfection solution containing hydrogen peroxide.
JP2016045312A 2016-03-09 2016-03-09 Decomposition catalyst of hydrogen peroxide for contact lens disinfection and method for producing the same Active JP6710409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016045312A JP6710409B2 (en) 2016-03-09 2016-03-09 Decomposition catalyst of hydrogen peroxide for contact lens disinfection and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016045312A JP6710409B2 (en) 2016-03-09 2016-03-09 Decomposition catalyst of hydrogen peroxide for contact lens disinfection and method for producing the same

Publications (2)

Publication Number Publication Date
JP2017159228A true JP2017159228A (en) 2017-09-14
JP6710409B2 JP6710409B2 (en) 2020-06-17

Family

ID=59853355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016045312A Active JP6710409B2 (en) 2016-03-09 2016-03-09 Decomposition catalyst of hydrogen peroxide for contact lens disinfection and method for producing the same

Country Status (1)

Country Link
JP (1) JP6710409B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202320A1 (en) * 2019-03-29 2020-10-08 株式会社メニコン Decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, and method for manufacturing decomposition catalyst

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386170A (en) * 1989-08-31 1991-04-11 Tome Sangyo Kk Disinfecting method for contact lens
JPH03114544A (en) * 1989-09-28 1991-05-15 Mitsubishi Gas Chem Co Inc Hydrogen peroxide decomposition catalyst
JPH03141181A (en) * 1989-10-24 1991-06-17 Saga Pref Gov Production of alumina ceramic having improved surface
JPH09103470A (en) * 1995-08-16 1997-04-22 Ciba Geigy Ag Disinfection device
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2008207081A (en) * 2007-02-23 2008-09-11 Hitachi Maxell Ltd Catalyst for oxidizing carbon monoxide and its producing method
JP2009233479A (en) * 2008-03-04 2009-10-15 Hitachi Maxell Ltd Catalyst for oxidizing carbon monoxide, method for manufacturing the same, and system for reforming hydrocarbon
JP2011133744A (en) * 2009-12-25 2011-07-07 Lion Corp Disinfectant for contact lens and disinfection unit for contact lens
JP2013013868A (en) * 2011-07-05 2013-01-24 Nikki Universal Co Ltd Hydrogen peroxide decomposition catalyst and method for manufacturing the same, and disinfection method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386170A (en) * 1989-08-31 1991-04-11 Tome Sangyo Kk Disinfecting method for contact lens
JPH03114544A (en) * 1989-09-28 1991-05-15 Mitsubishi Gas Chem Co Inc Hydrogen peroxide decomposition catalyst
JPH03141181A (en) * 1989-10-24 1991-06-17 Saga Pref Gov Production of alumina ceramic having improved surface
JPH09103470A (en) * 1995-08-16 1997-04-22 Ciba Geigy Ag Disinfection device
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2008207081A (en) * 2007-02-23 2008-09-11 Hitachi Maxell Ltd Catalyst for oxidizing carbon monoxide and its producing method
JP2009233479A (en) * 2008-03-04 2009-10-15 Hitachi Maxell Ltd Catalyst for oxidizing carbon monoxide, method for manufacturing the same, and system for reforming hydrocarbon
JP2011133744A (en) * 2009-12-25 2011-07-07 Lion Corp Disinfectant for contact lens and disinfection unit for contact lens
JP2013013868A (en) * 2011-07-05 2013-01-24 Nikki Universal Co Ltd Hydrogen peroxide decomposition catalyst and method for manufacturing the same, and disinfection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202320A1 (en) * 2019-03-29 2020-10-08 株式会社メニコン Decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, and method for manufacturing decomposition catalyst
JP6829857B1 (en) * 2019-03-29 2021-02-17 株式会社メニコン Decomposition catalyst of hydrogen peroxide for contact lens disinfection and its manufacturing method

Also Published As

Publication number Publication date
JP6710409B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
US12042567B2 (en) Disinfection system of contact lens
JP6829857B1 (en) Decomposition catalyst of hydrogen peroxide for contact lens disinfection and its manufacturing method
WO2007048806A1 (en) Method for the preparation of biocidal activated water solutions
CA2064471C (en) Contact lens disinfecting system
JP6710409B2 (en) Decomposition catalyst of hydrogen peroxide for contact lens disinfection and method for producing the same
JP2013208539A (en) Radical water
US20210402433A1 (en) System and method for impregnating a porous surface with antibacterial and antiviral compounds
JP6271223B2 (en) Radical functional liquid, method for producing the same, and method for using radical functional liquid
US5556480A (en) Procedure for disinfecting and cleaning contact lenses
TW548340B (en) Additives for accelerator solution for electroless metal plating
JP4519234B2 (en) Article surface cleaning method and cleaning apparatus therefor
WO2023013557A1 (en) Antibacterial metal material and antibacterial article
Liao et al. Piranha solution treatment: a facile method for improving the antithrombotic ability and regulating smooth muscle cell growth on blood contact materials
CN106040232B (en) For wastewater treatment catalyst, prepare the method for catalyst and including the sewage treatment equipment of catalyst
US9765442B2 (en) Electrolyte for surface treatment of metal implant and method for surface treatment of metal implant using said electrolyte
JPH06226098A (en) Hydrogen peroxide decomposition catalyst and production therefor and sterilizing method for contact lens using the catalyst
JP2009297202A (en) Deodorant, spray deodorant, deodorant article, deodorant kit, and manufacturing method of deodorant
JP2000212757A (en) Method for deposition of palladium catalyst
Jaramillo Correa Elucidating strategies to design tailored chitosan surfaces with enhanced antibiofouling and biocompatibility properties via plasma assisted processes
JP2023086561A (en) Antibacterial member and method for producing the same
JPH03114544A (en) Hydrogen peroxide decomposition catalyst
JP2719417B2 (en) Contact lens disinfection method
CN115814746A (en) Integral adsorption inactivation material and preparation method and application thereof
JPH05203896A (en) Method of washing and disinfecting con- tact lens
TW201127424A (en) A hydrogen peroxide catalyst apparatus and method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200501

R150 Certificate of patent or registration of utility model

Ref document number: 6710409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150