WO2020202320A1 - Decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, and method for manufacturing decomposition catalyst - Google Patents

Decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, and method for manufacturing decomposition catalyst Download PDF

Info

Publication number
WO2020202320A1
WO2020202320A1 PCT/JP2019/014194 JP2019014194W WO2020202320A1 WO 2020202320 A1 WO2020202320 A1 WO 2020202320A1 JP 2019014194 W JP2019014194 W JP 2019014194W WO 2020202320 A1 WO2020202320 A1 WO 2020202320A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
hydrogen peroxide
catalyst
solution
coating layer
Prior art date
Application number
PCT/JP2019/014194
Other languages
French (fr)
Japanese (ja)
Inventor
雄司 大久保
智史 清野
和也 山村
理 森
Original Assignee
株式会社メニコン
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メニコン, 国立大学法人大阪大学 filed Critical 株式会社メニコン
Priority to PCT/JP2019/014194 priority Critical patent/WO2020202320A1/en
Priority to JP2020555529A priority patent/JP6829857B1/en
Publication of WO2020202320A1 publication Critical patent/WO2020202320A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning

Definitions

  • the present invention relates to a catalyst for decomposing hydrogen peroxide for disinfecting contact lenses, a method for producing the same, and the like.
  • Patent Document 1 As the decomposition treatment of hydrogen peroxide, it is known that the decomposition of hydrogen peroxide is promoted by using a catalyst supporting an active metal having hydrogen peroxide decomposition activity such as platinum.
  • a catalyst supporting an active metal having hydrogen peroxide decomposition activity such as platinum.
  • Patent Document 1 by using platinum fine particles immobilized on a carrier, hydrogen peroxide is decomposed to a sufficiently low concentration after a lapse of a predetermined time while effectively disinfecting contact lenses with hydrogen peroxide. It is disclosed to do.
  • the hydrogen peroxide decomposition catalyst of Patent Document 1 has room for further improvement in terms of durability.
  • the present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to provide a decomposition catalyst for hydrogen peroxide having improved durability.
  • a decomposition catalyst of hydrogen peroxide for disinfecting contact lenses which comprises a carrier and fine particles containing platinum immobilized on the carrier, wherein the carrier is a base material. And a coating layer provided on the surface of the substrate, the coating layer containing a repeating unit having an aromatic ring substituted with two or more hydroxyl groups and a heteroatom having a lone electron pair.
  • a catalyst is provided, including.
  • the aromatic ring substituted with the two or more hydroxyl groups is the ortho-dihydroxybenzene ring.
  • the coating layer comprises polycatecholamines obtained by polymerizing catecholamines.
  • the coating layer comprises polydopamine.
  • the average particle size of the fine particles is 1000 nm or less.
  • a carrier in which a coating layer containing polycatecholamine is formed on the surface of the base material by polymerizing the catecholamines in a state where the solution containing the catecholamines is in contact with the base material to obtain, to attach an irradiation solution containing platinum ions to the carrier, and to irradiate the carrier to which the irradiation solution is attached with radiation to immobilize fine particles containing platinum on the surface of the carrier.
  • a method for producing a decomposition catalyst for the above-mentioned hydrogen peroxide for disinfecting contact lenses which comprises the above.
  • the substrate is subjected to a hydrophilization treatment prior to contact with the solution containing the catecholamines.
  • the carrier on which the coating layer is formed is subjected to an ultrasonic cleaning treatment before the irradiation solution is attached.
  • FIG. 1 is a schematic cross-sectional view of a catalyst according to one embodiment of the present invention.
  • the decomposition catalyst 100 of hydrogen peroxide for contact lens disinfection includes a carrier 10 and platinum-containing fine particles (hereinafter, platinum-containing fine particles) 20 immobilized on the carrier 10.
  • the carrier 10 has a base material 12 and a coating layer 14 provided on the surface thereof.
  • the coating layer 14 is provided on the entire surface of the base material 12 and the platinum-containing fine particles 20 are immobilized.
  • the formation of the coating layer 14 and / or the immobilization of the platinum-containing fine particles 20 is performed. It may be applied to only a part of the surface of the base material 12 (for example, only one side).
  • the hydrogen peroxide concentration before immersion is preferably 1% or less, more preferably 0, over a 6-hour immersion period.
  • a hydrogen peroxide solution up to a concentration of .5% or less, more preferably 0.2% or less (for example, 3.5% by weight (35000 ppm) of hydrogen peroxide solution, preferably 350 ppm or less, more preferably 175 ppm or less, More preferably, it can decompose hydrogen peroxide (to a concentration of 70 ppm or less).
  • the total weight of platinum immobilized on the carrier (hereinafter, may be referred to as "platinum-supported weight of catalyst”) is preferably 1 ⁇ g to 300 ⁇ g, and more preferably 1 ⁇ g to 100 ⁇ g. Further, in the catalyst of the present invention, the weight of the immobilized platinum per geometric surface area of the carrier is preferably 0.01 ⁇ g / cm 2 to 300 ⁇ g / cm 2 , more preferably 0.01 ⁇ g / cm 2 to 100 ⁇ g. / Cm 2 .
  • any suitable material can be used as the material for forming the base material.
  • the material for forming the base material include inorganic materials such as metal, glass and ceramic, and organic materials such as synthetic resin.
  • Organic materials such as synthetic resins can be more advantageous than inorganic materials in terms of moldability, operability, price and the like. Another advantage is that it does not require firing at a high temperature.
  • synthetic resins include acrylonitrile-butadiene-styrene (ABS) resin, polyethylene (PE) resin, polypropylene (PP) resin, polyurethane (PU) resin, modified polyphenylene ether (PPE) resin, and polystyrene (PS) resin.
  • ABS acrylonitrile-butadiene-styrene
  • PE polyethylene
  • PP polypropylene
  • PU polyurethane
  • PPE modified polyphenylene ether
  • PS polystyrene
  • PC Polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PVC polyvinyl chloride
  • PEI polyetherimide
  • PSU polysulfone
  • PMMA polymethylmethacrylate
  • ABS acrylonitrile, butadiene, styrene (ABS) resin, polyethylene (PE) resin, polypropylene (PP) resin, and their copolymers, from the viewpoints of moldability, price, durability against hydrogen peroxide, adhesion of platinum-containing fine particles, etc.
  • Polyethylene resin is preferable.
  • the above materials may be used alone or in combination of two or more.
  • the shape of the base material can be appropriately set according to the purpose and the like.
  • the base material may be, for example, a square plate, a disk, a prism, a column, or the like. Further, from the viewpoint of increasing the geometric surface area, it may be formed so as to have a wave shape such as a sine wave, a rectangular wave, or a triangular wave.
  • the surface of the base material may be roughened. By roughening the surface, the specific surface area can be increased, and as a result, the surface area of the obtained carrier can be increased. Further, the platinum-containing fine particles can be firmly immobilized by the carrier.
  • the specific surface area of the carrier can be, for example, 3 cm 2 / g to 200 cm 2 / g, preferably 10 cm 2 / g to 100 cm 2 / g.
  • the base material preferably has high surface hydrophilicity.
  • a hydrophilic group such as an -OH group or a -COOH group
  • a coating layer can be suitably formed and a strong bond can be formed with the coating layer.
  • the surface hydrophilicity of the base material may be improved by hydrophilizing the base material.
  • the hydrophilization treatment include a dry process such as plasma treatment, corona treatment, and frame treatment, and a wet process of immersing in a chemical such as potassium permanganate or chromic acid.
  • the coating layer contains a repeating unit having an aromatic ring substituted with two or more hydroxyl groups and a heteroatom having an isolated electron pair (excluding the oxygen atom present in the hydroxyl group as a substituent of the aromatic ring). Contains polymers. The presence of heteroatoms and aromatic rings with lone electron pairs in the repeating units of the polymer forming the coating layer allows platinum ions and platinum particles to be contained with the coating layer (more specifically, the polymer contained in the coating layer). Since the coordination bond can be achieved, the effect of improving the carrying amount and / or durability of the platinum-containing fine particles can be achieved.
  • the coating layer when an aromatic ring substituted with two or more hydroxyl groups is present in the repeating unit of the polymer forming the coating layer, even if the material for forming the base material is an organic substance, it contains a metal or a metal oxide. Even if the coating layer can be formed well.
  • hetero atom having the above lone electron pair examples include a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom, a chlorine atom, an iodine atom, and a bromine atom.
  • a nitrogen atom and an oxygen atom are preferable, and a nitrogen atom is more preferable.
  • Heteroatoms can be used alone or in combination of two or more.
  • the repeating unit is typically derived from an aromatic compound having an aromatic ring substituted with two or more hydroxyl groups.
  • the polymer may contain repeating units derived from one type of aromatic compound, or may contain repeating units derived from two or more types of aromatic compounds.
  • the aromatic compound comprises drawable hydrogen, and in one embodiment, the coating layer can be formed by self-polymerization of the aromatic compound.
  • a benzene ring is preferable.
  • the benzene ring substituted with two or more hydroxyl groups include a dihydroxybenzene ring or a trihydroxybenzene ring. It is preferably a dihydroxybenzene ring, more preferably an ortho- or para-dihydroxybenzene ring, and even more preferably an ortho-dihydroxybenzene ring.
  • the aromatic ring (preferably a benzene ring) has an alkyl group, an amino group (for example, a primary or secondary amino group), a carboxyl group, and an alkoxysilyl group (for example, trimethoxy) in addition to two or more hydroxyl groups. It may be substituted with a silyl group or a triethoxysilyl group) or the like.
  • the aromatic compound has two or more hydroxyl groups and an alkyl group, an amino group (eg, a primary or secondary amino group), a carboxyl group, and an alkoxysilyl group (eg, an alkoxysilyl group) having a hetero atom.
  • aromatic compound examples include ortho-dihydroxybenzene (hereinafter, also referred to as catecholamines) into which an alkylamine has been introduced.
  • Catecholamines can preferably form a coating layer containing polycatecholamines by polymerization (eg, self-polymerization).
  • catecholamines that can be preferably used in the present invention are shown in the following formula (I).
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • X represents a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms.
  • the above X is preferably a substituted or unsubstituted alkylene group having 1 to 3 carbon atoms, and more preferably a substituted or unsubstituted ethylene group.
  • substituents include -OH, -COOH, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, an alkoxyalkyl group having 2 to 4 carbon atoms, and the like.
  • R 1 and R 2 independently represent a hydrogen atom or a methyl group, respectively.
  • the catecholamines represented by the formula (I) can be preferably used.
  • dopamine represented by the formula (II) can be preferably used.
  • the coating layer comprises polydopamine.
  • Polydopamine can be produced by polymerization of dopamine (eg, self-polymerization).
  • dopamine eg, self-polymerization
  • the exact structure of polydopamine is unclear, but is typically thought to include the following repeating units:
  • the thickness of the coating layer is preferably 3 nm or more, more preferably 5 nm to 1000 nm (for example, 10 nm to 300 nm, and for example, 15 nm to 200 nm).
  • the average particle size of the platinum-containing fine particles is, for example, 1000 nm or less, preferably 300 nm or less, more preferably 20 nm or less, still more preferably 15 nm or less, and even more preferably 10 nm or less.
  • the average particle size is preferably 1 nm or more, more preferably 1.5 nm or more, still more preferably 2 nm or more, and even more preferably 2.5 nm or more.
  • the average particle size of the platinum-containing fine particles can be adjusted, for example, by changing the concentration of active metal ions in the irradiation solution in the production method described later. Specifically, the average particle size can be increased by increasing the concentration of active metal ions in the irradiation solution, and the average particle size can be decreased by decreasing the concentration.
  • the average particle size of the fine particles can be determined by, for example, the following method. ⁇ Measurement of average particle size ⁇ The flakes of the catalyst to be measured are observed and imaged with a transmission electron microscope (for example, manufactured by JEOL Ltd., product number "JEM-2100"). The primary particle size of any 50 fine particles in the obtained image is measured, and the average value (geometric mean) of these is calculated as the average particle size. If the fine particles are not spherical, the major axis is measured.
  • the platinum-containing fine particles may further contain components other than platinum, if necessary.
  • the content of platinum in the platinum-containing fine particles can be preferably 80% by weight to 100% by weight, more preferably 90% by weight to 100% by weight, still more preferably 95% by weight to 100% by weight.
  • platinum fine particles examples include active metals having hydrogen peroxide decomposition activity such as palladium (Pd), iridium (Ir), ruthenium (Ru), rhodium (Rh), and osmium (Os). .. These components may be used alone or in combination of two or more.
  • the platinum-containing fine particles may be immobilized in a state of being scattered on the surface of the carrier, or several fine particles may be connected to each other and immobilized like a string of beads.
  • the specific surface area of the active metal can be increased and the adhesion of oxygen bubbles can be more preferably suppressed as compared with the case where the active metal is formed in layers. Further, when some fine particles are connected and fixed, high durability can be obtained.
  • the catalyst according to item A can be produced by any suitable method.
  • a coating layer containing polycatecholamine is formed on the surface of the base material by polymerizing the catecholamines in a state where the solution containing the catecholamines is in contact with the base material.
  • Obtaining a carrier step of forming a coating layer
  • attaching an irradiation solution containing platinum ions to the carrier adheresion step of the irradiation solution
  • irradiating the carrier to which the irradiation solution is attached with radiation.
  • the present invention comprises immobilizing the platinum-containing fine particles on the surface of the carrier (immobilization step of the platinum-containing fine particles).
  • the substrate it is preferable to subject the substrate to a hydrophilization treatment before contacting it with a solution containing catecholamines. Further, it is preferable that the carrier on which the coating layer is formed is subjected to an ultrasonic cleaning treatment before the irradiation solution is attached.
  • a coating layer containing polycatecholamines is formed on the surface of the base material by polymerizing the catecholamines in a state where the solution containing the catecholamines is in contact with the base material.
  • a carrier having a structure in which a coating layer containing polycatecholamine is provided on the surface of the base material can be obtained.
  • the catecholamines can be self-polymerized with the substrate immersed in a solution containing the catecholamines.
  • the catecholamines can be polymerized by using a conductive base material and immersing the base material in a solution containing catecholamines to carry out electrolytic polymerization.
  • the polymerization reaction can be promoted by coexisting an enzyme such as tyrosinase or laccase.
  • the above solution containing catecholamines is a solution in which catecholamines or salts thereof are dissolved in a solvent.
  • catecholamines are as described in Item A.
  • the solvent include water, ethanol, propanol and the like.
  • the solvent only one kind may be used alone, or two or more kinds may be used in combination.
  • the solvent is water.
  • the concentration of catecholamines in the above solution can be, for example, 0.1 mg / mL to 10 mg / mL, preferably 1 mg / mL to 8 mg / mL, and more preferably 2 mg / mL to 6 mg / mL.
  • the above solution may contain any suitable additive, if desired.
  • the additive include a pH buffer (tris hydrochloride, etc.), an enzyme (laccase secreted by the white-rot fungus Trametes versicolor, etc.) and the like.
  • the pH of the above solution is preferably 4 to 12, more preferably 7 to 9.
  • the liquid temperature (at the time of contact) of the above solution is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, from the viewpoint of improving the reaction rate.
  • the upper limit of the liquid temperature can be, for example, below the boiling point of the solvent.
  • the contact time with the above solution can be appropriately selected depending on the purpose and the like.
  • the contact time can be, for example, 1 hour or longer, preferably 3 hours or longer, more preferably 6 hours or longer, still more preferably 12 hours or longer, still more preferably 18 hours or longer.
  • the upper limit of the contact time is not particularly limited, but may be, for example, 72 hours, or 48 hours, for example, from the viewpoint of manufacturing efficiency.
  • a coating layer can be preferably formed on the surface of the base material by polymerization of catecholamines (for example, self-polymerization).
  • a carrier having a coating layer containing polycatecholamine formed on the surface of the base material can be obtained.
  • the resulting carrier is washed.
  • the cleaning liquid water, alcohol, a mixed liquid thereof and the like can be used, and water can be preferably used.
  • cleaning can be performed by immersing the carrier in a cleaning solution and subjecting it to sonication.
  • a cleaning solution By subjecting the carrier to an ultrasonic cleaning treatment after forming the coating layer, catecholamines or polymers thereof that are not bonded to the substrate or have a weak bonding force are desorbed, and a coating layer having a strong bond to the substrate remains. Therefore, a catalyst having excellent durability can be obtained.
  • the frequency in ultrasonic processing is, for example, 20 kHz to 100 kHz, and it is desirable to alternately oscillate three waves with different frequencies by a timer to eliminate uneven cleaning.
  • the ultrasonic output can be, for example, 50 W to 1500 W, preferably 100 W to 1000 W.
  • the temperature of the cleaning liquid can be, for example, 5 ° C to 90 ° C, preferably 20 ° C to 80 ° C.
  • the washing time can be, for example, 20 seconds or more, preferably 1 minute to 30 minutes.
  • the irradiation solution containing platinum ions is brought into contact with the carrier, and the irradiation solution is adhered to the carrier.
  • the contact method include a method of immersing the carrier in the irradiation solution, a method of applying the carrier to the irradiation solution, a method of spraying the irradiation solution onto the carrier, and the like.
  • a method of immersing the carrier in the irradiation solution is preferable. This is because the irradiation solution can adhere well to the carrier.
  • the irradiation solution containing platinum ions is prepared by dissolving a soluble compound of platinum such as hexachloroplatinum (IV) acid, potassium hexachloroplatinate (IV), acetylacetonate platinum (II) or a salt thereof in water. Can be done.
  • concentration of platinum ions in the irradiation solution is preferably 1 mM to 200 mM, more preferably 1 mM to 100 mM, and even more preferably 1 mM to 10 mM.
  • the irradiation solution may contain ions of an active metal having hydrogen peroxide decomposing activity other than platinum. The active metal is as described in Item A.
  • the total concentration of the active metal ions (including platinum ions) in the irradiation solution is preferably 1 mM to 200 mM, more preferably 1 mM to 150 mM, still more preferably 1 mM to 100 mM. Within this range, fine particles having a desired particle size can be preferably obtained.
  • the irradiation solution containing platinum ions typically further contains an alcohol having 1 to 3 carbon atoms such as methanol, ethanol, and isopropyl alcohol. Platinum ions can be suitably reduced by the function of the alcohol as a reduction aid.
  • the content of alcohol in the irradiation solution is preferably 0.1% by volume to 30% by volume, more preferably 0.5% by volume to 10% by volume.
  • the irradiation solution containing platinum ions preferably further contains a particle size control agent.
  • a particle size control agent a compound that can form an energetically more stable bond between an active metal such as platinum and the metal (for example, a compound that gives a mixing heat smaller than the mixing heat between the active metals such as platinum).
  • Specific examples thereof include phosphorus compounds such as sodium phosphinate (NaPH 2 O 2 ) and sodium phosphonate (NaPHO 3 ), and nitrogen such as sodium nitrite (NaNO 2 ) and sodium thiosulfate (Na 2 S 2 O 3 ).
  • examples include compounds and sulfur compounds such as sodium sulfite (Na 2 SO 3 ).
  • the concentration of the particle size control agent in the irradiation solution is preferably 0.05 mM to 50 mM, more preferably 0.1 mM to 10 mM.
  • the irradiation solution containing platinum ions may further contain any constituent components such as a pH adjuster and a chelating agent, if necessary.
  • a pH adjuster and a chelating agent
  • Specific examples of the arbitrary constituents include sodium hydroxide, ammonia, tartaric acid, citric acid and the like.
  • the carrier to which the irradiation solution containing platinum ions is attached is irradiated with radiation.
  • platinum ions are reduced on the surface of the carrier, and platinum-containing fine particles are immobilized on the surface of the carrier.
  • Irradiation may be performed on the carrier immersed in the irradiation solution, or may be performed on the carrier whose surface is wet with the irradiation solution by immersion, coating, spraying, or the like. (Dip EB method), or may be performed on a carrier in an apparently dry state after the irradiation solution is attached (dry EB method). When the dip EB method is used, there is an advantage that the cost of the irradiation solution can be suppressed.
  • electron beam As the radiation to be irradiated, electron beam, ⁇ ray, X-ray or the like can be used. Among them, an electron beam is preferable because continuous irradiation is possible in an open atmosphere and an electron beam having a high dose rate has an advantage that nanoparticles can be generated and supported in 10 seconds or less.
  • the acceleration energy of the electron beam is preferably 0.5 MeV to 10 MeV, more preferably 1 MeV to 8 MeV.
  • the absorbed dose to the carrier in electron beam irradiation is preferably 1 kGy to 100 kGy, and more preferably 10 kGy to 50 kGy.
  • the electron beam irradiation conditions can be appropriately set according to the purpose and the like.
  • electron beam irradiation can be performed under atmospheric pressure and room temperature conditions.
  • the irradiation time can be appropriately set according to the active metal ion concentration, the dose of the electron beam, and the like.
  • the irradiation time may be, for example, 1 second to 1 minute, preferably 2 seconds to 30 seconds, and more preferably 3 seconds to 10 seconds.
  • the electron beam may be continuously irradiated or intermittently irradiated. When irradiated intermittently, the irradiation time is the total.
  • the carrier immersed in the irradiation solution When the carrier immersed in the irradiation solution is irradiated with an electron beam, it is more preferable to replace the dissolved oxygen in the irradiation solution with an inert gas such as nitrogen gas or argon gas prior to the electron beam irradiation. ..
  • the production method of the present invention is very suitable for mass production of the catalyst according to item A.
  • the hydrophilization treatment is applied to the substrate before contact with a solution containing catecholamines.
  • the hydrophilization treatment removes contaminants such as oils and dusts existing on the surface when the base material is an inorganic material, and when the base material is an organic material, hydrophilic groups such as hydroxyl groups and carboxyl groups are removed on the surface of the base material.
  • hydrophilization treatment Any suitable method can be used as the hydrophilization treatment.
  • Specific examples include a dry process such as plasma treatment, corona treatment, and frame treatment, and a wet process of immersing in a chemical such as potassium permanganate or chromic acid. Since these surface treatments are well known to those skilled in the art, detailed description thereof will be omitted.
  • the method for disinfecting a contact lens of the present invention includes immersing the contact lens and the catalyst according to item A in a contact lens disinfectant solution containing hydrogen peroxide.
  • the concentration of hydrogen peroxide in the contact lens disinfectant is, for example, 1.0% by weight to 5.0% by weight, preferably 2.5% by weight to 4.0% by weight.
  • the contact lens disinfectant may contain any suitable additive, if desired.
  • the additive component include a chelating agent, a surfactant, an isotonic agent, a buffering agent, a thickener, a preservative and the like. These additive components may be used alone or in combination of two or more. The concentration of each additive component in the disinfectant solution can be appropriately set according to the purpose and the like.
  • the chelating agent improves the stability of the disinfectant solution and is effective in terms of its long-term storage.
  • the chelating agent include EDTA (ethylenediaminetetraacetic acid) or a salt thereof, etidronic acid or a salt thereof, DTPMP [diethylenetriaminepenta (methylenephosphonic acid)], sodium tinate and the like.
  • the concentration of the chelating agent in the disinfectant solution is generally about 0.01% by weight to 0.5% by weight.
  • Surfactants can impart effective contact lens cleaning effects such as lipid removing action to contact lens disinfectants.
  • known anionic surfactants, nonionic surfactants, amphoteric surfactants, and cationic surfactants generally used for liquids for contact lenses and the like can be used.
  • Specific examples include polyethylene glycol ether of higher alcohol, polyethylene glycol ester of higher fatty acid, polyglycerin ester of higher fatty acid, polyethylene glycol ether of alkylphenol, polyethylene glycol sorbitan alkyl ester, polyoxyethylene-polyoxypropylene glycol (poroxummer), and so on.
  • examples thereof include ethylenediamine tetrapolyoxyethylene polyoxypropylene (poroxamine).
  • a block copolymer of polyoxyethylene and polyoxypropylene or a derivative thereof is preferably used.
  • the tonicity agent is added for the purpose of adjusting the osmotic pressure of the contact lens disinfectant solution (before and after disinfection).
  • a known tonicity agent generally used for a liquid agent for contact lenses or the like can be used.
  • the contact lens disinfectant solution can be prepared by dissolving or dispersing each component in an aqueous medium.
  • the aqueous medium include water, physiological saline and the like.
  • the order of addition is not limited, and the desired disinfectant can be easily obtained by adding each component sequentially or simultaneously and dispersing or dissolving them, respectively.
  • the amount of the contact lens disinfectant used may be an amount that allows the contact lens and the catalyst to be immersed.
  • the amount used is, for example, 5.0 mL to 20 mL.
  • the amount of contact lens disinfectant used is, for example, 0.01 mL to 20 mL, preferably 0.05 mL to 10 mL, more preferably 0.1 mL to 5 mL, per 1 ⁇ g of platinum supported on the catalyst. obtain.
  • contact lenses to be disinfected all types of contact lenses can be applied regardless of water-containing or non-water-containing, so-called soft or hard materials.
  • the disinfection method of the present invention is particularly suitable for soft contact lenses.
  • soft contact lenses those made of water-containing hydrogels are known, and for example, hydrophilic monomers such as 2-hydroxyethyl methacrylate, N, N-dimethylacrylamide, N-vinyl-2-pyrrolidone, and methacrylate.
  • hydrophilic monomers such as 2-hydroxyethyl methacrylate, N, N-dimethylacrylamide, N-vinyl-2-pyrrolidone, and methacrylate.
  • those formed from the polymer or copolymer of the above those formed from a copolymer produced by copolymerizing the hydrophilic monomer with a hydrophobic monomer containing silicone, etc. Can be mentioned.
  • disinfection of contact lenses with hydrogen peroxide and decomposition of hydrogen peroxide with a catalyst can be suitably compatible.
  • the catalyst and the contact lens may coexist in the disinfectant solution from the beginning, or the catalyst may be added after the contact lens is immersed and both may coexist.
  • the immersion temperature is preferably 5 ° C. to 40 ° C., more preferably 10 ° C. to 30 ° C.
  • the concentration of hydrogen peroxide in the disinfectant solution after disinfection is, for example, 150 ppm or less, preferably 100 ppm or less. With the residual concentration of hydrogen peroxide, it is possible to avoid the occurrence of pain, irritation, etc. even if the contact lens after disinfection is worn as it is.
  • a titanium sulfate solution (30%, Wako Pure Chemical Industries, Ltd.) was diluted to 5%, mixed with a sample containing hydrogen peroxide, and the hydrogen peroxide concentration was measured by measuring the absorbance at 407 nm.
  • the catalyst having the PDA coating layer has an increased amount of platinum fine particles supported as compared with the catalyst having no PDA coating layer (immersion time 0h), and the initial stage The catalytic activity of (1st time) was improved. Further, the catalyst having no PDA coating layer has a large increase in the residual H 2 O 2 concentration during repeated use, but the catalyst having a PDA coating layer suppresses the increase and has a large increase in the PDA coating amount. In the catalyst (immersion time 3h, 24h), the increase amount is remarkably suppressed.
  • the base material taken out from the DA solution was immersed in pure water at room temperature and ultrasonically cleaned for 5 minutes (manufactured by AS-ONE, model number "USK-1R", frequency: 40 kHz, output: 100 W). Then, nitrogen gas was blown with an air gun to dry it, whereby a carrier (PDA-coated ABS resin plate) was obtained.
  • the catalyst obtained by ultrasonically cleaning the carrier taken out from the DA solution and then immobilizing the platinum fine particles is a residual H 2 O after repeated use. 2 It can be seen that the increase in concentration is suppressed and the durability is improved.
  • the slide glass taken out from the DA solution was immersed in pure water at room temperature and ultrasonically cleaned for 5 minutes (manufactured by AS-ONE, model number "USK-1R", frequency: 40 kHz, output: 100 W). Then, nitrogen gas was blown with an air gun to dry it, whereby a carrier (PDA-coated slide glass) was obtained.
  • the obtained carrier was analyzed by X-ray photoelectron spectroscopy to obtain a Si2p-XPS spectrum. Further, as a comparison target, a Si2p-XPS spectrum of a carrier having an immersion time of 1 or 24 hours, which was rinsed instead of the ultrasonic cleaning treatment, was obtained.
  • the spectra obtained for each carrier are shown in FIGS. 7 (a) or 7 (b).
  • the peak intensity derived from the base material is increased by ultrasonic cleaning. From this, the PDA that is not bonded to the base material is desorbed by ultrasonic cleaning, and as a result, a catalyst having a PDA coating layer that is firmly bonded to the base material (as a result, a catalyst having excellent durability). Is presumed to have been obtained.
  • FIG. 7B no peak derived from the base material was confirmed for the carrier having an immersion time of 24 hours regardless of the presence or absence of ultrasonic cleaning. It is presumed that this is because the thickness of the PDA coating layer is increased due to the long immersion time, and as a result, the surface of the substrate is not exposed even when the PDA that is not bonded to the substrate is detached. To.
  • the base material was immersed for 24 hours.
  • the base material taken out from the DA solution was immersed in pure water at room temperature and ultrasonically cleaned for 5 minutes (manufactured by AS-ONE, model number "USK-1R", frequency: 40 kHz, output: 100 W). Then, nitrogen gas was blown with an air gun to dry it, whereby a carrier (a PDA-coated ABS resin plate after plasma treatment) was obtained.
  • FIG. 8 shows an SEM photograph of an ABS resin plate (base material) before plasma treatment, a carrier coated with PDA after plasma treatment, and a catalyst obtained by immobilizing platinum-containing fine particles on the carrier.
  • the amount of platinum supported is increased by subjecting the substrate to plasma treatment before immersion in the DA solution.
  • the initial catalytic activity is improved and the increase in the residual H 2 O 2 concentration during repeated use is suppressed. , Durability is improved.
  • the reason why such an effect is exhibited is that as a result of the formation of hydrophilic groups by the plasma treatment, the formation of the PDA coating layer is promoted and the bond between the PDA coating layer and the base material is strengthened. Guess.
  • the base material taken out from the DA solution was immersed in pure water at room temperature and ultrasonically cleaned for 5 minutes (AS-ONE, model number "USK-1R", frequency: 40 kHz, output: 100 W). Then, nitrogen gas was blown with an air gun to dry it, whereby a carrier (a PDA-coated ABS resin plate after plasma treatment) was obtained.
  • the solution was prepared. Under the condition of room temperature (22 ⁇ 2 ° C.), the plasma-treated substrate was immersed in this KBM-803 solution for 10 minutes. Next, the base material was taken out from the KBM-803 solution, washed with water, and then heat-treated at 80 ° C. for 10 minutes using a vacuum dryer (AVO-200NS-D manufactured by AS-ONE).
  • the product was immersed in pure water, ultrasonically cleaned with an ultrasonic cleaner (USK-1R manufactured by AS-ONE) for 5 minutes, and blown with nitrogen gas with an air gun to dry.
  • a carrier ABS resin plate treated with KBM-803 after plasma treatment
  • TMS tetramethyl orthosilicate
  • the base material was taken out from the TMOS solution, washed with water, and then vacuum dried (manufactured by AS-ONE).
  • AVO-200NS-D was heat-treated at 80 ° C. for 10 minutes, then immersed in pure water and used in an ultrasonic cleaner (USK-1R, manufactured by AS-ONE) for more than 5 minutes. It was sonicated and dried by blowing nitrogen gas with an air gun.
  • the TMOS-coated ABS resin plate was immersed in the KBM-803 solution having the same volume percent concentration as the TMOS solution for 10 minutes, and similarly.
  • the carrier (ABS resin treated with TMOS and KBM-803 after plasma treatment) was obtained by pulling up, washing, heat-treating, and ultrasonically washing.
  • the catalyst using the carrier treated with the silane coupling agent has an increase in the residual H 2 O 2 concentration during repeated use as compared with the catalyst using the carrier not subjected to the treatment. It was increasing, and the effect of improving durability could not be obtained.
  • the catalyst of the present invention can be suitably used in disinfecting contact lenses.

Abstract

The present invention provides a decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, the decomposition catalyst having excellent durability. This catalyst is a decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, the decomposition catalyst containing a carrier and platinum-containing microparticles fixed onto the carrier, wherein: the carrier has a substrate and a coating layer provided on the surface of the base; and the coating layer includes a polymer that includes repeating units having an aromatic ring substituted by two or more hydroxyl groups, and a heteroatom having a lone electron pair.

Description

コンタクトレンズ消毒用過酸化水素の分解触媒およびその製造方法Decomposition catalyst of hydrogen peroxide for contact lens disinfection and its manufacturing method
 本発明は、コンタクトレンズ消毒用過酸化水素を分解するための触媒およびその製造方法等に関する。 The present invention relates to a catalyst for decomposing hydrogen peroxide for disinfecting contact lenses, a method for producing the same, and the like.
 従来、過酸化水素の高い殺菌力を利用したコンタクトレンズの消毒技術が、種々検討されている。該消毒技術においては、十分に高い濃度で過酸化水素を含む消毒液にコンタクトレンズを浸漬して消毒する一方で、消毒後においては、コンタクトレンズを眼に装着した際に刺激感を生じさせない観点から、消毒液中の過酸化水素が十分に低い濃度まで分解されていることが望まれる。したがって、過酸化水素の分解(2H→2HO+O)には、消毒の開始から所定時間は十分に高い過酸化水素濃度を維持する一方で、所定時間経過後には十分に低い過酸化水素濃度を実現することが要求される。 Conventionally, various techniques for disinfecting contact lenses using the high bactericidal power of hydrogen peroxide have been studied. In the disinfection technique, contact lenses are disinfected by immersing them in a disinfectant solution containing hydrogen peroxide at a sufficiently high concentration, but after disinfection, the contact lenses are not irritating when worn on the eyes. Therefore, it is desired that hydrogen peroxide in the disinfectant solution is decomposed to a sufficiently low concentration. Therefore, for the decomposition of hydrogen peroxide (2H 2 O 2 → 2H 2 O + O 2 ), the hydrogen peroxide concentration is maintained at a sufficiently high concentration for a predetermined time from the start of disinfection, but is sufficiently low after a predetermined time. It is required to realize the hydrogen peroxide concentration.
 上記過酸化水素の分解処理としては、白金等の過酸化水素分解活性を有する活性金属を担持した触媒を用いることにより過酸化水素の分解を促進することが知られている。例えば、特許文献1には、担体に固定化した白金微粒子を用いることにより、過酸化水素によるコンタクトレンズの消毒を有効に行いつつ、所定の時間経過後には過酸化水素を十分に低い濃度まで分解することが開示されている。しかしながら、特許文献1の過酸化水素の分解触媒には、耐久性の点でさらなる改善の余地がある。 As the decomposition treatment of hydrogen peroxide, it is known that the decomposition of hydrogen peroxide is promoted by using a catalyst supporting an active metal having hydrogen peroxide decomposition activity such as platinum. For example, in Patent Document 1, by using platinum fine particles immobilized on a carrier, hydrogen peroxide is decomposed to a sufficiently low concentration after a lapse of a predetermined time while effectively disinfecting contact lenses with hydrogen peroxide. It is disclosed to do. However, the hydrogen peroxide decomposition catalyst of Patent Document 1 has room for further improvement in terms of durability.
特開2017-159228JP 2017-159228
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、耐久性が向上された過酸化水素の分解触媒を提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to provide a decomposition catalyst for hydrogen peroxide having improved durability.
 本発明の1つの局面によれば、担体と、該担体上に固定化された白金を含む微粒子と、を含む、コンタクトレンズ消毒用過酸化水素の分解触媒であって、該担体が、基材と該基材の表面に設けられた被覆層とを有し、該被覆層が、2つ以上のヒドロキシル基で置換された芳香環と孤立電子対を有するヘテロ原子とを有する繰り返し単位を含むポリマーを含む、触媒が提供される。
 1つの実施形態において、上記2つ以上のヒドロキシル基で置換された芳香環が、オルト-ジヒドロキシベンゼン環である。
 1つの実施形態において、上記被覆層が、カテコールアミン類を重合させることによって得られるポリカテコールアミンを含む。
 1つの実施形態において、上記被覆層が、ポリドーパミンを含む。
 1つの実施形態において、上記微粒子の平均粒子径が、1000nm以下である。
 本発明の別の局面によれば、カテコールアミン類を含む溶液を基材と接触させた状態で、該カテコールアミン類を重合させることによって、該基材表面にポリカテコールアミンを含む被覆層が形成された担体を得ること、白金イオンを含む照射用溶液を該担体に付着させること、および、該照射用溶液が付着した担体に放射線を照射して、白金を含む微粒子を該担体表面に固定化すること、を含む、上記コンタクトレンズ消毒用過酸化水素の分解触媒の製造方法が提供される。
 1つの実施形態において、上記カテコールアミン類を含む溶液と接触させる前に、上記基材を親水化処理に供する。
 1つの実施形態において、上記照射用溶液を付着させる前に、上記被覆層が形成された担体を超音波洗浄処理に供する。
 本発明のさらに別の局面によれば、コンタクトレンズと、上記コンタクトレンズ消毒用過酸化水素の分解触媒とを、過酸化水素を含むコンタクトレンズ消毒液に浸漬することを含む、コンタクトレンズの消毒方法が提供される。
According to one aspect of the present invention, it is a decomposition catalyst of hydrogen peroxide for disinfecting contact lenses, which comprises a carrier and fine particles containing platinum immobilized on the carrier, wherein the carrier is a base material. And a coating layer provided on the surface of the substrate, the coating layer containing a repeating unit having an aromatic ring substituted with two or more hydroxyl groups and a heteroatom having a lone electron pair. A catalyst is provided, including.
In one embodiment, the aromatic ring substituted with the two or more hydroxyl groups is the ortho-dihydroxybenzene ring.
In one embodiment, the coating layer comprises polycatecholamines obtained by polymerizing catecholamines.
In one embodiment, the coating layer comprises polydopamine.
In one embodiment, the average particle size of the fine particles is 1000 nm or less.
According to another aspect of the present invention, a carrier in which a coating layer containing polycatecholamine is formed on the surface of the base material by polymerizing the catecholamines in a state where the solution containing the catecholamines is in contact with the base material. To obtain, to attach an irradiation solution containing platinum ions to the carrier, and to irradiate the carrier to which the irradiation solution is attached with radiation to immobilize fine particles containing platinum on the surface of the carrier. A method for producing a decomposition catalyst for the above-mentioned hydrogen peroxide for disinfecting contact lenses, which comprises the above.
In one embodiment, the substrate is subjected to a hydrophilization treatment prior to contact with the solution containing the catecholamines.
In one embodiment, the carrier on which the coating layer is formed is subjected to an ultrasonic cleaning treatment before the irradiation solution is attached.
According to yet another aspect of the present invention, a method for disinfecting a contact lens, which comprises immersing the contact lens and the decomposition catalyst of the hydrogen peroxide for disinfecting the contact lens in a contact lens disinfectant solution containing hydrogen peroxide. Is provided.
 本発明によれば、特定の被覆層を有する担体上に白金を含む微粒子を固定化することによって、耐久性に優れた過酸化水素の分解触媒が提供される。 According to the present invention, by immobilizing fine particles containing platinum on a carrier having a specific coating layer, a hydrogen peroxide decomposition catalyst having excellent durability is provided.
本発明の1つの実施形態による触媒の概略断面図である。It is the schematic sectional drawing of the catalyst by one Embodiment of this invention. 各担体について得られたSi2p-XPSスペクトルである。It is a Si2p-XPS spectrum obtained for each carrier. 各担体の表面Si元素比を示すグラフである。It is a graph which shows the surface Si element ratio of each carrier. 各担体上に固定化された白金重量を示すグラフである。It is a graph which shows the weight of platinum immobilized on each carrier. 繰り返し使用時における残留過酸化水素濃度の変化を示すグラフである。It is a graph which shows the change of the residual hydrogen peroxide concentration at the time of repeated use. 繰り返し使用時における残留過酸化水素濃度の変化を示すグラフである。It is a graph which shows the change of the residual hydrogen peroxide concentration at the time of repeated use. 各担体について得られたSi2p-XPSスペクトルである。It is a Si2p-XPS spectrum obtained for each carrier. 各担体上に固定化された白金重量を示すグラフである。It is a graph which shows the weight of platinum immobilized on each carrier. 基材、担体および触媒のSEM観察画像である。It is an SEM observation image of a base material, a carrier and a catalyst. 繰り返し使用時における残留過酸化水素濃度の変化を示すグラフである。It is a graph which shows the change of the residual hydrogen peroxide concentration at the time of repeated use. 繰り返し使用時における残留過酸化水素濃度の変化を示すグラフである。It is a graph which shows the change of the residual hydrogen peroxide concentration at the time of repeated use. 繰り返し使用時における残留過酸化水素濃度の変化を示すグラフである。It is a graph which shows the change of the residual hydrogen peroxide concentration at the time of repeated use.
 以下、本発明の実施形態について説明するが、本発明は該実施形態には限定されない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the embodiments.
[A.触媒]
 図1は、本発明の1つの実施形態による触媒の概略断面図である。コンタクトレンズ消毒用過酸化水素の分解触媒100は、担体10と、担体10上に固定化された白金を含む微粒子(以下、白金含有微粒子)20と、を含む。担体10は、基材12とその表面に設けられた被覆層14とを有する。なお、図示例では、基材12の表面全体に、被覆層14が設けられ、白金含有微粒子20が固定化されているが、被覆層14の形成および/または白金含有微粒子20の固定化は、基材12の表面の一部のみ(例えば、片面のみ)に行われてもよい。
[A. catalyst]
FIG. 1 is a schematic cross-sectional view of a catalyst according to one embodiment of the present invention. The decomposition catalyst 100 of hydrogen peroxide for contact lens disinfection includes a carrier 10 and platinum-containing fine particles (hereinafter, platinum-containing fine particles) 20 immobilized on the carrier 10. The carrier 10 has a base material 12 and a coating layer 14 provided on the surface thereof. In the illustrated example, the coating layer 14 is provided on the entire surface of the base material 12 and the platinum-containing fine particles 20 are immobilized. However, the formation of the coating layer 14 and / or the immobilization of the platinum-containing fine particles 20 is performed. It may be applied to only a part of the surface of the base material 12 (for example, only one side).
 上記触媒は、常温(約25℃)において、10mLの過酸化水素溶液に浸漬された際に、6時間の浸漬期間で、浸漬前の過酸化水素濃度の好ましくは1%以下、より好ましくは0.5%以下、さらに好ましくは0.2%以下の濃度まで(例えば、3.5重量%(35000ppm)の過酸化水素溶液に浸漬された場合は、好ましくは350ppm以下、より好ましくは175ppm以下、さらに好ましくは70ppm以下の濃度まで)過酸化水素を分解し得る。 When the catalyst is immersed in a 10 mL hydrogen peroxide solution at room temperature (about 25 ° C.), the hydrogen peroxide concentration before immersion is preferably 1% or less, more preferably 0, over a 6-hour immersion period. When immersed in a hydrogen peroxide solution up to a concentration of .5% or less, more preferably 0.2% or less (for example, 3.5% by weight (35000 ppm) of hydrogen peroxide solution, preferably 350 ppm or less, more preferably 175 ppm or less, More preferably, it can decompose hydrogen peroxide (to a concentration of 70 ppm or less).
 上記触媒において、担体上に固定化された白金の総重量(以下、「触媒の白金担持重量」と称する場合がある)は、好ましくは1μg~300μg、より好ましくは1μg~100μgである。また、本発明の触媒において、担体の幾何学的表面積あたりの固定化された白金の重量は、好ましくは0.01μg/cm~300μg/cm、より好ましくは0.01μg/cm~100μg/cmである。 In the above catalyst, the total weight of platinum immobilized on the carrier (hereinafter, may be referred to as "platinum-supported weight of catalyst") is preferably 1 μg to 300 μg, and more preferably 1 μg to 100 μg. Further, in the catalyst of the present invention, the weight of the immobilized platinum per geometric surface area of the carrier is preferably 0.01 μg / cm 2 to 300 μg / cm 2 , more preferably 0.01 μg / cm 2 to 100 μg. / Cm 2 .
[A-1.基材]
 基材を形成する材料としては、任意の適切な材料が用いられ得る。基材の形成材料としては、金属、ガラス、セラミック等の無機材料および合成樹脂等の有機材料が挙げられる。合成樹脂等の有機材料は、成形性、操作性、価格等において無機材料よりも有利であり得る。また、高温での焼成を必要としないことも利点の1つである。
[A-1. Base material]
Any suitable material can be used as the material for forming the base material. Examples of the material for forming the base material include inorganic materials such as metal, glass and ceramic, and organic materials such as synthetic resin. Organic materials such as synthetic resins can be more advantageous than inorganic materials in terms of moldability, operability, price and the like. Another advantage is that it does not require firing at a high temperature.
 合成樹脂の具体例としては、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリウレタン(PU)樹脂、変性ポリフェニレンエーテル(PPE)樹脂、ポリスチレン(PS)樹脂、ポリカーボネート(PC)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSU)樹脂、ポリメチルメタクリレート(PMMA)樹脂、シリコーン(=ポリジメチルシロキサン:PDMS)樹脂、フッ素(PTFE、PFA、ETFE等)樹脂およびこれらの共重合樹脂が挙げられる。中でも、成形性、価格、過酸化水素に対する耐久性、白金含有微粒子の付着性等の観点から、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂およびこれらの共重合樹脂が好ましい。上記材料は、単独でまたは二種以上を組み合わせて用いられ得る。 Specific examples of synthetic resins include acrylonitrile-butadiene-styrene (ABS) resin, polyethylene (PE) resin, polypropylene (PP) resin, polyurethane (PU) resin, modified polyphenylene ether (PPE) resin, and polystyrene (PS) resin. Polycarbonate (PC) resin, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polyvinyl chloride (PVC) resin, polyetherimide (PEI) resin, polysulfone (PSU) resin, polymethylmethacrylate (PMMA) resin , Silicone (= polydimethylsiloxane: PDMS) resin, fluorine (PTFE, PFA, ETFE, etc.) resin and copolymer resins thereof. Among them, acrylonitrile, butadiene, styrene (ABS) resin, polyethylene (PE) resin, polypropylene (PP) resin, and their copolymers, from the viewpoints of moldability, price, durability against hydrogen peroxide, adhesion of platinum-containing fine particles, etc. Polyethylene resin is preferable. The above materials may be used alone or in combination of two or more.
 基材の形状は、目的等に応じて適切に設定され得る。基材は、例えば、角板状、円板状、角柱状、円柱状等であり得る。また、幾何学的表面積の増大の観点から、正弦波、矩形波、三角波等の波形状を有するように成形されてもよい。 The shape of the base material can be appropriately set according to the purpose and the like. The base material may be, for example, a square plate, a disk, a prism, a column, or the like. Further, from the viewpoint of increasing the geometric surface area, it may be formed so as to have a wave shape such as a sine wave, a rectangular wave, or a triangular wave.
 基材は、その表面が粗面化されていてもよい。表面を粗面化することにより、比表面積が増大し、結果として、得られる担体の表面積を増大することができる。また、白金含有微粒子を担体により強固に固定化することができる。担体の比表面積は、例えば3cm/g~200cm/g、好ましくは10cm/g~100cm/gであり得る。 The surface of the base material may be roughened. By roughening the surface, the specific surface area can be increased, and as a result, the surface area of the obtained carrier can be increased. Further, the platinum-containing fine particles can be firmly immobilized by the carrier. The specific surface area of the carrier can be, for example, 3 cm 2 / g to 200 cm 2 / g, preferably 10 cm 2 / g to 100 cm 2 / g.
 基材は、表面親水性が高いことが好ましい。表面に-OH基や-COOH基等の親水性基を有することにより、好適に被覆層を形成することができるとともに、被覆層と強固に結合することができる。基材の表面親水性は、基材を親水化処理することによって向上してもよい。親水化処理としては、プラズマ処理、コロナ処理、フレーム処理等のドライプロセスと、過マンガン酸カリウムやクロム酸等の薬剤に浸漬するウェットプロセスが挙げられる。 The base material preferably has high surface hydrophilicity. By having a hydrophilic group such as an -OH group or a -COOH group on the surface, a coating layer can be suitably formed and a strong bond can be formed with the coating layer. The surface hydrophilicity of the base material may be improved by hydrophilizing the base material. Examples of the hydrophilization treatment include a dry process such as plasma treatment, corona treatment, and frame treatment, and a wet process of immersing in a chemical such as potassium permanganate or chromic acid.
[A-2.被覆層]
 被覆層は、2つ以上のヒドロキシル基で置換された芳香環と孤立電子対を有するヘテロ原子(ただし、芳香環の置換基としてのヒドロキシル基に存在する酸素原子を除く)とを有する繰り返し単位を含むポリマーを含む。被覆層を形成するポリマーの繰り返し単位中に孤立電子対を有するヘテロ原子および芳香環が存在することにより、白金イオンおよび白金粒子が被覆層と(より具体的には、被覆層に含まれる該ポリマーと)配位結合できることから、白金含有微粒子の担持量および/または耐久性が向上するという効果が奏され得る。また、被覆層を形成するポリマーの繰り返し単位中に2つ以上のヒドロキシル基で置換された芳香環が存在することにより、基材の形成材料が有機物であっても金属や金属酸化物を含む場合であっても良好に被覆層が形成され得る。
[A-2. Coating layer]
The coating layer contains a repeating unit having an aromatic ring substituted with two or more hydroxyl groups and a heteroatom having an isolated electron pair (excluding the oxygen atom present in the hydroxyl group as a substituent of the aromatic ring). Contains polymers. The presence of heteroatoms and aromatic rings with lone electron pairs in the repeating units of the polymer forming the coating layer allows platinum ions and platinum particles to be contained with the coating layer (more specifically, the polymer contained in the coating layer). Since the coordination bond can be achieved, the effect of improving the carrying amount and / or durability of the platinum-containing fine particles can be achieved. Further, when an aromatic ring substituted with two or more hydroxyl groups is present in the repeating unit of the polymer forming the coating layer, even if the material for forming the base material is an organic substance, it contains a metal or a metal oxide. Even if the coating layer can be formed well.
 上記孤立電子対を有するヘテロ原子としては、窒素原子、酸素原子、硫黄原子、リン原子、塩素原子、ヨウ素原子、臭素原子等が例示できる。なかでも、窒素原子および酸素原子が好ましく、窒素原子がより好ましい。ヘテロ原子は、単独でまたは二種以上を組み合わせて用いられ得る。 Examples of the hetero atom having the above lone electron pair include a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom, a chlorine atom, an iodine atom, and a bromine atom. Among them, a nitrogen atom and an oxygen atom are preferable, and a nitrogen atom is more preferable. Heteroatoms can be used alone or in combination of two or more.
 上記繰り返し単位は、代表的には、2つ以上のヒドロキシル基で置換された芳香環を有する芳香族化合物に由来する。上記ポリマーは、1種類の芳香族化合物由来の繰り返し単位を含むものであってもよく、2種以上の芳香族化合物由来の繰り返し単位を含むものであってもよい。1つの実施形態において、該芳香族化合物は、引き抜き可能な水素を含み、1つの実施形態において、被覆層は、該芳香族化合物の自己重合によって形成され得る。 The repeating unit is typically derived from an aromatic compound having an aromatic ring substituted with two or more hydroxyl groups. The polymer may contain repeating units derived from one type of aromatic compound, or may contain repeating units derived from two or more types of aromatic compounds. In one embodiment, the aromatic compound comprises drawable hydrogen, and in one embodiment, the coating layer can be formed by self-polymerization of the aromatic compound.
 上記芳香環としては、ベンゼン環が好ましい。2つ以上のヒドロキシル基で置換されたベンゼン環としては、例えばジヒドロキシベンゼン環またはトリヒドロキシベンゼン環が挙げられる。好ましくはジヒドロキシベンゼン環であり、より好ましくはオルト-またはパラ-ジヒドロキシベンゼン環であり、さらに好ましくはオルト-ジヒドロキシベンゼン環である。また、上記芳香環(好ましくは、ベンゼン環)は、2つ以上ヒドロキシル基に加えて、アルキル基、アミノ基(例えば、一級または二級アミノ基)、カルボキシル基、アルコキシシリル基(例えば、トリメトキシシリル基またはトリエトキシシリル基)等で置換されていてもよい。 As the aromatic ring, a benzene ring is preferable. Examples of the benzene ring substituted with two or more hydroxyl groups include a dihydroxybenzene ring or a trihydroxybenzene ring. It is preferably a dihydroxybenzene ring, more preferably an ortho- or para-dihydroxybenzene ring, and even more preferably an ortho-dihydroxybenzene ring. Further, the aromatic ring (preferably a benzene ring) has an alkyl group, an amino group (for example, a primary or secondary amino group), a carboxyl group, and an alkoxysilyl group (for example, trimethoxy) in addition to two or more hydroxyl groups. It may be substituted with a silyl group or a triethoxysilyl group) or the like.
 1つの実施形態において、上記芳香族化合物は、2つ以上のヒドロキシル基と、ヘテロ原子を有するアルキル基、アミノ基(例えば、一級または二級アミノ基)、カルボキシル基、および、アルコキシシリル基(例えば、トリメトキシシリル基またはトリエトキシシリル基)から選択される1つ以上の基と、によって置換された芳香族炭化水素であり得る。2つ以上のヒドロキシル基に加えて、上記置換基をさらに含むことにより、担体上(より具体的には、被覆層表面)に白金含有微粒子をより強固に固定化することができる。 In one embodiment, the aromatic compound has two or more hydroxyl groups and an alkyl group, an amino group (eg, a primary or secondary amino group), a carboxyl group, and an alkoxysilyl group (eg, an alkoxysilyl group) having a hetero atom. , Aromatic hydrocarbon substituted with one or more groups selected from (trimethoxysilyl group or triethoxysilyl group). By further containing the above-mentioned substituent in addition to the two or more hydroxyl groups, the platinum-containing fine particles can be more firmly immobilized on the carrier (more specifically, the surface of the coating layer).
 上記芳香族化合物の具体例としては、アルキルアミンが導入されたオルト-ジヒドロキシベンゼン(以下、カテコールアミン類とも称する)が挙げられる。カテコールアミン類は、重合(例えば、自己重合)によってポリカテコールアミンを含む被覆層を好適に形成し得る。本発明で好ましく用いられ得るカテコールアミン類の具体例を、下記式(I)に示す。
Figure JPOXMLDOC01-appb-C000001
(式中、
 RおよびRはそれぞれ独立して、水素原子または炭素数1~3のアルキル基を表し、
 Xは、置換または未置換の炭素数1~6のアルキレン基を表す。)
Specific examples of the aromatic compound include ortho-dihydroxybenzene (hereinafter, also referred to as catecholamines) into which an alkylamine has been introduced. Catecholamines can preferably form a coating layer containing polycatecholamines by polymerization (eg, self-polymerization). Specific examples of catecholamines that can be preferably used in the present invention are shown in the following formula (I).
Figure JPOXMLDOC01-appb-C000001
(During the ceremony
R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
X represents a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms. )
 上記Xは、好ましくは置換または未置換の炭素数1~3のアルキレン基であり、より好ましくは置換または未置換のエチレン基である。置換基としては、-OH、-COOH、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数2~4のアルコキシアルキル基等が挙げられる。 The above X is preferably a substituted or unsubstituted alkylene group having 1 to 3 carbon atoms, and more preferably a substituted or unsubstituted ethylene group. Examples of the substituent include -OH, -COOH, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, an alkoxyalkyl group having 2 to 4 carbon atoms, and the like.
 上記RおよびRはそれぞれ独立して、好ましくは水素原子またはメチル基を表す。 The above R 1 and R 2 independently represent a hydrogen atom or a methyl group, respectively.
 式(I)に示されるカテコールアミン類のなかでも、以下の式(II)~(V)のカテコールアミン類が好ましく用いられ得る。
Figure JPOXMLDOC01-appb-C000002
Among the catecholamines represented by the formula (I), the catecholamines of the following formulas (II) to (V) can be preferably used.
Figure JPOXMLDOC01-appb-C000002
 なかでも、式(II)で表されるドーパミンが好ましく用いられ得る。本実施形態において、被覆層は、ポリドーパミンを含む。 Among them, dopamine represented by the formula (II) can be preferably used. In this embodiment, the coating layer comprises polydopamine.
 ポリドーパミンは、ドーパミンの重合(例えば、自己重合)によって生成し得る。ポリドーパミンの正確な構造には、不明な点もあるが、代表的には、以下の繰り返し単位を含むと考えられる。
Figure JPOXMLDOC01-appb-C000003
Polydopamine can be produced by polymerization of dopamine (eg, self-polymerization). The exact structure of polydopamine is unclear, but is typically thought to include the following repeating units:
Figure JPOXMLDOC01-appb-C000003
 被覆層の厚さは、好ましくは3nm以上、より好ましくは5nm~1000nm(例えば10nm~300nm、また例えば15nm~200nm)である。このような厚さを有する被覆層を基材表面に設けることによって、白金含有微粒子を担体上に強固に固定化することができ、耐久性に優れた触媒が得られ得る。 The thickness of the coating layer is preferably 3 nm or more, more preferably 5 nm to 1000 nm (for example, 10 nm to 300 nm, and for example, 15 nm to 200 nm). By providing the coating layer having such a thickness on the surface of the base material, the platinum-containing fine particles can be firmly immobilized on the carrier, and a catalyst having excellent durability can be obtained.
[A-3.白金含有微粒子]
 白金含有微粒子の平均粒子径は、例えば1000nm以下であり、好ましくは300nm以下、より好ましくは20nm以下、さらに好ましくは15nm以下、さらにより好ましくは10nm以下である。また、該平均粒子径は、好ましくは1nm以上であり、より好ましくは1.5nm以上、さらに好ましくは2nm以上、さらにより好ましくは2.5nm以上である。このような平均粒子径とすることにより、過酸化水素溶液に触媒とコンタクトレンズとを共存させた際に、初期段階で過酸化水素の分解が過度に促進されることを防止し得るとともに、所定時間経過後の過酸化水素残留濃度を十分に低いレベルにまで低減することができる。
[A-3. Platinum-containing fine particles]
The average particle size of the platinum-containing fine particles is, for example, 1000 nm or less, preferably 300 nm or less, more preferably 20 nm or less, still more preferably 15 nm or less, and even more preferably 10 nm or less. The average particle size is preferably 1 nm or more, more preferably 1.5 nm or more, still more preferably 2 nm or more, and even more preferably 2.5 nm or more. By setting such an average particle size, it is possible to prevent the decomposition of hydrogen peroxide from being excessively promoted at the initial stage when the catalyst and the contact lens coexist in the hydrogen peroxide solution, and it is predetermined. The residual concentration of hydrogen peroxide after a lapse of time can be reduced to a sufficiently low level.
 白金含有微粒子の平均粒子径は、例えば、後述する製造方法において、照射用溶液中の活性金属イオン濃度を変化させることによって調節できる。具体的には、照射用溶液中の活性金属イオン濃度を高くすることにより平均粒子径を大きくすることができ、該濃度を低くすることにより平均粒子径を小さくすることができる。なお、微粒子の平均粒子径は、例えば下記の方法によって決定され得る。
≪平均粒子径の測定≫
 測定対象の触媒の薄片を透過型電子顕微鏡(例えば、日本電子社製、製品番号「JEM-2100」)で観察および撮像する。得られた画像中の任意の50個の微粒子についてその一次粒子径を測定し、これらの平均値(相乗平均)を平均粒子径として算出する。なお、微粒子が真球形状でない場合は、長径を測定する。
The average particle size of the platinum-containing fine particles can be adjusted, for example, by changing the concentration of active metal ions in the irradiation solution in the production method described later. Specifically, the average particle size can be increased by increasing the concentration of active metal ions in the irradiation solution, and the average particle size can be decreased by decreasing the concentration. The average particle size of the fine particles can be determined by, for example, the following method.
≪Measurement of average particle size≫
The flakes of the catalyst to be measured are observed and imaged with a transmission electron microscope (for example, manufactured by JEOL Ltd., product number "JEM-2100"). The primary particle size of any 50 fine particles in the obtained image is measured, and the average value (geometric mean) of these is calculated as the average particle size. If the fine particles are not spherical, the major axis is measured.
 白金含有微粒子は、必要に応じて、白金以外の成分をさらに含んでもよい。白金含有微粒子中における白金の含有量は、好ましくは80重量%~100重量%、より好ましくは90重量%~100重量%、さらに好ましくは95重量%~100重量%であり得る。 The platinum-containing fine particles may further contain components other than platinum, if necessary. The content of platinum in the platinum-containing fine particles can be preferably 80% by weight to 100% by weight, more preferably 90% by weight to 100% by weight, still more preferably 95% by weight to 100% by weight.
 白金微粒子に含まれ得る他の成分としては、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、オスミウム(Os)等の過酸化水素分解活性を有する活性金属が挙げられる。これらの成分は、単独でまたは二種以上を組み合わせて用いられ得る。 Examples of other components that can be contained in the platinum fine particles include active metals having hydrogen peroxide decomposition activity such as palladium (Pd), iridium (Ir), ruthenium (Ru), rhodium (Rh), and osmium (Os). .. These components may be used alone or in combination of two or more.
 白金含有微粒子は、担体表面に点在した状態で固定化されていてもよく、いくつかの微粒子同士が連なって、数珠繋ぎのようになって固定化されていてもよい。各微粒子が点在することにより、活性金属が層状に形成されている場合に比べて、活性金属の比表面積を増大できるとともに、酸素気泡の付着をより好適に抑制することができる。また、いくつかの微粒子同士が連なって固定化されている場合、高い耐久性が得られ得る。 The platinum-containing fine particles may be immobilized in a state of being scattered on the surface of the carrier, or several fine particles may be connected to each other and immobilized like a string of beads. By interspersing the fine particles, the specific surface area of the active metal can be increased and the adhesion of oxygen bubbles can be more preferably suppressed as compared with the case where the active metal is formed in layers. Further, when some fine particles are connected and fixed, high durability can be obtained.
[B.触媒の製造方法]
 A項に記載の触媒は、任意の適切な方法で製造され得る。1つの実施形態における上記触媒の製造方法は、カテコールアミン類を含む溶液を基材と接触させた状態で、該カテコールアミン類を重合させることによって、該基材表面にポリカテコールアミンを含む被覆層が形成された担体を得ること(被覆層の形成工程)、白金イオンを含む照射用溶液を該担体に付着させること(照射溶液の付着工程)、および、該照射用溶液が付着した担体に放射線を照射して、白金を含む微粒子を該担体表面に固定化すること(白金含有微粒子の固定化工程)、を含む。本実施形態においては、カテコールアミン類を含む溶液と接触させる前に、基材を親水化処理に供することが好ましい。また、照射用溶液を付着させる前に、被覆層が形成された担体を超音波洗浄処理に供することが好ましい。
[B. Catalyst manufacturing method]
The catalyst according to item A can be produced by any suitable method. In the method for producing the catalyst in one embodiment, a coating layer containing polycatecholamine is formed on the surface of the base material by polymerizing the catecholamines in a state where the solution containing the catecholamines is in contact with the base material. Obtaining a carrier (step of forming a coating layer), attaching an irradiation solution containing platinum ions to the carrier (adhesion step of the irradiation solution), and irradiating the carrier to which the irradiation solution is attached with radiation. The present invention comprises immobilizing the platinum-containing fine particles on the surface of the carrier (immobilization step of the platinum-containing fine particles). In this embodiment, it is preferable to subject the substrate to a hydrophilization treatment before contacting it with a solution containing catecholamines. Further, it is preferable that the carrier on which the coating layer is formed is subjected to an ultrasonic cleaning treatment before the irradiation solution is attached.
[B-1.被覆層の形成工程]
 被覆層の形成工程においては、カテコールアミン類を含む溶液を基材と接触させた状態で、該カテコールアミン類を重合させることによって、基材表面にポリカテコールアミンを含む被覆層を形成させる。これにより、基材表面にポリカテコールアミンを含む被覆層が設けられた構成を有する担体が得られ得る。1つの実施形態においては、カテコールアミン類を含む溶液中に基材を浸漬させた状態で、該カテコールアミン類を自己重合させることができる。別の実施形態においては、導電性の基材を用い、カテコールアミン類を含む溶液中に該基材を浸漬させて電解重合を行うことにより、該カテコールアミン類を重合させることができる。カテコールアミン類の重合の際には、チロシナーゼ、ラッカーゼ等の酵素を共存させることにより、重合反応を促進することができる。
[B-1. Coating layer forming process]
In the step of forming the coating layer, a coating layer containing polycatecholamines is formed on the surface of the base material by polymerizing the catecholamines in a state where the solution containing the catecholamines is in contact with the base material. As a result, a carrier having a structure in which a coating layer containing polycatecholamine is provided on the surface of the base material can be obtained. In one embodiment, the catecholamines can be self-polymerized with the substrate immersed in a solution containing the catecholamines. In another embodiment, the catecholamines can be polymerized by using a conductive base material and immersing the base material in a solution containing catecholamines to carry out electrolytic polymerization. In the polymerization of catecholamines, the polymerization reaction can be promoted by coexisting an enzyme such as tyrosinase or laccase.
 上記カテコールアミン類を含む溶液は、溶媒にカテコールアミン類またはその塩を溶解させた溶液である。カテコールアミン類としては、A項に記載のとおりである。溶媒としては、水、エタノール、プロパノール等が挙げられる。溶媒は、一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。好ましくは、溶媒は、水である。 The above solution containing catecholamines is a solution in which catecholamines or salts thereof are dissolved in a solvent. Examples of catecholamines are as described in Item A. Examples of the solvent include water, ethanol, propanol and the like. As the solvent, only one kind may be used alone, or two or more kinds may be used in combination. Preferably, the solvent is water.
 上記溶液中におけるカテコールアミン類の濃度は、例えば0.1mg/mL~10mg/mL、好ましくは1mg/mL~8mg/mL、より好ましくは2mg/mL~6mg/mLとすることができる。 The concentration of catecholamines in the above solution can be, for example, 0.1 mg / mL to 10 mg / mL, preferably 1 mg / mL to 8 mg / mL, and more preferably 2 mg / mL to 6 mg / mL.
 上記溶液は、必要に応じて、任意の適切な添加剤を含むことができる。添加剤としては、pH緩衝剤(トリス塩酸塩等)、酵素(白色腐朽菌Trametes versicolorが分泌するラッカーゼ等)等が挙げられる。溶液を攪拌しながら重合することで、溶存酸素濃度を増加することが可能となる。また、上記溶液に対してガスボンベを使用して酸素ガスや空気ガスをバブリングし、溶存酸素濃度を高めることで重合をさらに促進することが可能である。 The above solution may contain any suitable additive, if desired. Examples of the additive include a pH buffer (tris hydrochloride, etc.), an enzyme (laccase secreted by the white-rot fungus Trametes versicolor, etc.) and the like. By polymerizing the solution while stirring, it is possible to increase the dissolved oxygen concentration. Further, it is possible to further promote the polymerization by bubbling oxygen gas or air gas with the above solution using a gas cylinder to increase the dissolved oxygen concentration.
 上記溶液のpHは、好ましくは4~12、より好ましくは7~9である。 The pH of the above solution is preferably 4 to 12, more preferably 7 to 9.
 上記溶液の液温(接触時)は、反応速度を向上させる観点から、好ましくは10℃以上、より好ましくは20℃以上である。液温の上限は、例えば溶媒の沸点以下であり得る。 The liquid temperature (at the time of contact) of the above solution is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, from the viewpoint of improving the reaction rate. The upper limit of the liquid temperature can be, for example, below the boiling point of the solvent.
 上記溶液との接触時間は、目的等によって適切に選択され得る。接触時間は、例えば1時間以上、好ましくは3時間以上、より好ましくは6時間以上、さらに好ましくは12時間以上、さらにより好ましくは18時間以上とすることができる。接触時間の上限は、特に制限されないが、製造効率の観点から、例えば72時間、また例えば48時間であり得る。上記接触時間によれば、カテコールアミン類の重合(例えば、自己重合)によって、基材表面に被覆層が好適に形成され得る。 The contact time with the above solution can be appropriately selected depending on the purpose and the like. The contact time can be, for example, 1 hour or longer, preferably 3 hours or longer, more preferably 6 hours or longer, still more preferably 12 hours or longer, still more preferably 18 hours or longer. The upper limit of the contact time is not particularly limited, but may be, for example, 72 hours, or 48 hours, for example, from the viewpoint of manufacturing efficiency. According to the above contact time, a coating layer can be preferably formed on the surface of the base material by polymerization of catecholamines (for example, self-polymerization).
 上記のようにして、基材表面にポリカテコールアミンを含む被覆層が形成された担体が得られ得る。代表的には、得られた担体を洗浄する。洗浄液としては、水、アルコールまたはこれらの混合液等を用いることができ、好ましくは水が用いられ得る。 As described above, a carrier having a coating layer containing polycatecholamine formed on the surface of the base material can be obtained. Typically, the resulting carrier is washed. As the cleaning liquid, water, alcohol, a mixed liquid thereof and the like can be used, and water can be preferably used.
 1つの実施形態においては、洗浄は、担体を洗浄液中に浸漬し、超音波処理を施すことによって行われ得る。被覆層形成後に担体を超音波洗浄処理に供することにより、基材と結合していないまたは結合力の弱いカテコールアミン類またはその重合体が脱離し、基材との結合が強固である被覆層が残ることから、耐久性に優れた触媒が得られ得る。 In one embodiment, cleaning can be performed by immersing the carrier in a cleaning solution and subjecting it to sonication. By subjecting the carrier to an ultrasonic cleaning treatment after forming the coating layer, catecholamines or polymers thereof that are not bonded to the substrate or have a weak bonding force are desorbed, and a coating layer having a strong bond to the substrate remains. Therefore, a catalyst having excellent durability can be obtained.
 超音波処理における周波数は、例えば20kHz~100kHzであり、周波数の異なる3波をタイマーによって交互発振し、洗浄ムラを解消することが望ましい。超音波出力は、例えば50W~1500W、好ましくは100W~1000Wであり得る。洗浄液の液温は、例えば5℃~90℃、好ましくは20℃~80℃であり得る。洗浄時間は、例えば20秒以上、好ましくは1分~30分であり得る。 The frequency in ultrasonic processing is, for example, 20 kHz to 100 kHz, and it is desirable to alternately oscillate three waves with different frequencies by a timer to eliminate uneven cleaning. The ultrasonic output can be, for example, 50 W to 1500 W, preferably 100 W to 1000 W. The temperature of the cleaning liquid can be, for example, 5 ° C to 90 ° C, preferably 20 ° C to 80 ° C. The washing time can be, for example, 20 seconds or more, preferably 1 minute to 30 minutes.
[B-2.照射溶液の付着工程]
 照射溶液の付着工程においては、白金イオンを含む照射用溶液を担体に接触させて、該照射用溶液を該担体に付着させる。接触方法としては、例えば、照射用溶液に担体を浸漬させる方法、照射用溶液に担体を塗工する方法、照射用溶液を担体に噴霧する方法等が挙げられる。照射用溶液に担体を浸漬させる方法が好ましい。照射用溶液が良好に担体に付着し得るからである。
[B-2. Irradiation solution adhesion process]
In the step of adhering the irradiation solution, the irradiation solution containing platinum ions is brought into contact with the carrier, and the irradiation solution is adhered to the carrier. Examples of the contact method include a method of immersing the carrier in the irradiation solution, a method of applying the carrier to the irradiation solution, a method of spraying the irradiation solution onto the carrier, and the like. A method of immersing the carrier in the irradiation solution is preferable. This is because the irradiation solution can adhere well to the carrier.
 白金イオンを含む照射用溶液は、ヘキサクロリド白金(IV)酸、ヘキサクロリド白金(IV)酸カリウム、アセチルアセトナート白金(II)等の白金の可溶性化合物またはその塩を水に溶解することによって調製され得る。照射用溶液中における白金イオンの濃度は、好ましくは1mM~200mM、より好ましくは1mM~100mM、さらに好ましくは1mM~10mMである。該照射用溶液は、白金以外の過酸化水素分解活性を有する活性金属のイオンを含んでいてもよい。該活性金属としては、A項に記載したとおりである。他の活性金属イオンを含む場合、照射用溶液中の活性金属イオン(白金イオンを含む)の合計濃度は、好ましくは1mM~200mM、より好ましくは1mM~150mM、さらに好ましくは1mM~100mMである。当該範囲であれば、所望の粒子径を有する微粒子が好適に得られ得る。 The irradiation solution containing platinum ions is prepared by dissolving a soluble compound of platinum such as hexachloroplatinum (IV) acid, potassium hexachloroplatinate (IV), acetylacetonate platinum (II) or a salt thereof in water. Can be done. The concentration of platinum ions in the irradiation solution is preferably 1 mM to 200 mM, more preferably 1 mM to 100 mM, and even more preferably 1 mM to 10 mM. The irradiation solution may contain ions of an active metal having hydrogen peroxide decomposing activity other than platinum. The active metal is as described in Item A. When other active metal ions are contained, the total concentration of the active metal ions (including platinum ions) in the irradiation solution is preferably 1 mM to 200 mM, more preferably 1 mM to 150 mM, still more preferably 1 mM to 100 mM. Within this range, fine particles having a desired particle size can be preferably obtained.
 白金イオンを含む照射用溶液は、代表的には、メタノール、エタノール、イソプロピルアルコール等の炭素数1~3のアルコールをさらに含む。アルコールが還元補助剤として機能することにより、白金イオンが好適に還元され得る。該照射用溶液中におけるアルコールの含有量は、好ましくは0.1体積%~30体積%、より好ましくは0.5体積%~10体積%である。 The irradiation solution containing platinum ions typically further contains an alcohol having 1 to 3 carbon atoms such as methanol, ethanol, and isopropyl alcohol. Platinum ions can be suitably reduced by the function of the alcohol as a reduction aid. The content of alcohol in the irradiation solution is preferably 0.1% by volume to 30% by volume, more preferably 0.5% by volume to 10% by volume.
 白金イオンを含む照射用溶液は、好ましくは粒子径制御剤をさらに含む。粒子径制御剤としては、白金等の活性金属と、該金属同士よりもエネルギー的に安定な結合を形成し得る化合物(例えば、白金等の活性金属同士の混合熱よりも小さな混合熱を与える化合物)が好ましく用いられ得る。その具体例としては、ホスフィン酸ナトリウム(NaPH)、ホスホン酸ナトリウム(NaPHO)等のリン化合物、亜硝酸ナトリウム(NaNO2)、チオ硫酸ナトリウム(Na)等の窒素化合物、亜硫酸ナトリウム(NaSO)等の硫黄化合物が挙げられる。例えば、白金イオンおよび該リン化合物を含む照射用溶液に電子線を照射すると、白金含有微粒子とリン化合物とが反応してPt-P結合を形成し、核となった白金含有微粒子に次の白金原子が結合することが阻害される。このように、粒子径制御剤を含むことにより、白金含有微粒子の成長が抑制されて、微粒子をより微細化することができる。照射用溶液中における粒子径制御剤の濃度は、好ましくは0.05mM~50mM、より好ましくは0.1mM~10mMである。 The irradiation solution containing platinum ions preferably further contains a particle size control agent. As the particle size control agent, a compound that can form an energetically more stable bond between an active metal such as platinum and the metal (for example, a compound that gives a mixing heat smaller than the mixing heat between the active metals such as platinum). ) Can be preferably used. Specific examples thereof include phosphorus compounds such as sodium phosphinate (NaPH 2 O 2 ) and sodium phosphonate (NaPHO 3 ), and nitrogen such as sodium nitrite (NaNO 2 ) and sodium thiosulfate (Na 2 S 2 O 3 ). Examples include compounds and sulfur compounds such as sodium sulfite (Na 2 SO 3 ). For example, when an irradiation solution containing platinum ions and the phosphorus compound is irradiated with an electron beam, the platinum-containing fine particles react with the phosphorus compound to form a Pt-P bond, and the next platinum-containing fine particles become the core platinum-containing fine particles. The binding of atoms is blocked. By including the particle size controlling agent in this way, the growth of the platinum-containing fine particles is suppressed, and the fine particles can be further refined. The concentration of the particle size control agent in the irradiation solution is preferably 0.05 mM to 50 mM, more preferably 0.1 mM to 10 mM.
 白金イオンを含む照射用溶液は、必要に応じて、pH調整剤、キレート剤等の任意の構成成分をさらに含有していてもよい。任意の構成成分の具体例としては、水酸化ナトリウム、アンモニア、酒石酸、クエン酸等が挙げられる。 The irradiation solution containing platinum ions may further contain any constituent components such as a pH adjuster and a chelating agent, if necessary. Specific examples of the arbitrary constituents include sodium hydroxide, ammonia, tartaric acid, citric acid and the like.
[B-3.白金含有微粒子の固定化工程]
 白金含有微粒子の固定化工程においては、白金イオンを含む照射用溶液が付着した担体に放射線を照射する。これにより、白金イオンが担体表面で還元されて、白金含有微粒子が担体表面に固定化される。放射線照射は、照射用溶液に浸漬された状態の担体に対して行われてもよく、浸漬、塗工、噴霧等によって表面が照射用溶液で濡れた状態の担体に対して行われてもよく(ディップEB法)、また、照射用溶液の付着後、外観的に乾燥した状態の担体に対して行われてもよい(ドライEB法)。ディップEB法を用いた場合は、照射用溶液のコストが抑えられるという利点がある。
[B-3. Immobilization process of platinum-containing fine particles]
In the step of immobilizing the platinum-containing fine particles, the carrier to which the irradiation solution containing platinum ions is attached is irradiated with radiation. As a result, platinum ions are reduced on the surface of the carrier, and platinum-containing fine particles are immobilized on the surface of the carrier. Irradiation may be performed on the carrier immersed in the irradiation solution, or may be performed on the carrier whose surface is wet with the irradiation solution by immersion, coating, spraying, or the like. (Dip EB method), or may be performed on a carrier in an apparently dry state after the irradiation solution is attached (dry EB method). When the dip EB method is used, there is an advantage that the cost of the irradiation solution can be suppressed.
 照射される放射線としては、電子線、γ線、X線等が用いられ得る。なかでも、大気開放下で連続照射が可能であり、高線量率の電子線では10秒以下でナノ粒子を生成・担持できる利点があるため、電子線が好ましい。 As the radiation to be irradiated, electron beam, γ ray, X-ray or the like can be used. Among them, an electron beam is preferable because continuous irradiation is possible in an open atmosphere and an electron beam having a high dose rate has an advantage that nanoparticles can be generated and supported in 10 seconds or less.
 電子線の加速エネルギーは、好ましくは0.5MeV~10MeV、より好ましくは1MeV~8MeVである。また、電子線照射における担体への吸収線量は、好ましくは1kGy~100kGy、より好ましくは10kGy~50kGyである。このように電子線を照射することにより、所望の粒子径を有する微粒子が好適に得られ得る。 The acceleration energy of the electron beam is preferably 0.5 MeV to 10 MeV, more preferably 1 MeV to 8 MeV. The absorbed dose to the carrier in electron beam irradiation is preferably 1 kGy to 100 kGy, and more preferably 10 kGy to 50 kGy. By irradiating the electron beam in this way, fine particles having a desired particle size can be preferably obtained.
 電子線照射条件は、目的等に応じて適切に設定され得る。例えば、電子線の照射は、大気圧および室温条件で行うことができる。照射時間は、活性金属イオン濃度、電子線の線量等に応じて適切に設定され得る。照射時間は、例えば1秒~1分、好ましくは2秒~30秒、より好ましくは3秒~10秒程度であり得る。電子線は、連続的に照射されてもよく、間欠的に照射されてもよい。間欠的に照射される場合、上記照射時間は、その合計である。 The electron beam irradiation conditions can be appropriately set according to the purpose and the like. For example, electron beam irradiation can be performed under atmospheric pressure and room temperature conditions. The irradiation time can be appropriately set according to the active metal ion concentration, the dose of the electron beam, and the like. The irradiation time may be, for example, 1 second to 1 minute, preferably 2 seconds to 30 seconds, and more preferably 3 seconds to 10 seconds. The electron beam may be continuously irradiated or intermittently irradiated. When irradiated intermittently, the irradiation time is the total.
 照射用溶液に浸漬された状態の担体に電子線照射を行う場合、電子線照射に先立って、照射用溶液中の溶存酸素を窒素ガス、アルゴンガス等の不活性ガスで置換することがより好ましい。 When the carrier immersed in the irradiation solution is irradiated with an electron beam, it is more preferable to replace the dissolved oxygen in the irradiation solution with an inert gas such as nitrogen gas or argon gas prior to the electron beam irradiation. ..
 上記のとおり、電子線の照射時間は極めて短時間であり、照射の際にはバッチ式だけでなく、ベルトコンベアー式も採用することができる。よって、本発明の製造方法は、A項に記載の触媒の大量生産に非常に好適である。 As mentioned above, the irradiation time of the electron beam is extremely short, and not only the batch type but also the belt conveyor type can be adopted for the irradiation. Therefore, the production method of the present invention is very suitable for mass production of the catalyst according to item A.
[B-4.親水化処理]
 親水化処理は、カテコールアミン類を含む溶液に接触させる前の基材に対して施される。親水化処理によって、基材が無機材料の場合は表面に存在する油脂や埃等の汚染物が除去され、基材が有機材料の場合は基材表面にヒドロキシル基、カルボキシル基等の親水性基が生成することにより、カテコールアミン類を含む溶液に対する濡れ性が向上し、また、カテコールアミン類またはポリカテコールアミンとの結合の生成が促進され、結果として、白金担持量の増大および/または触媒の耐久性の向上効果が得られ得る。
[B-4. Hydrophilization]
The hydrophilization treatment is applied to the substrate before contact with a solution containing catecholamines. The hydrophilization treatment removes contaminants such as oils and dusts existing on the surface when the base material is an inorganic material, and when the base material is an organic material, hydrophilic groups such as hydroxyl groups and carboxyl groups are removed on the surface of the base material. Improves wettability to solutions containing catecholamines and promotes the formation of bonds with catecholamines or polycatecholamines, resulting in increased platinum carrying and / or catalytic durability. An improving effect can be obtained.
 親水化処理としては、任意の適切な方法が用いられ得る。具体例としては、プラズマ処理、コロナ処理、フレーム処理等のドライプロセスと、過マンガン酸カリウムやクロム酸等の薬剤に浸漬するウェットプロセスが挙げられる。これらの表面処理は当業者に周知であるので、その詳細な説明は省略する。 Any suitable method can be used as the hydrophilization treatment. Specific examples include a dry process such as plasma treatment, corona treatment, and frame treatment, and a wet process of immersing in a chemical such as potassium permanganate or chromic acid. Since these surface treatments are well known to those skilled in the art, detailed description thereof will be omitted.
[C.消毒方法]
 本発明のコンタクトレンズの消毒方法は、コンタクトレンズと、A項に記載の触媒とを、過酸化水素を含むコンタクトレンズ消毒液に浸漬することを含む。
[C. Disinfection method]
The method for disinfecting a contact lens of the present invention includes immersing the contact lens and the catalyst according to item A in a contact lens disinfectant solution containing hydrogen peroxide.
 コンタクトレンズ消毒液における過酸化水素の濃度は、例えば1.0重量%~5.0重量%、好ましくは2.5重量%~4.0重量%である。 The concentration of hydrogen peroxide in the contact lens disinfectant is, for example, 1.0% by weight to 5.0% by weight, preferably 2.5% by weight to 4.0% by weight.
 コンタクトレンズ消毒液は、必要に応じて、任意の適切な添加成分を含み得る。該添加成分としては、例えば、キレート剤、界面活性剤、等張化剤、緩衝剤、増粘剤、防腐剤等が挙げられる。これらの添加成分は、単独で、あるいは、2種以上組み合わされて用いられ得る。消毒液における各添加成分の濃度は、目的等に応じて適切に設定され得る。 The contact lens disinfectant may contain any suitable additive, if desired. Examples of the additive component include a chelating agent, a surfactant, an isotonic agent, a buffering agent, a thickener, a preservative and the like. These additive components may be used alone or in combination of two or more. The concentration of each additive component in the disinfectant solution can be appropriately set according to the purpose and the like.
 キレート剤は、消毒液の安定性を向上させて、その長期保存の点で有効である。キレート剤としては、EDTA(エチレンジアミン四酢酸)またはその塩、エチドロン酸またはその塩、DTPMP[ジエチレントリアミンペンタ(メチレンホスホン酸)]、スズ酸ナトリウム等が挙げられる。消毒液におけるキレート剤の濃度は、一般に、0.01重量%~0.5重量%程度である。 The chelating agent improves the stability of the disinfectant solution and is effective in terms of its long-term storage. Examples of the chelating agent include EDTA (ethylenediaminetetraacetic acid) or a salt thereof, etidronic acid or a salt thereof, DTPMP [diethylenetriaminepenta (methylenephosphonic acid)], sodium tinate and the like. The concentration of the chelating agent in the disinfectant solution is generally about 0.01% by weight to 0.5% by weight.
 界面活性剤は、コンタクトレンズ消毒液に、脂質の除去作用等の有効なコンタクトレンズ洗浄効果を付与し得る。界面活性剤としては、コンタクトレンズ用液剤等に一般的に用いられている公知のアニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤、およびカチオン系界面活性剤が用いられ得る。具体例としては、高級アルコールのポリエチレングリコールエーテル、高級脂肪酸のポリエチレングリコールエステル、高級脂肪酸のポリグリセリンエステル、アルキルフェノールのポリエチレングリコールエーテル、ポリエチレングリコールソルビタンアルキルエステル、ポリオキシエチレン-ポリオキシプロピレングリコール(ポロクサマー)、エチレンジアミンテトラポリオキシエチレンポリオキシプロピレン(ポロキサミン)等が挙げられる。中でも、ポリオキシエチレンとポリオキシプロピレンのブロックコポリマーまたはその誘導体(ポロクサマーまたはポロキサミン)が好ましく用いられる。 Surfactants can impart effective contact lens cleaning effects such as lipid removing action to contact lens disinfectants. As the surfactant, known anionic surfactants, nonionic surfactants, amphoteric surfactants, and cationic surfactants generally used for liquids for contact lenses and the like can be used. Specific examples include polyethylene glycol ether of higher alcohol, polyethylene glycol ester of higher fatty acid, polyglycerin ester of higher fatty acid, polyethylene glycol ether of alkylphenol, polyethylene glycol sorbitan alkyl ester, polyoxyethylene-polyoxypropylene glycol (poroxummer), and so on. Examples thereof include ethylenediamine tetrapolyoxyethylene polyoxypropylene (poroxamine). Of these, a block copolymer of polyoxyethylene and polyoxypropylene or a derivative thereof (poloxamer or poloxamine) is preferably used.
 等張化剤は、コンタクトレンズ消毒液(消毒前および消毒後)の浸透圧の調整を目的として添加される。等張化剤としては、コンタクトレンズ用液剤等に一般的に用いられている公知の等張化剤が用いられ得る。 The tonicity agent is added for the purpose of adjusting the osmotic pressure of the contact lens disinfectant solution (before and after disinfection). As the tonicity agent, a known tonicity agent generally used for a liquid agent for contact lenses or the like can be used.
 コンタクトレンズ消毒液は、水系媒体中に、各成分を溶解または分散させることによって調製され得る。水系媒体としては、水、生理食塩水等が挙げられる。添加順序に制限はなく、各成分を順次または同時に添加して、それぞれ、分散または溶解させることによって、目的とする消毒液を容易に得ることが出来る。 The contact lens disinfectant solution can be prepared by dissolving or dispersing each component in an aqueous medium. Examples of the aqueous medium include water, physiological saline and the like. The order of addition is not limited, and the desired disinfectant can be easily obtained by adding each component sequentially or simultaneously and dispersing or dissolving them, respectively.
 コンタクトレンズ消毒液の使用量は、コンタクトレンズと触媒とを浸漬可能な量であればよい。該使用量は、例えば、5.0mL~20mLである。1つの実施形態においては、コンタクトレンズ消毒液の使用量は、触媒に担持される白金1μgあたり、例えば0.01mL~20mL、好ましくは0.05mL~10mL、より好ましくは0.1mL~5mLであり得る。 The amount of the contact lens disinfectant used may be an amount that allows the contact lens and the catalyst to be immersed. The amount used is, for example, 5.0 mL to 20 mL. In one embodiment, the amount of contact lens disinfectant used is, for example, 0.01 mL to 20 mL, preferably 0.05 mL to 10 mL, more preferably 0.1 mL to 5 mL, per 1 μg of platinum supported on the catalyst. obtain.
 消毒対象であるコンタクトレンズとしては、含水性または非含水性、いわゆるソフトまたはハードの材質等にかかわらず、すべての種類のコンタクトレンズが適用可能である。本発明の消毒方法は、ソフトコンタクトレンズに特に好適である。ソフトコンタクトレンズとしては、含水性のハイドロゲルからなるものが知られており、例えば、2-ヒドロキシエチルメタクリレート、N,N-ジメチルアクリルアミド、N-ビニル-2-ピロリドン、メタクリル酸等の親水性モノマーの重合体または共重合体にて形成されたもの、該親水性モノマーに、シリコーンを含有する疎水性のモノマーを組み合わせて、共重合することにより製造される共重合体にて形成されたもの等が挙げられる。 As contact lenses to be disinfected, all types of contact lenses can be applied regardless of water-containing or non-water-containing, so-called soft or hard materials. The disinfection method of the present invention is particularly suitable for soft contact lenses. As soft contact lenses, those made of water-containing hydrogels are known, and for example, hydrophilic monomers such as 2-hydroxyethyl methacrylate, N, N-dimethylacrylamide, N-vinyl-2-pyrrolidone, and methacrylate. Those formed from the polymer or copolymer of the above, those formed from a copolymer produced by copolymerizing the hydrophilic monomer with a hydrophobic monomer containing silicone, etc. Can be mentioned.
 本発明の消毒方法においては、過酸化水素によるコンタクトレンズの消毒と触媒による過酸化水素の分解とが好適に両立され得る。触媒とコンタクトレンズとは、最初から消毒液中に共存させてもよく、コンタクトレンズを浸漬した後に触媒を加えて両者を共存させてもよい。いずれの場合であっても、触媒の消毒液への浸漬時間が、例えば30分~480分、好ましくは120分~360分となるように浸漬することが望ましい。浸漬温度は、好ましくは5℃~40℃であり、より好ましくは10℃~30℃である。 In the disinfection method of the present invention, disinfection of contact lenses with hydrogen peroxide and decomposition of hydrogen peroxide with a catalyst can be suitably compatible. The catalyst and the contact lens may coexist in the disinfectant solution from the beginning, or the catalyst may be added after the contact lens is immersed and both may coexist. In any case, it is desirable to immerse the catalyst in the disinfectant solution so that the immersion time is, for example, 30 minutes to 480 minutes, preferably 120 minutes to 360 minutes. The immersion temperature is preferably 5 ° C. to 40 ° C., more preferably 10 ° C. to 30 ° C.
 1つの実施形態において、消毒後の消毒液における過酸化水素の濃度は、例えば150ppm以下、好ましくは100ppm以下である。該過酸化水素残留濃度であれば、消毒後のコンタクトレンズをそのまま装着したとしても痛み、刺激感等の発生を回避し得る。 In one embodiment, the concentration of hydrogen peroxide in the disinfectant solution after disinfection is, for example, 150 ppm or less, preferably 100 ppm or less. With the residual concentration of hydrogen peroxide, it is possible to avoid the occurrence of pain, irritation, etc. even if the contact lens after disinfection is worn as it is.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれら実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
≪白金担持量≫
 実験例で得られた触媒(Pt/ABS)を王水8mL(HCl:HNO=3:1)に浸漬させ、白金微粒子を溶解した。得られた溶液4mLを超純水で50mLに希釈して試料溶液とした。該試料溶液を用いて誘導結合プラズマ原子発光分析法(島津製作所社製、製品番号「ICPE-9000」)により白金濃度を測定した。得られた濃度に基づいて担体の幾何学的表面積あたりの固定化された白金の重量を算出した。
≪過酸化水素濃度の測定≫
 硫酸チタン溶液(30%、和光純薬工業株式会社)を5%に希釈して過酸化水素を含む試料と混合し、407nmにおける吸光度を測定することで過酸化水素濃度を測定した。
≪Platinum supported amount≫
The catalyst (Pt / ABS) obtained in the experimental example was immersed in 8 mL of aqua regia (HCl: HNO 3 = 3: 1) to dissolve platinum fine particles. 4 mL of the obtained solution was diluted with ultrapure water to 50 mL to prepare a sample solution. Using the sample solution, the platinum concentration was measured by inductively coupled plasma atomic emission spectrometry (manufactured by Shimadzu Corporation, product number "ICPE-9000"). The weight of immobilized platinum per geometric surface area of the carrier was calculated based on the concentration obtained.
≪Measurement of hydrogen peroxide concentration≫
A titanium sulfate solution (30%, Wako Pure Chemical Industries, Ltd.) was diluted to 5%, mixed with a sample containing hydrogen peroxide, and the hydrogen peroxide concentration was measured by measuring the absorbance at 407 nm.
[実験例1]ポリドーパミン被覆層の形成および浸漬時間依存性の評価
 1M トリス塩酸緩衝溶液(pH=8.5)(富士フィルム和光純薬社製)にドーパミン塩酸塩(富士フィルム和光純薬社製)を溶解して、2mg/mLのドーパミン(DA)溶液を調製した。室温(22±2℃)の条件下で20mLのDA溶液にスライドガラスを0、1、3または24時間浸漬した。次いで、スライドガラスをDA溶液から取出し、表面を純水で軽く濯いで洗浄した。その後、エアガンで窒素ガスを吹き付けて乾燥させ、これにより、担体(ポリドーパミン(PDA)被覆されたスライドガラス)を得た。
 得られた担体をX線光電子分光法によって分析し、Si2p-XPSスペクトルを取得した。各担体について得られたスペクトルおよび表面Si元素比をそれぞれ、図2および図3に示す。
[Experimental Example 1] Formation of polydopamine coating layer and evaluation of immersion time dependence 1M Tris-hydrochloric acid buffer solution (pH = 8.5) (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and dopamine hydrochloride (Fuji Film Wako Pure Chemical Industries, Ltd.) ) Was dissolved to prepare a 2 mg / mL dopamine (DA) solution. Slide glasses were immersed in 20 mL of DA solution under room temperature (22 ± 2 ° C.) for 0, 1, 3 or 24 hours. The slide glass was then removed from the DA solution and the surface was lightly rinsed with pure water for cleaning. Then, nitrogen gas was blown with an air gun to dry it, whereby a carrier (polydopamine (PDA) -coated slide glass) was obtained.
The obtained carrier was analyzed by X-ray photoelectron spectroscopy to obtain a Si2p-XPS spectrum. The spectra and surface Si element ratios obtained for each carrier are shown in FIGS. 2 and 3, respectively.
 図2および図3に示されるとおり、DA溶液への浸漬時間が増加するにしたがって、基材由来のピーク強度および表面Si元素比が減少している。このことから、基材をDA溶液中に浸漬することにより、DAの自己重合に起因してPDA被覆層が形成されること、および、浸漬時間が増加するにしたがってPDA被覆量も増加することがわかる。 As shown in FIGS. 2 and 3, as the immersion time in the DA solution increases, the peak intensity derived from the substrate and the surface Si element ratio decrease. From this, by immersing the base material in the DA solution, the PDA coating layer is formed due to the self-polymerization of DA, and the PDA coating amount increases as the immersion time increases. Recognize.
[実験例2]PDA被覆層の効果
1.担体の作製
 長さ20mm×幅15mm×厚さ1mmのABS樹脂板(AS-ONE社製、型番「2-9229-01」、幾何学的表面積:6.7cm)を基材として用いた。1M トリス塩酸緩衝溶液(pH=8.5)にドーパミン塩酸塩を溶解して、2mg/mLのDA溶液を調製し、室温(22±2℃)の条件下で該DA溶液に基材を0、1、3または24時間浸漬した。次いで、基材をDA溶液から取出し、表面を純水で軽く濯いで洗浄した。その後、エアガンで窒素ガスを吹き付けて乾燥させ、これにより、担体(PDA被覆されたABS樹脂板)を得た。
[Experimental Example 2] Effect of PDA coating layer 1. Preparation of Carrier An ABS resin plate (manufactured by AS-ONE, model number "2-9229-01", geometric surface area: 6.7 cm 2 ) having a length of 20 mm, a width of 15 mm and a thickness of 1 mm was used as a base material. Dopamine hydrochloride is dissolved in 1M Tris-hydrochloric acid buffer solution (pH = 8.5) to prepare a 2 mg / mL DA solution, and the substrate is added to the DA solution at room temperature (22 ± 2 ° C.). Soaked for 1, 3 or 24 hours. The substrate was then removed from the DA solution and the surface was lightly rinsed with pure water for washing. Then, nitrogen gas was blown with an air gun to dry it, whereby a carrier (PDA-coated ABS resin plate) was obtained.
2.白金含有微粒子の固定化
 ポリスチレン製の容器に、超純水4.55mL、2-プロパノール0.05mLおよび0.05M HPtCl 0.4mLを加え、混合することによって照射用溶液を調製した。該照射用溶液に、上記担体を浸漬し、次いで、加速エネルギー4.8MeV、線量20kGy、照射時間約7秒の照射条件で電子線照射を行って、白金微粒子を担体上に固定化した。照射用溶液照射溶液から担体を取り出し、超純水に浸漬後、10分間超音波洗浄した。これにより、担体上に白金微粒子が固定化された過酸化水素の分解触媒を得た。各担体上に固定化された白金重量を図4に示す。
2. Immobilization of Platinum-Containing Fine Particles 4.55 mL of ultrapure water, 0.05 mL of 2-propanol and 0.4 mL of 0.05 MH 2 PtCl 6 were added to a polystyrene container and mixed to prepare an irradiation solution. The carrier was immersed in the irradiation solution, and then electron beam irradiation was performed under irradiation conditions of an acceleration energy of 4.8 MeV, a dose of 20 kGy, and an irradiation time of about 7 seconds to immobilize platinum fine particles on the carrier. Irradiation solution The carrier was taken out from the irradiation solution, immersed in ultrapure water, and then ultrasonically washed for 10 minutes. As a result, a decomposition catalyst for hydrogen peroxide in which platinum fine particles were immobilized on a carrier was obtained. The weight of platinum immobilized on each carrier is shown in FIG.
3.耐久性評価
 上記のようにして得られた各触媒を、室温(22±2℃)の条件下で3.5重量%(35000ppm)の過酸化水素水溶液5mLに浸漬させ、容器ごと25℃に設定した恒温器(アズワン製、I-CUBE FCI-280)内に入れて6時間後の残留過酸化水素濃度を測定した。その後、各触媒をNガンで乾燥させて、再度、3.5重量%の過酸化水素水溶液5mLに浸漬させ、6時間後の残留過酸化水素濃度を測定した。該浸漬および乾燥処理を10回繰り返した。残留過酸化水素濃度の変化を図5に示す。
3. 3. Durability Evaluation Each catalyst obtained as described above was immersed in 5 mL of a 3.5 wt% (35000 ppm) hydrogen peroxide aqueous solution under the condition of room temperature (22 ± 2 ° C.), and the temperature was set to 25 ° C. for each container. The concentration of residual hydrogen peroxide was measured 6 hours after being placed in a constant temperature device (manufactured by AS ONE, I-CUBE FCI-280). Thereafter, each catalyst was dried in N 2 gun, again, immersed in 3.5 wt% aqueous hydrogen peroxide solution 5 mL, were measured residual hydrogen peroxide concentration after 6 hours. The dipping and drying treatment was repeated 10 times. The change in the residual hydrogen peroxide concentration is shown in FIG.
 図4および図5に示されるように、PDA被覆層を有さない触媒(浸漬時間0h)に比べて、PDA被覆層を有する触媒は、白金微粒子の担持量が増加しており、また、初期(1回目)の触媒活性が向上していた。また、PDA被覆層を有さない触媒は、繰り返し使用時における残留H濃度の増加量が大きいが、PDA被覆層を有する触媒は、当該増加が抑制されており、PDA被覆量が大きい触媒(浸漬時間3h、24h)においては、当該増加量が顕著に抑制されている。 As shown in FIGS. 4 and 5, the catalyst having the PDA coating layer has an increased amount of platinum fine particles supported as compared with the catalyst having no PDA coating layer (immersion time 0h), and the initial stage The catalytic activity of (1st time) was improved. Further, the catalyst having no PDA coating layer has a large increase in the residual H 2 O 2 concentration during repeated use, but the catalyst having a PDA coating layer suppresses the increase and has a large increase in the PDA coating amount. In the catalyst (immersion time 3h, 24h), the increase amount is remarkably suppressed.
[実験例3]洗浄処理の効果1
1.担体の作製
 長さ20mm×幅15mm×厚さ1mmのABS樹脂板(AS-ONE社製、型番「2-9229-01」、幾何学的表面積:6.7cm)を基材として用いた。1M トリス塩酸緩衝溶液(pH=8.5)にドーパミン塩酸塩を溶解して、2mg/mLのDA溶液を調製し、室温(22±2℃)の条件下で該DA溶液に基材を24時間浸漬した。次いで、DA溶液から取出した基材を常温の純水に浸漬し、5分間超音波洗浄した(AS-ONE社製、型番「USK-1R」、周波数:40kHz、出力:100W)。その後、エアガンで窒素ガスを吹き付けて乾燥させ、これにより、担体(PDA被覆されたABS樹脂板)を得た。
[Experimental Example 3] Effect of cleaning treatment 1
1. 1. Preparation of Carrier An ABS resin plate (manufactured by AS-ONE, model number "2-9229-01", geometric surface area: 6.7 cm 2 ) having a length of 20 mm, a width of 15 mm and a thickness of 1 mm was used as a base material. Dopamine hydrochloride is dissolved in 1M Tris-hydrochloric acid buffer solution (pH = 8.5) to prepare a DA solution of 2 mg / mL, and the substrate is added to the DA solution at room temperature (22 ± 2 ° C.). Soaked for hours. Next, the base material taken out from the DA solution was immersed in pure water at room temperature and ultrasonically cleaned for 5 minutes (manufactured by AS-ONE, model number "USK-1R", frequency: 40 kHz, output: 100 W). Then, nitrogen gas was blown with an air gun to dry it, whereby a carrier (PDA-coated ABS resin plate) was obtained.
2.白金含有微粒子の固定化
 実験例2と同様に、白金微粒子を担体上に固定化し、超音波洗浄することにより、過酸化水素の分解触媒を得た。
2. Immobilization of Platinum-Containing Fine Particles Similar to Experimental Example 2, platinum fine particles were immobilized on a carrier and ultrasonically cleaned to obtain a decomposition catalyst for hydrogen peroxide.
3.過酸化水素分解能および耐久性評価
 上記のようにして得られた触媒を、室温(22±2℃)の条件下で3.5重量%の過酸化水素水溶液5mLに浸漬させ、6時間後の残留過酸化水素濃度を測定した。その後、各触媒をNガンで乾燥させて、再度、3.5重量%の過酸化水素水溶液5mLに浸漬させ、6時間後の残留過酸化水素濃度を測定した。該浸漬および乾燥処理を10回繰り返した。残留過酸化水素濃度の変化を図6(b)に示す。また、比較対象として、実験例2の触媒(超音波洗浄処理の代わりに濯ぎ処理を行ったこと以外は同様にして作製した触媒(浸漬時間24h))の残留過酸化水素濃度の変化を図6(a)に示す
3. 3. Hydrogen peroxide resolution and durability evaluation The catalyst obtained as described above was immersed in 5 mL of a 3.5 wt% hydrogen peroxide aqueous solution under the conditions of room temperature (22 ± 2 ° C.) and remained after 6 hours. The hydrogen peroxide concentration was measured. Thereafter, each catalyst was dried in N 2 gun, again, immersed in 3.5 wt% aqueous hydrogen peroxide solution 5 mL, were measured residual hydrogen peroxide concentration after 6 hours. The dipping and drying treatment was repeated 10 times. The change in the residual hydrogen peroxide concentration is shown in FIG. 6 (b). For comparison, FIG. 6 shows changes in the residual hydrogen peroxide concentration of the catalyst of Experimental Example 2 (catalyst prepared in the same manner except that the rinsing treatment was performed instead of the ultrasonic cleaning treatment (immersion time 24 hours)). Shown in (a)
 図6(a)および(b)から明らかなように、DA溶液から取り出した担体を超音波洗浄してから白金微粒子の固定化を行って得られた触媒は、繰り返し使用時における残留H濃度の増加が抑制され、耐久性が向上されていることがわかる。 As is clear from FIGS. 6 (a) and 6 (b), the catalyst obtained by ultrasonically cleaning the carrier taken out from the DA solution and then immobilizing the platinum fine particles is a residual H 2 O after repeated use. 2 It can be seen that the increase in concentration is suppressed and the durability is improved.
[実験例4]洗浄処理の効果2
 1M トリス塩酸緩衝溶液(pH=8.5)(富士フィルム和光純薬社製)にドーパミン塩酸塩(富士フィルム和光純薬社製)を溶解して、2mg/mLのドーパミン(DA)溶液を調製した。室温(22±2℃)の条件下で20mLのDA溶液にスライドガラスを1または24時間浸漬した。次いで、DA溶液から取出したスライドガラスを常温の純水に浸漬し、5分間超音波洗浄した(AS-ONE社製、型番「USK-1R」、周波数:40kHz、出力:100W)。その後、エアガンで窒素ガスを吹き付けて乾燥させ、これにより、担体(PDA被覆されたスライドガラス)を得た。
 得られた担体をX線光電子分光法によって分析し、Si2p-XPSスペクトルを取得した。また、比較対象として、超音波洗浄処理の代わりに濯ぎ処理を行った浸漬時間1または24hの担体のSi2p-XPSスペクトルを取得した。各担体について得られたスペクトルを、図7(a)または(b)に示す。
[Experimental Example 4] Effect of cleaning treatment 2
Dopamine hydrochloride (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) is dissolved in 1M Tris-hydrochloric acid buffer solution (pH = 8.5) (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) to prepare a 2 mg / mL dopamine (DA) solution. did. The slide glass was immersed in 20 mL of DA solution for 1 or 24 hours under the condition of room temperature (22 ± 2 ° C.). Then, the slide glass taken out from the DA solution was immersed in pure water at room temperature and ultrasonically cleaned for 5 minutes (manufactured by AS-ONE, model number "USK-1R", frequency: 40 kHz, output: 100 W). Then, nitrogen gas was blown with an air gun to dry it, whereby a carrier (PDA-coated slide glass) was obtained.
The obtained carrier was analyzed by X-ray photoelectron spectroscopy to obtain a Si2p-XPS spectrum. Further, as a comparison target, a Si2p-XPS spectrum of a carrier having an immersion time of 1 or 24 hours, which was rinsed instead of the ultrasonic cleaning treatment, was obtained. The spectra obtained for each carrier are shown in FIGS. 7 (a) or 7 (b).
 図7(a)に示されるとおり、超音波洗浄によって、基材由来のピーク強度が増加している。このことから、超音波洗浄によって、基材と結合していないPDAが脱離し、これにより、基材と強固に結合しているPDA被覆層を有する触媒(結果として、耐久性に優れた触媒)が得られたと推測される。一方、図7(b)に示されるとおり、浸漬時間が24hである担体については、超音波洗浄の有無に関わらず、基材由来のピークが確認されなかった。これは、浸漬時間が長いことに起因してPDA被覆層の厚さが大きくなり、結果として、基材と結合していないPDAが脱離した場合でも、基材表面が露出しなかったと推測される。 As shown in FIG. 7A, the peak intensity derived from the base material is increased by ultrasonic cleaning. From this, the PDA that is not bonded to the base material is desorbed by ultrasonic cleaning, and as a result, a catalyst having a PDA coating layer that is firmly bonded to the base material (as a result, a catalyst having excellent durability). Is presumed to have been obtained. On the other hand, as shown in FIG. 7B, no peak derived from the base material was confirmed for the carrier having an immersion time of 24 hours regardless of the presence or absence of ultrasonic cleaning. It is presumed that this is because the thickness of the PDA coating layer is increased due to the long immersion time, and as a result, the surface of the substrate is not exposed even when the PDA that is not bonded to the substrate is detached. To.
[実験例5]プラズマ処理の効果
1.担体の作製
 長さ20mm×幅15mm×厚さ1mmのABS樹脂板(AS-ONE社製、型番「2-9229-01」、幾何学的表面積:6.7cm)を基材として用いた。プラズマ処理装置としてプラズマリアクター(ヤマト科学社製、「PR-501A」)を用いて以下の条件で該基材にプラズマ処理を行った。X線光電子分光法により、プラズマ処理後の基材表面に、-OH基および-COOH基が生成していることが確認された。
≪プラズマ処理条件≫
    ガス:He
    圧力:100Pa(背圧5Pa)
    投入電力:100W
    時間:1分
    SWR:1.1以下
[Experimental Example 5] Effect of plasma treatment 1. Preparation of Carrier An ABS resin plate (manufactured by AS-ONE, model number "2-9229-01", geometric surface area: 6.7 cm 2 ) having a length of 20 mm, a width of 15 mm and a thickness of 1 mm was used as a base material. Using a plasma reactor (manufactured by Yamato Scientific Co., Ltd., "PR-501A") as a plasma processing apparatus, the substrate was subjected to plasma treatment under the following conditions. By X-ray photoelectron spectroscopy, it was confirmed that -OH groups and -COOH groups were generated on the surface of the base material after the plasma treatment.
≪Plasma processing conditions≫
Gas: He
Pressure: 100 Pa (back pressure 5 Pa)
Input power: 100W
Time: 1 minute SWR: 1.1 or less
 1M トリス塩酸緩衝溶液(pH=8.5)にドーパミン塩酸塩を溶解して、2mg/mLのDA溶液を調製し、室温(22±2℃)の条件下で該DA溶液にプラズマ処理を施した基材を24時間浸漬した。次いで、DA溶液から取出した基材を常温の純水に浸漬し、5分間超音波洗浄した(AS-ONE社製、型番「USK-1R」、周波数:40kHz、出力:100W)。その後、エアガンで窒素ガスを吹き付けて乾燥させ、これにより、担体(プラズマ処理後にPDA被覆されたABS樹脂板)を得た。 Dopamine hydrochloride is dissolved in 1M Tris-hydrochloric acid buffer solution (pH = 8.5) to prepare a 2 mg / mL DA solution, and the DA solution is subjected to plasma treatment under the condition of room temperature (22 ± 2 ° C.). The base material was immersed for 24 hours. Next, the base material taken out from the DA solution was immersed in pure water at room temperature and ultrasonically cleaned for 5 minutes (manufactured by AS-ONE, model number "USK-1R", frequency: 40 kHz, output: 100 W). Then, nitrogen gas was blown with an air gun to dry it, whereby a carrier (a PDA-coated ABS resin plate after plasma treatment) was obtained.
2.白金含有微粒子の固定化
 実験例2と同様に、白金微粒子を担体上に固定化し、超音波洗浄することにより、過酸化水素の分解触媒を得た。得られた触媒に関して、担体上に固定化された白金重量を、実験例3の触媒(基材にプラズマ処理を施していないこと以外は同様にして作製した触媒(ただし、浸漬時間0または24h))において固定化された白金重量と併せて図8に示す。また、プラズマ処理前のABS樹脂板(基材)、プラズマ処理後にPDA被覆された担体、該担体に白金含有微粒子を固定して得られた触媒のSEM写真を図9に示す。
2. Immobilization of Platinum-Containing Fine Particles Similar to Experimental Example 2, platinum fine particles were immobilized on a carrier and ultrasonically cleaned to obtain a decomposition catalyst for hydrogen peroxide. With respect to the obtained catalyst, the weight of platinum immobilized on the carrier was applied to the catalyst of Experimental Example 3 (catalyst produced in the same manner except that the base material was not subjected to plasma treatment (however, immersion time was 0 or 24 hours). ) Is shown in FIG. 8 together with the weight of platinum immobilized in. Further, FIG. 9 shows an SEM photograph of an ABS resin plate (base material) before plasma treatment, a carrier coated with PDA after plasma treatment, and a catalyst obtained by immobilizing platinum-containing fine particles on the carrier.
3.過酸化水素分解能および耐久性評価
 上記のようにして得られた触媒を、室温(22±2℃)の条件下で3.5重量%の過酸化水素水溶液5mLに浸漬させ、6時間後の残留過酸化水素濃度を測定した。その後、触媒をNガンで乾燥させて、再度、3.5重量%の過酸化水素水溶液5mLに浸漬させ、6時間後の残留過酸化水素濃度を測定した。該浸漬および乾燥処理を10回繰り返した。残留過酸化水素濃度の変化を図9に示す。また、比較対象として、実験例3の触媒(基材にプラズマ処理を施していないこと以外は同様にして作製した触媒)の残留過酸化水素濃度の変化を図10に併せて示す。
3. 3. Hydrogen peroxide resolution and durability evaluation The catalyst obtained as described above was immersed in 5 mL of a 3.5 wt% hydrogen peroxide aqueous solution under the conditions of room temperature (22 ± 2 ° C.) and remained after 6 hours. The hydrogen peroxide concentration was measured. Thereafter, the catalyst was dried in N 2 gun, again, immersed in 3.5 wt% aqueous hydrogen peroxide solution 5 mL, were measured residual hydrogen peroxide concentration after 6 hours. The dipping and drying treatment was repeated 10 times. The change in the residual hydrogen peroxide concentration is shown in FIG. Further, as a comparison target, changes in the residual hydrogen peroxide concentration of the catalyst of Experimental Example 3 (catalyst prepared in the same manner except that the base material is not subjected to plasma treatment) are also shown in FIG.
 図8から明らかなように、DA溶液に浸漬する前に基材にプラズマ処理を施すことにより、白金の担持量が増加している。また、図10から明らかなとおり、DA溶液に浸漬する前に基材にプラズマ処理を施すことにより、初期の触媒活性が向上するとともに、繰り返し使用時における残留H濃度の増加が抑制され、耐久性が向上されている。このような効果が奏される理由としては、プラズマ処理によって親水性基が生成した結果、PDA被覆層の形成が促進されるとともに、PDA被覆層と基材との結合がより強固になったためと推測される。 As is clear from FIG. 8, the amount of platinum supported is increased by subjecting the substrate to plasma treatment before immersion in the DA solution. Further, as is clear from FIG. 10, by subjecting the substrate to plasma treatment before immersion in the DA solution, the initial catalytic activity is improved and the increase in the residual H 2 O 2 concentration during repeated use is suppressed. , Durability is improved. The reason why such an effect is exhibited is that as a result of the formation of hydrophilic groups by the plasma treatment, the formation of the PDA coating layer is promoted and the bond between the PDA coating layer and the base material is strengthened. Guess.
[実験例6]実装品の耐久性評価
1.担体の作製
 医薬部外品として既承認のコンタクトレンズ消毒用過酸化水素の分解触媒で使用されている担体と同形状のABS樹脂基材(幾何学的表面積:約10.4cm)にプラズマ処理を施した。処理条件は、実験例5と同様である。1M トリス塩酸緩衝溶液(pH=8.5)にドーパミン塩酸塩を溶解して、2mg/mLのDA溶液を調製し、室温(22±2℃)の条件下で該DA溶液に上記プラズマ処理を施した基材を24時間浸漬した。DA溶液から取出した基材を常温の純水に浸漬し、5分間超音波洗浄した(AS-ONE社製、型番「USK-1R」、周波数:40kHz、出力:100W)。その後、エアガンで窒素ガスを吹き付けて乾燥させ、これにより、担体(プラズマ処理後にPDA被覆されたABS樹脂板)を得た。
[Experimental example 6] Durability evaluation of mounted product 1. Preparation of carrier Plasma treatment is applied to an ABS resin base material (geometric surface area: about 10.4 cm 2 ) having the same shape as the carrier used in the decomposition catalyst of hydrogen peroxide for contact lens disinfection, which has been approved as a quasi-drug. Was given. The processing conditions are the same as in Experimental Example 5. Dopamine hydrochloride is dissolved in 1M Tris-hydrochloric acid buffer solution (pH = 8.5) to prepare a 2 mg / mL DA solution, and the DA solution is subjected to the above plasma treatment under the condition of room temperature (22 ± 2 ° C.). The applied substrate was immersed for 24 hours. The base material taken out from the DA solution was immersed in pure water at room temperature and ultrasonically cleaned for 5 minutes (AS-ONE, model number "USK-1R", frequency: 40 kHz, output: 100 W). Then, nitrogen gas was blown with an air gun to dry it, whereby a carrier (a PDA-coated ABS resin plate after plasma treatment) was obtained.
2.白金含有微粒子の固定化
 実験例2と同様にして、白金微粒子を担体上に固定化し、超音波洗浄することにより、過酸化水素の分解触媒を得た。
2. Immobilization of Platinum-Containing Fine Particles In the same manner as in Experimental Example 2, platinum fine particles were immobilized on a carrier and ultrasonically cleaned to obtain a decomposition catalyst for hydrogen peroxide.
3.過酸化水素分解能および耐久性評価
 上記のようにして得られた触媒を、25℃の温度条件下で3.5重量%の過酸化水素水溶液10mLに浸漬させ、6時間後の残留過酸化水素濃度を測定した。その後、触媒をNガンで乾燥させて、再度、3.5重量%の過酸化水素水溶液10mLに浸漬させ、6時間後の残留過酸化水素濃度を測定した。該浸漬および乾燥処理を30回繰り返した。残留過酸化水素濃度の変化(n=3の平均)を図11に示す。
3. 3. Hydrogen peroxide resolution and durability evaluation The catalyst obtained as described above was immersed in 10 mL of a 3.5 wt% hydrogen peroxide aqueous solution under a temperature condition of 25 ° C., and the residual hydrogen peroxide concentration after 6 hours. Was measured. Thereafter, the catalyst was dried in N 2 gun, again, immersed in 3.5 wt% aqueous hydrogen peroxide solution 10 mL, was measured residual hydrogen peroxide concentration after 6 hours. The dipping and drying treatment was repeated 30 times. The change in the residual hydrogen peroxide concentration (average of n = 3) is shown in FIG.
 図11に示されるとおり、実装品で30回繰り返して使用した場合であっても、実用上十分に低い残留H濃度を達成した。なお、100ppm以下の残留H濃度は、安全上問題が無く、実用可能なレベルである。 As shown in FIG. 11, even when the mounted product was used repeatedly 30 times, a practically sufficiently low residual H 2 O 2 concentration was achieved. The residual H 2 O 2 concentration of 100 ppm or less has no safety problem and is at a practical level.
[参考例1]
1.担体の作製
 長さ20mm×幅15mm×厚さ1mmのABS樹脂板(AS-ONE社製、型番「2-9229-01」、幾何学的表面積:6.7cm)を基材として用い、該基材にプラズマ処理を施した。処理条件は、実験例5と同様である。
[Reference example 1]
1. 1. Preparation of carrier An ABS resin plate (manufactured by AS-ONE, model number "2-9229-01", geometric surface area: 6.7 cm 2 ) having a length of 20 mm, a width of 15 mm and a thickness of 1 mm was used as a base material. The substrate was plasma treated. The processing conditions are the same as in Experimental Example 5.
 純水に酢酸をpH=4になるように添加し、この溶媒に対してチオール系シランカップリング剤(信越シリコーン社製、KBM-803)を溶解して、KBM-803 1vol%溶液および2vol%溶液を調製した。室温(22±2℃)の条件下で、上記プラズマ処理を施した基材をこのKBM-803溶液に10分間浸漬した。次いで、基材をKBM-803溶液から取出し、水洗した後に真空乾燥器(AS-ONE社製、AVO-200NS-D)を使用して80℃で10分加熱処理を施した。最後に、純水中に浸漬させて超音波洗浄器(AS-ONE社製、USK-1R)で5分間超音波洗浄を行い、エアガンで窒素ガスを吹き付けて乾燥した。これにより、担体(プラズマ処理後にKBM-803処理されたABS樹脂板)を得た。
 また、純水に酢酸をpH=4になるように添加し、この溶媒に対して架橋剤(オルトケイ酸テトラメチル(TMOS)を溶解して、TMOS 1vol%溶液および2vol%溶液を調製した。室温(22±2℃)の条件下で、上記プラズマ処理を施した基材をTMOS溶液に10分間浸漬した。次いで、基材をTMOS溶液から取出し、水洗した後に真空乾燥器(AS-ONE社製、AVO-200NS-D)を使用して80℃で10分加熱処理を施した。そして、純水中に浸漬させて超音波洗浄器(AS-ONE社製、USK-1R)で5分間超音波洗浄をおこない、エアガンで窒素ガスを吹き付けて乾燥した。さらに、上記と同様にして、TMOS被覆されたABS樹脂板をTMOS溶液と同じ体積パーセント濃度のKBM-803溶液に10分間浸漬し、同様に引き上げ、洗浄、加熱処理、超音波洗浄して、担体(プラズマ処理後にTMOS処理およびKBM-803処理されたABS樹脂)を得た。
Acetic acid is added to pure water so that pH = 4, and a thiol-based silane coupling agent (KBM-803 manufactured by Shin-Etsu Silicone Co., Ltd.) is dissolved in this solvent to obtain a KBM-803 1 vol% solution and 2 vol%. The solution was prepared. Under the condition of room temperature (22 ± 2 ° C.), the plasma-treated substrate was immersed in this KBM-803 solution for 10 minutes. Next, the base material was taken out from the KBM-803 solution, washed with water, and then heat-treated at 80 ° C. for 10 minutes using a vacuum dryer (AVO-200NS-D manufactured by AS-ONE). Finally, the product was immersed in pure water, ultrasonically cleaned with an ultrasonic cleaner (USK-1R manufactured by AS-ONE) for 5 minutes, and blown with nitrogen gas with an air gun to dry. As a result, a carrier (ABS resin plate treated with KBM-803 after plasma treatment) was obtained.
In addition, acetic acid was added to pure water so that pH = 4, and a cross-linking agent (tetramethyl orthosilicate (TMS)) was dissolved in this solvent to prepare TMOS 1 vol% solution and 2 vol% solution at room temperature. Under the condition of (22 ± 2 ° C.), the base material subjected to the above plasma treatment was immersed in the TMOS solution for 10 minutes. Then, the base material was taken out from the TMOS solution, washed with water, and then vacuum dried (manufactured by AS-ONE). , AVO-200NS-D) was heat-treated at 80 ° C. for 10 minutes, then immersed in pure water and used in an ultrasonic cleaner (USK-1R, manufactured by AS-ONE) for more than 5 minutes. It was sonicated and dried by blowing nitrogen gas with an air gun. Further, in the same manner as above, the TMOS-coated ABS resin plate was immersed in the KBM-803 solution having the same volume percent concentration as the TMOS solution for 10 minutes, and similarly. The carrier (ABS resin treated with TMOS and KBM-803 after plasma treatment) was obtained by pulling up, washing, heat-treating, and ultrasonically washing.
2.白金含有微粒子の固定化
 実験例2と同様にして、白金微粒子を担体上に固定化し、超音波洗浄することにより、過酸化水素の分解触媒を得た。また、シランカップリング剤処理を施していない基材を担体としたこと以外は同様にして、対照としての過酸化水素の分解触媒を得た。
2. Immobilization of Platinum-Containing Fine Particles In the same manner as in Experimental Example 2, platinum fine particles were immobilized on a carrier and ultrasonically cleaned to obtain a decomposition catalyst for hydrogen peroxide. Further, a decomposition catalyst for hydrogen peroxide as a control was obtained in the same manner except that the base material not treated with the silane coupling agent was used as the carrier.
3.過酸化水素分解能および耐久性評価
 上記のようにして得られた触媒を、室温(22±2℃)の条件下で3.5重量%の過酸化水素水溶液5mLに浸漬させ、6時間後の残留過酸化水素濃度を測定した。その後、触媒をNガンで乾燥させて、再度、3.5重量%の過酸化水素水溶液5mLに浸漬させ、6時間後の残留過酸化水素濃度を測定した。該浸漬および乾燥処理を5回繰り返した。残留過酸化水素濃度の変化を図12に示す。
3. 3. Hydrogen peroxide resolution and durability evaluation The catalyst obtained as described above was immersed in 5 mL of a 3.5 wt% hydrogen peroxide aqueous solution under the conditions of room temperature (22 ± 2 ° C.) and remained after 6 hours. The hydrogen peroxide concentration was measured. Thereafter, the catalyst was dried in N 2 gun, again, immersed in 3.5 wt% aqueous hydrogen peroxide solution 5 mL, were measured residual hydrogen peroxide concentration after 6 hours. The dipping and drying treatment was repeated 5 times. The change in the residual hydrogen peroxide concentration is shown in FIG.
 図12に示されるように、シランカップリング剤処理された担体を用いた触媒は、当該処理を施していない担体を用いた触媒と比べて、繰り返し使用時における残留H濃度の増加が増大しており、耐久性の向上効果が得られなかった。 As shown in FIG. 12, the catalyst using the carrier treated with the silane coupling agent has an increase in the residual H 2 O 2 concentration during repeated use as compared with the catalyst using the carrier not subjected to the treatment. It was increasing, and the effect of improving durability could not be obtained.
 本発明の触媒は、コンタクトレンズの消毒において好適に用いられ得る。 The catalyst of the present invention can be suitably used in disinfecting contact lenses.
10    担体
12    基材
14    被覆層
20    白金含有微粒子
100   触媒
10 Carrier 12 Base material 14 Coating layer 20 Platinum-containing fine particles 100 Catalyst

Claims (9)

  1.  担体と、該担体上に固定化された白金を含む微粒子と、を含む、コンタクトレンズ消毒用過酸化水素の分解触媒であって、
     該担体が、基材と該基材の表面に設けられた被覆層とを有し、
     該被覆層が、2つ以上のヒドロキシル基で置換された芳香環と孤立電子対を有するヘテロ原子とを有する繰り返し単位を含むポリマーを含む、触媒。
    A decomposition catalyst for hydrogen peroxide for contact lens disinfection, which comprises a carrier and fine particles containing platinum immobilized on the carrier.
    The carrier has a base material and a coating layer provided on the surface of the base material.
    A catalyst in which the coating layer comprises a polymer containing repeating units having an aromatic ring substituted with two or more hydroxyl groups and a heteroatom having a lone electron pair.
  2.  前記2つ以上のヒドロキシル基で置換された芳香環が、オルト-ジヒドロキシベンゼン環である、請求項1記載の触媒。 The catalyst according to claim 1, wherein the aromatic ring substituted with the two or more hydroxyl groups is an ortho-dihydroxybenzene ring.
  3.  前記被覆層が、カテコールアミン類を重合させることによって得られるポリマーを含む、請求項1に記載の触媒。 The catalyst according to claim 1, wherein the coating layer contains a polymer obtained by polymerizing catecholamines.
  4.  前記被覆層が、ポリドーパミンを含む、請求項1に記載の触媒。 The catalyst according to claim 1, wherein the coating layer contains polydopamine.
  5.  前記微粒子の平均粒子径が、1000nm以下である、請求項1から4のいずれかに記載の触媒。 The catalyst according to any one of claims 1 to 4, wherein the average particle size of the fine particles is 1000 nm or less.
  6.  カテコールアミン類を含む溶液を基材と接触させた状態で、該カテコールアミン類を重合させることによって、該基材表面にポリカテコールアミンを含む被覆層が形成された担体を得ること、
     白金イオンを含む照射用溶液を該担体に付着させること、および
     該照射用溶液が付着した担体に放射線を照射して、白金を含む微粒子を該担体表面に固定化すること
     を含む、請求項1から5のいずれかに記載のコンタクトレンズ消毒用過酸化水素の分解触媒の製造方法。
    By polymerizing the catecholamines in a state where the solution containing the catecholamines is in contact with the base material, a carrier having a coating layer containing the polycatecholamines formed on the surface of the base material can be obtained.
    Claim 1 includes attaching an irradiation solution containing platinum ions to the carrier, and irradiating the carrier to which the irradiation solution is attached with radiation to immobilize fine particles containing platinum on the surface of the carrier. The method for producing a decomposition catalyst for hydrogen peroxide for disinfecting contact lenses according to any one of 5 to 5.
  7.  前記カテコールアミン類を含む溶液と接触させる前に、前記基材を親水化処理に供する、請求項6に記載の製造方法。 The production method according to claim 6, wherein the base material is subjected to a hydrophilization treatment before being brought into contact with the solution containing the catecholamines.
  8.  前記照射用溶液を付着させる前に、前記被覆層が形成された担体を超音波洗浄処理に供する、請求項6または7に記載の製造方法。 The production method according to claim 6 or 7, wherein the carrier on which the coating layer is formed is subjected to an ultrasonic cleaning treatment before the irradiation solution is attached.
  9.  コンタクトレンズと、請求項1から5のいずれかに記載のコンタクトレンズ消毒用過酸化水素の分解触媒とを、過酸化水素を含むコンタクトレンズ消毒液に浸漬することを含む、コンタクトレンズの消毒方法。 A method for disinfecting contact lenses, which comprises immersing the contact lens and the decomposition catalyst of hydrogen peroxide for disinfecting contact lenses according to any one of claims 1 to 5 in a contact lens disinfectant solution containing hydrogen peroxide.
PCT/JP2019/014194 2019-03-29 2019-03-29 Decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, and method for manufacturing decomposition catalyst WO2020202320A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/014194 WO2020202320A1 (en) 2019-03-29 2019-03-29 Decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, and method for manufacturing decomposition catalyst
JP2020555529A JP6829857B1 (en) 2019-03-29 2019-03-29 Decomposition catalyst of hydrogen peroxide for contact lens disinfection and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014194 WO2020202320A1 (en) 2019-03-29 2019-03-29 Decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, and method for manufacturing decomposition catalyst

Publications (1)

Publication Number Publication Date
WO2020202320A1 true WO2020202320A1 (en) 2020-10-08

Family

ID=72667322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014194 WO2020202320A1 (en) 2019-03-29 2019-03-29 Decomposition catalyst for hydrogen peroxide for disinfecting contact lenses, and method for manufacturing decomposition catalyst

Country Status (2)

Country Link
JP (1) JP6829857B1 (en)
WO (1) WO2020202320A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042665A1 (en) * 2021-09-15 2023-03-23 日東電工株式会社 Composite base material and manufacturing method thereof
WO2023042666A1 (en) * 2021-09-15 2023-03-23 日東電工株式会社 Composite base material and method for producing same
CN116063653A (en) * 2023-03-06 2023-05-05 开贝科技(苏州)有限公司 Modified polyurethane and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2013094771A (en) * 2011-11-07 2013-05-20 Hitachi Zosen Corp Method for producing metal-supported catalyst and catalytic layer of fuel cell
CN104549499A (en) * 2014-12-25 2015-04-29 华中科技大学 Preparation method and application of fibrous catalyst
JP2017159228A (en) * 2016-03-09 2017-09-14 国立大学法人大阪大学 Decomposition catalyst for hydrogen peroxide for sterilization of contact lens and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2013094771A (en) * 2011-11-07 2013-05-20 Hitachi Zosen Corp Method for producing metal-supported catalyst and catalytic layer of fuel cell
CN104549499A (en) * 2014-12-25 2015-04-29 华中科技大学 Preparation method and application of fibrous catalyst
JP2017159228A (en) * 2016-03-09 2017-09-14 国立大学法人大阪大学 Decomposition catalyst for hydrogen peroxide for sterilization of contact lens and manufacturing method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PINITHCHAISAKULA, A. ET AL.: "Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations", CHEMICAL PHYSICS, vol. 483 - 48, 17 November 2016 (2016-11-17), pages 56 - 67, XP029918532, DOI: 10.1016/j.chemphys.2016.11.010 *
YUJI OHKUBO, AOKI TOMONORI, SEINO SATOSHI, MORI OSAMU, ITO ISSAKU, ENDO KATSUYOSHI, YAMAMURA KAZUYA: "Improved Catalytic Durability of Pt-Particle/ABS for H2O2 Decomposition in Contact Lens Cleaning", NANOMATERIALS, vol. 9, 3 March 2019 (2019-03-03), pages 342, XP055746172 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042665A1 (en) * 2021-09-15 2023-03-23 日東電工株式会社 Composite base material and manufacturing method thereof
WO2023042666A1 (en) * 2021-09-15 2023-03-23 日東電工株式会社 Composite base material and method for producing same
CN116063653A (en) * 2023-03-06 2023-05-05 开贝科技(苏州)有限公司 Modified polyurethane and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2020202320A1 (en) 2021-04-30
JP6829857B1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
JP6829857B1 (en) Decomposition catalyst of hydrogen peroxide for contact lens disinfection and its manufacturing method
JP5019009B2 (en) IMPRINT MOLD CLEANING METHOD, CLEANING DEVICE, AND IMPRINT MOLD MANUFACTURING METHOD
TWI351708B (en)
CN1299333C (en) Method and device for cleaning electronic element or its mfg. equipment element
JP4341333B2 (en) Resin substrate having resin-metal composite layer and method for producing the same
JP5360963B2 (en) Catalyst-free metallization method on dielectric substrate surface and dielectric substrate with metal film
KR101488064B1 (en) Calcium phosphate complex, and method for production thereof
TW465053B (en) Method for washing fluorine-containing rubber molded article for semiconductor manufacturing equipment and washed molded article
JP5081809B2 (en) Method for removing particles from a semiconductor surface
JP2004131807A (en) Pretreatment method for electroless plating workpiece and method for manufacturing plating coated member
Armenise et al. Atmospheric pressure plasma treatment of polyurethane foams with He–O2 fed dielectric barrier discharges
KR101124619B1 (en) Method for immobilization and patterning methods of nanomaterials onto flexible polymeric materials by using radiation
JP2012206863A (en) Fluorescent nanodiamond
JP5721254B2 (en) Catalyst-free metallization method on dielectric substrate surface and dielectric substrate with metal film
Akamatsu et al. Site-selective direct photochemical deposition of copper on glass substrates using TiO2 nanocrystals
JP6011841B2 (en) Resin / copper plating laminate and method for producing the same
EP1408534B1 (en) A method and a device for producing an adhesive surface of a substrate
JP4519234B2 (en) Article surface cleaning method and cleaning apparatus therefor
JP6710409B2 (en) Decomposition catalyst of hydrogen peroxide for contact lens disinfection and method for producing the same
JP4940512B2 (en) Method for forming electroless plating film of resin
JP2010185085A (en) Method of photochemically reforming surface of solid material
JP2005113236A (en) Plating article and plating coated member and method for manufacturing the same
JP6019738B2 (en) Method for producing substrate having hydrophilic layer
JP2004296463A (en) Cleaning method and cleaning device
JP5965235B2 (en) Semiconductor substrate having metal plating film and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020555529

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923653

Country of ref document: EP

Kind code of ref document: A1