JPS63197548A - Manganese and ferrite catalyst - Google Patents

Manganese and ferrite catalyst

Info

Publication number
JPS63197548A
JPS63197548A JP2899487A JP2899487A JPS63197548A JP S63197548 A JPS63197548 A JP S63197548A JP 2899487 A JP2899487 A JP 2899487A JP 2899487 A JP2899487 A JP 2899487A JP S63197548 A JPS63197548 A JP S63197548A
Authority
JP
Japan
Prior art keywords
ozone
manganese
decomposition
catalyst
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2899487A
Other languages
Japanese (ja)
Other versions
JP2509600B2 (en
Inventor
Yoshiyuki Tomiyama
好行 冨山
Yukio Koizumi
小泉 幸男
Tomoyuki Takenaka
竹中 知幸
Masuo Inaba
稲葉 益男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sued Chemie Catalysts Japan Inc
Original Assignee
Nissan Girdler Catalysts Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Girdler Catalysts Co Ltd filed Critical Nissan Girdler Catalysts Co Ltd
Priority to JP2899487A priority Critical patent/JP2509600B2/en
Publication of JPS63197548A publication Critical patent/JPS63197548A/en
Application granted granted Critical
Publication of JP2509600B2 publication Critical patent/JP2509600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently decompose high-concn. ozone at ordinary temp. by using a manganese and ferrite catalyst. CONSTITUTION:Manganese salt and iron salt of inorganic acid or organic acid easily generating carbon dioxide by heating are coprecipitated e.g. from both a mixed soln. of soluble salt of manganese and iron and ammonium formate, ammonium oxalate, ammonium malonate or ammonium carbonate, etc. Then this coprecipitate is dried, calcined and molded to prepare a manganese and ferrite catalyst. The obtained catalyst shows high performance of ozone decomposition even at low temp. of -10-50 deg.C preferably 0-40 deg.C and extremely small decrease of activity. Further high-concn. ozone reaching several ten thousands of ppm can be efficiently decomposed. Furthermore its activity is extremely high even in the simultaneous decomposition and removal of both compd. selected from carbon monoxide and hydrocarbon and ozone in the presence of oxygen.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、オゾン分解用マンガン・フェライト触媒に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a manganese ferrite catalyst for ozone decomposition.

又、酸素の存在下、一酸化炭素及び炭化水素から選ばれ
る化合物とオゾンの同時分解用マンガン・フェライト触
媒に関するものである。
The present invention also relates to a manganese ferrite catalyst for simultaneous decomposition of ozone and a compound selected from carbon monoxide and hydrocarbons in the presence of oxygen.

(ロ)従来の技術 オゾンは、非常に強い酸化力を有し且つ分解生成物が無
害の酸素であることから、殺菌、消毒、脱臭及び脱色等
の目的で、産業界で広く利用されている。
(b) Conventional technology Because ozone has very strong oxidizing power and the decomposition product is harmless oxygen, it is widely used in industry for purposes such as sterilization, disinfection, deodorization, and decolorization. .

しかし、その利用過程等においてオゾンが大気中に放出
されると、光化学スモッグ等の原因となるためオゾンの
分解の必要性がさけばれている。
However, if ozone is released into the atmosphere during its utilization process, it may cause photochemical smog, etc., so the need to decompose ozone has been avoided.

従来から、オゾンの分解法として活性炭分解法、薬液洗
浄法、熱分解法及び固体触媒による分解法等が知られて
いる。
Conventionally, methods for decomposing ozone include an activated carbon decomposition method, a chemical cleaning method, a thermal decomposition method, and a decomposition method using a solid catalyst.

(ハ)発明が解決しようとする問題点 活性炭分解法は、簡便で且つオゾンを確実に分解できる
ので広く利用されている。この方法では、オゾンは活性
炭表面に吸着され活性炭と反応して一酸化炭素及び炭酸
ガスを生成する。
(c) Problems to be Solved by the Invention Activated carbon decomposition methods are widely used because they are simple and can reliably decompose ozone. In this method, ozone is adsorbed on the surface of activated carbon and reacts with the activated carbon to generate carbon monoxide and carbon dioxide gas.

C+03→CO+O□+253.2 kJC+20:+
 →CO□+2oz+ 678.9 kJ従って、この
方法は上記反応により高価な活性炭が消費され、しかも
大きな反応熱のため発火等の危険があり高濃度のオゾン
の分解には使用できない。
C+03→CO+O□+253.2 kJC+20:+
→CO□+2oz+ 678.9 kJ Therefore, in this method, expensive activated carbon is consumed by the above reaction, and there is a risk of ignition due to the large heat of reaction, so it cannot be used to decompose highly concentrated ozone.

薬液洗浄法は、水酸化す) IJウム水溶液等のアルカ
リ水溶液、又はチオ硫酸ナトリウム等の還元剤でオゾン
を分解する方法であるが薬剤費が高価であり、湿式法の
ためスクラバーを必要とし、更に廃液処理の必要がある
等の欠点がある。
The chemical cleaning method is a method of decomposing ozone with an alkaline aqueous solution such as hydroxide solution or a reducing agent such as sodium thiosulfate, but the chemicals are expensive and the wet method requires a scrubber. Furthermore, there are drawbacks such as the need for waste liquid treatment.

熱分解法は、オゾンを高温で且つ滞留時間1秒以上で分
解する方法である。しかし、350°C程度の高温まで
オゾンを加熱しなければならず、燃料費が高(つく。又
、この方法は加熱装置の立上りに時間を要し間歇的使用
が困難である。
The thermal decomposition method is a method of decomposing ozone at high temperature and residence time of 1 second or more. However, it is necessary to heat the ozone to a high temperature of about 350° C., which increases fuel costs.Furthermore, this method requires time for the heating device to start up, making it difficult to use it intermittently.

固体触媒による接触分解法は、二酸化マンガン、酸化鉄
及び酸化ニッケル等の金属酸化物、又は銀、白金等の貴
金属をアルミナ及び酸化珪素等に担持したものを触媒と
し、オゾンを接触分解する方法である。
The catalytic cracking method using a solid catalyst is a method of catalytically decomposing ozone using metal oxides such as manganese dioxide, iron oxide, and nickel oxide, or precious metals such as silver and platinum supported on alumina and silicon oxide as catalysts. be.

Ca 1derbank及びLewisによればオゾン
の分解機構は次の通りである。(Chem、 End、
 Sci、、31(12)。
According to Calderbank and Lewis, the decomposition mechanism of ozone is as follows. (Chem, End,
Sci., 31(12).

03+−H−→ −H−+ O、(1)−H−+03 
→ −H+20g    (2)■ 酸化鉄、酸化ニッケル、銀及び白金等は、反応(1)に
比べて反応(2)の活性化エネルギーが大きくオゾン分
解活性が時間と共に低下するため、オゾンの分解活性を
持続するには50°C以上の温度で使用する必要がある
03+-H-→ -H-+ O, (1)-H-+03
→ -H+20g (2) ■ Iron oxide, nickel oxide, silver, platinum, etc. have a larger activation energy for reaction (2) than reaction (1), and their ozone decomposition activity decreases over time. To maintain this, it is necessary to use the product at a temperature of 50°C or higher.

酸化銅及び酸化コバルト等は、反応(2)に比べて反応
(1)の活性化エネルギーが大きくオゾン分解活性が時
間とともに増大するが初期活性が小さいため、間歇的な
使用には適さない。
Copper oxide, cobalt oxide, etc. have a larger activation energy for reaction (1) than reaction (2), and their ozonolytic activity increases with time, but their initial activity is small, so they are not suitable for intermittent use.

又、酸化マンガンは低温での活性が小さい。Furthermore, manganese oxide has low activity at low temperatures.

上記触媒はいずれも常温では失活が著しいか低活性であ
り、50°C以上で使用されているのが現状である。
All of the above catalysts are significantly deactivated or have low activity at room temperature, and are currently used at temperatures above 50°C.

更に、半導体産業等から排出されるオゾン濃度は飲方p
pmに達しており、このような高濃度のオゾンを効率良
く分解する触媒は知られていない。
Furthermore, the concentration of ozone emitted from the semiconductor industry, etc.
pm, and there are no known catalysts that can efficiently decompose ozone at such high concentrations.

(ニ)問題点を解決するための手段 ゛本発明者らは、飲方ppmに達する高濃度のオゾンを
効率良く分解する触媒並びに一酸化炭素及び炭化水素か
ら選ばれる化合物とオゾンを同時に効率良く除去する触
媒について鋭意検討を行い、本発明を完成するに至った
(d) Means for solving the problem ゛The present inventors have developed a catalyst that efficiently decomposes ozone at a high concentration reaching ppm in drinking water, and a compound selected from carbon monoxide and hydrocarbons that efficiently decomposes ozone at the same time. After conducting extensive research on the catalyst to be removed, the present invention was completed.

即ち、本発明は、常温で高濃度のオゾンの分解性能が高
く且つ活性低下の非常に少ないマンガン・フェライト触
媒に関するものである。
That is, the present invention relates to a manganese ferrite catalyst that has high ozone decomposition performance at a high concentration at room temperature and exhibits very little reduction in activity.

又、本発明は、一酸化炭素及び炭化水素から選ばれる化
合物とオゾンの同時除去にも極めて高活性なマンガン・
フェライト触媒に関するものである。
In addition, the present invention uses manganese, which is extremely active in simultaneously removing ozone and compounds selected from carbon monoxide and hydrocarbons.
It relates to ferrite catalysts.

本発明のマンガン・フェライト触媒は、例えばマンガン
及び鉄の可溶性塩の混合溶液と蟻酸アンモニウム、蓚酸
アンモニウム、マロン酸アンモニウム又は炭酸アンモニ
ウム等から、加熱により容易に炭酸ガスを発生する無機
酸又は有機酸のマンガン塩及び鉄塩を共沈させ、乾燥、
300〜8゜OoCでの焼成を行いマンガン・フェライ
トを得た後、生成したマンガン・フェライトを通常の成
形法で成形して触媒として使用する。
The manganese ferrite catalyst of the present invention is an inorganic or organic acid that easily generates carbon dioxide gas by heating, for example, from a mixed solution of soluble salts of manganese and iron and ammonium formate, ammonium oxalate, ammonium malonate, or ammonium carbonate. Co-precipitate manganese salt and iron salt, dry,
After obtaining manganese ferrite by performing calcination at 300 to 8° OoC, the produced manganese ferrite is molded by a conventional molding method and used as a catalyst.

(ホ)発明の効果 本発明のマンガン・フェライト触媒は、−10〜50°
Cの低温好ましくは0〜40°Cにおいてもオゾン分解
性能が高く且つ活性低下が非常に少ない。
(e) Effects of the invention The manganese ferrite catalyst of the present invention has a temperature of -10 to 50°
The ozone decomposition performance is high even at low temperatures of C, preferably from 0 to 40°C, and the decrease in activity is very small.

又、飲方pp+mに達する高濃度のオゾンを効率良く分
解することができる。
In addition, it is possible to efficiently decompose ozone at a high concentration reaching pp+m.

更に、本発明のマンガン・フェライト触媒は、酸素の存
在下、一酸化炭素及び炭化水素から選ばれる化合物とオ
ゾンの同時分解除去においても極めて活性が高い。
Furthermore, the manganese ferrite catalyst of the present invention has extremely high activity in the simultaneous decomposition and removal of ozone and a compound selected from carbon monoxide and hydrocarbons in the presence of oxygen.

(ト)実施例 次に、本発明の実施例を具体的に説明するが、本発明は
これらによって限定されるものではない。
(g) Examples Next, examples of the present invention will be specifically described, but the present invention is not limited thereto.

実施例1 硫酸第1マンガン7水和物9.2kgを水1001に溶
解した溶液と硫酸鉄アンモニウム6水和物77.6kg
を水2001に溶解した溶液を混合した。
Example 1 A solution of 9.2 kg of manganous sulfate heptahydrate dissolved in 100 ml of water and 77.6 kg of ferrous ammonium sulfate hexahydrate
A solution of 2001 in water was mixed.

次に、蓚酸アンモニウム37.2kgを水3001に溶
解した溶液を添加し数分間撹拌し1時間放置したところ
、蓚酸マンガンと蓚酸鉄の共沈澱物が得られた。
Next, a solution of 37.2 kg of ammonium oxalate dissolved in 3001 of water was added, stirred for several minutes, and left to stand for 1 hour, resulting in a coprecipitate of manganese oxalate and iron oxalate.

この共沈澱物を濾過、水洗、乾燥、400°Cでの焼成
及び粉砕を行いマンガン・フェライト粉末を得た。
This coprecipitate was filtered, washed with water, dried, fired at 400°C, and pulverized to obtain manganese ferrite powder.

次に、マンガン・フェライト粉末60部、アルミナ及び
酸化珪素を主成分とする粘土鉱物30部、カルボキシメ
チルセルロース10部及び水10部を混合しスクリュー
押出機にて成型後、105°Cで12時間乾燥し80龍
φX3201龍(500セル/1n2)のマンガン・フ
ェライトハニカム触媒を得た。
Next, 60 parts of manganese ferrite powder, 30 parts of clay mineral mainly composed of alumina and silicon oxide, 10 parts of carboxymethyl cellulose, and 10 parts of water were mixed, molded using a screw extruder, and dried at 105°C for 12 hours. A manganese ferrite honeycomb catalyst with a diameter of 80 mm and a diameter of 3201 mm (500 cells/1n2) was obtained.

このマンガン・フェライトハニカム触媒をステンレス反
応管に入れ、入口ガスとして50000ppmのオゾン
(残りは空気)を、10〜20°Cで5J/minの流
量で通過させ、出口オゾン濃度を測定した。
This manganese ferrite honeycomb catalyst was placed in a stainless steel reaction tube, and 50,000 ppm of ozone (the rest was air) was passed through the tube as an inlet gas at a flow rate of 5 J/min at 10 to 20° C., and the outlet ozone concentration was measured.

オゾンの分解率は600時間経過後も99.9%以上で
あった。第1表にその分解結果を示す。
The ozone decomposition rate remained at 99.9% or higher even after 600 hours. Table 1 shows the decomposition results.

(以下、余白) 第1表 オゾン分解率 実施例2 実施例1と同様にして得たマンガン・フェライトハニカ
ム80鰭φXl0(l關(500セル/in ”)をス
テンレス反応管に入れ、入口ガスとして5000ppm
のオゾン(残りは空気)を、10〜20 ’Cで101
 /minの流量で通過させた。
(The following is a blank space) Table 1 Ozone decomposition rate Example 2 Manganese ferrite honeycomb 80 φ 5000ppm
of ozone (the rest is air) at 10-20'C.
It was allowed to pass through at a flow rate of /min.

第2表にその分解結果を示す。Table 2 shows the decomposition results.

又、l000時間後も、出口オゾン濃度は0.1pi1
1以下を示した。
Also, even after 1000 hours, the outlet ozone concentration remains 0.1pi1.
It showed 1 or less.

即ち、本触媒は常温でオゾン分解に対して極めて高い活
性を示し、しかも活性の低下が非常に少ないものである
ことが分かった。
That is, it was found that the present catalyst exhibited extremely high activity against ozone decomposition at room temperature, and the decrease in activity was extremely small.

比較例I 低温酸化で優れた性能を発揮する触媒として知られてい
る市販銅マンガンポツプカライド粉末を実施例1と同様
にしてハニカム状に成形し、実施例2と同様にしてオゾ
ン分解反応を行った。
Comparative Example I Commercially available copper manganese popcalide powder, which is known as a catalyst that exhibits excellent performance in low-temperature oxidation, was formed into a honeycomb shape in the same manner as in Example 1, and an ozone decomposition reaction was carried out in the same manner as in Example 2. went.

第2表にその結果を示す。Table 2 shows the results.

実施例3 実施例1のマンガン・フェライト粉末に1重量%の黒鉛
を添加後、3 / 161nchX 3 / 161n
chの円筒状に成形し、以下の条件でオゾン分解反応を
行った。第3表にその結果を示す。
Example 3 After adding 1% by weight of graphite to the manganese ferrite powder of Example 1, 3/161nchX 3/161n
The sample was molded into a cylindrical shape, and an ozone decomposition reaction was performed under the following conditions. Table 3 shows the results.

入口オゾン20ppa+(残りは空気)SV= 100
00hr−’ 比較例2 市販パラジウム触媒(0,1%パラジウム/酸化アルミ
ニウム)を使用し、実施例3と同様にしてオゾン分解反
応を行った。第3表にその結果を示す。
Inlet ozone 20ppa + (remaining air) SV = 100
00hr-' Comparative Example 2 An ozone decomposition reaction was carried out in the same manner as in Example 3 using a commercially available palladium catalyst (0.1% palladium/aluminum oxide). Table 3 shows the results.

比較例3 市販白金触媒(0,2%白金/酸化アルミニウム)を使
用し、実施例3と同様にしてオゾン分解反応を行った。
Comparative Example 3 An ozone decomposition reaction was carried out in the same manner as in Example 3 using a commercially available platinum catalyst (0.2% platinum/aluminum oxide).

第3表にその結果を示す。Table 3 shows the results.

実施例4 実施例1のマンガン・フェライトハニカムを使用し、n
−ブタン分解(酸化)反応を以下の条件で行った。第4
表にその結果を示す。
Example 4 Using the manganese ferrite honeycomb of Example 1, n
-Butane decomposition (oxidation) reaction was carried out under the following conditions. Fourth
The results are shown in the table.

入口n−ブタン10100pp残りは空気)SV=50
00hr−’ 比較例4 比較例2の銅マンガンポツプカライドハニカムを使用し
、実施例4と同様にしてn−ブタン分解(酸化)反応を
行った。
Inlet n-butane 10100pp, remaining air) SV=50
00hr-' Comparative Example 4 Using the copper manganese popcalide honeycomb of Comparative Example 2, an n-butane decomposition (oxidation) reaction was carried out in the same manner as in Example 4.

第4表にその結果を示す。Table 4 shows the results.

実施例5 実施例1のマンガンフェライトハニカム触媒を使用し、
−酸化炭素除去反応を以下の条件で行った。第5表にそ
の結果を示す。
Example 5 Using the manganese ferrite honeycomb catalyst of Example 1,
-The carbon oxide removal reaction was carried out under the following conditions. Table 5 shows the results.

一酸化炭素200ppm(残りは空気)SV=5000
 hr−’ 比較例5 有害ガス浄化用に広く利用されている市販白金ハニカム
(0,2%白金/酸化アルミニウム)を使用し、実施例
5と同様にして一酸化炭素除去(酸化)反応を行った。
Carbon monoxide 200ppm (the rest is air) SV=5000
hr-' Comparative Example 5 Using a commercially available platinum honeycomb (0.2% platinum/aluminum oxide) that is widely used for purifying harmful gases, carbon monoxide removal (oxidation) reaction was carried out in the same manner as in Example 5. Ta.

第5表にその結果を示す。Table 5 shows the results.

実施例6 実施例1のマンガン・フェライトハニカム触媒に、オゾ
ン2000ppmSn−ブタン1100pp及び−酸化
炭素200 ppn+を含む混合ガス(残りは空気)を
150°C,5V=5000hr−’の割合で通した。
Example 6 A mixed gas containing 2000 ppm of ozone, 1100 ppm of Sn-butane, and 200 ppn+ of -carbon oxide (the rest being air) was passed through the manganese ferrite honeycomb catalyst of Example 1 at 150°C and at a rate of 5V = 5000 hr-'.

その結果は次の通りであった。The results were as follows.

゛オゾン分解率   100% n−ブタン分解率  89.7% 一酸化炭素除去率  99.3% 実施例4及び実施例5と比較して混合ガスの場合、n−
ブタン及び−酸化炭素の分解率は更に高くなった。
゛Ozone decomposition rate 100% n-butane decomposition rate 89.7% Carbon monoxide removal rate 99.3% In the case of mixed gas, n-
The decomposition rates of butane and carbon oxide were even higher.

第5表 −酸化炭素除去率 日産ガードラー触媒株式会社Table 5 - Carbon oxide removal rate Nissan Girdler Catalyst Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)オゾン分解用マンガン・フェライト触媒(2)酸
素の存在下、一酸化炭素及び炭化水素から選ばれる化合
物とオゾンの同時分解用マンガン・フェライト触媒
(1) Manganese ferrite catalyst for ozone decomposition (2) Manganese ferrite catalyst for simultaneous decomposition of ozone and a compound selected from carbon monoxide and hydrocarbons in the presence of oxygen
JP2899487A 1987-02-10 1987-02-10 Manganese / ferrite catalyst Expired - Lifetime JP2509600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2899487A JP2509600B2 (en) 1987-02-10 1987-02-10 Manganese / ferrite catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2899487A JP2509600B2 (en) 1987-02-10 1987-02-10 Manganese / ferrite catalyst

Publications (2)

Publication Number Publication Date
JPS63197548A true JPS63197548A (en) 1988-08-16
JP2509600B2 JP2509600B2 (en) 1996-06-19

Family

ID=12263966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2899487A Expired - Lifetime JP2509600B2 (en) 1987-02-10 1987-02-10 Manganese / ferrite catalyst

Country Status (1)

Country Link
JP (1) JP2509600B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531381A (en) * 2001-05-15 2004-10-14 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Treatment of air pollutants
EP2246305A1 (en) * 2009-04-29 2010-11-03 IFP Energies nouvelles Mixed iron-manganese oxides for high temperature oxygen production
CN116510782A (en) * 2023-04-28 2023-08-01 浙江工业大学 ZIFs-derived core-shell magnetic nano ozone catalyst, preparation method and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6776970B1 (en) 1995-08-07 2004-08-17 Giorgio Vergani Getter materials for deoxygenating ammonia/oxygen gas mixtures at low temperature

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004531381A (en) * 2001-05-15 2004-10-14 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Treatment of air pollutants
EP2246305A1 (en) * 2009-04-29 2010-11-03 IFP Energies nouvelles Mixed iron-manganese oxides for high temperature oxygen production
FR2945036A1 (en) * 2009-04-29 2010-11-05 Inst Francais Du Petrole FER-MANGANESE MIXED OXIDES FOR THE PRODUCTION OF HIGH TEMPERATURE OXYGEN
US8211212B2 (en) 2009-04-29 2012-07-03 Ifp Mixed iron-manganese oxides for high-temperature oxygen production
CN116510782A (en) * 2023-04-28 2023-08-01 浙江工业大学 ZIFs-derived core-shell magnetic nano ozone catalyst, preparation method and application

Also Published As

Publication number Publication date
JP2509600B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
TW520998B (en) Catalyst and method for decomposing nitrous oxide and process for producing the catalyst
CN102580525A (en) Method for using activated carbon load copper oxide composite catalyst to absorb nitrogenous oxide
JPH02198639A (en) Catalyst for decomposing ammonia
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
JP4861018B2 (en) Nitric oxide oxidation catalyst and nitric oxide oxidation method
JP2002355558A (en) Method for oxidation removal of formaldehyde
JPS63197548A (en) Manganese and ferrite catalyst
JP5483723B2 (en) Nitrous oxide decomposition catalyst and purification method of gas containing nitrous oxide using the same
JPH11502152A (en) Process and apparatus for wastewater treatment by oxidation in the presence of a heterogeneous catalyst
JP2711463B2 (en) Exhaust gas purification method
JPH0510973B2 (en)
JP4246584B2 (en) Method for purifying ammonia-containing exhaust gas and ammonia-containing wastewater
JPH0239297B2 (en)
JPH04371228A (en) Gold catalyst for removal of malodorous substance
JPH09313940A (en) Ammonia oxidation decomposition catalyst
JPH09155364A (en) Treatment of waste water
JP2001104781A (en) Material for removing nitrogen oxide and method for removing it
JPS61274729A (en) Removal of hydrogen cyanide in exhaust gas
JP3622211B2 (en) Methane oxidation method
JP2013056295A (en) Method for regeneration of nitrous oxide decomposition catlyst
JPS6152729B2 (en)
KR940006400B1 (en) Method and apparatus for processing nitrogen oxide gas
JP4092538B2 (en) Method for producing hydrogen-containing gas
JP2017094309A (en) Aldehyde removal catalyst, method for producing the same, and aldehyde gas removal method