JP2013013868A - Hydrogen peroxide decomposition catalyst and method for manufacturing the same, and disinfection method - Google Patents

Hydrogen peroxide decomposition catalyst and method for manufacturing the same, and disinfection method Download PDF

Info

Publication number
JP2013013868A
JP2013013868A JP2011149358A JP2011149358A JP2013013868A JP 2013013868 A JP2013013868 A JP 2013013868A JP 2011149358 A JP2011149358 A JP 2011149358A JP 2011149358 A JP2011149358 A JP 2011149358A JP 2013013868 A JP2013013868 A JP 2013013868A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
catalyst
carrier
active metal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011149358A
Other languages
Japanese (ja)
Other versions
JP2013013868A5 (en
Inventor
Akane Nariyuki
あかね 成行
Yuji Totsuka
裕二 戸塚
Ryoji Aikawa
亮二 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Universal Co Ltd
Original Assignee
Nikki Universal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Universal Co Ltd filed Critical Nikki Universal Co Ltd
Priority to JP2011149358A priority Critical patent/JP2013013868A/en
Publication of JP2013013868A publication Critical patent/JP2013013868A/en
Publication of JP2013013868A5 publication Critical patent/JP2013013868A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen peroxide decomposition catalyst capable of sufficiently disinfecting an object to be treated by achieving coexistence with the object to be treated in hydrogen peroxide solution and capable of significantly reducing the residual concentration of hydrogen peroxide after a predetermined time elapses.SOLUTION: The hydrogen peroxide decomposition catalyst, which decomposes hydrogen peroxide in a liquid phase into water and oxygen and includes a carrier formed from an inorganic oxide material with air cavities, and an active metal containing at least one type of element selected from the group consisting of Pt, Pd, Ir, Ru, Rh and Os supported on the carrier. The thickness of a layer supported with the active metal is 0.01-0.25 mm in the vicinity to the surface of the carrier.

Description

本発明は、過酸化水素(H)を分解するための触媒に関する。過酸化水素は、化学産業における酸化試薬としてのみならず、例えば、医薬や食品、飲料水の分野では殺菌処理などに過酸化水素水は使用されている。 The present invention relates to a catalyst for decomposing hydrogen peroxide (H 2 O 2 ). Hydrogen peroxide is not only used as an oxidizing reagent in the chemical industry, but for example, hydrogen peroxide is used for sterilization in the fields of medicine, food, and drinking water.

過酸化水素又はその溶液の使用後にあっては、過酸化水素が無害な水と酸素に分解され、その残存量が十分に低いことが望まれる。従来、過酸化水素の分解処理には、PtやPdを担持した触媒が用いられており、白金族金属の存在下において下記の反応が促進されることが知られている(例えば、特許文献1,2参照)。
過酸化水素の分解反応:2H → 2HO + O
After the use of hydrogen peroxide or a solution thereof, it is desired that the hydrogen peroxide is decomposed into harmless water and oxygen, and the residual amount is sufficiently low. Conventionally, a catalyst carrying Pt or Pd is used for the decomposition treatment of hydrogen peroxide, and it is known that the following reaction is promoted in the presence of a platinum group metal (for example, Patent Document 1). , 2).
Hydrogen peroxide decomposition reaction: 2H 2 O 2 → 2H 2 O + O 2

また、過酸化水素分解触媒の活性を長期にわたって維持するため、当該触媒として酸素−水素結合能を有する物質を使用し、触媒の活性が低下した場合に触媒に水素ガスを供給する方法が知られている(例えば、特許文献3参照)。特許文献3は、過酸化水素分解触媒の活性の低下は過酸化水素の分解によって発生する酸素が触媒の表面に付着して触媒の表面を覆うためであり、触媒表面を覆っている酸素に水素ガスを供給することにより、酸素が水素と反応して触媒表面から除去されて触媒活性が復原することを開示する。   In addition, in order to maintain the activity of the hydrogen peroxide decomposition catalyst over a long period of time, a method of using a substance having an oxygen-hydrogen bonding ability as the catalyst and supplying hydrogen gas to the catalyst when the activity of the catalyst decreases is known. (For example, refer to Patent Document 3). In Patent Document 3, the decrease in the activity of the hydrogen peroxide decomposition catalyst is because oxygen generated by the decomposition of hydrogen peroxide adheres to the surface of the catalyst and covers the surface of the catalyst. It is disclosed that by supplying gas, oxygen reacts with hydrogen and is removed from the catalyst surface to restore the catalytic activity.

ところで、過酸化水素溶液は、例えば、コンタクトレンズを消毒洗浄するための薬剤として使用されている。特許文献4は、コンタクトレンズを過酸化水素水溶液に浸漬する一方、過酸化水素分解触媒を投入することにより、過酸化水素によるコンタクトレンズの消毒を有効に行いつつ、過酸化水素の無害化を行う消毒方法を開示する。   By the way, the hydrogen peroxide solution is used as a medicine for disinfecting and cleaning contact lenses, for example. Patent Document 4 detoxifies hydrogen peroxide while effectively sterilizing the contact lens with hydrogen peroxide by introducing a hydrogen peroxide decomposition catalyst while immersing the contact lens in an aqueous hydrogen peroxide solution. Disinfecting method is disclosed.

特開2010−105864号公報JP 2010-105864 A 特開平8−257573号公報JP-A-8-257573 特開昭61−186208号公報JP-A-61-186208 特開平6−226098号公報JP-A-6-226098

しかし、過酸化水素溶液内に被処理物と過酸化水素分解触媒とを共存せしめて、被処理物の消毒及び過酸化水素の分解を同時に進行させる場合、従来の触媒では被処理物に対する高い消毒効果及び所定時間経過後の低い過酸化水素残留濃度の両方を高いレベルとすることが困難であった。すなわち、所定時間経過後の過酸化水素残留濃度を低くするため、活性金属の担持量が多い触媒を使用すると、過酸化水素が短時間のうちに分解してしまい、消毒効果が不十分となる。これに対し、消毒効果を高めるため、活性金属の担持量が少ない触媒を使用すると、所定の時間内に過酸化水素残留濃度を一定のレベル以下にまで低減することができなくなる。この場合、残留過酸化水素を被処理物から除去する洗浄工程が必要となる。   However, when the object to be treated and the hydrogen peroxide decomposition catalyst coexist in the hydrogen peroxide solution and the disinfection of the object to be processed and the decomposition of hydrogen peroxide proceed simultaneously, the conventional catalyst has high disinfection for the object to be treated. It was difficult to increase both the effect and the low residual hydrogen peroxide concentration after a predetermined time. That is, if a catalyst having a large amount of active metal supported is used in order to reduce the residual hydrogen peroxide concentration after a predetermined time has elapsed, the hydrogen peroxide is decomposed in a short time, and the disinfection effect becomes insufficient. . On the other hand, if a catalyst having a small amount of active metal supported is used in order to enhance the disinfection effect, the residual hydrogen peroxide concentration cannot be reduced to a certain level or less within a predetermined time. In this case, a cleaning process for removing residual hydrogen peroxide from the object to be processed is necessary.

本発明は、上記課題を解決すべくなされたものであり、過酸化水素溶液内に被処理物と共存せしめることによって、被処理物を十分に消毒でき且つ所定時間の経過後には過酸化水素の残留濃度を十分に低減できる過酸化水素分解触媒及びその製造方法を提供することを目的とする。また、本発明は、過酸化水素及び上記過酸化水素分解触媒を併用した消毒方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and by allowing the material to be treated to coexist in the hydrogen peroxide solution, the material to be treated can be sufficiently sterilized, and after a predetermined time has passed, An object of the present invention is to provide a hydrogen peroxide decomposition catalyst capable of sufficiently reducing the residual concentration and a method for producing the catalyst. Another object of the present invention is to provide a disinfection method using hydrogen peroxide and the hydrogen peroxide decomposition catalyst in combination.

本発明は、液相中の過酸化水素を水と酸素に分解するための過酸化水素分解触媒であって、気孔を有する無機酸化物材料からなる担体と、担体に担持されたPt、Pd、Ir、Ru、Rh及びOsからなる群から選ばれる少なくとも1種の元素を含む活性金属とを備え、担体の表面近傍において活性金属が担持されている層の厚さが0.01〜0.25mmである触媒を提供する。ここでいう「担体の表面近傍において活性金属が担持されている層」とは、担体の表面から2.0mm以内の領域(以下、この領域を「担体の表面近傍」という。)において、担体に担持されている活性金属の総含有量に対する9割合以上の活性金属が上記担体の表面近傍に担持されている層をいう。上記活性金が担持されている層の厚さは元素マッピングによって求めることができ、担体の断面の活性金属の濃度分布をEPMA(例えば、株式会社島津製作所製のEPMA)で測定し測定結果より担体の表面からの距離に対する活性金属の含有量の分布を計算することによって活性金属が上記担体の表面近傍に担持されている層の厚さを求めることができる。   The present invention is a hydrogen peroxide decomposition catalyst for decomposing hydrogen peroxide in a liquid phase into water and oxygen, comprising a carrier made of an inorganic oxide material having pores, Pt, Pd, And an active metal containing at least one element selected from the group consisting of Ir, Ru, Rh and Os, and the thickness of the layer on which the active metal is supported in the vicinity of the surface of the carrier is 0.01 to 0.25 mm. A catalyst is provided. The “layer in which the active metal is supported in the vicinity of the surface of the carrier” as used herein refers to a region within 2.0 mm from the surface of the carrier (hereinafter, this region is referred to as “near the surface of the carrier”). This refers to a layer in which 9% or more of the active metal is supported in the vicinity of the surface of the carrier relative to the total content of the active metal supported. The thickness of the layer on which the active gold is supported can be determined by elemental mapping. The concentration distribution of the active metal in the cross section of the support is measured with EPMA (for example, EPMA manufactured by Shimadzu Corporation), and the measurement result shows the support. By calculating the distribution of the content of the active metal with respect to the distance from the surface, the thickness of the layer in which the active metal is supported in the vicinity of the surface of the carrier can be obtained.

担体の表面近傍に活性金属の層を比較的厚く形成することで、同じ量の活性金属を含む層を薄く形成した場合と比較して触媒の表面における活性金属の濃度が低くなる。このため、過酸化水素溶液に上記触媒と被処理物とを共存させても初期の段階から過酸化水素が過剰に分解されることを抑制でき、十分に高い消毒効果が得られる。一方、時間の経過に伴って過酸化水素溶液が活性金属の層(担体の表面近傍)に浸み込み、十分な量の活性金属と接触する。このため、所定時間経過後の過酸化水素残留濃度を十分に低いレベルにまで低減できる。   By forming the active metal layer relatively thick in the vicinity of the surface of the support, the concentration of the active metal on the surface of the catalyst becomes lower than when the layer containing the same amount of active metal is formed thin. For this reason, even if the catalyst and the object to be treated are coexistent in the hydrogen peroxide solution, it is possible to suppress excessive decomposition of hydrogen peroxide from the initial stage, and a sufficiently high disinfection effect can be obtained. On the other hand, with the passage of time, the hydrogen peroxide solution soaks into the active metal layer (near the surface of the support) and comes into contact with a sufficient amount of the active metal. For this reason, the residual concentration of hydrogen peroxide after a predetermined time can be reduced to a sufficiently low level.

担体を構成する無機酸化物材料として、酸化アルミニウム、酸化マグネシウム、シリカ及び酸化チタンからなる群から選ばれる少なくとも1種の材料を使用できる。本発明において、担体は比表面積が1〜30m/gであってもよい。なお、比表面積はガス吸着法により求めることができ、測定装置としては株式会社島津製作所製の比表面積測定装置を使用できる。 As the inorganic oxide material constituting the carrier, at least one material selected from the group consisting of aluminum oxide, magnesium oxide, silica and titanium oxide can be used. In the present invention, the carrier may have a specific surface area of 1 to 30 m 2 / g. The specific surface area can be determined by a gas adsorption method, and a specific surface area measuring device manufactured by Shimadzu Corporation can be used as the measuring device.

上記担体として、少なくとも表面近傍にNa又はClが担持された酸化アルミニウムを使用できる。担体としてNaを含浸した酸化アルミニウムの成形体を使用する場合、かかる担体は、活性金属を含浸する前に、水酸化ナトリウム水溶液、硝酸ナトリウム水溶液及び炭酸ナトリウム水溶液のいずれかに酸化アルミニウムからなる成形体を浸漬した後、当該成形体を焼成することによって得ることができる(Na前処理)。担体としてClを含浸した酸化アルミニウムの成形体を使用する場合、かかる担体は、活性金属を含浸する前に、塩化水素水溶液に酸化アルミニウムからなる成形体を浸漬した後、当該成形体を焼成することによって得ることができる(Cl前処理)。   As the carrier, aluminum oxide in which Na or Cl is supported at least near the surface can be used. When using a molded body of aluminum oxide impregnated with Na as a carrier, the carrier is a molded body made of aluminum oxide in any one of an aqueous sodium hydroxide solution, an aqueous sodium nitrate solution and an aqueous sodium carbonate solution before impregnating with an active metal. Can be obtained by firing the molded body (Na pretreatment). When an aluminum oxide molded body impregnated with Cl is used as a carrier, the carrier is formed by immersing a molded body made of aluminum oxide in an aqueous hydrogen chloride solution before impregnating the active metal, and then firing the molded body. (Cl pretreatment).

従来の触媒を使用して液相中で過酸化水素を分解すると、分解によって発生した酸素の気泡が触媒の表面に付着する。この気泡が触媒表面上で徐々に大きくなり、水溶液と触媒との接触が阻害され反応の進行を妨げる。これに対し、Na前処理又はCl前処理を経た担体に活性金属を担持した触媒によれば、触媒表面の活性点において発生した極細かな気泡がそのまま触媒表面から離れるので、これらの気泡同士が結合して大きな気泡となるのを抑制できる。このため、活性点に過酸化水素が効率よく接触でき、機械的攪拌などをしなくても十分長期にわたって過酸化水素分解能を持続できる。   When hydrogen peroxide is decomposed in a liquid phase using a conventional catalyst, oxygen bubbles generated by the decomposition adhere to the surface of the catalyst. The bubbles gradually increase on the catalyst surface, and the contact between the aqueous solution and the catalyst is hindered to hinder the progress of the reaction. On the other hand, in the case of a catalyst in which an active metal is supported on a support that has undergone Na pretreatment or Cl pretreatment, the fine bubbles generated at the active points on the catalyst surface leave the catalyst surface as they are, so these bubbles are bonded together. And it can suppress that it becomes a big bubble. For this reason, hydrogen peroxide can contact the active sites efficiently, and the hydrogen peroxide resolution can be maintained for a sufficiently long time without mechanical stirring.

触媒表面の活性点において発生した極細かな気泡がそのまま触媒表面から離れる主因について、本発明者らは以下のように推察する。すなわち、担体にNa又はClが含浸されていることにより触媒表面の親水性が向上し水濡れ性が向上することにより触媒表面の活性点において気泡の表面離脱が促進される。これに加えて、担体にNa又はClが含浸されていることにより、活性金属は極めて微細なクラスター(例えば、粒子径1nm以下)を形成し、このようなクラスターが高度に分散した状態で担体表面に担持される。図1の(a)に示すように、微細なクラスターAに過酸化水素が触れるとクラスターAが分断されて2つのクラスターBになると共に水を放出する。担体にNa又はClが存在する場合、2つのクラスターBは、両者の距離が近く不安定な状態となり、再度、1つのクラスターAとなる。このようなクラスター再形成が起こると同時に極細かな気泡がその都度放出される。   The present inventors infer the following as to the main reason why the fine bubbles generated at the active points on the catalyst surface leave the catalyst surface as they are. That is, when the carrier is impregnated with Na or Cl, the hydrophilicity of the catalyst surface is improved and the water wettability is improved, so that the surface separation of the bubbles is promoted at the active point on the catalyst surface. In addition, since the support is impregnated with Na or Cl, the active metal forms extremely fine clusters (for example, a particle diameter of 1 nm or less), and the surface of the support is in a state in which such clusters are highly dispersed. It is carried on. As shown in FIG. 1A, when hydrogen peroxide touches a fine cluster A, the cluster A is divided into two clusters B and water is released. When Na or Cl is present on the carrier, the two clusters B are in an unstable state because the distance between them is short, and becomes one cluster A again. At the same time as this cluster re-formation occurs, fine bubbles are released each time.

一方、図1の(b)に示すように、活性金属の分散化が不十分な従来の触媒にあっては、分断後のクラスターDは、クラスターCと比較して安定レベルの点で差が余りないため、再度合体してクラスターCとなるよりも過酸化水素の分解反応を優先する。このため、逆反応(構造Dから構造Cへの反応)が進行しにくく、その都度酸素を放出するのではなく、表面上に酸素原子を溜めた状態となる。酸素原子がある程度溜まると一度に大量の酸素分子が発生しやすくなる。   On the other hand, as shown in FIG. 1B, in the conventional catalyst in which the active metal is not sufficiently dispersed, the divided cluster D is different from the cluster C in terms of the stability level. Since there is not much, priority is given to the decomposition reaction of hydrogen peroxide rather than coalescing again to form cluster C. For this reason, the reverse reaction (the reaction from the structure D to the structure C) does not proceed easily, and oxygen is not released but each time oxygen atoms are accumulated on the surface. When oxygen atoms accumulate to some extent, a large amount of oxygen molecules are likely to be generated at one time.

更に、担体にNa又はClが存在することで、高度に分散化した活性金属(クラスター)の凝集を防止でき、触媒の劣化を十分に抑制できる。このため、従来の触媒と比較して繰り返し使用に対する耐久性を飛躍的に向上できる。   Further, the presence of Na or Cl on the support can prevent the aggregation of highly dispersed active metals (clusters) and can sufficiently suppress the deterioration of the catalyst. For this reason, compared with the conventional catalyst, durability with respect to repeated use can be improved dramatically.

本発明は、上記過酸化水素分解触媒の製造方法を提供する。当該製造方法は、液相中の過酸化水素を水と酸素に分解するための過酸化水素分解触媒の製造方法であって、気孔を有する無機酸化物材料からなる担体を準備する工程と、Pt、Pd、Ir、Ru、Rh及びOsからなる群から選ばれる少なくとも1種の元素を含む活性金属を、担体の表面近傍において活性金属が担持されている層の厚さが0.01〜0.25mmとなるように担体に含浸する工程とを備える。   The present invention provides a method for producing the hydrogen peroxide decomposition catalyst. The production method is a method for producing a hydrogen peroxide decomposition catalyst for decomposing hydrogen peroxide in a liquid phase into water and oxygen, comprising a step of preparing a carrier made of an inorganic oxide material having pores, and Pt An active metal containing at least one element selected from the group consisting of Pd, Ir, Ru, Rh and Os has a thickness of 0.01 to 0. And a step of impregnating the carrier so as to be 25 mm.

上記製造方法によれば、過酸化水素溶液内に被処理物と共存せしめることによって、被処理物を十分に消毒でき且つ所定時間の経過後には過酸化水素の残留濃度を十分に低減できる過酸化水素分解触媒を得ることができる。   According to the above manufacturing method, by coexisting with an object to be processed in a hydrogen peroxide solution, the object to be processed can be sufficiently sterilized and a residual concentration of hydrogen peroxide can be sufficiently reduced after a predetermined time has elapsed. A hydrogenolysis catalyst can be obtained.

本発明は、過酸化水素及び上記触媒を併用した消毒方法を提供する。当該消毒方法は、上記触媒及び被処理物を、過酸化水素溶液中に浸漬する工程を備え、当該工程において、過酸化水素による被処理物の消毒を行うと共に上記触媒による過酸化水素の分解反応を進行させて過酸化水素濃度を低下させる。   The present invention provides a disinfection method using hydrogen peroxide and the above catalyst in combination. The disinfection method includes a step of immersing the catalyst and the object to be treated in a hydrogen peroxide solution, and in this step, the object to be treated is disinfected with hydrogen peroxide and the decomposition reaction of hydrogen peroxide by the catalyst. To reduce the hydrogen peroxide concentration.

上記消毒方法によれば、被処理物を浸漬した溶液に含まれる過酸化水素によって消毒を行い、所定の時間経過後においては触媒による過酸化水素の分解反応が進行して過酸化水素の残存量を十分に低い状態とすることができる。このような消毒方法は、例えば、使用後のコンタクトレンズを液体に一晩浸漬して消毒する場合などに有用である。   According to the above-mentioned disinfection method, disinfection is performed with hydrogen peroxide contained in the solution in which the object to be treated is immersed, and after a predetermined time has elapsed, the decomposition reaction of hydrogen peroxide by the catalyst proceeds and the remaining amount of hydrogen peroxide is increased. Can be made sufficiently low. Such a disinfection method is useful, for example, when the contact lens after use is immersed in a liquid overnight.

本発明によれば、過酸化水素溶液内に被処理物と共存せしめることによって、被処理物を十分に消毒でき且つ所定時間の経過後には過酸化水素の残留濃度を十分に低減できる過酸化水素分解触媒及びその製造方法が提供され、また過酸化水素及び上記過酸化水素分解触媒を併用した消毒方法が提供される。   According to the present invention, hydrogen peroxide can coexist with an object to be treated in a hydrogen peroxide solution to sufficiently disinfect the object to be treated and sufficiently reduce the residual concentration of hydrogen peroxide after a predetermined time. A decomposition catalyst and a production method thereof are provided, and a disinfection method using hydrogen peroxide and the hydrogen peroxide decomposition catalyst in combination is provided.

図1の(a)は活性金属が微小なクラスターからなる触媒の反応メカニズムを示す図であり、図1の(b)は従来の触媒の反応メカニズムを示す図である。FIG. 1 (a) is a diagram showing a reaction mechanism of a catalyst in which an active metal is composed of minute clusters, and FIG. 1 (b) is a diagram showing a reaction mechanism of a conventional catalyst. 図2は、本発明に係る触媒の一実施形態を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an embodiment of the catalyst according to the present invention. 図3は、実施例1,4の結果を示すグラフである。FIG. 3 is a graph showing the results of Examples 1 and 4. 図4は、実施例5,8の結果を示すグラフである。FIG. 4 is a graph showing the results of Examples 5 and 8. 図5は、実施例9,11の結果を示すグラフである。FIG. 5 is a graph showing the results of Examples 9 and 11.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

<過酸化水素分解触媒及びその製造方法>
図2に示す触媒10は、液相中の過酸化水素を水と酸素に分解するためのものである。触媒10は、担体1と、担体1に担持された活性金属とを備える。触媒10の製造方法は、気孔を有する無機酸化物材料からなる担体1を準備する工程と、Pt、Pd、Ir、Ru、Rh及びOsからなる群から選ばれる少なくとも1種の元素を含む活性金属を、担体1の表面近傍において活性金属が担持されている層1aの厚さが0.01〜0.25mmとなるように担体1に含浸する工程とを備える。
<Hydrogen peroxide decomposition catalyst and production method thereof>
The catalyst 10 shown in FIG. 2 is for decomposing hydrogen peroxide in the liquid phase into water and oxygen. The catalyst 10 includes a carrier 1 and an active metal supported on the carrier 1. The method for producing the catalyst 10 includes a step of preparing a carrier 1 made of an inorganic oxide material having pores, and an active metal containing at least one element selected from the group consisting of Pt, Pd, Ir, Ru, Rh, and Os. In the vicinity of the surface of the carrier 1 so that the thickness of the layer 1a on which the active metal is carried is 0.01 to 0.25 mm.

担体1は、気孔を有する無機酸化物材料からなるものであれば、特に制限はないが、少なくとも表面近傍がアルミナ(酸化アルミニウム)を主成分とする材料からなるものが好ましい。ここでいう材料の「主成分」とは、当該材料の全質量を基準として50質量%を超える含有率を占める成分を意味する。図2に示す触媒10は直方体の成形体を担体1として使用したものであるが、成形体の形状は直方体に限定されず、触媒10の用途や使用条件に応じて円柱状や筒状であってもよい。なお、アルミナ以外の無機酸化物材料としてはマグネシア(酸化マグネシウム)、ジルコニア(酸化ジルコニウム)及びチタニア(酸化チタン)などが挙げられる。   The carrier 1 is not particularly limited as long as it is made of an inorganic oxide material having pores, but at least the vicinity of the surface is preferably made of a material mainly composed of alumina (aluminum oxide). The “main component” of the material here means a component that occupies a content of more than 50% by mass based on the total mass of the material. The catalyst 10 shown in FIG. 2 uses a rectangular parallelepiped molded body as the carrier 1, but the shape of the molded body is not limited to a rectangular parallelepiped, and may be a columnar shape or a cylindrical shape depending on the use and use conditions of the catalyst 10. May be. Examples of inorganic oxide materials other than alumina include magnesia (magnesium oxide), zirconia (zirconium oxide), and titania (titanium oxide).

担体1としてアルミナの成形体を採用する場合、アルミナの種類はα−アルミナ及びγ−アルミナのいずれであってもよい。従来の触媒には被反応物と活性金属との接触効率を高めるため、多孔質で比表面積が大きいγ−アルミナが主に使用されている。これに対し、本実施形態においては、気孔を有する成形体として、比較的比表面積が小さいα−アルミナを使用してもよい。本実施形態においては、後述のとおり、活性金属が極めて微細なクラスター(例えば、粒子径1nm以下)を形成する。このようなクラスターが高度に分散した状態で担体表面に担持されることにより、従来の担体と比較して比表面積が小さい無機酸化物材料を担体として使用しても、被反応物と活性金属との接触効率が低下することを抑制し、あるいは向上することができる。また、比表面積が小さな担体は孔径の小さな細孔が多く存在し反応物(過酸化水素水溶液)や生成ガス(酸素ガス)の物質移動速度が遅くなる。液相反応では特にこの移動速度への細孔径の影響が大きく現れることが知られている。比表面積が過度に小さい担体を使用した場合、活性金属は表面積の多い小さな細孔に多く担持されることになり、物質移動速度の低下が問題となることに加えて、本反応の場合はガスの生成を伴うため、小さな細孔がガスで満たされて活性金属と溶液との接触が阻害される可能性が高くなる。これらの観点から適切な比表面積の担体を選択することは過酸化水素水溶液の反応を制御する上で重要なポイントとなる。   When an alumina compact is employed as the carrier 1, the type of alumina may be either α-alumina or γ-alumina. Conventional catalysts mainly use γ-alumina which is porous and has a large specific surface area in order to increase the contact efficiency between the reactant and the active metal. On the other hand, in this embodiment, α-alumina having a relatively small specific surface area may be used as the molded body having pores. In the present embodiment, as described later, the active metal forms a very fine cluster (for example, a particle diameter of 1 nm or less). By supporting these clusters in a highly dispersed state on the surface of the support, even if an inorganic oxide material having a specific surface area smaller than that of a conventional support is used as the support, It is possible to suppress or improve the decrease in contact efficiency. In addition, the carrier having a small specific surface area has many pores having a small pore diameter, and the mass transfer rate of the reaction product (hydrogen peroxide aqueous solution) and the generated gas (oxygen gas) becomes slow. In the liquid phase reaction, it is known that the influence of the pore diameter on the moving speed is particularly large. When a support having an excessively small specific surface area is used, the active metal is supported in a large number of small pores with a large surface area, which causes a problem of a decrease in mass transfer rate. Therefore, there is a high possibility that the small pores are filled with gas and the contact between the active metal and the solution is hindered. From these viewpoints, selection of a carrier having an appropriate specific surface area is an important point in controlling the reaction of the aqueous hydrogen peroxide solution.

本実施形態においては、比表面積が1〜30m/g(より好ましくは1〜3m/g)のα−アルミナを使用することで、高い機械的強度及び活性金属の優れた分散性の両方を高度に達成した触媒10を得ることができる。 In this embodiment, by using α-alumina having a specific surface area of 1 to 30 m 2 / g (more preferably 1 to 3 m 2 / g), both high mechanical strength and excellent dispersibility of the active metal are obtained. Can be obtained.

担体1の好適例として、アルミナ粉末を加圧成形した後、1000〜1100℃で焼成して得た焼成体を挙げることができる。なお、この焼成体は、アルミナ以外の成分としてマグネシア、ジルコニア又はチタニアを含有してもよい。   Preferable examples of the carrier 1 include a fired body obtained by press-molding alumina powder and firing at 1000 to 1100 ° C. The fired body may contain magnesia, zirconia or titania as a component other than alumina.

担体1としてチタニアの成形体を採用する場合、アナターゼ型及びルチル型のいずれであってもよい。従来の触媒には被反応物と活性金属との接触効率を高めるため、多孔質で比表面積が大きいアナターゼ型チタニアが主に使用されている。本実施形態においては、気孔を有する成形体として、比較的比表面積が小さいルチル型チタニアを使用してもよい。比表面積が1〜30m/g(より好ましくは1〜9m/g)のチタニアを使用することで、高い機械的強度及び活性金属の優れた分散性の両方を高度に達成した触媒を得ることができる。 When a titania shaped body is employed as the carrier 1, it may be either anatase type or rutile type. In order to increase the contact efficiency between the reactant and the active metal, the conventional catalyst mainly uses anatase titania having a large specific surface area and being porous. In the present embodiment, rutile titania having a relatively small specific surface area may be used as the molded body having pores. By using titania having a specific surface area of 1 to 30 m 2 / g (more preferably 1 to 9 m 2 / g), a catalyst that achieves both high mechanical strength and high dispersibility of the active metal is obtained. be able to.

担体1として、アルミナ等の成形体にNa又はClを担持したものを使用することが好ましい。かかる担体1は、成形体にNa又はClを含浸させることによって得ることができる。成形体におけるNa又はClは、活性金属を担体1に担持させる際に活性金属を分散化させる役割を果すと共に、活性金属の担持後においては担体1上における活性金属の移動を抑制する役割を果すと推察される。このため、活性金属の担持量を少なくできると共に活性金属の凝集を効果的に防止でき、触媒10の繰り返し使用に対する耐久性が飛躍的に向上する。   As the carrier 1, it is preferable to use a carrier in which Na or Cl is supported on a molded body such as alumina. Such a carrier 1 can be obtained by impregnating a molded body with Na or Cl. Na or Cl in the molded body plays a role of dispersing the active metal when the active metal is supported on the support 1, and also plays a role of suppressing the movement of the active metal on the support 1 after the active metal is supported. It is guessed. As a result, the amount of active metal supported can be reduced and the active metal can be effectively prevented from agglomerating, and the durability of the catalyst 10 against repeated use can be dramatically improved.

担体1がアルミナ成形体にNaを含浸してなるものである場合、担体1は水酸化ナトリウム水溶液、硝酸ナトリウム水溶液及び炭酸ナトリウム水溶液のいずれかに成形体を0.5〜2時間程度にわたって浸漬した後、500〜800℃の温度条件で成形体を1〜3時間程度焼成することによって得ることができる(Na前処理工程)。上述の効果を安定的且つ高度に得る観点から、触媒10におけるNaのモル数と活性金属のモル数の比率(Na/活性金属モル比)は、好ましくは0.5〜50であり、より好ましくは1〜20である。Naのモル数は原子吸光法によって求めることができ、活性金属のモル数は担持量から求めることができる。   When carrier 1 is formed by impregnating Na into an alumina molded body, carrier 1 is obtained by immersing the molded body in one of an aqueous sodium hydroxide solution, an aqueous sodium nitrate solution and an aqueous sodium carbonate solution for about 0.5 to 2 hours. Then, it can obtain by baking a molded object for about 1 to 3 hours on 500-800 degreeC temperature conditions (Na pretreatment process). From the viewpoint of obtaining the above effect stably and highly, the ratio of the number of moles of Na to the number of moles of active metal (Na / active metal mole ratio) in the catalyst 10 is preferably 0.5 to 50, more preferably. Is 1-20. The number of moles of Na can be determined by atomic absorption, and the number of moles of active metal can be determined from the amount supported.

担体1がアルミナ成形体にClを含浸してなるものである場合、担体1は温度50〜90℃の塩化水素水溶液に成形体を0.5〜2時間程度にわたって浸漬することによって得ることができる(Cl前処理工程)。上述の効果を安定的且つ高度に得る観点から、触媒10におけるHClのモル数(Clのモル数をHClのモル数に換算した値)と活性金属のモル数の比率(HCl/活性金属モル比)は、好ましくは1〜20であり、より好ましくは1〜11である。HClのモル数は電位差滴定法によって求めることができる。   When the carrier 1 is formed by impregnating an alumina molded body with Cl, the carrier 1 can be obtained by immersing the molded body in a hydrogen chloride aqueous solution at a temperature of 50 to 90 ° C. for about 0.5 to 2 hours. (Cl pretreatment step). From the viewpoint of obtaining the above effect stably and highly, the ratio of the number of moles of HCl in the catalyst 10 (value obtained by converting the number of moles of Cl to the number of moles of HCl) and the number of moles of active metal (HCl / active metal mole ratio). ) Is preferably 1-20, more preferably 1-11. The number of moles of HCl can be determined by potentiometric titration.

活性金属は、過酸化水素の分解能を有し、Pt、Pd、Ir、Ru、Rh及びOsからなる群から選ばれる少なくとも1種の元素を含むものである。活性金属を担体1に担持するには、まず、これらの金属の塩化物溶液や硝酸塩溶液、硫酸塩溶液に、室温から90℃の温度条件下、10〜120分程度にわたって担体1を浸漬する。2時間以上かけて担体1を乾燥した後、水素の存在下、200〜500℃(より好ましくは200〜400℃)の温度条件で担体1を0.5〜2時間程度還元することによって得ることができる。還元温度が200℃未満であると、触媒10の活性の発現が不十分となりやすく、他方、500℃を越えると還元処理によって活性金属が凝集しやすい。   The active metal has a resolution of hydrogen peroxide and contains at least one element selected from the group consisting of Pt, Pd, Ir, Ru, Rh, and Os. In order to support the active metal on the carrier 1, first, the carrier 1 is immersed in a chloride solution, nitrate solution, or sulfate solution of these metals under a temperature condition of room temperature to 90 ° C. for about 10 to 120 minutes. After drying the support 1 over 2 hours, it is obtained by reducing the support 1 for about 0.5 to 2 hours in the presence of hydrogen at a temperature of 200 to 500 ° C. (more preferably 200 to 400 ° C.). Can do. If the reduction temperature is less than 200 ° C., the activity of the catalyst 10 tends to be insufficiently developed, and if it exceeds 500 ° C., the active metal tends to aggregate due to the reduction treatment.

触媒10は、活性金属が担持されている層1aの厚さが0.01〜0.25mmとなるように調整されている。層1aの厚さが上記範囲外であると、過酸化水素による高い消毒効果及び所定時間経過後の低い過酸化水素残留濃度を両立することが困難となる。これらをより確実に両立する観点から、層1aの厚さは好ましくは0.05〜0.25mmであり、より好ましくは0.1〜0.25mmである。   The catalyst 10 is adjusted so that the thickness of the layer 1a carrying the active metal is 0.01 to 0.25 mm. If the thickness of the layer 1a is outside the above range, it is difficult to achieve both a high disinfection effect due to hydrogen peroxide and a low residual hydrogen peroxide concentration after a predetermined time. From the viewpoint of ensuring both of these, the thickness of the layer 1a is preferably 0.05 to 0.25 mm, and more preferably 0.1 to 0.25 mm.

層1aの厚さは、担体1の比表面積や気孔率に応じて、活性金属の塩化物溶液等に担体1を浸漬する時間や温度、塩化物溶液等の濃度を適宜設定することによって調整することができる。   The thickness of the layer 1a is adjusted by appropriately setting the time and temperature at which the carrier 1 is immersed in a chloride solution of active metal, the concentration of the chloride solution, etc., according to the specific surface area and porosity of the carrier 1. be able to.

高い活性を得る点から、活性金属としては複数のPt原子からなるクラスター(以下、「Ptクラスター」という。)であることが好ましい。Ptクラスターの粒径は、好ましくは1nm以下であり、より好ましくは0.6nm以下である。Ptクラスターの粒径が1nm以下であるとPtの高い分散度を達成でき、これにより十分に高い反応速度で過酸化水素を分解できる。Ptクラスターの粒径の下限値は0.5nm程度である。   From the viewpoint of obtaining high activity, the active metal is preferably a cluster composed of a plurality of Pt atoms (hereinafter referred to as “Pt cluster”). The particle size of the Pt cluster is preferably 1 nm or less, more preferably 0.6 nm or less. When the particle size of the Pt cluster is 1 nm or less, a high degree of dispersion of Pt can be achieved, whereby hydrogen peroxide can be decomposed at a sufficiently high reaction rate. The lower limit of the particle size of the Pt cluster is about 0.5 nm.

Ptクラスターを形成するPtは、平均配位数が3〜6の範囲であることが好ましく、3〜5の範囲であることがより好ましい。Ptクラスターにおいて2つのPt原子間の距離は0.254〜0.273nmであることが好ましい。Ptの平均配位数及び原子間の距離が上記範囲内であると、触媒10の繰り返し使用に対する耐久性を著しく向上できる。なお、Ptの「平均配位数」とは、Pt原子周りの最近接Pt原子の配位数(Pt−Pt配位数)の平均値である。Ptクラスターの構造(粒径、平均配位数及びPt原子間の距離)はX線吸収微細構造解析法(XAFS)によって測定することができる。X線吸収微細構造解析法は、例えば、高エネルギー加速器研究機構のBL−12Cを用いて実施できる。   Pt forming the Pt cluster preferably has an average coordination number in the range of 3-6, and more preferably in the range of 3-5. In the Pt cluster, the distance between two Pt atoms is preferably 0.254 to 0.273 nm. When the average coordination number of Pt and the distance between atoms are within the above ranges, the durability of the catalyst 10 against repeated use can be significantly improved. The “average coordination number” of Pt is the average value of the coordination number of the nearest Pt atom around the Pt atom (Pt—Pt coordination number). The structure of Pt clusters (particle size, average coordination number, and distance between Pt atoms) can be measured by X-ray absorption fine structure analysis (XAFS). The X-ray absorption fine structure analysis method can be performed using, for example, BL-12C of High Energy Accelerator Research Organization.

Ptの担持量は、担体1の幾何学表面積(担体1の外表面積)を基準として、好ましくは0.01〜0.5mg/cmであり、より好ましくは0.01〜0.3mg/cmであり、更に好ましくは0.01〜0.2mg/cmである。Ptの担持量が0.01mg/cm未満であると過酸化水素の分解が不十分となりやすく、他方、0.5mg/cmを超えるとコストが増大しやすい。 The amount of Pt supported is preferably 0.01 to 0.5 mg / cm 2 , more preferably 0.01 to 0.3 mg / cm 2 on the basis of the geometric surface area of the carrier 1 (outer surface area of the carrier 1). 2 , More preferably, it is 0.01-0.2 mg / cm < 2 >. If the supported amount of Pt is less than 0.01 mg / cm 2 , decomposition of hydrogen peroxide tends to be insufficient, while if it exceeds 0.5 mg / cm 2 , the cost tends to increase.

<消毒方法>
本実施形態に係る消毒方法は、触媒10及び被処理物を、過酸化水素溶液中に浸漬する工程を備える。当該工程において、過酸化水素による被処理物の消毒を行うと共に触媒10によって過酸化水素の分解反応を進行させて過酸化水素濃度を低下させる。
<Disinfection method>
The disinfection method according to this embodiment includes a step of immersing the catalyst 10 and the object to be processed in a hydrogen peroxide solution. In this process, the object to be treated is disinfected with hydrogen peroxide and the decomposition reaction of hydrogen peroxide is advanced by the catalyst 10 to reduce the hydrogen peroxide concentration.

消毒液として使用する過酸化水素水溶液(過酸化水素溶液)の濃度及び量は、被処理物の用途や消毒時間に応じて適宜設定すればよい。例えば、コンタクトレンズの消毒に使用する過酸化水素の無害化を触媒10で行う場合、担体1の幾何学表面積(担体1の外表面積)は、コンタクトレンズの消毒に使用する過酸化水素溶液の量を基準として、好ましくは0.2〜2cm/mlであり、より好ましくは0.2〜1.5cm/mlであり、更に好ましくは1.0〜1.5cm/mlである。外表面積がこのような条件を満たす担体1に適量のPtを担持した触媒10を、過酸化水素水溶液(例えば過酸化水素濃度34000質量ppm)に常温で浸漬すると、浸漬開始から10分後における過酸化水素溶液が開始時の過酸化水素濃度の50%を超えて(例えば浸漬開始の過酸化水素濃度34000質量ppmの場合は15000ppm以下にまで)分解されるのを十分に抑制でき、活性金属の担持量やクラスターサイズを最適化することによって40%を超えて(例えば浸漬開始の過酸化水素濃度34000質量ppmの場合は20000ppm以下にまで)分解されるのを十分に抑制できる。他方、浸漬開始から4時間後において過酸化水素濃度を開始時の過酸化水素濃度の0.3%(例えば浸漬開始の過酸化水素濃度34000質量ppmの場合は100質量ppm)以下にまで低下させることができ、活性金属の担持量やクラスターサイズを最適化することによって、開始時の過酸化水素濃度の0.2%(例えば浸漬開始の過酸化水素濃度34000質量ppmの場合は70質量ppm)以下、更には開始時の過酸化水素濃度の0.1%(例えば浸漬開始の過酸化水素濃度34000質量ppmの場合は50質量ppm)以下にまで低下させることができる。 What is necessary is just to set suitably the density | concentration and quantity of hydrogen peroxide aqueous solution (hydrogen peroxide solution) used as disinfection liquid according to the use and disinfection time of a to-be-processed object. For example, when the catalyst 10 is used to detoxify hydrogen peroxide used for disinfecting contact lenses, the geometric surface area of the carrier 1 (outer surface area of the carrier 1) is the amount of hydrogen peroxide solution used for disinfecting contact lenses. Is preferably 0.2 to 2 cm 2 / ml, more preferably 0.2 to 1.5 cm 2 / ml, still more preferably 1.0 to 1.5 cm 2 / ml. When the catalyst 10 having a suitable amount of Pt supported on the carrier 1 whose outer surface area satisfies such conditions is immersed in an aqueous hydrogen peroxide solution (for example, a hydrogen peroxide concentration of 34000 ppm by mass) at room temperature, the excess after 10 minutes from the start of immersion. It is possible to sufficiently suppress decomposition of the hydrogen oxide solution exceeding 50% of the hydrogen peroxide concentration at the start (for example, up to 15000 ppm when the hydrogen peroxide concentration at the start of immersion is 34000 ppm by mass) Decomposition exceeding 40% (for example, up to 20000 ppm or less in the case of a hydrogen peroxide concentration of 34,000 mass ppm at the start of immersion) can be sufficiently suppressed by optimizing the loading amount and cluster size. On the other hand, after 4 hours from the start of immersion, the hydrogen peroxide concentration is lowered to 0.3% of the initial hydrogen peroxide concentration (for example, 100 ppm in the case of 34,000 mass ppm of hydrogen peroxide at the start of immersion) or less. By optimizing the active metal loading and cluster size, 0.2% of the hydrogen peroxide concentration at the start (for example, 70 mass ppm when the hydrogen peroxide concentration at the start of immersion is 34000 mass ppm) Hereinafter, it can be further reduced to 0.1% or less of the hydrogen peroxide concentration at the start (for example, 50 mass ppm when the hydrogen peroxide concentration at the start of immersion is 34000 mass ppm).

本実施形態に係る消毒方法によれば、触媒10によって分解される前の過酸化水素によって被処理物の消毒を行い、被処理物の消毒が終了して時間が経過するに従って触媒10が残存する過酸化水素を分解して無害化することができる。   According to the disinfection method according to the present embodiment, the object to be processed is disinfected with hydrogen peroxide before being decomposed by the catalyst 10, and the catalyst 10 remains as time passes after the disinfection of the object to be processed is completed. Hydrogen peroxide can be decomposed and rendered harmless.

触媒10によれば、過酸化水素溶液内に被処理物と共存せしめることによって、被処理物を十分に消毒でき且つ所定時間の経過後には過酸化水素の残留濃度を十分に低減できる。従って、以下のとおり、消毒液として過酸化水素溶液を使用可能であり、消毒後に過酸化水素の無害化を要する技術に触媒10は適用可能である。消毒液(過酸化水素溶液)に被処理物を浸漬して消毒を行う場合、消毒液を注ぐ専用カップや専用容器に触媒10を備え付けておいたり、被処理物と共に触媒10を消毒液に浸漬したりしてもよく、あるいは、一定期間にわたって消毒を行った後、触媒10が消毒液に自動的に浸かるように設計された装置を使用してもよい。本発明の触媒及び消毒方法は、過酸化水素溶液で使用することができる他に、過酸化物の殺菌消毒薬、例えば液相中の過酢酸を分解して無害化する触媒としても用いることができ、上記触媒と被処理物を過酢酸溶液中に浸漬する工程を備え、上記工程において、過酢酸による前記被処理物の消毒を行うと共に前記触媒による過酢酸の分解反応を進行させて過酢酸濃度を低下させる消毒方法にも用いられる。また本発明の触媒は、過酸化水素付加物、例えば過炭酸ナトリウムなどの酸素系漂白剤を分解して無害化する触媒としても用いられ、過炭酸ナトリウムなどの漂白剤の溶液に被処理物を浸漬して漂白を行い被処理物の漂白を行うと共に溶液中の漂白剤を分解する漂白方法にも用いることができる。
(1)コンタクトレンズを消毒液に浸漬して消毒。
(2)理美容用ブラシ、頭皮・頭髪用ブラシ、髭剃り時に用いられるシャボンブラシ、ペイント用の刷毛、清掃用のブラシ等を消毒液に浸漬して消毒。
(3)義歯を消毒液に浸漬して消毒。
(4)内視鏡、カテーテル等の医療器具を消毒液に浸漬して消毒。
(5)外科手術用及び産科・泌尿器科用の装置(内視鏡等)、器具(メス、カテーテル等)を消毒液に浸漬して消毒。
(6)麻酔装置、人工呼吸装置、人工透析送致、歯科用器具及びこれらの補助的器具、並びに、注射筒、体温計、プラスチック器具等を消毒液に浸漬して消毒。
(7)内孔等に消毒液が残りやすい部品、構造が複雑で従来すすぎに長時間を要していた器具等を消毒液に浸漬して消毒。
(8)内視鏡を消毒するポンプ装置から管路を取り外し、この管路を消毒液に浸漬して消毒。
(9)緊急時に、原水を浄化して飲料用水とする上水用キャリングボックス内部の浄水通路に消毒液を充填して消毒。
(10)玩具を消毒液に浸漬して消毒。
According to the catalyst 10, by coexisting with the object to be processed in the hydrogen peroxide solution, the object to be processed can be sufficiently sterilized, and the residual concentration of hydrogen peroxide can be sufficiently reduced after a predetermined time has elapsed. Therefore, as described below, a hydrogen peroxide solution can be used as a disinfectant, and the catalyst 10 can be applied to a technique that requires detoxification of hydrogen peroxide after disinfection. When the object to be treated is immersed in a disinfectant (hydrogen peroxide solution), the catalyst 10 is provided in a dedicated cup or container for pouring the disinfectant, or the catalyst 10 is immersed in the disinfectant together with the object to be treated. Alternatively, an apparatus designed to automatically immerse the catalyst 10 in the disinfecting solution after sterilizing for a certain period of time may be used. The catalyst and disinfecting method of the present invention can be used as a hydrogen peroxide solution or as a disinfectant for peroxide, for example, a catalyst for detoxifying peracetic acid in a liquid phase. A step of immersing the catalyst and the object to be treated in a peracetic acid solution, wherein in the step, the object to be treated is disinfected with peracetic acid and a decomposition reaction of peracetic acid by the catalyst is allowed to proceed. It is also used in disinfection methods that reduce the concentration. The catalyst of the present invention is also used as a catalyst for decomposing and detoxifying hydrogen peroxide adducts, for example, oxygen-based bleaching agents such as sodium percarbonate. It can also be used for a bleaching method in which bleaching is performed by dipping to bleach the material to be treated and decompose the bleaching agent in the solution.
(1) Disinfect contact lenses by immersing them in disinfectant.
(2) Disinfection by immersing a brush for hairdressing and beauty, a scalp / hair brush, a soap brush used for shaving, a brush for painting, a brush for cleaning, etc. in a disinfectant solution.
(3) Disinfect the denture by immersing it in the disinfectant solution.
(4) Disinfecting medical instruments such as endoscopes and catheters by immersing them in disinfectant.
(5) Disinfection by immersing surgical and obstetric / urological equipment (endoscope, etc.) and instruments (female, catheter, etc.) in disinfectant.
(6) Disinfection by immersing anesthesia equipment, artificial respiration equipment, artificial dialysis delivery, dental instruments and their auxiliary instruments, syringes, thermometers, plastic instruments, etc. in disinfectant.
(7) Disinfect by disinfecting parts in which the disinfectant is likely to remain in the inner hole, etc., or a device having a complicated structure that has conventionally required a long time for rinsing.
(8) The pipe is removed from the pump device for disinfecting the endoscope, and this pipe is immersed in a disinfectant solution for disinfection.
(9) In an emergency, disinfect by filling the water purification passage inside the water supply carrying box to purify the raw water into drinking water.
(10) Disinfection by immersing the toy in a disinfectant solution.

<実施例1〜4>
担体の表面近傍におけるPtが担持されている層の厚さが異なるものの、Ptの全量が同一となるように4種類の触媒を調製し、Ptが担持されている層の厚さが過酸化水素の残留濃度に与える影響を調査した。
<Examples 1-4>
Although the thickness of the layer carrying Pt in the vicinity of the surface of the carrier is different, four types of catalysts were prepared so that the total amount of Pt was the same, and the thickness of the layer carrying Pt was hydrogen peroxide. The effect on the residual concentration of was investigated.

(実施例1)
まず、α−アルミナからなる成形体(形状:直方体、比表面積:2m/g、幾何学表面積:7cm)を準備した。25℃の水酸化ナトリウム水溶液(濃度:5質量%)に成形体を1時間浸漬した後、800℃で2時間にわたって成形体を焼成することによって担体を得た(Na前処理工程)。次いで、25℃のCPA(塩化白金酸)水溶液に担体を60分浸漬した後、水洗及び乾燥を実施した。そして、300℃で1時間にわたって白金の還元処理を行うことで触媒Aを得た。表1に触媒Aの物性を示す。
Example 1
First, a molded body made of α-alumina (shape: rectangular parallelepiped, specific surface area: 2 m 2 / g, geometric surface area: 7 cm 2 ) was prepared. After immersing the molded body in a 25 ° C. aqueous sodium hydroxide solution (concentration: 5% by mass) for 1 hour, the molded body was fired at 800 ° C. for 2 hours to obtain a carrier (Na pretreatment step). Next, the support was immersed in an aqueous solution of CPA (chloroplatinic acid) at 25 ° C. for 60 minutes, and then washed and dried. And the catalyst A was obtained by performing the reduction process of platinum over 1 hour at 300 degreeC. Table 1 shows the physical properties of Catalyst A.

(実施例2〜4)
高い濃度のCPA水溶液を使用して担体を浸漬する時間を短くすることによって、Ptの全量を維持したまま、Ptが担持されている層の厚さを薄くしたことの他は、実施例1と同様の処理によって触媒B〜Dを得た。表1に触媒B〜Dの物性を示す。
(Examples 2 to 4)
Except for reducing the thickness of the layer carrying Pt while maintaining the total amount of Pt by shortening the time for immersing the carrier using a high concentration CPA aqueous solution, Catalysts B to D were obtained by the same treatment. Table 1 shows the physical properties of the catalysts B to D.

(過酸化水素の分解処理)
触媒A〜Dの過酸化水素分解能を評価するため、過酸化水素濃度34000質量ppmの過酸化水素水溶液を準備し、各触媒を用いて過酸化水素の分解処理を行った。容器内に5mlの上記過酸化水素水溶液を入れた後、その液中に各触媒を浸漬した時間から10分後及び4時間後の過酸化水素濃度(残留過酸化水素濃度)を測定した。表1に結果を示す。図3は触媒A及び触媒Dを使用したときの残留過酸化水素濃度の変化を示すグラフである。
(Hydrogen peroxide decomposition treatment)
In order to evaluate the hydrogen peroxide resolution of the catalysts A to D, an aqueous hydrogen peroxide solution having a hydrogen peroxide concentration of 34000 mass ppm was prepared, and hydrogen peroxide was decomposed using each catalyst. After putting 5 ml of the hydrogen peroxide solution in the container, the hydrogen peroxide concentration (residual hydrogen peroxide concentration) was measured after 10 minutes and 4 hours from the time when each catalyst was immersed in the solution. Table 1 shows the results. FIG. 3 is a graph showing changes in residual hydrogen peroxide concentration when Catalyst A and Catalyst D are used.

<実施例5〜8>
担体の表面近傍におけるPt担持されている層の厚さが異なるものの、Ptの分散度が同一となるように4種類の触媒E〜Hを調製し、Ptが担持されている層の厚さが過酸化水素の残留濃度に与える影響を調査した。Ptの分散度は、Ptの担持量及び担持条件を適宜設定することによって調整した。
<Examples 5 to 8>
Although the thickness of the layer carrying Pt in the vicinity of the surface of the carrier is different, four types of catalysts E to H are prepared so that the dispersion degree of Pt is the same, and the thickness of the layer carrying Pt is The effect on the residual concentration of hydrogen peroxide was investigated. The degree of dispersion of Pt was adjusted by appropriately setting the amount of Pt loaded and the loading conditions.

(過酸化水素の分解処理)
触媒E〜Hの過酸化水素分解能を評価するため、過酸化水素濃度34000質量ppmの過酸化水素水溶液を準備し、各触媒を用いて過酸化水素の分解処理を行った。容器内に5mlの上記過酸化水素水溶液を入れた後、その液中に各触媒を浸漬した時間から10分後及び4時間後の過酸化水素濃度(残留過酸化水素濃度)を測定した。表2に結果を示す。図4は触媒E及び触媒Hを使用したときの残留過酸化水素濃度の変化を示すグラフである。
(Hydrogen peroxide decomposition treatment)
In order to evaluate the hydrogen peroxide resolution of the catalysts E to H, an aqueous hydrogen peroxide solution having a hydrogen peroxide concentration of 34,000 mass ppm was prepared, and hydrogen peroxide was decomposed using each catalyst. After putting 5 ml of the hydrogen peroxide solution in the container, the hydrogen peroxide concentration (residual hydrogen peroxide concentration) was measured after 10 minutes and 4 hours from the time when each catalyst was immersed in the solution. Table 2 shows the results. FIG. 4 is a graph showing changes in the residual hydrogen peroxide concentration when the catalyst E and the catalyst H are used.

<実施例9〜12>
担体の幾何学表面積が異なるものの、Ptが担持されている層の厚さが同一となるように4種類の触媒I〜Lを調製し、担体の幾何学表面積が過酸化水素の残留濃度に与える影響を調査した。
<Examples 9 to 12>
Although the geometric surface areas of the supports are different, four types of catalysts IL are prepared so that the thicknesses of the layers on which Pt is supported are the same, and the geometric surface areas of the supports give the residual concentration of hydrogen peroxide. The impact was investigated.

(過酸化水素の分解処理)
触媒I〜Lの過酸化水素分解能を評価するため、過酸化水素濃度34000質量ppmの過酸化水素水溶液を準備し、各触媒を用いて過酸化水素の分解処理を行った。容器内に5mlの上記過酸化水素水溶液を入れた後、その液中に各触媒を浸漬した時間から10分後及び4時間後の過酸化水素濃度(残留過酸化水素濃度)を測定した。表3に結果を示す。図5は触媒I及び触媒Kを使用したときの残留過酸化水素濃度の変化を示すグラフである。
(Hydrogen peroxide decomposition treatment)
In order to evaluate the hydrogen peroxide resolution of the catalysts I to L, an aqueous hydrogen peroxide solution having a hydrogen peroxide concentration of 34,000 mass ppm was prepared, and hydrogen peroxide was decomposed using each catalyst. After putting 5 ml of the hydrogen peroxide solution in the container, the hydrogen peroxide concentration (residual hydrogen peroxide concentration) was measured after 10 minutes and 4 hours from the time when each catalyst was immersed in the solution. Table 3 shows the results. FIG. 5 is a graph showing changes in the residual hydrogen peroxide concentration when Catalyst I and Catalyst K are used.

<実施例13〜15>
担体に対する前処理が過酸化水素の残留濃度に与える影響を調査した。
<Examples 13 to 15>
The effect of pretreatment on the carrier on the residual concentration of hydrogen peroxide was investigated.

(実施例13)
α−アルミナからなる成形体(形状:直方体、比表面積:2m/g、機何学表面積:1.5cm)を準備した。Na前処理工程を実施する代わりに、以下のようにCl前処理工程を実施して担体を得たことの他は、実施例1と同様の処理によって触媒Mを得た。すなわち、25℃の塩化白金酸水溶液(濃度:3質量%)に成形体を1時間浸漬した後、成形体を乾燥することによって担体を得た(Cl前処理工程)。表4に触媒Mの物性を示す。
(Example 13)
A molded body made of α-alumina (shape: rectangular parallelepiped, specific surface area: 2 m 2 / g, mechanical surface area: 1.5 cm 2 ) was prepared. Instead of performing the Na pretreatment step, a catalyst M was obtained by the same treatment as in Example 1, except that the Cl pretreatment step was carried out to obtain a support as follows. That is, the molded body was immersed in an aqueous chloroplatinic acid solution (concentration: 3% by mass) at 25 ° C. for 1 hour, and then dried to obtain a carrier (Cl pretreatment step). Table 4 shows the physical properties of the catalyst M.

(実施例14)
Cl前処理工程を実施しなかった他は、実施例13と同様の処理によって触媒Nを得た。表4に触媒Nの物性を示す。
(Example 14)
Catalyst N was obtained by the same treatment as in Example 13 except that the Cl pretreatment step was not carried out. Table 4 shows the physical properties of catalyst N.

(実施例15)
α−アルミナからなる成形体の代わりにγ―アルミナ(形状:直方体、比表面積:200m/g、機何学表面積:1.5cm)を担体として使用したことの他は、実施例14と同様の処理によって触媒Oを得た。表4に触媒Oの物性を示す。
(Example 15)
Example 14 is the same as Example 14 except that γ-alumina (shape: cuboid, specific surface area: 200 m 2 / g, mechanical surface area: 1.5 cm 2 ) was used as the support instead of the molded body comprising α-alumina. Catalyst O was obtained by the same treatment. Table 4 shows the physical properties of the catalyst O.

触媒M〜Oの過酸化水素分解能を評価するため、過酸化水素濃度34000質量ppmの過酸化水素水溶液を準備し、各触媒を用いて過酸化水素の分解処理を行った。容器内に5mlの上記過酸化水素水溶液を入れた後、その液中に各触媒を浸漬した時間から10分後及び4時間後の過酸化水素濃度(残留過酸化水素濃度)を測定した。表4に結果を示す。   In order to evaluate the hydrogen peroxide resolution of the catalysts M to O, an aqueous hydrogen peroxide solution having a hydrogen peroxide concentration of 34,000 mass ppm was prepared, and hydrogen peroxide was decomposed using each catalyst. After putting 5 ml of the hydrogen peroxide solution in the container, the hydrogen peroxide concentration (residual hydrogen peroxide concentration) was measured after 10 minutes and 4 hours from the time when each catalyst was immersed in the solution. Table 4 shows the results.


なお、比表面積は株式会社島津製作所製の比表面積測定装置を用い担体の比表面積を測定した。機械強度はLLOYD材料試験機を用い担体の強度を測定した。

In addition, the specific surface area measured the specific surface area of the support | carrier using the Shimadzu Corporation specific surface area measuring apparatus. The mechanical strength was measured using a LLOYD material testing machine.

<実施例16〜19>
担体としてアルミナの成形体を使用する代わりに、ルチル型酸化チタンの成形体を使用して触媒を調製し、その評価を行った。
<Examples 16 to 19>
Instead of using an alumina compact as a carrier, a catalyst was prepared using a rutile titanium oxide compact and evaluated.

(実施例16)
ルチル型酸化チタンからなる成形体(形状:直方体、比表面積:8.5m/g、機何学表面積:1.5cm)を準備した。当該成形体をα−アルミナからなる成形体の代わりに使用したことの他は、実施例1と同様にして触媒Pを得た。すなわち、25℃の水酸化ナトリウム水溶液(濃度:5質量%)に成形体を1時間浸漬した後、800℃で2時間にわたって成形体を焼成することによって担体を得た(Na前処理工程)。次いで、25℃のCPA(塩化白金酸)水溶液に担体を60分浸漬した後、水洗及び乾燥を実施した。そして、300℃で1時間にわたって白金の還元処理を行うことで触媒Pを得た。表5に触媒Pの物性を示す。
(Example 16)
A molded body (shape: rectangular solid, specific surface area: 8.5 m 2 / g, mechanical surface area: 1.5 cm 2 ) made of rutile type titanium oxide was prepared. A catalyst P was obtained in the same manner as in Example 1 except that the molded body was used instead of the molded body made of α-alumina. That is, the molded body was immersed in a 25 ° C. sodium hydroxide aqueous solution (concentration: 5 mass%) for 1 hour, and then the molded body was fired at 800 ° C. for 2 hours to obtain a carrier (Na pretreatment step). Next, the support was immersed in an aqueous solution of CPA (chloroplatinic acid) at 25 ° C. for 60 minutes, and then washed and dried. And the catalyst P was obtained by performing the reduction process of platinum over 1 hour at 300 degreeC. Table 5 shows the physical properties of the catalyst P.

(実施例17)
Na前処理工程を実施する代わりに、以下のようにCl前処理工程を実施して担体を得たことの他は、実施例16と同様の処理によって触媒Qを得た。すなわち、25℃の塩化白金酸水溶液(濃度:3質量%)に成形体を1時間浸漬した後、成形体を乾燥することによって担体を得た(Cl前処理工程)。表5に触媒Qの物性を示す。
(Example 17)
Instead of performing the Na pretreatment step, catalyst Q was obtained by the same treatment as in Example 16 except that the carrier was obtained by performing the Cl pretreatment step as follows. That is, the molded body was immersed in an aqueous chloroplatinic acid solution (concentration: 3% by mass) at 25 ° C. for 1 hour, and then dried to obtain a carrier (Cl pretreatment step). Table 5 shows the physical properties of Catalyst Q.

(実施例18)
Na前処理工程を実施しなかった他は、実施例16と同様の処理によって触媒Rを得た。表5に触媒Rの物性を示す。
(Example 18)
Catalyst R was obtained by the same treatment as in Example 16 except that the Na pretreatment step was not carried out. Table 5 shows the physical properties of the catalyst R.

(実施例19)
担体の表面近傍におけるPt担持されている層の厚さが異なるものの、Ptの担持量が同一となるように、CPA水溶液の濃度及び担体の浸漬する時間を変更したことの他は、実施例18と同様の処理によって触媒Sを得た。表5に触媒Sの物性を示す。
(Example 19)
Example 18 Although the thickness of the Pt-supported layer in the vicinity of the surface of the carrier is different, the concentration of the CPA aqueous solution and the time during which the carrier is immersed are changed so that the amount of Pt supported is the same. Catalyst S was obtained by the same treatment as in Example 1. Table 5 shows the physical properties of the catalyst S.

触媒M〜Oの過酸化水素分解能を評価するため、過酸化水素濃度34000質量ppmの過酸化水素水溶液を準備し、各触媒を用いて過酸化水素の分解処理を行った。容器内に5mlの上記過酸化水素水溶液を入れた後、その液中に各触媒を浸漬した時間から10分後及び4時間後の過酸化水素濃度(残留過酸化水素濃度)を測定した。表5に結果を示す。   In order to evaluate the hydrogen peroxide resolution of the catalysts M to O, an aqueous hydrogen peroxide solution having a hydrogen peroxide concentration of 34,000 mass ppm was prepared, and hydrogen peroxide was decomposed using each catalyst. After putting 5 ml of the hydrogen peroxide solution in the container, the hydrogen peroxide concentration (residual hydrogen peroxide concentration) was measured after 10 minutes and 4 hours from the time when each catalyst was immersed in the solution. Table 5 shows the results.

1…担体、1a…活性金属が担持されている層、10…過酸化水素分解触媒。 DESCRIPTION OF SYMBOLS 1 ... Support | carrier, 1a ... Layer in which active metal is supported, 10 ... Hydrogen peroxide decomposition catalyst.

Claims (8)

液相中の過酸化水素を水と酸素に分解するための過酸化水素分解触媒であって、
気孔を有する無機酸化物材料からなる担体と、
前記担体に担持されたPt、Pd、Ir、Ru、Rh及びOsからなる群から選ばれる少なくとも1種の元素を含む活性金属と、
を備え、
前記担体の表面近傍において前記活性金属が担持されている層の厚さが0.01〜0.25mmである触媒。
A hydrogen peroxide decomposition catalyst for decomposing hydrogen peroxide in a liquid phase into water and oxygen,
A carrier made of an inorganic oxide material having pores;
An active metal containing at least one element selected from the group consisting of Pt, Pd, Ir, Ru, Rh and Os supported on the carrier;
With
A catalyst having a thickness of 0.01 to 0.25 mm of a layer on which the active metal is supported in the vicinity of the surface of the support.
前記無機酸化物材料は、酸化アルミニウム、酸化マグネシウム、シリカ及び酸化チタンからなる群から選ばれる少なくとも1種の材料である請求項1に記載の触媒。   The catalyst according to claim 1, wherein the inorganic oxide material is at least one material selected from the group consisting of aluminum oxide, magnesium oxide, silica, and titanium oxide. 前記担体は、少なくとも表面近傍にNa又はClが担持された酸化アルミニウムの成形体である、請求項1に記載の触媒。   2. The catalyst according to claim 1, wherein the carrier is a molded body of aluminum oxide in which Na or Cl is supported at least in the vicinity of the surface. 前記担体の比表面積が1〜30m/gである、請求項1〜3のいずれか一項に記載の触媒。 The catalyst as described in any one of Claims 1-3 whose specific surface area of the said support | carrier is 1-30 m < 2 > / g. 液相中の過酸化水素を水と酸素に分解するための過酸化水素分解触媒の製造方法であって、
気孔を有する無機酸化物材料からなる担体を準備する工程と、
Pt、Pd、Ir、Ru、Rh及びOsからなる群から選ばれる少なくとも1種の元素を含む活性金属を、前記担体の表面近傍において前記活性金属が担持されている層の厚さが0.01〜0.25mmとなるように前記担体に含浸する工程と、
を備える方法。
A method for producing a hydrogen peroxide decomposition catalyst for decomposing hydrogen peroxide in a liquid phase into water and oxygen,
Preparing a support made of an inorganic oxide material having pores;
An active metal containing at least one element selected from the group consisting of Pt, Pd, Ir, Ru, Rh and Os is used, and the thickness of the layer on which the active metal is supported in the vicinity of the surface of the carrier is 0.01. Impregnating the carrier to be ~ 0.25 mm;
A method comprising:
前記無機酸化物材料は酸化アルミニウムであり、酸化アルミニウムからなる成形体に前記活性金属を含浸する前に、水酸化ナトリウム水溶液、硝酸ナトリウム水溶液及び炭酸ナトリウム水溶液のいずれかに前記成形体を浸漬した後、当該成形体を焼成する工程を更に備える、請求項5に記載の方法。   The inorganic oxide material is aluminum oxide, and after the molded body made of aluminum oxide is immersed in any one of an aqueous sodium hydroxide solution, an aqueous sodium nitrate solution, and an aqueous sodium carbonate solution before impregnating the active metal into the molded body. The method according to claim 5, further comprising a step of firing the molded body. 前記無機酸化物材料は酸化アルミニウムであり、酸化アルミニウムからなる成形体に前記活性金属を含浸する前に、塩化水素水溶液に前記成形体を浸漬する工程を更に備える、請求項5に記載の方法。   6. The method according to claim 5, wherein the inorganic oxide material is aluminum oxide, and the method further comprises the step of immersing the molded body in an aqueous hydrogen chloride solution before impregnating the active metal into the molded body made of aluminum oxide. 請求項1〜4のいずれか一項に記載の触媒及び被処理物を、過酸化水素溶液中に浸漬する工程を備え、
当該工程において、過酸化水素による前記被処理物の消毒を行うと共に前記触媒による過酸化水素の分解反応を進行させて過酸化水素濃度を低下させる消毒方法。
A step of immersing the catalyst and the object to be treated according to any one of claims 1 to 4 in a hydrogen peroxide solution,
In this step, the disinfection method of disinfecting the object to be treated with hydrogen peroxide and lowering the hydrogen peroxide concentration by advancing a decomposition reaction of hydrogen peroxide with the catalyst.
JP2011149358A 2011-07-05 2011-07-05 Hydrogen peroxide decomposition catalyst and method for manufacturing the same, and disinfection method Pending JP2013013868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011149358A JP2013013868A (en) 2011-07-05 2011-07-05 Hydrogen peroxide decomposition catalyst and method for manufacturing the same, and disinfection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011149358A JP2013013868A (en) 2011-07-05 2011-07-05 Hydrogen peroxide decomposition catalyst and method for manufacturing the same, and disinfection method

Publications (2)

Publication Number Publication Date
JP2013013868A true JP2013013868A (en) 2013-01-24
JP2013013868A5 JP2013013868A5 (en) 2014-08-07

Family

ID=47687084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011149358A Pending JP2013013868A (en) 2011-07-05 2011-07-05 Hydrogen peroxide decomposition catalyst and method for manufacturing the same, and disinfection method

Country Status (1)

Country Link
JP (1) JP2013013868A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170083582A (en) 2014-12-11 2017-07-18 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for hydrogen peroxide decomposition, method for producing same, and method for decomposing hydrogen peroxide using said catalyst
JP2017159228A (en) * 2016-03-09 2017-09-14 国立大学法人大阪大学 Decomposition catalyst for hydrogen peroxide for sterilization of contact lens and manufacturing method therefor
KR20180025716A (en) * 2016-09-01 2018-03-09 국방과학연구소 Catalyst composition for decompositioning high concentrated hydrogen peroxide and method for producing the same
CN111704229A (en) * 2020-06-22 2020-09-25 东南大学 Preparation method of nano low-dimensional catalyst for degrading acrylic fiber wastewater and degradation method
CN114949376A (en) * 2022-06-11 2022-08-30 华中科技大学同济医学院附属协和医院 Anti-abdominal adhesion metal nanoenzyme Ru-PEG NDs and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232072A (en) * 1993-12-28 1995-09-05 Kawaken Fine Chem Co Ltd Hydrogen peroxide decomposition catalyst and its preparation
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2010105864A (en) * 2008-10-30 2010-05-13 National Institute Of Advanced Industrial Science & Technology Method for continuously decomposing hydrogen peroxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232072A (en) * 1993-12-28 1995-09-05 Kawaken Fine Chem Co Ltd Hydrogen peroxide decomposition catalyst and its preparation
JP2007185587A (en) * 2006-01-12 2007-07-26 Kurita Water Ind Ltd Method and device for removing hydrogen peroxide
JP2010105864A (en) * 2008-10-30 2010-05-13 National Institute Of Advanced Industrial Science & Technology Method for continuously decomposing hydrogen peroxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170083582A (en) 2014-12-11 2017-07-18 다나카 기킨조쿠 고교 가부시키가이샤 Catalyst for hydrogen peroxide decomposition, method for producing same, and method for decomposing hydrogen peroxide using said catalyst
US10441943B2 (en) 2014-12-11 2019-10-15 Tanaka Kikinzoku Kogyo K.K. Catalyst for hydrogen peroxide decomposition, process for producing the same, and method for decomposing hydrogen peroxide using the catalyst
JP2017159228A (en) * 2016-03-09 2017-09-14 国立大学法人大阪大学 Decomposition catalyst for hydrogen peroxide for sterilization of contact lens and manufacturing method therefor
KR20180025716A (en) * 2016-09-01 2018-03-09 국방과학연구소 Catalyst composition for decompositioning high concentrated hydrogen peroxide and method for producing the same
CN111704229A (en) * 2020-06-22 2020-09-25 东南大学 Preparation method of nano low-dimensional catalyst for degrading acrylic fiber wastewater and degradation method
CN111704229B (en) * 2020-06-22 2022-03-04 东南大学 Preparation method of nano low-dimensional catalyst for degrading acrylic fiber wastewater and degradation method
CN114949376A (en) * 2022-06-11 2022-08-30 华中科技大学同济医学院附属协和医院 Anti-abdominal adhesion metal nanoenzyme Ru-PEG NDs and preparation method and application thereof
CN114949376B (en) * 2022-06-11 2023-11-24 华中科技大学同济医学院附属协和医院 Abdominal adhesion resistant metal nano enzyme Ru-PEG NDs and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2013013868A (en) Hydrogen peroxide decomposition catalyst and method for manufacturing the same, and disinfection method
WO2010092770A1 (en) Method for producing active hydrogen-dissolved water and apparatus for producing active hydrogen-dissolved water
JP4164236B2 (en) Osteophilic implant
JPH0415059A (en) Deodorizer and sterilizer device
TW200922692A (en) Catalyst and production process thereof, and chlorine production using the catalyst
KR100824907B1 (en) Visible-light photocatalyst manufacturing method of antimicrobial and deodorizer
Vasil’eva et al. Titanium-supported nickel-copper oxide catalysts for oxidation of carbon (II) oxide
TW200539940A (en) Production process for catalyst
EP2883553B1 (en) Processing method and processing device for implant material having excellent biocompatibility
JP2011229405A5 (en)
TW212832B (en) Improved peroxide disinfection method and devices therefor
TWI301078B (en) Ethylene oxide catalyst carrier preparation
JP5837949B2 (en) Method for producing active hydrogen-dissolved water and its production tool
JP2012005576A (en) Method of manufacturing injection needle and injection needle
CN112915779A (en) Photocatalyst formaldehyde removal freshener and preparation method thereof
JPH05111618A (en) Removing method of carbon monoxide
JP3208040U (en) Hydrogen generation aid for cleaning
JP7169016B1 (en) Active oxygen water and method for producing active oxygen water
JP6512855B2 (en) Composition for supporting iodine, deodorant prepared using the composition, method for producing the same, and method for deodorizing using the same
JP6298620B2 (en) Method for stopping generation of chlorine dioxide gas and chlorine dioxide gas generator
JPH02222729A (en) Catalyst for decomposition of ozone and production thereof
JP2003055107A (en) Water-soluble germicide and method for producing the same
JP4610376B2 (en) Bath oxygen supply device and bathtub oxygen supply method
양지연 Photocatalytic antifungal activity against Candida albicans by TiO₂coated acrylic resin denture base
CN117865497A (en) Sustainable antibacterial antiviral preparation and preparation method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150811