JP2013208539A - Radical water - Google Patents

Radical water Download PDF

Info

Publication number
JP2013208539A
JP2013208539A JP2012080016A JP2012080016A JP2013208539A JP 2013208539 A JP2013208539 A JP 2013208539A JP 2012080016 A JP2012080016 A JP 2012080016A JP 2012080016 A JP2012080016 A JP 2012080016A JP 2013208539 A JP2013208539 A JP 2013208539A
Authority
JP
Japan
Prior art keywords
water
radical
ozone
hydroxyl radical
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012080016A
Other languages
Japanese (ja)
Inventor
Seiichi Ishikawa
精一 石川
Teruhisa Yokono
照尚 横野
Hisato Haraga
久人 原賀
Tomohiko Higuchi
友彦 樋口
Fumio Nishimura
文夫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Shinryo Corp
Kitakyushu Foundation for Advancement of Industry Science and Technology
Fujico Co Ltd
Original Assignee
Kyushu Institute of Technology NUC
Shinryo Corp
Kitakyushu Foundation for Advancement of Industry Science and Technology
Fujico Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Shinryo Corp, Kitakyushu Foundation for Advancement of Industry Science and Technology, Fujico Co Ltd filed Critical Kyushu Institute of Technology NUC
Priority to JP2012080016A priority Critical patent/JP2013208539A/en
Publication of JP2013208539A publication Critical patent/JP2013208539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide radical water with high oxidation reduction potential, capable of enhancing wettability of objects, including no salts and few impurities, with long lifetime of hydroxyl radical, and suitably used for applications such as precision cleaning water for semiconductors, etc., a hydrophilic agent, sterilizing/cleaning water, and an antistatic agent.SOLUTION: Ozone water obtained by dissolving ozone in water is used as raw material of radical water which contains hydroxyl radical generated by photocatalytic reaction and decomposition reaction of water and ozone caused by ultraviolet rays as a main component of active oxygen. Ozone concentration of the ozone water is equal to or higher than 4 mg/L, and oxidizing power of the hydroxyl radical can remain for 5 minutes or longer by keeping the hydroxyl radical in fine bubble generated in the radical water by an ultrasonic oscillator or by a fine bubble generator.

Description

本発明は、半導体等の洗浄水や親水剤、殺菌洗浄水、静電気の防止水等の用途に使用できるラジカル水に関する。   The present invention relates to radical water that can be used for applications such as cleaning water for semiconductors and the like, hydrophilic agents, sterilizing cleaning water, antistatic water, and the like.

従来から、活性酸素は生体内や自然界に存在し、スーパーオキシドアニオンラジカル(・O2 -)、ヒドロキシルラジカル(OH・)、オゾン(O3)、過酸化水素(H22)、一酸化窒素(NO)、次亜塩素酸(HOCl)、一重項酸素(12)等がこれにあたる。これらの水溶液は、酸化力の高さから、脱臭や除菌、殺菌等に使用されている。しかし、スーパーオキシドアニオンラジカル(・O2 -)やヒドロキシルラジカル(OH・)等の活性酸素種は、半減期が短く、汎用性に欠けるという課題があった。この課題を解決するために、(特許文献1)には、「イオン類を含有する水溶液に、紫外線照射された光触媒体で惹起された遊離電子および正孔(フォトン)を水と効率よく反応させことにより、活性酸素種を大量に発生させ、さらに水溶液中の溶質とを反応させることにより、前記溶質より生成したイオン種を含有する活性酸素水を生成し、優れた殺菌能および原虫類の駆虫能、有機物分解能を長時間保持作用する機能を有する活性酸素水を生成する、活性酸素水生成方法。」が開示されている。 Conventionally, the active oxygen is present in vivo and the natural world, superoxide anion radical (· O 2 -), hydroxyl radical (OH ·), ozone (O3), hydrogen peroxide (H 2 O 2), nitrogen monoxide (NO), hypochlorous acid (HOCl), singlet oxygen ( 1 O 2 ), and the like. These aqueous solutions are used for deodorization, sterilization, sterilization and the like because of their high oxidizing power. However, active oxygen species such as superoxide anion radical (.O 2 ) and hydroxyl radical (OH.) Have a short half-life and lack versatility. In order to solve this problem, (Patent Document 1) states that “an aqueous solution containing ions causes free electrons and holes (photons) induced by a photocatalyst irradiated with ultraviolet rays to react efficiently with water. By generating a large amount of active oxygen species and reacting with a solute in an aqueous solution, an active oxygen water containing an ionic species generated from the solute is generated, and has excellent bactericidal ability and a protozoan anthelmintic And active oxygen water generating method for generating active oxygen water having a function of maintaining an organic substance resolution for a long time.

特開2008−272616号公報JP 2008-272616 A

しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)に開示の技術は、種々の活性酸素種を含有した活性酸素水であり、
殺菌能や駆虫能、有機物分解能等が長時間保持作用する機能を有するが、ガス類や塩類を含有するので、半導体等の精密洗浄等に使用する場合は、塩類が汚染の原因になり得るという課題を有していた。
However, the above conventional techniques have the following problems.
(1) The technique disclosed in (Patent Document 1) is an active oxygen water containing various active oxygen species,
It has a function to keep sterilizing ability, anthelmintic ability, organic matter resolution, etc. for a long time, but since it contains gases and salts, when used for precision cleaning of semiconductors, etc., salts can cause contamination. Had problems.

本発明は上記従来の課題を解決するもので、酸化還元電位が高く、物の濡れ性を高めることができ、不純物が少なく、ヒドロキシルラジカル(OH・)の寿命が長くて、半導体等の精密洗浄水、親水剤、殺菌洗浄水、静電気防止剤等の用途に好適に用いることができるラジカル水を提供することを目的とする。   The present invention solves the above-mentioned conventional problems. It has a high oxidation-reduction potential, can improve the wettability of objects, has few impurities, has a long hydroxyl radical (OH.) Life, and precisely cleans semiconductors and the like. It aims at providing radical water which can be used suitably for uses, such as water, a hydrophilic agent, sterilization washing water, and an antistatic agent.

上記従来の課題を解決するために、本発明のラジカル水は、以下の構成を有している。
本発明の請求項1に記載のラジカル水は、水にオゾンを溶解させたオゾン水を原料とし、光触媒反応と、紫外線による水及びオゾンの分解反応と、によって生成されたヒドロキシルラジカルを活性酸素の主成分として含有したラジカル水であって、
前記オゾン水のオゾン濃度が4mg/L以上であるとともに、超音波発振器又は微細気泡発生装置によって前記ラジカル水中に発生させた微細気泡に前記ヒドロキシルラジカルが保持されることで、前記ヒドロキシルラジカルによる酸化力を5分以上残存させる構成を有している。
この構成により、以下のような作用が得られる。
(1)紫外線をオゾン水に照射するので、オゾンが分解し水と反応することでヒドロキシルラジカル(OH・)が大量に発生するとともに、光触媒反応によって水と酸素からもヒドロキシルラジカル(OH・)が発生するので、ヒドロキシルラジカル(OH・)の濃度の高いラジカル水を得ることができる。
(2)水に溶解するオゾンの濃度が4mg/L以上であるので、紫外線により分解されるオゾンの量が多く、分解により多量にヒドロキシルラジカル(OH・)が生成されるので、ヒドロキシルラジカル(OH・)の濃度が高く、酸化還元電位の高いラジカル水を得ることができる。
(3)発生させた微細気泡内部にヒドロキシルラジカル(OH・)を閉じこめるので、ヒドロキシルラジカル(OH・)を長時間保持することができ、ラジカル水の寿命の長くすることができる。
(4)ヒドロキシルラジカル(OH・)を主成分とするラジカル水は、酸化力に優れるとともに、洗浄力が高く、両性金属も酸化被膜を作ることなくイオン化できるので、ラジカル水中の不純物が少なければ半導体の洗浄等に好適に使用することができる。
(5)生成されるヒドロキシルラジカル(OH・)が他の物質と反応しても水に戻るだけであるため、動植物に対する安全性に優れ、環境保護性にも優れる。
(6)活性酸素種の中でも酸化力の強いヒドロキシルラジカル(OH・)の酸化能力が5分以上残存されるので、精密洗浄水、親水剤、殺菌洗浄水、静電気防止剤等の様々な用途に使用することができ、汎用性に優れる。
(7)ヒドロキシルラジカル(OH・)は接触したものの濡れ性をよくすることができるので、ろ紙、ガラスや合成樹脂性のフィルタ(膜)、衣類等の親水材として使用することができる。
(8)ラジカル水は殺菌性や有機物の分解性があり、また、低分子のヒドロキシルラジカル(OH・)による反応であるので、動植物等の高分子物質と接触しても表面でしか反応せず、薬品を用いる場合よりも安全に農作物等の植物や人等の動物の殺菌洗浄に好適に用いることができるうえ、便器や床等の建材等の殺菌洗浄にも好適に用いることができるや生き物の殺菌・洗浄を行うことができる。
(9)ラジカル水中にヒドロキシルラジカル(OH・)が存在するので、静電気による物質表面の電荷の偏りを戻し、放電の危険性を抑えることができる。
In order to solve the above conventional problems, the radical water of the present invention has the following configuration.
The radical water according to claim 1 of the present invention uses, as a raw material, ozone water in which ozone is dissolved in water, and hydroxyl radicals generated by photocatalytic reaction and water and ozone decomposition reaction by ultraviolet rays are converted into active oxygen. Radical water contained as a main component,
The ozone concentration of the ozone water is 4 mg / L or more, and the hydroxyl radicals are held in the microbubbles generated in the radical water by an ultrasonic oscillator or a microbubble generator, whereby the oxidizing power of the hydroxyl radicals For 5 minutes or more.
With this configuration, the following effects can be obtained.
(1) Since ultraviolet light is irradiated to ozone water, a large amount of hydroxyl radicals (OH.) Are generated by decomposing ozone and reacting with water, and hydroxyl radicals (OH.) Are also generated from water and oxygen by photocatalytic reaction. Since it is generated, radical water having a high concentration of hydroxyl radicals (OH.) Can be obtained.
(2) Since the concentration of ozone dissolved in water is 4 mg / L or more, the amount of ozone decomposed by ultraviolet rays is large, and a large amount of hydroxyl radical (OH.) Is generated by decomposition. A radical water having a high concentration of (-) and a high redox potential can be obtained.
(3) Since the hydroxyl radical (OH.) Is confined inside the generated fine bubbles, the hydroxyl radical (OH.) Can be held for a long time, and the lifetime of the radical water can be extended.
(4) Radical water mainly composed of hydroxyl radicals (OH.) Has excellent oxidizing power, high detergency, and amphoteric metals can be ionized without forming an oxide film. It can be suitably used for cleaning and the like.
(5) Since the generated hydroxyl radical (OH.) Reacts with other substances and returns only to water, it is excellent in safety for animals and plants and excellent in environmental protection.
(6) Since the oxidizing ability of hydroxyl radical (OH.), Which has strong oxidizing power among active oxygen species, remains for more than 5 minutes, it can be used in various applications such as precision cleaning water, hydrophilic agent, sterilizing cleaning water, antistatic agent, etc. It can be used and has excellent versatility.
(7) Since the hydroxyl radical (OH.) Can improve the wettability of the contacted hydroxyl radical (OH.), It can be used as a hydrophilic material for filter paper, glass, synthetic resin filters (films), clothing and the like.
(8) Radical water has bactericidal properties and decomposability of organic substances, and is a reaction with low-molecular hydroxyl radicals (OH.), So it reacts only on the surface even when contacted with high-molecular substances such as animals and plants. It can be used more safely for sterilization and cleaning of plants such as crops and animals such as humans, and safer than when using chemicals, and can also be used for sterilization and cleaning of building materials such as toilets and floors. Can be sterilized and washed.
(9) Since the hydroxyl radical (OH.) Exists in the radical water, it is possible to restore the bias of the surface of the substance due to static electricity and to suppress the risk of discharge.

本発明において、ラジカル水とは活性酸素における活性酸素種、特にヒドロキシルラジカル(OH・)を主成分として含有した水のことである。
ラジカル水中のヒドロキシルラジカル(OH・)等の活性酸素種は不安定であるため、直接的に濃度を特定し難く、酸化還元電位で濃度を特定することが好ましい。ラジカル水の酸化還元電位は、250〜700mvのものが好適に使用される。酸化還元電位が250mvより低くなるにつれ、活性酸素種の濃度が低く、酸化力や洗浄力が低くなる傾向にあり好ましくない。酸化還元電位が700mvより高くなるにつれ、ラジカル水の製造の際に光触媒との接触時間を長くする必要があり、オゾン水の流量を下げる、又は、装置を大型にする等の必要があり、汎用性に欠ける傾向にあり好ましくない。
In the present invention, radical water is water containing active oxygen species in active oxygen, particularly hydroxyl radical (OH.) As a main component.
Since reactive oxygen species such as hydroxyl radical (OH.) In radical water are unstable, it is difficult to specify the concentration directly, and it is preferable to specify the concentration by the redox potential. A radical water oxidation-reduction potential of 250 to 700 mV is preferably used. As the oxidation-reduction potential becomes lower than 250 mV, the concentration of active oxygen species tends to be low, and the oxidizing power and cleaning power tend to be low, which is not preferable. As the oxidation-reduction potential becomes higher than 700 mV, it is necessary to increase the contact time with the photocatalyst during the production of radical water, and it is necessary to reduce the flow rate of ozone water or increase the size of the apparatus. It is not preferable because it tends to lack in nature.

ここで、ヒドロキシルラジカル(OH・)の発生方法の1つとしては、水と酸化チタン、酸化タングステン、酸化亜鉛、酸化ニオブ、酸化モリブデン、酸化バナジウム、硫化カドミウム等の光触媒に接触させた状態で、波長400nm以下の紫外線を光触媒に照射し、光触媒反応を起こすことで発生させる方法がある。また、紫外線によるオゾンの分解反応や、185nm以下の紫外線による水を分解反応によってもヒドロキシルラジカル(OH・)を発生させることができる。
更に、50μm以下の微細気泡は、消失時に気泡内が高温高圧になることにより、水分子を熱分解しヒドロキシルラジカル(OH・)を発生させると考えられている。また、発生したヒドロキシルラジカル(OH・)が気泡中に捉えられることで、ヒドロキシルラジカル(OH・)等の活性酸素種の半減期を長くすることができると考えられている。
Here, as one method for generating hydroxyl radicals (OH.), Water and titanium oxide, tungsten oxide, zinc oxide, niobium oxide, molybdenum oxide, vanadium oxide, cadmium sulfide and the like are in contact with a photocatalyst such as There is a method of generating a photocatalyst by irradiating the photocatalyst with ultraviolet light having a wavelength of 400 nm or less. Further, hydroxyl radicals (OH.) Can also be generated by the decomposition reaction of ozone by ultraviolet rays or the decomposition reaction of water by ultraviolet rays of 185 nm or less.
Furthermore, it is believed that fine bubbles of 50 μm or less generate hydroxyl radicals (OH.) By thermally decomposing water molecules when the inside of the bubbles becomes high temperature and pressure when disappearing. Moreover, it is thought that the half life of active oxygen species, such as hydroxyl radical (OH *), can be lengthened because the generated hydroxyl radical (OH *) is caught in a bubble.

オゾンの発生方法としては、特に限定はしないが、波長が200nm以下の紫外線を空気に照射して酸素と反応させる方法、又は、酸素中で無声放電やアーク放電を行う方法等が用いられる。
原料のオゾン水は、これらの方法で発生したオゾンを不純物が極めて少ない超純水、純水、イオン交換水等に溶解させたものが用いられる。
オゾン水のオゾン濃度は4mg/L以上の濃度が好適に使用される。オゾン濃度が4mg/Lより低くなるにつれ、ヒドロキシルラジカル(OH・)の生成濃度が低くなり、酸化力や洗浄力が低下する傾向にあるので好ましくない。また、オゾン濃度の上限は、オゾンの飽和濃度までであれば特に限定されない。
尚、オゾン水の代わりに、水として純度の高い水と、オゾンガスを、紫外線の照射前に別々に系内に導入しても良い。純度の高い水程、溶解度が高いので、微細気泡状のオゾンガスと混合することによりオゾンを溶存させることができる。
また、水として、電気伝導率が温度25±2℃下で0.1μS/cm以下、好ましくは0.06μS/cm以下のものが用いられる。
A method for generating ozone is not particularly limited, and a method of irradiating air with an ultraviolet ray having a wavelength of 200 nm or less to react with oxygen, a method of performing silent discharge or arc discharge in oxygen, or the like is used.
As the raw material ozone water, ozone water generated by these methods is dissolved in ultrapure water, pure water, ion-exchanged water, or the like with very few impurities.
The ozone concentration is preferably 4 mg / L or more. As the ozone concentration is lower than 4 mg / L, the generation concentration of hydroxyl radical (OH.) Is lowered, and the oxidizing power and detergency tend to decrease, which is not preferable. Further, the upper limit of the ozone concentration is not particularly limited as long as it reaches the saturated ozone concentration.
Instead of ozone water, high-purity water and ozone gas may be separately introduced into the system before irradiation with ultraviolet rays. Since the higher the purity of the water and the higher the solubility, ozone can be dissolved by mixing with fine bubble-like ozone gas.
Water having an electrical conductivity of 0.1 μS / cm or less, preferably 0.06 μS / cm or less at a temperature of 25 ± 2 ° C. is used.

光触媒と反応させる紫外線の波長としては、100〜400nmのものが好適に使用され、170〜400nmのものがより好適に使用される。波長が170nmより短くなるにつれ、光透過性の薄板に石英ガラスを用いたとしても光の透過率が悪く、触媒の活性効率や水及びオゾンの分解効率が悪く、ヒドロキシルラジカル(OH・)の発生効率が悪くオゾンがラジカル水中に残存する傾向にあり、100nmより短くなるにつれ、その傾向が著しくなり好ましくない。また、400nmより長くなるにつれ、光触媒の活性が起こり難いので、ヒドロキシルラジカル(OH・)の発生効率が悪くなり好ましくない。   As a wavelength of the ultraviolet ray to be reacted with the photocatalyst, a wavelength of 100 to 400 nm is preferably used, and a wavelength of 170 to 400 nm is more preferably used. As the wavelength becomes shorter than 170 nm, even if quartz glass is used for the light-transmitting thin plate, the light transmittance is poor, the catalytic activity efficiency and the decomposition efficiency of water and ozone are poor, and the generation of hydroxyl radicals (OH.) The efficiency is poor and ozone tends to remain in the radical water, and as the wavelength becomes shorter than 100 nm, the tendency becomes remarkable, which is not preferable. Further, as the wavelength becomes longer than 400 nm, the activity of the photocatalyst hardly occurs, so that the generation efficiency of the hydroxyl radical (OH.) Is deteriorated, which is not preferable.

ヒドロキシルラジカル(OH・)を保持させる微細気泡としては、50μm以下の微細気泡であることが好ましい。微細気泡が50μmより大きくなるにつれ、水面まで浮上し易いので、水中に残存し難く、ヒドロキシルラジカル(OH・)を長時間保持することができなくなる傾向にあり好ましくない。
微細気泡を発生させることができれば、方法は特に限定はしないが、超音波発生装置や微細気泡発生装置等が用いることができる。
The fine bubbles for holding hydroxyl radicals (OH.) Are preferably fine bubbles of 50 μm or less. As the fine bubbles become larger than 50 μm, they tend to float up to the surface of the water, so that they hardly remain in water and tend to be unable to hold hydroxyl radicals (OH.) For a long time.
The method is not particularly limited as long as microbubbles can be generated, but an ultrasonic generator, a microbubble generator, or the like can be used.

次にラジカル水の製造方法について説明する。
ラジカル水の製造方法は、ラジカル水を、(a)短辺側寸法が1〜5mmの断面矩形形状で少なくとも長辺側の通水面側に光触媒がコーティングされた光透過性の通水路にオゾン濃度4mg/L以上のオゾン水を通過させる通水工程と、(b)前記通水路の長辺側外方に配置された紫外線照射部から前記通水路内に100nm〜400nmの波長の紫外線を照射して、オゾン及び水の分解を起こすとともに前記光触媒の光触媒反応によって活性酸素種の主成分としてヒドロキシルラジカルを生成するラジカル生成工程と、(c)微細気泡発生部により前記通水路下流中に50μm以下の微細気泡を発生させ、前記活性酸素種を前記微細気泡内部に保持させる保持工程と、を有している。
この構成により、以下のような作用が得られる。
(1)短辺側寸法が1〜5mmの断面矩形形状で長辺側通水面側に光触媒がコーティングされた光透過性の通水路に中に長辺側外方に配置された紫外線照射部から前記通水路内に100nm〜400nmの波長の紫外線を照射するのでオゾン水及び光触媒に効率良く紫外線が照射され、オゾンが分解されるとともに光触媒を活性化し、オゾン水はこの活性化した光触媒とも接触することと相俟って、ヒドロキシルラジカル(OH・)を主成分とする活性酸素種を高濃度で含有するラジカル水を短時間で得ることができる。
(2)微細気泡を通水路の下流で発生させるので、ヒドロキシルラジカル(OH・)を主成分とする活性酸素種が生成されて直ぐ、微細気泡内部に該活性酸素種を保持することができるので、ヒドロキシルラジカル(OH・)を高濃度で長時間保持することができる。
(3)通水路の断面を矩形形状にすることによって、紫外線を通水路中のオゾン水に効率よく照射するために短辺側寸法が1〜5mmと狭くしたにもかかわらず、その通水路面積を1〜5φのパイプ形状の通水路に比べ広くすることが出来、ラジカル水の生成量を増やすことが可能になる。
Next, a method for producing radical water will be described.
The method for producing radical water includes: (a) ozone concentration in a light-transmitting water passage in which (a) a rectangular cross section having a short side dimension of 1 to 5 mm and a photocatalyst is coated on at least the long water passage surface side. A water flow step of allowing ozone water of 4 mg / L or more to pass; and (b) irradiating ultraviolet rays having a wavelength of 100 nm to 400 nm into the water flow channel from an ultraviolet light irradiation unit disposed on the outer side of the long side of the water flow channel. A radical generating step of causing decomposition of ozone and water and generating a hydroxyl radical as a main component of active oxygen species by the photocatalytic reaction of the photocatalyst; and (c) 50 μm or less in the downstream of the water passage by the fine bubble generating part. And a holding step for generating fine bubbles and holding the active oxygen species inside the fine bubbles.
With this configuration, the following effects can be obtained.
(1) From an ultraviolet ray irradiation unit disposed on the outer side of the long side in a light-transmitting water passage having a rectangular shape with a short side dimension of 1 to 5 mm and a photocatalyst coated on the long side water passage surface side Since the ultraviolet ray having a wavelength of 100 nm to 400 nm is irradiated into the water passage, the ozone water and the photocatalyst are efficiently irradiated with the ultraviolet ray, the ozone is decomposed and the photocatalyst is activated, and the ozone water comes into contact with the activated photocatalyst. Combined with this, radical water containing a high concentration of active oxygen species mainly composed of hydroxyl radical (OH.) Can be obtained in a short time.
(2) Since the fine bubbles are generated downstream of the water channel, the reactive oxygen species can be held inside the fine bubbles as soon as the reactive oxygen species mainly composed of hydroxyl radical (OH.) Is generated. , The hydroxyl radical (OH.) Can be held at a high concentration for a long time.
(3) By making the cross section of the water passage into a rectangular shape, in order to efficiently irradiate the ozone water in the water passage with ultraviolet rays, the short side dimension is narrowed to 1 to 5 mm, but the water passage area Can be made wider than pipe-shaped water passages with a diameter of 1 to 5φ, and the amount of radical water produced can be increased.

通水路は、酸化チタン、酸化タングステン、酸化亜鉛、酸化ニオブ、酸化モリブデン、酸化バナジウム、硫化カドミウム等の光触媒がコーティングされた光透過性の薄板の少なくとも2枚を、コーティング面が向かい合うように並べて形成することが望ましい。
薄板間の距離(通水路の短辺側寸法)としては1〜5mmとすることが望ましい。薄板間の距離が1mmより狭くなるにつれ、通水路を通る際の水の抵抗が大きく水が流れ難いので、得られるラジカル水の量が大幅に減少する傾向にあり、5mmより広くなるにつれ、オゾン水あたりの紫外線照射密度が少なくなるとともに、光触媒と接触するオゾン水の量が減少し、通水路を通過する水量に対して、ヒドロキシルラジカル(OH・)の発生量が少なく、ヒドロキシルラジカル(OH・)の含有量が低いラジカル水しか得られなくなる傾向にあるので好ましくない。尚、薄板間の距離(通水路の短辺側寸法)は、通水部の材質や流入する水の流量(流速)、紫外線の強度(光量)、超音波の強度、微細気泡の発生量等の条件によっては、上記距離(寸法)に限定されず適宜選択することができる。
通水路を形成する光透過性の薄板としては、紫外線と透過するものであればどのようなものでも良いが、石英ガラス、フッ化バリウムガラス等を用いることが、不純物の溶出が少なくて好ましい。
The water passage is formed by arranging at least two light-transmitting thin plates coated with a photocatalyst such as titanium oxide, tungsten oxide, zinc oxide, niobium oxide, molybdenum oxide, vanadium oxide, and cadmium sulfide, with the coating surfaces facing each other. It is desirable to do.
The distance between the thin plates (the dimension on the short side of the water passage) is preferably 1 to 5 mm. As the distance between the thin plates becomes narrower than 1 mm, the resistance of the water when passing through the water passage is large and it is difficult for water to flow. Therefore, the amount of radical water obtained tends to decrease significantly, and as the distance becomes wider than 5 mm, ozone As the UV irradiation density per water decreases, the amount of ozone water that comes into contact with the photocatalyst decreases, and the amount of hydroxyl radicals (OH.) Generated is less than the amount of water passing through the water passage. ) Is not preferable because only radical water having a low content tends to be obtained. The distance between the thin plates (dimension on the short side of the water passage) is the material of the water passage, the flow rate of water (flow velocity), the intensity of ultraviolet light (light quantity), the intensity of ultrasonic waves, the amount of fine bubbles generated, etc. Depending on the conditions, the distance (dimension) is not limited and can be appropriately selected.
The light-transmitting thin plate that forms the water passage may be any material as long as it transmits ultraviolet rays. However, it is preferable to use quartz glass, barium fluoride glass, or the like because of less impurity elution.

微細気泡発生部としては、50μm以下の微細気泡が水中に生成されればどのようなものでも良く、超音波発生装置や微細気泡発生装置等が用いることができる。
微細気泡発生部が超音波発生装置の場合は、振動数が0.8MHz以上のものが好適に使用される。振動数が0.8MHzより小さくなるにつれ、微細気泡の発生量が減少し、保持できる活性酸素種の量が少なくなるので、ラジカル水中のヒドロキシルラジカル(OH・)量が減少する傾向にあり好ましくない。
The fine bubble generating unit may be any unit as long as fine bubbles of 50 μm or less are generated in water, and an ultrasonic generator, a fine bubble generator, or the like can be used.
When the microbubble generator is an ultrasonic generator, one having a frequency of 0.8 MHz or more is preferably used. As the frequency becomes smaller than 0.8 MHz, the amount of fine bubbles generated decreases and the amount of active oxygen species that can be retained decreases, which is not preferable because the amount of hydroxyl radical (OH.) In the radical water tends to decrease. .

紫外線照射部には紫外線照射部を覆うように紫外線反射部が形成されることが望ましい。紫外線反射部を形成することで、通水路に照射した紫外線は向かい合う反射部同士に反射仕合い、通水路を外れて照射された紫外線を通水部に集中させることができ、原料のオゾン水や通水部の光触媒に効率的に紫外線を当てることができ、オゾンの分解効率が良くなってヒドロキシルラジカル(OH・)が効率よく生成できる。紫外線照射部の反射率は80%以上であることが好ましい。反射率が80%より小さくなるにつれ、紫外線の反射量が減少するので、単位時間辺りの紫外線による光触媒反応やオゾンの分解量が減り、ラジカル水のヒドロキシルラジカル(OH・)の発生効率が落ちる傾向にあるので好ましくない。
紫外線照射部としては紫外線が照射できれば良く、水銀ランプやキセノンランプ、LEDランプ等を用いることができる。
It is desirable that an ultraviolet reflecting part is formed on the ultraviolet irradiation part so as to cover the ultraviolet irradiation part. By forming the ultraviolet reflection part, the ultraviolet rays irradiated to the water passage can be reflected between the reflection parts facing each other, and the ultraviolet ray irradiated through the water passage can be concentrated on the water supply part. Ultraviolet rays can be efficiently applied to the photocatalyst in the water passage portion, the ozone decomposition efficiency is improved, and hydroxyl radicals (OH.) Can be efficiently generated. The reflectance of the ultraviolet irradiation part is preferably 80% or more. As the reflectivity becomes smaller than 80%, the amount of reflected UV light decreases, so the photocatalytic reaction and ozone decomposition amount per unit time decreases, and the generation efficiency of hydroxyl radical (OH.) Of radical water tends to decrease. Therefore, it is not preferable.
As the ultraviolet irradiation unit, it is only necessary to irradiate ultraviolet rays, and a mercury lamp, a xenon lamp, an LED lamp, or the like can be used.

請求項2に記載のラジカル水は、請求項1に記載の発明であって、前記水が超純水である構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)ヒドロキシルラジカル(OH・)は、酸化力が強いので不純物があると反応し直ぐに消失してしまうが、オゾンを溶解させる水に不純物の極めて少ない超純水を使用することで、金属イオンや微生物等の不純物を含まず、発生させたヒドロキシルラジカル(OH・)が消失し難くなり、ヒドロキシルラジカル(OH・)を主成分とする活性酸素種を高濃度に保つことができるとともに、ヒドロキシルラジカル(OH・)の安定性に優れる。
The radical water according to claim 2 is the invention according to claim 1, wherein the water is ultrapure water.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) Hydroxyl radical (OH.) Has strong oxidizing power and will disappear immediately after reaction if there is an impurity. By using ultrapure water with very few impurities in water that dissolves ozone, And does not contain impurities such as microorganisms, the generated hydroxyl radicals (OH.) Are difficult to disappear, the active oxygen species mainly composed of hydroxyl radicals (OH.) Can be maintained at a high concentration, and the hydroxyl radicals Excellent (OH.) Stability.

請求項3に記載の半導体洗浄水は、請求項2に記載のラジカル水を含有する構成を有している。
この構成により、以下のような作用が得られる。
(1)不純物を含まない超純水由来の活性酸素主としてヒドロキシルラジカル(OH・)を主成分とするラジカル水であり、ヒドロキシルラジカル(OH・)は酸化力が強く、反応後は水に戻るだけなので、有機物の分解や金属のイオン化によりシリコンウェハ等の表面の精密洗浄に好適に使用することができる。
(2)シリコンウェハ等の洗浄に用いられているオゾンや無機酸の代わりに使用することができ、作業者が安全に作業できるとともに、有害廃液の排出を抑えることができる。
The semiconductor cleaning water according to claim 3 has a configuration containing the radical water according to claim 2.
With this configuration, the following effects can be obtained.
(1) Active oxygen derived from ultrapure water that does not contain impurities. It is radical water mainly composed of hydroxyl radicals (OH.). Hydroxyl radicals (OH.) Have strong oxidizing power and only return to water after the reaction. Therefore, it can be suitably used for precision cleaning of the surface of a silicon wafer or the like by decomposition of organic matter or ionization of metal.
(2) It can be used in place of ozone and inorganic acids used for cleaning silicon wafers, etc., and the operator can work safely and discharge of hazardous waste liquid can be suppressed.

ラジカル水を半導体洗浄水として用いる場合、ヒドロキシルラジカル(OH・)の濃度が高く、不純物が含まれていないものを用いることが望ましい。尚、超純水としては電気伝導率が0.055μS/cm(25±2℃)以下のものが用いられる。   When radical water is used as semiconductor cleaning water, it is desirable to use one having a high concentration of hydroxyl radicals (OH.) And no impurities. As ultrapure water, one having an electric conductivity of 0.055 μS / cm (25 ± 2 ° C.) or less is used.

金属のイオン化において、両性金属を酸化剤によりイオン化させる場合、オゾンやスーパーオキシドアニオン等の酸素系酸化剤では、両性金属の表面に酸化被膜が形成されイオン化が妨げられるのに対し、ヒドロキシルラジカル(OH・)はOHとの反応でイオン化するので、酸化被膜が形成されず酸素系酸化剤に比べ両性金属をイオン化し易い。これにより、無機酸で行っていた半導体等の表面の洗浄をラジカル水に置き換えることができ、無機酸を使用するよりも安全性が高く、無機酸の廃液の排出を抑えることができる。   In the ionization of metals, when amphoteric metals are ionized by an oxidizing agent, oxygen-based oxidizing agents such as ozone and superoxide anion form an oxide film on the surface of the amphoteric metal and prevent ionization, whereas hydroxyl radicals (OH Since ()) is ionized by reaction with OH, an oxide film is not formed, and it is easier to ionize amphoteric metals than oxygen-based oxidants. Thereby, cleaning of the surface of a semiconductor or the like, which has been performed with an inorganic acid, can be replaced with radical water, and safety is higher than when an inorganic acid is used, and discharge of an inorganic acid waste liquid can be suppressed.

請求項4に記載の親水剤は、請求項1又は2に記載のラジカル水を含有する構成を有している。
この構成により、以下の作用が得られる。
(1)ラジカル水がヒドロキシルラジカル(OH・)を含むので、ラジカル水を加工素材に浸透させることで素材等のぬれ性(親水性)を増大させることができ、加工素材と水がなじみ易くなるので、ろ紙、ガラスや合成樹脂性のフィルタ(膜)、衣類等に使用することで、通水性を良くすることができる。
The hydrophilic agent according to claim 4 has a configuration containing the radical water according to claim 1 or 2.
With this configuration, the following effects can be obtained.
(1) Since the radical water contains hydroxyl radical (OH.), Wetting (hydrophilicity) of the material can be increased by infiltrating the radical water into the processed material, so that the processed material and water are easily compatible. Therefore, water permeability can be improved by using it for filter paper, glass, a synthetic resin filter (membrane), clothing and the like.

ここで親水剤とは、噴霧や塗布、浸漬等することで物の濡れ性を改善することができるものを指す。
本件のラジカル水に含まれるヒドロキシルラジカル(OH・)は水との親和性があるので、ろ紙、ガラスや合成樹脂性のフィルタ(膜材)、衣類等の素材にラジカル水を接触,反応させることで該素材等の濡れ性を増大させることができ、通水性や透水性を高めることができる。
Here, the hydrophilic agent refers to a material that can improve the wettability of an object by spraying, coating, or dipping.
Since the hydroxyl radical (OH.) Contained in the radical water in this case has an affinity for water, the radical water is brought into contact with and reacted with materials such as filter paper, glass, synthetic resin filters (film materials), and clothing. Therefore, the wettability of the material can be increased, and the water permeability and water permeability can be increased.

請求項5に記載の殺菌洗浄水は、請求項1又は2に記載のラジカル水を含有する構成を有している。
この構成により、以下の作用を有する。
(1)ラジカル水中のヒドロキシルラジカル(OH・)は殺菌性を持つが、分子量が小さく動物や植物等の表面でしか反応しない。そのため、動植物表面を傷付けることなく殺菌でき、反応後のヒドロキシルラジカル(OH・)は水に戻るだけであるので、人体や食物の殺菌洗浄水として安全に使用することができる。
The sterilization washing water according to claim 5 has a configuration containing the radical water according to claim 1 or 2.
This configuration has the following effects.
(1) Hydroxyl radical (OH.) In radical water has bactericidal properties, but has a low molecular weight and reacts only on the surface of animals and plants. Therefore, it can be sterilized without damaging the surface of animals and plants, and the hydroxyl radical (OH.) After the reaction only returns to water, so it can be safely used as sterilized washing water for human bodies and food.

本発明のラジカル水は、酸化力が長時間残存するので、流水のまま使用でき、ヒドロキシルラジカル(OH・)が生成して直ぐの含有濃度が高い状態で、動植物を殺菌洗浄することができる。また、分子量の多い物質とは表面で反応せず、反応後は水になるので、薬品等による雑菌洗浄より安全性に優れる。また、散布等することで室内のウィルスや微生物の除去を行うことができ、院内感染等の消毒や殺菌等にも好適に使用できる。   Since the radical water of the present invention retains oxidizing power for a long time, it can be used as it is under running water, and animals and plants can be sterilized and washed in a state where the concentration concentration immediately after the generation of hydroxyl radicals (OH.) Is high. Moreover, since it does not react with a substance having a high molecular weight on the surface and becomes water after the reaction, it is superior in safety to washing germs with chemicals or the like. In addition, it is possible to remove indoor viruses and microorganisms by spraying and the like, and it can be suitably used for disinfection and sterilization such as hospital infection.

本発明のラジカル水を静電気防止水として用いることにより、請求項1で得られる作用に加え、以下の作用を有する。
(1)ラジカル水を含有した静電気防止水を、対象物に噴霧、塗布、浸漬等することで、該対象物表面の電気的偏りを戻すことができるので、対象物に静電気が蓄積され難くなり、火花放電等の発生を防止することができる。
By using the radical water of the present invention as antistatic water, it has the following actions in addition to the actions obtained in the first aspect.
(1) By spraying, applying, immersing, etc. antistatic water containing radical water on the object, the electrical bias on the object surface can be restored, so that static electricity is less likely to accumulate on the object. Generation of spark discharge or the like can be prevented.

以上のように、本発明のラジカル水によれば、以下のような有利な効果が得られる。
請求項1によれば、
(1)ヒドロキシルラジカル(OH・)の濃度が高く、酸化力に優れるともに、酸化力が長持ちするので、様々な用途に利用することできるラジカル水を提供することができる。
As described above, according to the radical water of the present invention, the following advantageous effects can be obtained.
According to claim 1,
(1) Since the concentration of hydroxyl radical (OH.) Is high, the oxidizing power is excellent, and the oxidizing power is long-lasting, it is possible to provide radical water that can be used for various purposes.

請求項2によれば、
(1)ヒドロキシルラジカル(OH・)を高濃度に保つことができるラジカル水を提供することができる。
According to claim 2,
(1) It is possible to provide radical water that can keep the hydroxyl radical (OH.) At a high concentration.

請求項3によれば、
(1)半導体等の表面に付着した有機物や金属等の汚れを洗浄することができ、オゾンや無機酸の代用として用いることで、作業者の安全を確保できるとともに、有害廃液の排出を抑えることができる半導体洗浄水を提供することができる。
According to claim 3,
(1) It can clean organic substances and metals adhering to the surface of semiconductors, etc., and can be used as a substitute for ozone and inorganic acids to ensure the safety of workers and suppress the discharge of hazardous waste liquid. It is possible to provide semiconductor cleaning water that can be used.

請求項4によれば、
(1)ろ紙、ガラスや合成樹脂性のフィルタ(膜)、衣類等の通水性や透水性を良くすることができる親水剤を提供することができる。
According to claim 4,
(1) It is possible to provide a hydrophilic agent that can improve water permeability and water permeability of filter paper, glass, a synthetic resin filter (membrane), clothing, and the like.

請求項5によれば、
(1)人体や食物等の殺菌洗浄を安全に行うことができる殺菌洗浄水を提供することができる。
According to claim 5,
(1) It is possible to provide sterilized washing water that can safely perform sterilization washing of human bodies and food.

ヒドロキシルラジカル水生成装置を正面側から見た斜視図The perspective view which looked at the hydroxyl radical water generating device from the front side ヒドロキシルラジカル水生成装置の要部断面正面図Cross-sectional front view of main parts of hydroxyl radical water generator ヒドロキシルラジカル水生成装置の要部断面側面図Cross-sectional side view of main parts of hydroxyl radical water generator ヒドロキシルラジカル水生成装置の要部断面正面図における紫外線照射部の拡大図Enlarged view of the ultraviolet irradiation part in the cross-sectional front view of the main part of the hydroxyl radical water generator ヒドロキシルラジカル水生成装置の上流に超純水装置及びオゾン水生成装置を連結した時の水の流れを示すヒドロキシルラジカル水生成システムの概要図Schematic diagram of a hydroxyl radical water generation system showing the flow of water when an ultrapure water device and an ozone water generator are connected upstream of the hydroxyl radical water generator 比較水1のオゾン濃度を100%としたとき酸化剤の割合を示したグラフThe graph which showed the ratio of the oxidizing agent when the ozone concentration of the comparative water 1 was 100% クロロゲン酸の添加による酸化剤の濃度変化を示したグラフGraph showing changes in oxidant concentration due to addition of chlorogenic acid 酸化還元電位の経時変化を示すグラフGraph showing the change over time of redox potential フタル酸エステル類の残留割合を示すグラフGraph showing the residual proportion of phthalates ラジカル水の酸化還元電位に対する生成金属イオンの濃度を示すグラフGraph showing the concentration of metal ions produced versus the redox potential of radical water 濁度の経時変化を示したグラフGraph showing aging of turbidity 試験水1及び比較水9における農薬の分解量を示したグラフThe graph which showed the degradation amount of the agrochemical in the test water 1 and the comparison water 9

以下、本発明を実施例により具体的に説明する。尚、本発明はこれらの実施例に限定されるものではない。
(ヒドロキシラジカル水生成装置)
185nmの波長の紫外線を照射する低圧水銀ランプ(株式会社栗原工業製:25−8UV−LAMP)と、周波数1MHzの超音波発振器(本多電子株式会社製:W−357LS−160)とをそれぞれ準備し、図1乃至図4に示すヒドロキシルラジカル水生成装置を準備した。
図1は実施の形態1のヒドロキシルラジカル水生成装置を正面側から見た斜視図であり、図2は実施の形態1のヒドロキシルラジカル水生成装置の要部断面正面図であり、図3は実施の形態1のヒドロキシルラジカル水生成装置の要部断面側面図であり、図4は実施の形態1のヒドロキシルラジカル水生成装置の要部断面正面図における紫外線照射部の拡大図である。
図1乃至図3において、1は実施の形態1のヒドロキシルラジカル水生成装置、1aはヒドロキシルラジカル水生成装置1の内部に収容されたヒドロキシルラジカル水生成部(図2)、1bはヒドロキシルラジカル水生成部1aの底板、2はヒドロキシルラジカル水生成部1aを支持するヒドロキシルラジカル水生成装置1の台部、3は台部2の底部に配設されたヒドロキシルラジカル水生成装置1の脚部、4は幅方向の中央部で長さ方向と平行に二分して形成されヒドロキシルラジカル水生成部1aを覆うように台部2上に覆設されたヒドロキシルラジカル水生成装置1の覆設部材、4aは台部2と覆設部材4の底辺との間に配設され覆設部材4を開閉自在に保持する覆設部材回動部、4bは覆設部材4の上面に配設され覆設部材4の開閉を固定する覆設部材掛止部、5は覆設部材4の側壁上部側にスリット状に形成された上部開口部、6は覆設部材4の内側に上部開口部5に対向するように配設され上部開口部5から外部への紫外線漏れを防止する上部遮断部(図2)、7は覆設部材4の側壁下部側にスリット状に形成された下部開口部、8は覆設部材4の内側に下部開口部7に対向するように配設され下部開口部7から外部への紫外線漏れを防止する下部遮断部(図2)、9は台部2の底部に形成され後述するヒドロキシルラジカル水生成部1aの通水部11に連通するフッ素樹脂製の流入口(図2、図3)、9aは流入口9に接続されヒドロキシルラジカル水生成部1aの内部に水を流入させるフッ素樹脂製の流入チューブ(図1、図2)、9bはヒドロキシルラジカル水生成部1aの底部に後述する超音波振動子27と密接するように形成され流入口9から流入した超純水やオゾン水等の水を溜める流入部(図2、図3)、9cは流入部9bとヒドロキシルラジカル水生成部1aの底部を連通させ流入部9bに溜った水を後述するヒドロキシルラジカル水生成部1aの通水部11に供給する給水部(図2)、10は流入口9と連設され台部2の底面側に固定されて0.5MHz以上の超音波を水に付与する微細気泡発生部としての超音波発振器(図1、図2)、10aは超音波発振器10の電源コード(図2、図3)、11は通水路12の幅が1〜5mmとなるように石英ガラスで形成されたヒドロキシルラジカル水生成部1aの通水部(図2)、11aは通水部11の下端部を台部2の上面に固定する通水部固定部(図2)、11bは通水路12の下端側で超音波発振器10側に拡開して形成された通水部11の拡開部(図2)、11dは通水部11の上部に覆設された蓋部、13は少なくとも通水路12側の表面に酸化チタン等の光触媒がコーティングされた厚さ2mmの石英ガラスの薄板で形成され通水路12の通水面側に対向して貼り付けられた光触媒部(図2、図3)、14は石英ガラスで形成され光触媒部13の間隔位置を通水路12内で固定する光触媒部固定部(図2、図3)、15は通水部11の両外側に配設された紫外線照射部(図2、図3)、16は水銀ランプ係止部16aで固定された紫外線照射部15の波長185nmの複数の水銀ランプ(図2、図3)、17は左右両側の水銀ランプ16の外側を覆うように配設され水銀ランプ16から照射される紫外線を光触媒部13側に反射させる紫外線反射板(図2、図3)、18,18’は紫外線反射板螺合部18aにより左右それぞれの紫外線反射板17を保持する紫外線反射板固定部(図2、図3)、18bは台部2の上面と各々の紫外線反射板固定部18,18’の下端部を固定し台部2に対して紫外線反射板固定部18,18’を回動自在に保持する紫外線反射板回動部(図2)、19は一端が紫外線反射板固定部18の上端部に形成された回動部19aに回動自在に保持され他端が紫外線反射板固定部18’の上端部に形成された掛止部19bに係止されて紫外線反射板固定部18,18’の上端部を固定する紫外線反射掛止部(図2)、20はヒドロキシルラジカル水生成部1aの長手方向の両端部で通水部11の光触媒部13よりも上部側に形成されフッ素樹脂製の取出しチューブ20aが連結されたフッ素樹脂製のヒドロキシルラジカル水の取出口(図3)、21はヒドロキシルラジカル水生成部1aの長手方向の両側で取出しチューブ20aを支えるチューブ支持部(図3)、22は取出口20に取出しチューブ20aを挿通するために覆設部材4に形成されたチューブ挿通口(図1、図3)、23は通水部11の蓋部11dの長手方向中央部に形成されたオーバーフロー水排出孔(図2、図3)、23aはフッ素系樹脂で形成されオーバーフロー水排出孔23に嵌合されたオーバーフロー水排出部(図2、図3)、23bはフッ素系樹脂で形成されオーバーフロー水排出部23aに連結され通水部11からオーバーフローした水を排出するチューブである。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
(Hydroxy radical water generator)
A low-pressure mercury lamp (Kurihara Kogyo Co., Ltd .: 25-8UV-LAMP) that irradiates ultraviolet rays with a wavelength of 185 nm and an ultrasonic oscillator with a frequency of 1 MHz (Honda Electronics Co., Ltd .: W-357LS-160) are prepared. Then, the hydroxyl radical water generator shown in FIGS. 1 to 4 was prepared.
FIG. 1 is a perspective view of the hydroxyl radical water generating device of the first embodiment as viewed from the front side, FIG. 2 is a cross-sectional front view of the principal part of the hydroxyl radical water generating device of the first embodiment, and FIG. FIG. 4 is an enlarged view of the ultraviolet irradiation unit in the cross-sectional front view of the main part of the hydroxyl radical water generating device of the first embodiment.
1 to 3, 1 is a hydroxyl radical water generating device of the first embodiment, 1 a is a hydroxyl radical water generating unit housed in the hydroxyl radical water generating device 1 (FIG. 2), and 1 b is hydroxyl radical water generating. The bottom plate of the part 1a, 2 is a base part of the hydroxyl radical water generating apparatus 1 that supports the hydroxyl radical water generating part 1a, 3 is a leg part of the hydroxyl radical water generating apparatus 1 disposed at the bottom part of the base part 2, 4 is The covering member of the hydroxyl radical water generating device 1 formed by being divided into two at the center in the width direction in parallel with the length direction and covering the hydroxyl radical water generating portion 1a so as to cover the hydroxyl radical water generating portion 1a. The covering member rotating portion 4b disposed between the portion 2 and the bottom side of the covering member 4 and holding the covering member 4 in an openable / closable manner is provided on the upper surface of the covering member 4. Open and close The covering member retaining portion 5 to be fixed is an upper opening formed in a slit shape on the upper side of the side wall of the covering member 4, and 6 is disposed inside the covering member 4 so as to face the upper opening 5. An upper blocking portion (FIG. 2) that prevents leakage of ultraviolet rays from the upper opening 5 to the outside, 7 is a lower opening formed in a slit shape on the lower side of the side wall of the covering member 4, and 8 is a lower portion of the covering member 4. A lower blocking portion (FIG. 2), which is disposed on the inner side so as to face the lower opening 7 and prevents ultraviolet leakage from the lower opening 7 to the outside, is formed at the bottom of the base portion 2 and is hydroxyl radical water described later. An inflow port made of fluororesin (FIGS. 2 and 3) and 9a communicating with the water passage portion 11 of the generation unit 1a are connected to the inflow port 9 and made of fluororesin that allows water to flow into the hydroxyl radical water generation unit 1a. Inflow tube (Figs. 1 and 2), 9b is hydroxyl radical water An inflow portion (FIGS. 2 and 3) and 9c for inflow of ultrapure water, ozone water, or the like that has been formed in close contact with an ultrasonic transducer 27, which will be described later, at the bottom of the formation portion 1a. The water supply section (FIG. 2) and 10 are the inlet 9 for communicating the bottom part of the part 9b and the hydroxyl radical water generating part 1a and supplying the water accumulated in the inflow part 9b to the water passing part 11 of the hydroxyl radical water generating part 1a described later. And an ultrasonic oscillator (FIGS. 1 and 2), 10a as an ultrasonic oscillator 10 that is fixed to the bottom surface of the base 2 and applies ultrasonic waves of 0.5 MHz or higher to water. The power cord (FIGS. 2 and 3), 11 is a water passing portion (FIG. 2) of the hydroxyl radical water generating portion 1a formed of quartz glass so that the width of the water passage 12 is 1 to 5 mm, and 11a is water passing. The water flow portion fixing the lower end portion of the portion 11 to the upper surface of the base portion 2 The fixed part (FIG. 2) and 11b are the expanded part (FIG. 2) of the water flow part 11 formed by expanding to the ultrasonic oscillator 10 side at the lower end side of the water flow path 12, and 11d is the upper part of the water flow part 11. The lid portion 13 is covered with a thin plate of quartz glass having a thickness of 2 mm and coated with a photocatalyst such as titanium oxide on at least the surface of the water passage 12, and is attached to face the water passage surface of the water passage 12. The attached photocatalyst parts (FIGS. 2 and 3) and 14 are made of quartz glass, and the photocatalyst part fixing parts (FIGS. 2 and 3) for fixing the interval positions of the photocatalyst parts 13 in the water passage 12 are provided. The ultraviolet irradiation part (FIG. 2, FIG. 3) arrange | positioned on the both outer sides of the part 11 and 16 are the several mercury lamps (FIG. 2, FIG. 2) of the ultraviolet irradiation part 15 of the ultraviolet irradiation part 15 fixed by the mercury lamp latching | locking part 16a. 3) and 17 are arranged so as to cover the outer sides of the mercury lamps 16 on both the left and right sides. UV reflectors (FIGS. 2 and 3), 18 and 18 ′ for reflecting the ultraviolet rays radiated from the light guide 16 toward the photocatalyst portion 13 side are ultraviolet rays which hold the left and right ultraviolet reflectors 17 by the ultraviolet reflector screwing portions 18a. Reflector plate fixing portions (FIGS. 2 and 3), 18b fix the upper surface of the base portion 2 and the lower end portions of the respective ultraviolet light reflector fixing portions 18, 18 ′, and the ultraviolet light reflector fixing portion 18, An ultraviolet light reflector rotating part (FIG. 2) for rotatably holding 18 ', 19 has one end rotatably held by a rotating part 19a formed at the upper end of the ultraviolet light reflector fixing part 18, and the other end. Are engaged with a latching portion 19b formed at the upper end portion of the ultraviolet light reflector fixing portion 18 'and fixed at the upper ends of the ultraviolet light reflector fixing portions 18, 18' (FIG. 2), 20 Is the light of the water passing portion 11 at both ends in the longitudinal direction of the hydroxyl radical water generating portion 1a. Fluorine resin-made hydroxyl radical water outlets (FIG. 3) formed on the upper side of the catalyst part 13 and connected to a fluororesin take-out tube 20a (21) are on both sides in the longitudinal direction of the hydroxyl radical water generating part 1a. Tube support portions (FIG. 3) and 22 for supporting the take-out tube 20a, 22 are tube insertion openings (FIGS. 1 and 3) formed in the covering member 4 for inserting the take-out tube 20a into the take-out port 20, and 23 is a water passage. An overflow water discharge hole (FIGS. 2 and 3) and 23a formed in the center of the lid portion 11d in the longitudinal direction of the portion 11 are formed of a fluorine-based resin and fitted into the overflow water discharge hole 23 ( 2 and 3) and 23b are tubes made of fluororesin and connected to the overflow water discharge part 23a to discharge the overflowed water from the water flow part 11. A.

次に、ヒドロキシルラジカル水生成装置1の紫外線照射部15の詳細について説明する。
図4中、11cは通水路12の光触媒部13との接触面(通水面側)に段差状に形成され光触媒部13の下端部が係止される光触媒部係止部、24は通水部11の下端部両側に形成されたフランジ部、24aは通水部11のフランジ部24と台部2及び超音波発振器10を連結固定する合成樹脂製の通水部留め具、25a,25bはフランジ部24からの水漏れを防ぐためフランジ部24の上下にそれぞれ配設されたパッキン、26は通水部留め具24aとパッキン25aの間に配設されフランジ部24を強固に抑えるための押さえ板、27は超音波発振器10で超音波を発振するサファイア製の超音波振動子、28は給水部9cから供給され通水路12を流れる流水、29は紫外線照射部15から通水路12に照射される紫外線、30は超音波発振部10から流水28方向に出される周波数0.5MHz以上の超音波である。
Next, the detail of the ultraviolet irradiation part 15 of the hydroxyl radical water production | generation apparatus 1 is demonstrated.
In FIG. 4, 11 c is a photocatalyst portion locking portion that is formed in a stepped shape on the contact surface (water flow surface side) of the water passage 12 with the photocatalyst portion 13, and 24 is locked to the lower end portion of the photocatalyst portion 13. 11, flange portions 24a formed on both sides of the lower end of the water passage portion 24a are synthetic resin water passage portion fasteners for connecting and fixing the flange portion 24 of the water passage portion 11 to the base portion 2 and the ultrasonic oscillator 10, and 25a and 25b are flange portions. Packings 26 provided on the upper and lower sides of the flange portion 24 to prevent water leakage from the portion 24 are provided between the water passage fastener 24a and the packing 25a, and a pressing plate for firmly holding the flange portion 24. , 27 is an ultrasonic transducer made of sapphire that oscillates ultrasonic waves by the ultrasonic oscillator 10, 28 is supplied from the water supply unit 9 c and flows through the water passage 12, and 29 is irradiated from the ultraviolet irradiation unit 15 to the water passage 12. UV, 30 is super An ultrasonic frequency of at least 0.5MHz issued in running water 28 direction from the wave oscillation unit 10.

次いで、超純水製造装置(日本ミリポア社製:Milli−QSP)、オゾン水生成装置(エコデザイン株式会社製:ED−OW−7)を準備し、超純水発生装置、オゾン水生成装置、ヒドロキシルラジカル水生成装置の順に、フッ素樹脂製のチューブで連結させた。この時の水の流れを、図5に示す。
図5はヒドロキシラジカル水生成装置の上流に超純水製造装置及びオゾン水生成装置を連設した時の水の流れを示すヒドロキシルラジカル水生成システムの概要図である。
Then, an ultrapure water production apparatus (Nippon Millipore Corporation: Milli-QSP) and an ozone water generation apparatus (Ecodesign Corporation: ED-OW-7) were prepared, an ultrapure water generation apparatus, an ozone water generation apparatus, They were connected with a fluororesin tube in the order of the hydroxyl radical water generator. The flow of water at this time is shown in FIG.
FIG. 5 is a schematic diagram of a hydroxyl radical water generation system showing a flow of water when an ultrapure water production apparatus and an ozone water generation apparatus are connected upstream of the hydroxy radical water generation apparatus.

(試験水1,比較水1)
次に、図5に示すヒドロキシルラジカル水生成システムを用いて試験水や各比較水を製造した。
超純水製造装置で流量0.9L/minの条件で製造した超純水に、オゾン水生成装置内で発生させたオゾンを溶解させオゾン濃度が6mg/Lのオゾン水を得た。(比較水1)
該オゾン水を比較水1とし、ヒドロキシルラジカル水生成装置内を通過させ、紫外線及び紫外線が照射された光触媒並びに超音波を作用させることで得られた水を試験水1とした。(試験水1)
(Test water 1, comparative water 1)
Next, test water and each comparative water were manufactured using the hydroxyl radical water production | generation system shown in FIG.
Ozone generated in the ozone water generator was dissolved in ultrapure water produced at a flow rate of 0.9 L / min by the ultrapure water production device to obtain ozone water having an ozone concentration of 6 mg / L. (Comparative water 1)
The ozone water was used as comparative water 1, and the water obtained by passing through the hydroxyl radical water generating apparatus and applying ultraviolet light and a photocatalyst irradiated with ultraviolet light and ultrasonic waves was used as test water 1. (Test water 1)

(比較水2)
ヒドロキシルラジカル水生成装置の低圧水銀ランプ及び超音波発振器の電源を入れず、オゾン水に紫外線を照射せず、かつ、超音波を作用させずに光触媒に接触させることで得られた水を比較水2とした。
(Comparison water 2)
The water obtained by contacting the photocatalyst without irradiating UV light to ozone water and without applying ultrasonic waves without turning on the low-pressure mercury lamp and the ultrasonic oscillator of the hydroxyl radical water generator is comparative water. 2.

(比較水3)
ヒドロキシルラジカル水生成装置の光触媒部を取り外し、超音波発振器のみ電源を入れ、オゾン水に紫外線を照射せず、かつ、光触媒と接触させずに超音波のみを作用させることで得られた水を比較水3とした。
(Comparative water 3)
Compare the water obtained by removing the photocatalyst part of the hydroxyl radical water generator, turning on only the ultrasonic oscillator, irradiating ozone water without irradiating ultraviolet light, and allowing only the ultrasonic wave to act without contacting the photocatalyst Water 3 was used.

(比較水4)
ヒドロキシルラジカル水生成装置の超音波発振器の電源のみを入れ、オゾン水に紫外線を照射せず、超音波を作用させ、かつ、光触媒と接触させることで得られた水を比較水4とした。
(Comparison water 4)
The water obtained by turning on only the ultrasonic generator of the hydroxyl radical water generator, irradiating the ozone water with ultraviolet light, allowing the ultrasonic wave to act, and bringing it into contact with the photocatalyst was used as comparative water 4.

(比較水5)
ヒドロキシルラジカル水生成装置の光触媒部を取り外し、低圧水銀ランプのみ電源を入れ、オゾン水に超音波を作用させず、かつ、光触媒と接触させずに紫外線を照射することで得られた水を比較水5とした。
(Comparative water 5)
Remove the photocatalytic part of the hydroxyl radical water generator, turn on only the low-pressure mercury lamp, compare the water obtained by irradiating the ozone water with ultraviolet rays without contacting the photocatalyst with ultrasonic waves. It was set to 5.

(比較水6)
ヒドロキシルラジカル水生成装置の低圧水銀ランプのみ電源を入れ、オゾン水に超音波を作用させず、紫外線を照射し、かつ、紫外線が照射された光触媒と接触させることで得られた水を比較水6とした。
(Comparison water 6)
Only the low-pressure mercury lamp of the hydroxyl radical water generator is turned on, and the water obtained by contacting the photocatalyst irradiated with ultraviolet rays without applying ultrasonic waves to the ozone water is compared with the water 6 It was.

(比較水7)
ヒドロキシルラジカル水生成装置の光触媒を取り外し、低圧水銀ランプ及び超音波発振器の電源を入れ、オゾン水を光触媒と接触させずに紫外線を照射し、かつ、超音波を作用させることで得られた水を比較水7とした。
(Comparative water 7)
Remove the photocatalyst of the hydroxyl radical water generator, turn on the low-pressure mercury lamp and the ultrasonic oscillator, irradiate ultraviolet light without contacting ozone water with the photocatalyst, and remove the water obtained by applying ultrasonic waves. Comparative water 7 was used.

(比較水8)
超純水を直接ヒドロキシルラジカル水生成装置に連接し、低圧水銀ランプ及び超音波発振器の電源を入れず、超純水に紫外線を照射せず、かつ、超音波を作用させずに光触媒を接触させることで得られた水を比較水8とした。
(Comparative water 8)
Directly connect the ultrapure water to the hydroxyl radical water generator, turn on the low pressure mercury lamp and the ultrasonic oscillator, do not irradiate the ultrapure water with ultraviolet light, and contact the photocatalyst without applying ultrasonic waves. The water thus obtained was designated as comparative water 8.

(比較水9)
超純水装置から得られた超純水を比較水9とした。
(Comparative water 9)
The ultrapure water obtained from the ultrapure water apparatus was used as comparative water 9.

(比較水10)
水道水を比較水10とした。
試験水1,比較水1乃至10と作用させた構成の一覧を表1に示す。
(Comparative water 10)
The tap water was designated as comparative water 10.
Table 1 shows a list of the configurations in which the test water 1 and the comparative waters 1 to 10 are operated.

(実施例1:オゾン濃度の変化)
試験水1及び各比較水に含まれる酸化剤の割合を調べるためオゾン濃度の変化を確かめた。
まず、試験水1及び比較水1乃至7の水1Lに、ヨウ化カリウム(林純薬工業株式会社製)を2g添加して撹拌し、20℃の室温で20分間静置して十分に反応させ、1.58mg/Lのチオ硫酸ナトリウム(和光純薬工業株式会社製)で滴定して、酸化剤によって遊離したヨウ素の消費量を定量した。ヨウ素消費量の結果から得られた酸化剤の濃度をオゾン濃度に換算した結果を図6に示す。
(Example 1: Change in ozone concentration)
In order to investigate the ratio of the oxidizing agent contained in the test water 1 and each comparison water, the change in the ozone concentration was confirmed.
First, 2 g of potassium iodide (manufactured by Hayashi Junyaku Kogyo Co., Ltd.) is added to 1 L of test water 1 and 1 to 7 of comparative water 1 and stirred, and left at room temperature of 20 ° C. for 20 minutes to sufficiently react. The amount of iodine liberated by the oxidizing agent was quantified by titration with 1.58 mg / L sodium thiosulfate (manufactured by Wako Pure Chemical Industries, Ltd.). The result of converting the concentration of the oxidant obtained from the result of iodine consumption into ozone concentration is shown in FIG.

図6は比較水1のオゾン濃度を100%としたとき酸化剤の割合を示したグラフである。
図6より、比較水1及び2の値が100%であることから、オゾン水と光触媒を接触させただけでは、酸化剤の割合が変化しないことが分かった。比較水3及び4は、比較水1に比べ、酸化剤の割合は55%程度であり、値に殆ど変化がないことから、比較水3及び4では超音波のみが酸化剤に作用していると考えられ、オゾン水に1MHzの超音波を当てることで、酸化剤の割合(オゾンの割合)が減少することが分かった。比較水1乃至4に紫外線を作用させた試験水1,5乃至7において、オゾン水に紫外線を照射した比較水5は酸化剤の割合が15%程度まで減少しており、比較水3及び4に比べて酸化剤の割合が急激に減少していることが分かった。このことから、紫外線によりオゾンが分解されているものと推測される。また、光触媒と紫外線照射を組み合わせた比較水6では酸化剤の割合が10%程度であり、比較水5と比べて減少しているが、比較水7及び試験水1の酸化剤の割合から分かるように、オゾン水に作用させた条件(光触媒との接触や超音波の作用)が増えることで酸化剤の割合が高くなる傾向にあることが分かった。
これらのことから、オゾン水に紫外線や超音波を作用させることで、オゾンが分解されるとともに、紫外線が照射された水にはオゾン以外の酸化剤が生成されているものと推測される。更に、超音波や紫外線による水の分解反応や、光触媒反応によって活性酸素種が生成されることが知られていることから、オゾン以外の酸化剤は活性酸素種であると推測される。
FIG. 6 is a graph showing the ratio of the oxidizing agent when the ozone concentration of the comparative water 1 is 100%.
From FIG. 6, since the values of the comparative waters 1 and 2 are 100%, it was found that the ratio of the oxidizing agent does not change only by contacting the ozone water with the photocatalyst. In comparison waters 3 and 4, compared with comparison water 1, the ratio of the oxidizing agent is about 55%, and there is almost no change in the value. Therefore, in comparison waters 3 and 4, only the ultrasonic wave acts on the oxidizing agent. It was considered that the ratio of oxidant (ratio of ozone) decreased by applying ultrasonic waves of 1 MHz to ozone water. In test waters 1 and 5 to 7 in which ultraviolet rays were applied to comparative water 1 to 4, the ratio of the oxidizing agent in comparative water 5 in which ultraviolet light was irradiated to ozone water was reduced to about 15%. It was found that the ratio of the oxidant was drastically decreased as compared with. From this, it is estimated that ozone is decomposed by ultraviolet rays. Further, in the comparative water 6 in which the photocatalyst and the ultraviolet irradiation are combined, the ratio of the oxidant is about 10%, which is lower than that of the comparative water 5, but it can be understood from the ratio of the oxidant in the comparative water 7 and the test water 1. Thus, it has been found that the ratio of the oxidant tends to increase as the conditions (contact with the photocatalyst and the action of ultrasonic waves) applied to the ozone water increase.
From these facts, it is presumed that by applying ultraviolet rays or ultrasonic waves to ozone water, ozone is decomposed and oxidants other than ozone are generated in the water irradiated with ultraviolet rays. Furthermore, since it is known that active oxygen species are generated by the decomposition reaction of water by ultrasonic waves or ultraviolet rays or the photocatalytic reaction, it is assumed that oxidizing agents other than ozone are active oxygen species.

(実施例2:活性酸素種の定性)
オゾン以外の酸化剤がどの活性酸素種であるかを調べるために、比較水4及び6,試験水1を90μL準備し、ヒドロキシルラジカル(OH・)の補足能を持つクロロゲン酸1.77gを添加した。添加後、更にルミノール100μgを添加し、化学発光測定装置(アトー株式会社製:ルミネッセンサーOcta AB−2270)を用いて測定したルミノールの発光量からクロロゲン酸の添加前後の酸化剤の量を測定した。その結果を図7に示す。
(Example 2: Qualitative characteristics of reactive oxygen species)
To examine which active oxygen species the oxidizing agent other than ozone is, prepare 90 μL of comparative water 4 and 6 and test water 1 and add 1.77 g of chlorogenic acid with hydroxyl radical (OH.) Scavenging ability did. After the addition, 100 μg of luminol was further added, and the amount of oxidant before and after the addition of chlorogenic acid was measured from the amount of luminescence of luminol measured using a chemiluminescence measuring device (manufactured by Atto Co., Ltd .: Luminescent Sensor Octa AB-2270). did. The result is shown in FIG.

図7はクロロゲン酸の添加による酸化剤の濃度変化を示したグラフである。
測定値は、ルミノールの発光量から求めた酸化剤の濃度を、酸化剤の種類に関係なくオゾン濃度として換算したものである。
図7から、試験水1と比較水4及び6の全てでクロロゲン酸を添加した後の試験水の酸化剤の濃度が減少していることから、オゾン以外の酸化剤がヒドロキシルラジカル(OH・)であることが確認された。
また、比較水4は、クロロゲン酸の添加後も酸化剤が残っていることから、オゾンとヒドロキシルラジカル(OH・)の混合溶液であることが分かった。これに対して、比較水6及び試験水1では、クロロゲン酸の添加によって酸化剤が無くなっていることから、酸化剤が全てヒドロキシルラジカル(OH・)であることが分かった。
これらの結果から、紫外線を照射することでオゾンが全て分解されているものと推測される。さらに、実施例1の結果において、比較水6に比べて、試験水1の酸化剤の濃度が高いことから、紫外線や光触媒,超音波を組み合わせることで、高濃度のヒドロキシルラジカル(OH・)を水中に生成することができることが分かった。
FIG. 7 is a graph showing changes in the concentration of the oxidant due to the addition of chlorogenic acid.
The measured value is obtained by converting the concentration of the oxidant obtained from the light emission amount of luminol into the ozone concentration regardless of the type of the oxidant.
From FIG. 7, since the concentration of the oxidizing agent in the test water after adding chlorogenic acid in all of the test water 1 and the comparative waters 4 and 6, the oxidizing agent other than ozone is hydroxyl radical (OH.) It was confirmed that.
Moreover, since the oxidizing agent remained after the addition of chlorogenic acid, the comparative water 4 was found to be a mixed solution of ozone and hydroxyl radical (OH.). On the other hand, in comparative water 6 and test water 1, since the oxidizing agent was lost by the addition of chlorogenic acid, it was found that all the oxidizing agents were hydroxyl radicals (OH.).
From these results, it is presumed that ozone is completely decomposed by irradiating ultraviolet rays. Furthermore, in the result of Example 1, since the concentration of the oxidizing agent in the test water 1 is higher than that in the comparative water 6, a high concentration of hydroxyl radical (OH.) Can be obtained by combining ultraviolet rays, photocatalysts, and ultrasonic waves. It was found that it can be produced in water.

(実施例3:酸化還元電位の経時変化の測定)
生成したヒドロキシルラジカル(OH・)の寿命を調べるために、比較水1,4,6,8,10及び試験水1を0.3L準備し、酸化還元電位計(Lutron Electronic Enterprise社製:YK−23RP)を用いて25℃の室内で酸化還元電位の経時変化を測定した。これらの結果を図8に示す。
(Example 3: Measurement of change over time of oxidation-reduction potential)
In order to examine the lifetime of the generated hydroxyl radical (OH.), 0.3 L of comparative water 1, 4, 6, 8, 10 and test water 1 were prepared, and oxidation-reduction potentiometer (manufactured by Lutron Electronic Enterprise: YK- 23RP) was used to measure the time-dependent change in redox potential in a room at 25 ° C. These results are shown in FIG.

図8は、酸化還元電位の経時変化を示すグラフである。
図8より、オゾンのみを含有す比較水1は、酸化還元電位の減少は緩やかであり、測定開始から60分後も1000mVから殆ど値が変わらなかった。オゾンとヒドロキシルラジカル(OH・)の両方を含有する比較水4では、測定開始から60分間の間に徐々に酸化還元電位が減少し、1000mV程度から800mV程度に約2割の減少がみられた。また、ヒドロキシルラジカル(OH・)のみを含有する比較水6及び試験水1では、2,3分後までの間に酸化還元電位が著しく減少し、それから60分後まで緩やかに減少した。比較水8及び10は、測定開始から60分後まで酸化還元電位に変化は見られなかった。
試験水1はヒドロキシルラジカル(OH・)が無くなれば超純水と殆ど変わらないと考えられ、60分後にやっと酸化還元電位が超純水と同じである比較水8と同程度の値を示していることから、試験水1中のヒドロキシルラジカル(OH・)の酸化力は、水中で5分間以上は残存していることが示された。
FIG. 8 is a graph showing the change with time of the oxidation-reduction potential.
From FIG. 8, the comparative water 1 containing only ozone showed a gradual decrease in oxidation-reduction potential, and the value hardly changed from 1000 mV even after 60 minutes from the start of measurement. In the comparative water 4 containing both ozone and hydroxyl radical (OH.), The oxidation-reduction potential gradually decreased for 60 minutes from the start of measurement, and about 20% decrease was observed from about 1000 mV to about 800 mV. . In Comparative Water 6 and Test Water 1 containing only hydroxyl radical (OH.), The oxidation-reduction potential was remarkably reduced until a few minutes later, and then gradually decreased until 60 minutes later. In Comparative Waters 8 and 10, no change was observed in the redox potential until 60 minutes after the start of measurement.
Test water 1 is considered to be almost the same as ultrapure water when the hydroxyl radical (OH.) Disappears, and after 60 minutes, the oxidation-reduction potential finally shows the same value as comparative water 8 which is the same as ultrapure water. Therefore, it was shown that the oxidizing power of hydroxyl radical (OH.) In test water 1 remained in water for 5 minutes or more.

(実施例4:有機物分解性試験)
ヒドロキシルラジカル(OH・)の有機物の分解性を調べるために、試験水1及び比較水1,9を0.2L準備し、1.7×10-3mg/Lのフタル酸ジブチル及びフタル酸n−ジオクチル各0.34μgを混合して撹拌し、20℃で1分間反応させた。その後、フタル酸エステル類の残留割合をガスクロマトグラフ/質量分析計(Agilent Technologies社製:7683B Series Injector−7890A GC System−5975C Inert XL EI/CI MSD)を用いて測定した。この時、オゾン水生成装置通過後の水のオゾン濃度は6.5〜6.7mg/Lとした。結果を図9に示す。
(Example 4: Organic matter decomposability test)
In order to investigate the decomposability of hydroxyl radical (OH ·) organic matter, 0.2 L of test water 1 and comparative waters 1 and 9 were prepared, and 1.7 × 10 −3 mg / L of dibutyl phthalate and phthalic acid n -Each 0.34 microgram of dioctyl was mixed and stirred, and it was made to react at 20 degreeC for 1 minute. Then, the residual ratio of phthalates was measured using a gas chromatograph / mass spectrometer (manufactured by Agilent Technologies: 7683B Series Injector-7890A GC System-5975C Inert XL EI / CI MSD). At this time, the ozone concentration of the water after passing through the ozone water generator was set to 6.5 to 6.7 mg / L. The results are shown in FIG.

図9は、フタル酸エステル類の残留割合を示したグラフである。図9の測定値は、比較水9におけるフタル酸エステル類の濃度を100%とした時の割合である。また、比較水1のオゾン水の濃度と、試験水1のヒドロキシルラジカル(OH・)の濃度が異なるので、比較水1のオゾンの濃度と試験水1のヒドロキシルラジカル(OH・)の濃度が同じになるように、試験水1の測定結果を換算してある。
図9より、比較水1は、フタル酸ジブチルで約10%、フタル酸n−ジオクチルで20%弱であった。それに対し、試験水1ではフタル酸ジブチルで約6%、フタル酸n−ジオクチルで10%強であった。このことから、試験水1のラジカル水は比較水1のオゾン水よりも有機物の洗浄能力が高いことが確認された。
FIG. 9 is a graph showing the residual ratio of phthalates. The measured values in FIG. 9 are ratios when the concentration of phthalates in the comparative water 9 is 100%. Moreover, since the density | concentration of the ozone water of the comparison water 1 and the density | concentration of the hydroxyl radical (OH *) of the test water 1 differ, the density | concentration of the ozone of the comparison water 1 and the density | concentration of the hydroxyl radical (OH *) of the test water 1 are the same. Thus, the measurement result of the test water 1 is converted.
From FIG. 9, the comparative water 1 was about 10% for dibutyl phthalate and less than 20% for n-dioctyl phthalate. In contrast, in test water 1, dibutyl phthalate was about 6% and n-dioctyl phthalate was over 10%. From this, it was confirmed that the radical water of the test water 1 has higher cleaning ability of organic matter than the ozone water of the comparative water 1.

(実施例5:金属溶解性試験)
ラジカル水の金属に対するイオン化能力を調べるため、亜鉛粉末0.051gと銅粉末0.051g、銀粉末0.05を準備した。亜鉛粉末は200mLの試験水1と混合し、銅粉末及び銀粉末は90mLの試験水1と混合して、25℃で30分間撹拌し、十分に反応させ、反応後の各金属イオン濃度を測定した。この時、オゾン水生成装置通過後の水のオゾン濃度は6.5〜6.7mg/Lとした。その結果を図10に示す。
尚、ヒドロキシルラジカル(OH・)の濃度は時間とともに減少するとともに、金属との反応によってもヒドロキシルラジカル(OH・)の濃度に差がでるため、酸化還元電位計(Lutron Electronic Enterprise社製:YK−23RP)で、酸化還元電位を測定しながら金属粉末を反応させ、酸化還元電位をヒドロキシルラジカル(OH・)の濃度とした。
(Example 5: Metal solubility test)
In order to investigate the ionization ability of radical water to metal, 0.051 g of zinc powder, 0.051 g of copper powder, and 0.05 of silver powder were prepared. Zinc powder is mixed with 200 mL of test water 1, copper powder and silver powder are mixed with 90 mL of test water 1, stirred at 25 ° C. for 30 minutes, fully reacted, and each metal ion concentration after reaction is measured. did. At this time, the ozone concentration of the water after passing through the ozone water generator was set to 6.5 to 6.7 mg / L. The result is shown in FIG.
The concentration of the hydroxyl radical (OH.) Decreases with time, and the concentration of the hydroxyl radical (OH.) Varies depending on the reaction with the metal. Therefore, the oxidation-reduction potentiometer (manufactured by Lutron Electronic Enterprise: YK-) 23RP), the metal powder was reacted while measuring the oxidation-reduction potential, and the oxidation-reduction potential was defined as the concentration of hydroxyl radicals (OH.).

図10は、ラジカル水の酸化還元電位に対する生成金属イオンの濃度を示すグラフである。図10につき、銀のイオン濃度が低かったため、銀については実測値の100倍の値となっている。
図10より、銅及び銀では、酸化還元電位が大きくなるにつれ、金属イオン濃度も高くなる傾向にあり、正の相関があることが確認された。
また、亜鉛はイオン化し易いため、ヒドロキシルラジカル(OH・)の濃度と金属イオン濃度に相関関係は見られなかった。しかし、亜鉛の場合は、酸化還元電位が比較的低い場合でも、金属イオン濃度は高いという傾向が確認された。
これらのことから、ヒドロキシルラジカル(OH・)は、金属のイオン化にも有効であり、イオン化傾向の小さい金属においても洗浄効果を有するとともに、亜鉛以外の両性元素(アルミや錫、鉛)にも洗浄効果が期待できることが確認された。
FIG. 10 is a graph showing the concentration of generated metal ions with respect to the redox potential of radical water. In FIG. 10, since the ion concentration of silver is low, the value of silver is 100 times the actual measurement value.
From FIG. 10, it was confirmed that copper and silver have a positive correlation as the redox potential increases and the metal ion concentration tends to increase.
Further, since zinc is easily ionized, no correlation was found between the concentration of hydroxyl radical (OH.) And the concentration of metal ions. However, in the case of zinc, even when the oxidation-reduction potential was relatively low, a tendency that the metal ion concentration was high was confirmed.
From these facts, hydroxyl radical (OH.) Is effective for ionization of metals, and has a cleaning effect even for metals with a small ionization tendency, and also for amphoteric elements other than zinc (aluminum, tin, lead). It was confirmed that the effect can be expected.

(濡れ性試験)
ラジカル水の親水性を調べるために、試験水1及び比較水1,9を200mL準備し、容量300mLのフラン瓶中で潤滑油(株式会社紅椿化学工業所製:ベニサン純正 強力 B−115)を100mg加えて撹拌し、静置後の濁度の経時変化を室温で測定した。測定時間は、静置30分後から10分置きに100分間とした。濁度は、デジタル濁色度計(株式会社共立理化学研究所製:WA−PT−4DG)を用いて測定した。この時、オゾン水生成装置通過後の水のオゾン濃度は6.5〜6.7mg/Lとした。
その結果を図11に示す。
(Wettability test)
In order to investigate the hydrophilicity of radical water, 200 mL of test water 1 and comparative waters 1 and 9 were prepared, and lubricating oil was prepared in a 300 mL capacity furan bottle (manufactured by Kurisu Chemical Industry Co., Ltd .: Benisan genuine strong B-115). Was added and stirred, and the change with time of turbidity after standing was measured at room temperature. The measurement time was 100 minutes every 10 minutes from 30 minutes after standing. Turbidity was measured using a digital turbidity meter (manufactured by Kyoritsu Riken: WA-PT-4DG). At this time, the ozone concentration of the water after passing through the ozone water generator was set to 6.5 to 6.7 mg / L.
The result is shown in FIG.

図11は、濁度の経時変化を示したグラフである。図11より、観測開始時の濁度は試験水1、比較水1共に約20NTUで同程度であった。その後、比較水9は時間経過とともに濁度が10%程低下したが、試験水1及び比較水1では濁度の減少は見られなかった。このことから、試験水1は、比較水1と同様に潤滑油の濡れ性を改善していると考えられ、本発明のラジカル水には接触した物の濡れ性を改善する作用があることがあり、親水剤として好適に使用できることが確認された。   FIG. 11 is a graph showing changes in turbidity with time. From FIG. 11, the turbidity at the start of the observation was about 20 NTU for both test water 1 and comparative water 1 and was similar. Thereafter, the turbidity of the comparative water 9 decreased by about 10% over time, but the test water 1 and the comparative water 1 showed no decrease in turbidity. From this, it is thought that the test water 1 is improving the wettability of lubricating oil like the comparative water 1, and the radical water of this invention has the effect | action which improves the wettability of the thing which contacted. It was confirmed that it can be suitably used as a hydrophilic agent.

(農薬分解試験)
ラジカル水の農薬の除去効果を調べるために、試験水1及び比較水1,9と同様のラジカル水を200mL準備し、農薬であるプロシミドン、エトフェンプロックス、ビフェントリン、ジエトフェンカルブ、ゾキサミド、4−クロロアニリン、2,4−ジクロロアニリン、ビタルタノール、3−メチルコラントレン、ピリメタニル、ペルタン、シペルメトリン、ジクロベニル、4−ニトロフェノール、p,p’−ジクロロジフェニルトリクロロエタン、をそれぞれ20mg添加して撹拌後、1分間静置し、各農薬の濃度をガスクロマトグラフ/質量分析計(Agilent Technologies社製:7683B Series Injector−7890A GC System−5975C Inert XL EI/CI MSD)で測定した。この時、オゾン水生成装置通過後の水のオゾン濃度は6.5〜6.7mg/Lとした。
試験水1及び比較水1,9の結果を図12に示す。
(Agricultural chemical degradation test)
In order to examine the removal effect of radical water pesticides, 200 mL of radical water similar to test water 1 and comparative waters 1 and 9 was prepared, and pesticides prosimidone, etofenprox, bifenthrin, dietofencarb, zoxamide, 4-chloroaniline. 20 mg each of 2,4-dichloroaniline, bitartanol, 3-methylcholanthrene, pyrimethanil, pertan, cypermethrin, dichlorobenil, 4-nitrophenol, p, p'-dichlorodiphenyltrichloroethane, and after stirring, Let stand for minutes, and measure the concentration of each pesticide with a gas chromatograph / mass spectrometer (manufactured by Agilent Technologies: 7683B Series Injector-7890A GC System-5975C Inert XL EI / CI MSD). It was. At this time, the ozone concentration of the water after passing through the ozone water generator was set to 6.5 to 6.7 mg / L.
The results of test water 1 and comparative waters 1 and 9 are shown in FIG.

図12は試験水1及び比較水1、9における農薬の分解量を示したグラフであり、る。図12において、試験水1及び比較水1の結果は超純水中の農薬の濃度を100%としたときの相対量を示している。
図12より、試験水1おいて、農薬がラジカル水により分解されていることが分かった。また、プロシミドン、2,4−ジクロロアニリン、ビタルタノール、3−メチルコラントレン、ペルタン、p,p’−ジクロロジフェニルトリクロロエタンにおける試験水1の濃度は比較水1よりも低く、オゾン水に比べてラジカル水の分解力の方が高い場合も見られた。このことから、本発明のラジカル水は、農作物等の表面に残る農薬の除去等にも用いることができるものと考えられる。
FIG. 12 is a graph showing the amount of agricultural chemicals decomposed in test water 1 and comparative waters 1 and 9. In FIG. 12, the results of test water 1 and comparative water 1 show relative amounts when the concentration of the agrochemical in ultrapure water is 100%.
From FIG. 12, it was found that in the test water 1, the pesticide was decomposed by radical water. In addition, the concentration of test water 1 in procymidone, 2,4-dichloroaniline, bitartanol, 3-methylcholanthrene, pertan, p, p'-dichlorodiphenyltrichloroethane is lower than that in comparative water 1 and is higher than that in ozone water. In some cases, the water decomposition power was higher. From this, it is considered that the radical water of the present invention can also be used for removal of agricultural chemicals remaining on the surface of crops and the like.

本発明は、酸化還元電位が高く、物の濡れ性を高めることができ、塩類を含まずラジカル水自体の残留物も生じないため不純物がなく、ヒドロキシルラジカル(OH・)の寿命が長いので、半導体等の精密洗浄水、親水剤、動植物の殺菌・洗浄水、静電気防止剤等の用途に用いることができるラジカル水を提供することができる。   The present invention has a high oxidation-reduction potential, can improve the wettability of the object, does not contain salts and does not generate a residue of radical water itself, has no impurities, and has a long hydroxyl radical (OH.) Life, Radical water that can be used for applications such as precision cleaning water for semiconductors, hydrophilic agents, sterilization / washing water for animals and plants, antistatic agents, and the like can be provided.

1 ヒドロキシルラジカル水生成装置
1a ヒドロキシルラジカル水生成部
1b 底板
2 台部
3 脚部
4 覆設部材
4a 覆設部材回動部
4b 覆設部材掛止部
5 上部開口部
6 上部遮断部
7 下部開口部
8 下部遮断部
9 流入口
9a 流入チューブ
9b 流入部
9c 給水部
10 超音波発振器
10a 電源コード
11 通水部
11a 通水部固定部
11b 拡開部
11c 光触媒部係止部
11d 蓋部
12 通水路
13 光触媒部
14 光触媒部固定部
15 紫外線照射部
16 水銀ランプ
16a 水銀ランプ係止部
17 紫外線反射板
18,18’ 紫外線反射板固定部
18a 紫外線反射板螺合部
18b 紫外線反射板回動部
19 紫外線反射板掛止部
19a 回動部
19b 掛止部
20 取出口
20a 取出しチューブ
21 チューブ支持部
22 チューブ挿通口
23 オーバーフロー水排出孔
23a オーバーフロー水排出部
23b 排出チューブ
24 フランジ部
24a 通水部留め具
25a,25b パッキン
26 押さえ板
27 超音波振動子
28 流水
29 紫外線
30 超音波
DESCRIPTION OF SYMBOLS 1 Hydroxyl radical water production | generation apparatus 1a Hydroxyl radical water production | generation part 1b Bottom plate 2 Base part 3 Leg part 4 Cover member 4a Cover member rotation part 4b Cover member latching part 5 Upper opening part 6 Upper blocking part 7 Lower opening part 8 Lower blocking portion 9 Inlet 9a Inflow tube 9b Inflow portion 9c Water supply portion 10 Ultrasonic oscillator 10a Power cord 11 Water passage portion 11a Water passage portion fixing portion 11b Widening portion 11c Photocatalyst portion locking portion 11d Lid portion 12 Water passage 13 Photocatalyst part 14 Photocatalyst part fixing part 15 Ultraviolet irradiation part 16 Mercury lamp 16a Mercury lamp locking part 17 Ultraviolet reflectors 18, 18 'Ultraviolet reflector fixing part 18a Ultraviolet reflector screwing part 18b Ultraviolet reflector rotating part 19 Ultraviolet reflection Plate latching portion 19a Rotating portion 19b Latching portion 20 Ejection port 20a Ejection tube 21 Tube support portion 22 Tube insertion port 23 Overflow Discharge hole 23a overflow water discharge portion 23b discharge tube 24 flange portion 24a passing water portion fastener 25a, 25b packing 26 pressing plate 27 ultrasonic transducer 28 flowing water 29 UV 30 ultrasonic

Claims (5)

水にオゾンを溶解させたオゾン水を原料とし、光触媒反応と、紫外線による水及びオゾンの分解反応と、によって生成されたヒドロキシラジカルを活性酸素の主成分として含有したラジカル水であって、
前記オゾン水のオゾン濃度が4mg/L以上であるとともに、超音波発振器又は微細気泡発生装置によって前記ラジカル水中に発生させた微細気泡に前記ヒドロキシラジカルが保持されることで、前記ヒドロキシルラジカルによる酸化力を5分以上残存させることを特徴とするラジカル水。
Ozone water in which ozone is dissolved in water as a raw material, radical water containing hydroxy radicals generated by photocatalytic reaction and water and ozone decomposition reaction by ultraviolet rays as a main component of active oxygen,
The ozone concentration of the ozone water is 4 mg / L or more, and the hydroxyl radicals are held in the microbubbles generated in the radical water by an ultrasonic oscillator or a microbubble generator, thereby oxidizing the hydroxyl radicals. Radical water which remains for 5 minutes or more.
前記水が超純水であることを特徴とする請求項1に記載のラジカル水。   The radical water according to claim 1, wherein the water is ultrapure water. 請求項2に記載のラジカル水を含有することを特徴とする半導体洗浄水。   A semiconductor cleaning water comprising the radical water according to claim 2. 請求項1又は2に記載のラジカル水を含有することを特徴とする親水剤。   A hydrophilic agent comprising the radical water according to claim 1. 請求項1又は2に記載のラジカル水を含有することを特徴とする殺菌洗浄水。
A sterilizing washing water containing the radical water according to claim 1 or 2.
JP2012080016A 2012-03-30 2012-03-30 Radical water Pending JP2013208539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080016A JP2013208539A (en) 2012-03-30 2012-03-30 Radical water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080016A JP2013208539A (en) 2012-03-30 2012-03-30 Radical water

Publications (1)

Publication Number Publication Date
JP2013208539A true JP2013208539A (en) 2013-10-10

Family

ID=49526954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080016A Pending JP2013208539A (en) 2012-03-30 2012-03-30 Radical water

Country Status (1)

Country Link
JP (1) JP2013208539A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088043A1 (en) * 2013-12-12 2015-06-18 山田光男 Water modification unit, modification system and modification method
KR101602758B1 (en) * 2014-05-16 2016-03-21 주식회사 엘크린시스템 Inline cleaning apparatus and inline cleaning method
WO2017170068A1 (en) * 2016-03-31 2017-10-05 日本碍子株式会社 Sterilized water-generating apparatus and sterilized water-generating method
CN112082902A (en) * 2020-07-25 2020-12-15 东北电力大学 Device for improving density of OH free radicals discharged in water and measuring method thereof
CN113454247A (en) * 2019-03-01 2021-09-28 罗伯特·博世有限公司 Method for extracting gold and/or silver and/or at least one platinum metal
JP7169016B1 (en) 2021-07-05 2022-11-10 アイオーン株式会社 Active oxygen water and method for producing active oxygen water
CN115594282A (en) * 2022-09-30 2023-01-13 江苏恩飞特环保工程有限公司(Cn) Equipment for treating high-concentration wastewater based on hydroxyl oxidation and treatment method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254088A (en) * 2001-03-02 2002-09-10 Mitsui Eng & Shipbuild Co Ltd Water cleaning plant and method therefor
JP2002336879A (en) * 2001-05-15 2002-11-26 Toyobo Co Ltd Continuous water treating device and method
WO2007043592A1 (en) * 2005-10-11 2007-04-19 K2R Co., Ltd Apparatus for production of water through photocatalytic reaction
JP2007326096A (en) * 2006-05-11 2007-12-20 Kurabo Ind Ltd Cleaning method by sterilization or particle removal, and apparatus used therefor
WO2010032765A1 (en) * 2008-09-16 2010-03-25 財団法人北九州産業学術推進機構 Water that expresses pathogen-resistance genes (pr gene clusters) to encode plant immunoproteins, a method of preventing plant diseases using the water, and a device for producing the water
WO2010140581A1 (en) * 2009-06-03 2010-12-09 倉敷紡績株式会社 Method for supplying hydroxyl radical-containing water and apparatus for supplying hydroxyl radical-containing water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254088A (en) * 2001-03-02 2002-09-10 Mitsui Eng & Shipbuild Co Ltd Water cleaning plant and method therefor
JP2002336879A (en) * 2001-05-15 2002-11-26 Toyobo Co Ltd Continuous water treating device and method
WO2007043592A1 (en) * 2005-10-11 2007-04-19 K2R Co., Ltd Apparatus for production of water through photocatalytic reaction
JP2007326096A (en) * 2006-05-11 2007-12-20 Kurabo Ind Ltd Cleaning method by sterilization or particle removal, and apparatus used therefor
WO2010032765A1 (en) * 2008-09-16 2010-03-25 財団法人北九州産業学術推進機構 Water that expresses pathogen-resistance genes (pr gene clusters) to encode plant immunoproteins, a method of preventing plant diseases using the water, and a device for producing the water
WO2010140581A1 (en) * 2009-06-03 2010-12-09 倉敷紡績株式会社 Method for supplying hydroxyl radical-containing water and apparatus for supplying hydroxyl radical-containing water

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015088043A1 (en) * 2013-12-12 2017-03-16 山田 光男 Water reforming unit, reforming system and reforming method
WO2015088043A1 (en) * 2013-12-12 2015-06-18 山田光男 Water modification unit, modification system and modification method
KR101602758B1 (en) * 2014-05-16 2016-03-21 주식회사 엘크린시스템 Inline cleaning apparatus and inline cleaning method
WO2017170068A1 (en) * 2016-03-31 2017-10-05 日本碍子株式会社 Sterilized water-generating apparatus and sterilized water-generating method
CN113454247B (en) * 2019-03-01 2023-02-03 罗伯特·博世有限公司 Method for extracting gold and/or silver and/or at least one platinum metal
CN113454247A (en) * 2019-03-01 2021-09-28 罗伯特·博世有限公司 Method for extracting gold and/or silver and/or at least one platinum metal
CN112082902A (en) * 2020-07-25 2020-12-15 东北电力大学 Device for improving density of OH free radicals discharged in water and measuring method thereof
CN112082902B (en) * 2020-07-25 2024-02-13 东北电力大学 Device for improving density of OH free radicals discharged in water and measuring method thereof
JP7169016B1 (en) 2021-07-05 2022-11-10 アイオーン株式会社 Active oxygen water and method for producing active oxygen water
JP2023008863A (en) * 2021-07-05 2023-01-19 アイオーン株式会社 Active oxygen water and method for producing active oxygen water
JP2023008228A (en) * 2021-07-05 2023-01-19 アイオーン株式会社 Active oxygen water and manufacturing method of active oxygen water
JP7347867B2 (en) 2021-07-05 2023-09-20 アイオーン株式会社 Active oxygen water and method for producing active oxygen water
CN115594282B (en) * 2022-09-30 2023-11-14 江苏恩飞特环保工程有限公司 Equipment for treating high-concentration wastewater based on hydroxyl oxidation and treatment method thereof
CN115594282A (en) * 2022-09-30 2023-01-13 江苏恩飞特环保工程有限公司(Cn) Equipment for treating high-concentration wastewater based on hydroxyl oxidation and treatment method thereof

Similar Documents

Publication Publication Date Title
JP2013208539A (en) Radical water
Song et al. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system
ES2362928T3 (en) ACTIVATED PEROXIDE SOLUTIONS AND PROCESS FOR PREPARATION.
KR20170039260A (en) Microbicide and method for manufacturing same
KR20100053485A (en) Substrate cleaning apparatus and method of cleaning substrate
JP2013531795A (en) Sensor containing photocatalyst
Suzuki et al. Synergetic effect in water treatment with mesoporous TiO 2/BDD hybrid electrode
Marouf-Khelifa et al. TiO2-assisted degradation of a perfluorinated surfactant in aqueous solutions treated by gliding arc discharge
JP5638193B2 (en) Cleaning method and cleaning apparatus
JP2019194159A (en) Generation method of bonded chlorine compound
KR101744955B1 (en) Sensor module in apparatus for producing sterilized water using chlorine dioxide
JP2014213244A (en) Ultraviolet water treatment apparatus
Andreeva et al. Rapid sterilization of Escherichia coli by solution plasma process
JP4039662B2 (en) Method for cleaning semiconductor substrate or element
KR101987705B1 (en) Substrate cleaning nozzle using uv light lamp
KR100676684B1 (en) Method of Clearance of Scale Using Chlorite
JP5893472B2 (en) Hydroxyl radical water generator
JP6575288B2 (en) Ozone-containing wastewater treatment method and treatment equipment
KR20150026993A (en) method of treating tap water and manufacturing advanced oxidizing treated water using chlorine and UV-ray
JP5030089B2 (en) Cleaning method by sterilization or particle removal, and apparatus used therefor
TWM500611U (en) Purification processing device
JP2006281032A (en) Apparatus and method for treating organic substance-containing water
JPWO2007058285A1 (en) Fluid purification method and purification device
González-Juárez et al. Influence of pH on the degradation 4-chlorophenol by gamma radiocatalysis using SiO 2, Al 2 O 3 and TiO 2
Oya et al. Surface characteristics of polyethylene terephthalate (PET) film exposed to active oxygen species generated via ultraviolet (UV) lights irradiation in high and low humidity conditions

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170406