JPH02222729A - Catalyst for decomposition of ozone and production thereof - Google Patents

Catalyst for decomposition of ozone and production thereof

Info

Publication number
JPH02222729A
JPH02222729A JP1042167A JP4216789A JPH02222729A JP H02222729 A JPH02222729 A JP H02222729A JP 1042167 A JP1042167 A JP 1042167A JP 4216789 A JP4216789 A JP 4216789A JP H02222729 A JPH02222729 A JP H02222729A
Authority
JP
Japan
Prior art keywords
catalyst
ozone
titanium oxide
decomposition
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1042167A
Other languages
Japanese (ja)
Other versions
JP2743437B2 (en
Inventor
Akinobu Wakayama
若山 晃伸
Toru Koyama
徹 小山
Toshihiro Kawakami
川上 利弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1042167A priority Critical patent/JP2743437B2/en
Publication of JPH02222729A publication Critical patent/JPH02222729A/en
Application granted granted Critical
Publication of JP2743437B2 publication Critical patent/JP2743437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst for decomposition of ozone having superior activity at low temp. and satisfactory ozone decomposing performance by supporting titanium oxide on an inorg. fibrous carrier and further supporting a catalytic material having ozone decomposing ability. CONSTITUTION:Titanium hydroxide or titanium oxide is supported on an inorg. fibrous support and dried at 100-200 deg.C. A catalytic material having ozone decomposing ability such as Mn or Ni is further supported on the carrier and dried or calcined at 100-600 deg.C. The resulting catalyst for decomposition of ozone has superior activity at low temp. and satisfactory ozone decomposing performance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はオゾン分解触媒、特にガス中に含有されるオゾ
ンを接触的に分解する触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an ozone decomposition catalyst, particularly to a catalyst that catalytically decomposes ozone contained in gas.

(従来の技術とその問題点) オゾンは強い酸化能を有し、分解すると無害な酸素にな
るために脱臭、殺菌、漂白または排水中のCOD減少等
の目的でさまざまな分野において幅広く利用されている
。しかし処理に利用されたオゾンは一部未反応のまま大
気中に放出されるために光化学スモック等の二次公害を
発生させる恐れがある。ま九、航空機が成層圏を飛行す
る場合機内にオゾンを含む空気が導入されるため乗客や
搭乗員に悪影響を及ぼす危険性がある。
(Prior art and its problems) Ozone has a strong oxidizing ability and becomes harmless oxygen when decomposed, so it is widely used in various fields for purposes such as deodorization, sterilization, bleaching, and reducing COD in wastewater. There is. However, some of the ozone used in the treatment is released into the atmosphere unreacted, which may cause secondary pollution such as photochemical smock. Also, when an aircraft flies in the stratosphere, air containing ozone is introduced into the cabin, which poses a risk of adversely affecting passengers and crew.

さらに、最近、各種の高電圧発生装置を組み込んだ機器
、例えば乾式の複写機等からのオゾン発生が問題となっ
ておシ、これ等の機器は主に室内に置かれるためにオゾ
ンの発生はatであっても室内が汚染される。
Furthermore, recently, ozone generation from devices that incorporate various high-voltage generators, such as dry-type copying machines, has become a problem. Even with AT, the room becomes contaminated.

オゾンの臭いは/ I)pm  以下の濃度で感知でき
、−2ppm  以上の濃度では呼吸器系に刺激を引き
起こし、人体に有害となるために各種の発生源から排出
されるオゾンを除去し、無害化する必要がある。
The odor of ozone can be detected at concentrations below / I) pm, and at concentrations above -2 ppm it causes irritation to the respiratory system and is harmful to the human body. Ozone is emitted from various sources and is harmless. It is necessary to

従来、用いられてきた廃オゾンの処理技術としては活性
炭法、薬液洗浄法および熱分解法がある。活性炭法は低
濃度オゾンの処理に利用されているが、オゾン分解の進
行に伴って、活性炭が消耗するために補充する必要があ
り、また高濃度のオゾンを処理する場合は反応熱により
活性炭自身が発火、燃焼する危険性があるので取り扱い
上問題がある。
Conventionally used waste ozone treatment techniques include an activated carbon method, a chemical cleaning method, and a thermal decomposition method. The activated carbon method is used to treat low-concentration ozone, but as ozone decomposition progresses, the activated carbon is consumed and needs to be replenished, and when treating high-concentration ozone, the activated carbon itself is destroyed by the heat of reaction. There is a danger of ignition and combustion, which poses a problem in handling.

薬液洗浄法は還元性物質の水溶液で廃オゾンを洗浄する
ために処理コストが高く、廃水処理の問題も生じる。
The chemical cleaning method involves cleaning waste ozone with an aqueous solution of a reducing substance, resulting in high treatment costs and problems in wastewater treatment.

熱分解法は分解効率を上げるためには300℃以上の加
熱が必要であシ、多量の排ガスを処理するためには加熱
費用がかかり、処理コストが高くなるなどの欠点がある
The thermal decomposition method requires heating to 300° C. or higher in order to increase the decomposition efficiency, and has drawbacks such as high heating costs and high processing costs in order to treat a large amount of exhaust gas.

一方、近年廃オゾン処理方法として触媒分解法が研究さ
れておシ、この方法は発火、煩発の危険性がなく、廃水
処理も不要であシ、低コストでオゾンを分解除去できる
ために有利な方法とされている。
On the other hand, in recent years, research has been conducted on catalytic decomposition as a waste ozone treatment method.This method is advantageous because it has no risk of ignition or trouble, does not require wastewater treatment, and can decompose and remove ozone at low cost. It is considered to be a method.

オゾン分解触媒には貴金属を用いた触媒(特開昭j7−
/22ハ―号など)、ニッケル、マンガン、コバルト等
の酸化物を用いた触媒(特開昭60−970119号)
が知られているが、それぞれ室温から100℃での低温
度領域での活性が低く、又、実用触媒としての分解効率
が低く、耐久性にも問題があるので、低温度領域で高活
性高耐久性を示す触媒の提供が要望されている。
A catalyst using precious metals as an ozone decomposition catalyst (JP-A-7-
Catalysts using oxides of nickel, manganese, cobalt, etc. (JP-A-60-970119)
However, each has low activity in the low temperature range from room temperature to 100°C, and also has low decomposition efficiency as a practical catalyst and has problems with durability. There is a need to provide catalysts that exhibit durability.

又、例えばアルミナ、シリカ、チタニア、アルミナ−7
リカ等からなる無機質繊維は通気性、ガスの分散性、触
媒物質の保持性が優れておシ、耐熱性も高く、また熱容
lが小さいという特性を有し、該担体にはオゾン分解能
を有する触媒物質は高分散状態で担持されるために、従
来のペレット型やモノリス型触媒と異なりオゾンを含有
するガスと接触せしめたとき、その通気性により接触効
率が高く、良好なオゾン分解性能を有することを利用し
た触媒として特開昭6コー20/、を弘r等に記載のも
のがちるが、低温での活性等に更に改良が望まれていた
Also, for example, alumina, silica, titania, alumina-7
Inorganic fibers made of carbon dioxide have excellent air permeability, gas dispersibility, and catalytic material retention, and have high heat resistance and small heat capacity.The carrier has ozone decomposition ability. Because the catalyst material is supported in a highly dispersed state, unlike conventional pellet-type or monolith-type catalysts, when it comes into contact with ozone-containing gas, its air permeability allows for high contact efficiency and good ozone decomposition performance. There is a catalyst that takes advantage of this, as described by Hiro et al. in JP-A-6-2009, but further improvements in its activity at low temperatures, etc., have been desired.

(問題点を解決する為の手段) 本発明者等は上記の点に鑑み更に検討を重ねた結果無機
質繊維状担体に酸化チタンを担持し更にオゾン分解能を
有する物質を担持したものが有効な触媒となること、及
びか\る触媒の製造において酸化チタンを担持する際、
及び、オゾン分解能を有する成分を担持する際に特定方
法を採用することが特に有効であることを発見し本発明
に到達した。
(Means for Solving the Problems) In view of the above points, the inventors of the present invention have conducted further studies and found that a catalyst in which titanium oxide is supported on an inorganic fibrous carrier and a substance having ozone decomposition ability is also supported is an effective catalyst. When supporting titanium oxide in the production of such a catalyst,
They also discovered that it is particularly effective to employ a specific method when supporting a component having ozone decomposition ability, and have arrived at the present invention.

すなわち本発明の要旨は無機質繊維状担体に酸化チタン
を担持し更にオゾン分解能を有する触媒物質を担持して
なるオゾン分解触媒、及び無機質繊維状担体に水酸化チ
タン又は酸化チタンを担持し、100−200℃で乾燥
し、更にマンガン、ニッケル等オゾン分解能を有する成
分を担持し、100〜t o o ’cにて乾燥又は焼
成することを特徴とするオゾン分解触媒の製造法に存す
る。
That is, the gist of the present invention is to provide an ozone decomposition catalyst formed by supporting titanium oxide on an inorganic fibrous carrier and further supporting a catalytic material having ozone decomposition ability, and an ozone decomposition catalyst in which titanium hydroxide or titanium oxide is supported on an inorganic fibrous carrier, and a 100- The method of producing an ozone decomposition catalyst is characterized by drying at 200°C, supporting a component having an ozone decomposition ability such as manganese or nickel, and drying or firing at 100 to 100°C.

本発明にかかる無機質触媒状担体としては、例えば、ア
ルミナ、シリカ、チタニア、アルミナ−シリカ、ジルコ
ニア、アルミナ−シリカ−マグネシア等からなる繊維の
成型体もしくは積層体を用いることができるが、特にシ
リカ−アルミナ系繊維が好ましい。
As the inorganic catalytic carrier according to the present invention, for example, a molded body or a laminate of fibers made of alumina, silica, titania, alumina-silica, zirconia, alumina-silica-magnesia, etc. can be used, but in particular silica- Alumina fibers are preferred.

また、無機質繊維状担体に担持する酸化チタン源として
は、水酸化チタンスラリー 水酸化チタンスラリーを1
00〜200℃で乾燥させた酸化チタンのスラリー チ
タニアゾル、硫酸チタン溶液又はシュウ酸チタン溶液な
どを用いることができるが、乾燥の際分解がよく進み、
硫酸根が残らない点等の点で水酸化チタン又はこれを乾
燥させた酸化チタンのスラリーが望ましい。
In addition, as a titanium oxide source supported on an inorganic fibrous carrier, titanium hydroxide slurry titanium hydroxide slurry
Slurry of titanium oxide dried at 00 to 200°C.Titania sol, titanium sulfate solution, titanium oxalate solution, etc. can be used, but decomposition progresses well during drying,
A slurry of titanium hydroxide or dried titanium oxide is preferable because no sulfate radicals remain.

又これらは乾燥後の比表面積も大きく触媒活性も良好な
為より好ましいものである。なお、酸化チタン源として
水酸化チタン、酸化チタン等の固体のスラリーを使用す
る場合は、なるべく微−粒子のものを使用することが〆
望ましく、−殻内には[)p=rQ として3μ以下、
より好ましくはlμ以下の粒径のものを選択すると良い
Further, these are more preferable because they have a large specific surface area after drying and good catalytic activity. In addition, when using a solid slurry such as titanium hydroxide or titanium oxide as a titanium oxide source, it is preferable to use one with as fine particles as possible, and the inside of the shell should be 3μ or less as [)p=rQ]. ,
More preferably, particles with a particle size of 1μ or less are selected.

チタンスラリーをボールミル等にて粉砕したもの等が好
適に使用できる。酸化チタンを担持した無機質繊維状担
体の比表面積は少くとも夕On?/を以上あればよいが
、触媒物質の分散性向上のため高比表面積を有する程よ
く、りO〜170nl/fのものが特に好ましく、低温
活性にもすぐれる。酸化チタンの担持量は触媒全体のj
wt係以上、好ましくはlO〜30wt係 であるがこ
れらに限定されない。
Titanium slurry pulverized using a ball mill or the like can be suitably used. Is the specific surface area of the inorganic fibrous carrier supporting titanium oxide at least as low as 100 m? / or more is sufficient, but the higher the specific surface area in order to improve the dispersibility of the catalyst substance, the more preferred is the one with a specific surface area of 0 to 170 nl/f, which also has excellent low-temperature activity. The amount of titanium oxide supported is j of the entire catalyst
It is preferably 10 to 30 wt, but is not limited thereto.

上記乾燥の条件としては温度は100℃以上、好ましく
は100−200℃で行うことがより高面積のものを得
る為に望ましい。あtb高温で乾燥させると得られた触
媒の表面積が下がる傾向にある。ガス雰囲気は空気また
は窒素が好ましく、乾燥時間は温度によってことなるが
、浸漬時に保有した水分が除去できる時間であればよく
、1時間以上、好ましくは3時間以上である。充分水分
を除去した後に触媒物質を担持することにより得られた
触媒の活性が上がシよシ望ましいものとなる。
As for the drying conditions, it is desirable to carry out the drying at a temperature of 100° C. or higher, preferably 100-200° C., in order to obtain a product with a larger area. When dried at high temperatures, the surface area of the resulting catalyst tends to decrease. The gas atmosphere is preferably air or nitrogen, and the drying time varies depending on the temperature, but it is sufficient that the moisture retained during immersion can be removed, and is at least 1 hour, preferably at least 3 hours. By supporting the catalyst material after sufficient water removal, the activity of the resulting catalyst is much more desirable.

本発明のオゾン分解触媒は上記の性質を有するような酸
化チタンを担持した無機質繊維状担体にオゾン分解能を
有する触媒成分、例えば、マンガン、鉄、銅、コバルト
、ニッケル、銀、白金、パラジウム、ロジウム等の金属
塩の水溶液を含浸担持後、乾燥し焼成するが必要に応じ
てさらに還元処理する等の従来の方法によって製造する
ことができる。
The ozone decomposition catalyst of the present invention has catalyst components having ozone decomposition ability such as manganese, iron, copper, cobalt, nickel, silver, platinum, palladium, and rhodium on an inorganic fibrous carrier supporting titanium oxide having the above-mentioned properties. It can be produced by a conventional method, such as impregnating and supporting an aqueous solution of a metal salt such as the following, followed by drying and firing, and if necessary, further reduction treatment.

上記触媒成分の中で貴金属は高価であシ、高担持を必要
とする場合経済面では問題がある。
Among the above-mentioned catalyst components, noble metals are expensive, and there is an economical problem when a high loading is required.

また鉄、銅、コバルト等ハマンガン、ニッケルにくらべ
ては触媒活性が下がる。
Also, the catalytic activity of iron, copper, cobalt, etc. is lower than that of hamanganese and nickel.

従ってマンガンまたはニッケルが特に好ましい触媒成分
である。触媒成分の担持量は触媒に対してθ、l−弘Q
重量係、好ましくは0.3〜30重量係の範囲であるが
、これらに限定されるものではない。
Manganese or nickel are therefore particularly preferred catalyst components. The supported amount of the catalyst component is θ, l−HiroQ relative to the catalyst.
The weight ratio is preferably in the range of 0.3 to 30 weight ratio, but is not limited thereto.

酸化チタンおよび触媒成分の担持量は数係程度でも触媒
活性を示すが、触媒の活性および耐久性の面から高濃度
担持の方が有利である。
Although the catalytic activity is exhibited even when the amount of titanium oxide and the catalyst component supported is on the order of a numerical coefficient, it is more advantageous to support the titanium oxide and the catalyst component in a high concentration from the viewpoint of activity and durability of the catalyst.

また触媒物質を担持させた後に行う焼成の条件としては
温度は200°C以上、好ましくは100〜600℃で
あり、t o o ’cより高温の場合比表面積の低下
により、触媒活性が大きく低下する。焼成時のガス雰囲
気は空気または♀素が好ましく、焼成時間は温度によっ
てことなるが、所定の焼成温度で3時間以上が好ましい
In addition, the conditions for calcination after supporting the catalyst material are that the temperature is 200°C or higher, preferably 100 to 600°C; if the temperature is higher than 200°C, the specific surface area will decrease and the catalytic activity will decrease significantly. do. The gas atmosphere during firing is preferably air or ferrite, and the firing time varies depending on the temperature, but is preferably 3 hours or more at a predetermined firing temperature.

本発明の触媒によって処理されるオゾン濃度はガス中に
0.0 / 〜/ 0.000 ppm程度含有するも
のであるが、必ずしもこの範囲に限定されるものではな
い。
The ozone concentration treated by the catalyst of the present invention is contained in the gas at about 0.0/-/0.000 ppm, but is not necessarily limited to this range.

以下実施例および比較例を用いて本発明をさらに詳細に
説明するが、本発明はこれら実施例のみに限定されるも
のではない。
The present invention will be explained in more detail below using Examples and Comparative Examples, but the present invention is not limited only to these Examples.

実施例1 酸化チタン換算でJ(7wt%  の水酸化チタンスラ
リーをlよ0℃で乾燥した後、この乾燥粉(比表面積2
 J’ 7rr?/ S’ )に脱塩水を加えて、30
wt% 酸化チタンスラリーを調製し1.211Hr 
ボールミルにて粉砕し、酸化チタンスラリーを調製する
Example 1 After drying a titanium hydroxide slurry of J (7 wt% in terms of titanium oxide) at 0°C, this dry powder (specific surface area 2
J' 7rr? /S') and add demineralized water to 30
Prepare wt% titanium oxide slurry for 1.211 hours.
Grind with a ball mill to prepare titanium oxide slurry.

平均繊維径約3μm、比表面積?r rr?/ rを有
し、Si0,4♂wt%およびAI、O,J 、2 w
t% よりなり無機質繊維状担体を上記酸化チタンスラ
リーに2j℃の温度でl0分浸漬したのち担体を取り出
し、液切りをして、/jtO″Cで3 Hr乾燥した。
Average fiber diameter approximately 3μm, specific surface area? rrr? /r with Si0,4♂wt% and AI,O,J,2w
After immersing an inorganic fibrous carrier consisting of 100% titanium oxide slurry in the above titanium oxide slurry at a temperature of 2j°C for 10 minutes, the carrier was taken out, the liquid was drained, and the carrier was dried at /jtO''C for 3 hours.

冷却後、♂0wt0j)硝酸マンガン水溶液に2よ”C
の温度で/ Hr 浸漬した。その後担体を取り出し、
液切り後、110℃で3 Hr乾燥して、酸化チタンと
してJ2wj%、酸化マンガンとして20wt%を担持
せしめた。
After cooling, add 2"C to ♂0wt0j) manganese nitrate aqueous solution.
Soaked at a temperature of /Hr. Then take out the carrier and
After draining, it was dried at 110°C for 3 hours to support J2wj% of titanium oxide and 20wt% of manganese oxide.

実施例2 実施例1において、JOwt%酸化チタンスラリー〇か
わりに酸化チタン換算で30wt%の水酸化チタンスラ
リーをボールミル粉砕して担体に担持した以外は、実施
例/へ同様にして触媒を調製し、実施例コの触媒を得た
Example 2 A catalyst was prepared in the same manner as in Example 1, except that instead of the JOwt% titanium oxide slurry in Example 1, a 30wt% titanium hydroxide slurry in terms of titanium oxide was ground in a ball mill and supported on a carrier. , the catalyst of Example 1 was obtained.

実施例3 実施例1において、硝酸マンガン担持後乾燥して、その
後空気中j j O’Cで3Hr焼成した以外は、実施
例1と同様にして触媒を調製し、実施例3の触媒を得た
Example 3 A catalyst was prepared in the same manner as in Example 1, except that it was dried after supporting manganese nitrate and then calcined in air for 3 hours at j j O'C, and the catalyst of Example 3 was obtained. Ta.

実施例弘 実施例3において、空気中で4Lt o ”cでJ)(
r焼成した以外は実施例3と同様にして触媒を調製し、
実施例弘の触媒を得た。
In Example 3, 4Lt o ”c in air J) (
A catalyst was prepared in the same manner as in Example 3 except that it was calcined.
Example Hiro's catalyst was obtained.

比較例/ 実施例1において、担体に酸化チタンスラリーを浸漬し
ない′以外は実施例1と同様にして触媒を調製し、比較
例/の触媒を得た。
Comparative Example/A catalyst was prepared in the same manner as in Example 1 except that the carrier was not immersed in the titanium oxide slurry to obtain a catalyst of Comparative Example.

比較例コ 実施例弘において、担体に酸化チタンを担持し、iso
℃で乾燥後頁に空気中pro℃で3Hr焼成した以外は
、実施例グと同様にして触媒を調製し、比較例−の触媒
を得た。
Comparative Example In Example Hiroshi, titanium oxide was supported on the carrier and the iso
A catalyst was prepared in the same manner as in Example G, except that after drying at C.C., the catalyst was calcined in air for 3 hours at PROC, to obtain a catalyst of Comparative Example.

比較例3 実施例/において酸化チタン換算で317wt%の水酸
化チタンスラリーを750°Cで乾燥後、空気中100
℃でJHr焼成し、冷却して、この酸化チタン焼成粉(
比表面積j77r?/S’)に脱塩水を加えて30wt
% 酸化チタンスラリーを調製した以外は、実施例1と
同様にして触媒を調製し、比較例3の触媒を得た。
Comparative Example 3 After drying the titanium hydroxide slurry of 317 wt% in terms of titanium oxide in Example/ at 750°C,
This titanium oxide fired powder (
Specific surface area j77r? /S') with demineralized water to make 30wt
% A catalyst was prepared in the same manner as in Example 1, except that a titanium oxide slurry was prepared, and a catalyst of Comparative Example 3 was obtained.

実施例! 実施例/−+、比較例/〜3で得られた各触媒につき、
次のような方法でオゾン分解率を求めた。
Example! For each catalyst obtained in Example/-+ and Comparative Example/~3,
The ozone decomposition rate was determined using the following method.

内径20trrmのパイレックス製反応管に触媒層rn
lを充填し、オゾンを/ ppm  含有する空気をo
、r s Nm3/ h rの流速(空間速度t o、
o o 。
A catalyst layer rn is placed in a Pyrex reaction tube with an inner diameter of 20 trrm.
Filled with l and filled with air containing ozone/ppm o
, r s Nm3/hr flow rate (space velocity to,
o o.

Hr ’)で触媒層に導入し、反応温度夕°Cおよび2
0℃におけるオゾン分解率を求めた。
Hr') was introduced into the catalyst layer, and the reaction temperature was 2 °C and 2
The ozone decomposition rate at 0°C was determined.

オゾン分解率は次式によシ算出した。The ozone decomposition rate was calculated using the following formula.

オゾン分解率(X)= 得られた結果を表−lに示す。Ozone decomposition rate (X) = The results obtained are shown in Table-1.

表−1 て低温活性が劣っている。Table-1 It has poor low-temperature activity.

(効 果) 本発明によシ高いオゾン分解性能を有するオゾン分解触
媒を得ることができる。
(Effects) According to the present invention, an ozone decomposition catalyst having high ozone decomposition performance can be obtained.

Claims (2)

【特許請求の範囲】[Claims] (1)無機質繊維状担体に、酸化チタンを担持し、更に
オゾン分解能を有する触媒物質を担持してなるオゾン分
解触媒。
(1) An ozone decomposition catalyst comprising an inorganic fibrous carrier supporting titanium oxide and further supporting a catalyst substance having ozone decomposition ability.
(2)無機質繊維状担体を水酸化チタン又は水酸化チタ
ン又は水酸化チタンを100〜200℃にて乾燥した酸
化チタンのスラリーに浸漬した後乾燥して無機質繊維状
担体に酸化チタンを担体せしめ、該酸化チタンを担持し
た無機質繊維状担体を触媒成分を含有する水溶液に含浸
し、次いで100〜600℃にて乾燥又は焼成すること
を特徴とするオゾン分解触媒の製造法。
(2) immersing an inorganic fibrous carrier in a slurry of titanium hydroxide or titanium oxide made by drying titanium hydroxide at 100 to 200°C, and then drying the inorganic fibrous carrier to support titanium oxide; A method for producing an ozone decomposition catalyst, which comprises impregnating the inorganic fibrous carrier carrying the titanium oxide in an aqueous solution containing a catalyst component, and then drying or firing at 100 to 600°C.
JP1042167A 1989-02-22 1989-02-22 Method for producing ozone decomposition catalyst Expired - Fee Related JP2743437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1042167A JP2743437B2 (en) 1989-02-22 1989-02-22 Method for producing ozone decomposition catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1042167A JP2743437B2 (en) 1989-02-22 1989-02-22 Method for producing ozone decomposition catalyst

Publications (2)

Publication Number Publication Date
JPH02222729A true JPH02222729A (en) 1990-09-05
JP2743437B2 JP2743437B2 (en) 1998-04-22

Family

ID=12628412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1042167A Expired - Fee Related JP2743437B2 (en) 1989-02-22 1989-02-22 Method for producing ozone decomposition catalyst

Country Status (1)

Country Link
JP (1) JP2743437B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109923A (en) * 1989-09-26 1991-05-09 Sakai Chem Ind Co Ltd Catalytic filter
CN103030189A (en) * 2012-12-21 2013-04-10 广东工业大学 Method for absorbing and removing trivalent arsenic in photo-catalytic oxidation drinking water
JP2017136191A (en) * 2016-02-03 2017-08-10 教文館管財株式会社 Ozone gas sterilizer
CN115709057A (en) * 2022-10-20 2023-02-24 北京中电加美环保科技有限公司 Ozone oxidation catalyst for industrial wastewater treatment and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670823A (en) * 1979-08-08 1981-06-13 Johnson Matthey Co Ltd Method of removing ozone from gas mixture containing ozone
JPS62201648A (en) * 1986-03-03 1987-09-05 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for decomposing ozone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670823A (en) * 1979-08-08 1981-06-13 Johnson Matthey Co Ltd Method of removing ozone from gas mixture containing ozone
JPS62201648A (en) * 1986-03-03 1987-09-05 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for decomposing ozone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109923A (en) * 1989-09-26 1991-05-09 Sakai Chem Ind Co Ltd Catalytic filter
CN103030189A (en) * 2012-12-21 2013-04-10 广东工业大学 Method for absorbing and removing trivalent arsenic in photo-catalytic oxidation drinking water
JP2017136191A (en) * 2016-02-03 2017-08-10 教文館管財株式会社 Ozone gas sterilizer
CN115709057A (en) * 2022-10-20 2023-02-24 北京中电加美环保科技有限公司 Ozone oxidation catalyst for industrial wastewater treatment and preparation method thereof
CN115709057B (en) * 2022-10-20 2023-10-27 北京中电加美环保科技有限公司 Ozone oxidation catalyst for industrial wastewater treatment and preparation method thereof

Also Published As

Publication number Publication date
JP2743437B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
JP3326836B2 (en) Catalyst body and method for producing catalyst body
KR101069685B1 (en) Sterilized module and air sterilizer having the same
JPS62201648A (en) Catalyst for decomposing ozone
JP2001187343A (en) Cleaning catalyst at normal temperature and utilization thereof
JP2012511422A (en) Improvement of catalyst
JPH02222729A (en) Catalyst for decomposition of ozone and production thereof
KR20040097738A (en) Mn oxide catalyst for decomposing ozone and the method therefor
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JPH0510973B2 (en)
JPH02253848A (en) Catalyst for decomposition of ozone
JP4173561B2 (en) Ozone decomposition catalyst and method for producing the same
JPS5920383B2 (en) NOx reduction catalyst with high activity at low temperatures
JPH057776A (en) Catalyst and its manufacture
JPS63197548A (en) Manganese and ferrite catalyst
JPH0585218B2 (en)
JPH10286432A (en) Purifying method of harmful gas
JPH03127626A (en) Ozone cracking catalyst
JP2007021482A (en) Ammonia decomposition catalyst and ammonia treating method
JP2928983B2 (en) Nitrous oxide containing gas decomposition method
JPH0416240A (en) Gas decomposing catalyst
CN104588127A (en) Catalyst activation method
JPH0586252B2 (en)
JPH0483534A (en) Ozone decomposing catalyst and preparation thereof
JPH08126816A (en) Ozone filter and its production
JPH0596158A (en) Production of composition having air purifying ability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees