JP5638193B2 - Cleaning method and cleaning apparatus - Google Patents

Cleaning method and cleaning apparatus Download PDF

Info

Publication number
JP5638193B2
JP5638193B2 JP2008286740A JP2008286740A JP5638193B2 JP 5638193 B2 JP5638193 B2 JP 5638193B2 JP 2008286740 A JP2008286740 A JP 2008286740A JP 2008286740 A JP2008286740 A JP 2008286740A JP 5638193 B2 JP5638193 B2 JP 5638193B2
Authority
JP
Japan
Prior art keywords
water
cleaning
ozone
cleaning liquid
soluble organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008286740A
Other languages
Japanese (ja)
Other versions
JP2009131841A (en
Inventor
忠玄 田中
忠玄 田中
元信 塩見
元信 塩見
晃裕 上野
晃裕 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP2008286740A priority Critical patent/JP5638193B2/en
Publication of JP2009131841A publication Critical patent/JP2009131841A/en
Application granted granted Critical
Publication of JP5638193B2 publication Critical patent/JP5638193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は洗浄方法および洗浄装置、特に電子部品またはその製造装置もしくは洗浄装置に使用される部品を洗浄するための洗浄方法および洗浄装置に関する。   The present invention relates to a cleaning method and a cleaning apparatus, and more particularly to a cleaning method and a cleaning apparatus for cleaning an electronic component or a component used in a manufacturing apparatus or a cleaning apparatus.

半導体基板等の電子部品は精密なものであり、その表面に汚染物質が存在すると、性能・機能に不具合を起こすので、その表面は清浄であることが求められている。電子部品表面の汚染物質としては、例えば、当該電子部品の製造装置や洗浄装置における各種部品(例えば、濾過用フィルタ、濾過用フィルタハウジング、配管、ウェハキャリア、洗浄槽、ポンプ等)の接液面に付着していた有機物や無機物等が挙げられる。そのために、電子部品そのものだけでなく、その製造装置や洗浄装置に使用される各種部品に対してまでも、表面が清浄であることが求められる。   Electronic parts such as semiconductor substrates are precise, and if there are contaminants on the surface, the performance and function of the electronic component will be defective. Therefore, the surface is required to be clean. Examples of contaminants on the surface of an electronic component include, for example, liquid contact surfaces of various components (for example, a filter for filtration, a filter housing for filtration, a pipe, a wafer carrier, a cleaning tank, and a pump) in the electronic device manufacturing apparatus and cleaning apparatus. Organic matter and inorganic matter that have adhered to the surface. Therefore, the surface is required to be clean not only for the electronic component itself but also for various components used in the manufacturing apparatus and the cleaning apparatus.

そのような部品表面に存在する汚染物質の除去方法として、オゾンを含む洗浄液中に、被洗浄物(部品)を浸漬させながら紫外線を照射する洗浄方法が知られている(特許文献1,2)。
特開平4−179225号公報 特開平5−291221号公報
As a method for removing contaminants present on the surface of such a component, there is known a cleaning method in which ultraviolet rays are irradiated while an object to be cleaned (component) is immersed in a cleaning liquid containing ozone (Patent Documents 1 and 2). .
JP-A-4-179225 Japanese Patent Laid-Open No. 5-291221

上記方法では、部品の紫外線照射面において汚染物質の除去効果はある程度、得られるものの、紫外線が当たらない面では汚染物質が十分に除去できない、という問題が生じていた。そのような問題は被洗浄物(部品)が複雑形状を有する場合に顕著であった。また上記方法では、被洗浄物が配管である場合、その内面に紫外線を照射することは困難なため、内面の汚染物質を除去することは困難であった。   In the above method, there is a problem that the contaminant removal effect can be obtained to some extent on the ultraviolet irradiation surface of the component, but the contaminant cannot be sufficiently removed on the surface not exposed to ultraviolet rays. Such a problem is remarkable when the object to be cleaned (part) has a complicated shape. Also, in the above method, when the object to be cleaned is a pipe, it is difficult to irradiate the inner surface with ultraviolet rays, so it is difficult to remove contaminants on the inner surface.

本発明は、被洗浄物がたとえ複雑形状を有する場合であっても、被洗浄物表面上の汚染物質を十分に除去できる洗浄方法および洗浄装置を提供することを目的とする。   An object of the present invention is to provide a cleaning method and a cleaning apparatus capable of sufficiently removing contaminants on the surface of the object to be cleaned even when the object to be cleaned has a complicated shape.

本発明は、純水にオゾンを溶解させたオゾン水に紫外線を照射して洗浄液を得た後、該洗浄液を被洗浄物に接触させることを特徴とする洗浄方法に関する。   The present invention relates to a cleaning method characterized by contacting ozone water in which ozone is dissolved in pure water with ultraviolet rays to obtain a cleaning liquid and then bringing the cleaning liquid into contact with an object to be cleaned.

本発明はまた、純水にオゾンを溶解させたオゾン水に紫外線を照射して洗浄液を得るための紫外線照射処理槽、および該紫外線照射処理槽内の洗浄液を被洗浄物に接触させるための手段を備えたことを特徴とする洗浄装置に関する。   The present invention also provides an ultraviolet irradiation treatment tank for obtaining cleaning liquid by irradiating ozone water in which ozone is dissolved in pure water, and means for bringing the cleaning liquid in the ultraviolet irradiation treatment tank into contact with an object to be cleaned. The present invention relates to a cleaning apparatus.

本発明によれば、洗浄液を一旦、得た後で、当該洗浄液を被洗浄物に接触させるだけで、表面上の汚染物質を十分に除去できる。そのため、被洗浄物が複雑形状を有する場合や配管である場合であっても、そのような本発明の汚染物質除去効果は有効に得ることができる。また洗浄液に特定の水溶性有機物を溶解させておくことにより、汚染物質除去効果がより一層、向上し、しかも比較的長期にわたって維持される。   According to the present invention, once the cleaning liquid is obtained, the contaminants on the surface can be sufficiently removed simply by bringing the cleaning liquid into contact with the object to be cleaned. Therefore, even when the object to be cleaned has a complicated shape or a pipe, such a contaminant removal effect of the present invention can be obtained effectively. Further, by dissolving a specific water-soluble organic substance in the cleaning liquid, the contaminant removal effect is further improved and maintained for a relatively long time.

本発明の洗浄方法は、被洗浄物表面の汚染物質を除去するための方法であり、汚染物質が有機物であっても、無機物であっても、または菌類であっても、粒子形態で有効に除去可能である。   The cleaning method of the present invention is a method for removing contaminants on the surface of an object to be cleaned, and is effective in the form of particles regardless of whether the contaminants are organic, inorganic or fungi. It can be removed.

本発明の洗浄方法を適用可能な被洗浄物は、特に制限されるものではないが、表面を厳密に清浄にしておく必要のある精密部品であることが好ましい。被洗浄物自体に影響を与えることなく、汚染物質を有効に除去できるためである。そのような精密部品として、電子部品、例えば、シリコンウェハ、プリント基板、ガラス基板、液晶基板、磁気ディスク基板、化合物半導体基板等ならびに;そのような電子部品の製造装置や洗浄装置における各種部品、例えば、濾過用フィルタ、濾過用フィルタハウジング、配管、ウェハキャリア、洗浄槽、ポンプ等が挙げられる。   The object to be cleaned to which the cleaning method of the present invention is applicable is not particularly limited, but is preferably a precision part whose surface needs to be strictly cleaned. This is because contaminants can be effectively removed without affecting the object to be cleaned itself. Such precision components include electronic components such as silicon wafers, printed boards, glass substrates, liquid crystal substrates, magnetic disk substrates, compound semiconductor substrates, and the like; and various parts in such electronic component manufacturing apparatuses and cleaning apparatuses, such as , Filter for filtration, filter housing for filtration, piping, wafer carrier, washing tank, pump and the like.

本発明の洗浄方法を採用した洗浄装置の一例の概略模式図を示す図1を用いて、本発明の洗浄方法を詳しく説明する。   The cleaning method of the present invention will be described in detail with reference to FIG. 1 showing a schematic diagram of an example of a cleaning apparatus employing the cleaning method of the present invention.

本発明においては、まず、純水にオゾンを溶解させてオゾン水を調製する。オゾン水の調製方法は純水にオゾンを溶解できれば特に制限されず、例えば、オゾン溶解装置1内に純水2を充填し、その中に、オゾナイザ3で発生させたオゾンを供給することによって、オゾン水を得ることができる。オゾナイザ3は酸素ボンベ4に連結され、酸素ボンベ4から供給された酸素からオゾンを生成させる。オゾナイザ3は公知のオゾン発生器が使用可能で、例えば、汎用型水冷式オゾン発生器、無声放電方式オゾン発生器等が挙げられ、住友精密工業社、リガルジョイント社、エコデザイン社等から市販されている。   In the present invention, first, ozone water is prepared by dissolving ozone in pure water. The ozone water preparation method is not particularly limited as long as ozone can be dissolved in pure water, for example, by filling the ozone dissolving apparatus 1 with pure water 2 and supplying ozone generated by the ozonizer 3 therein, Ozone water can be obtained. The ozonizer 3 is connected to the oxygen cylinder 4 and generates ozone from the oxygen supplied from the oxygen cylinder 4. As the ozonizer 3, a known ozone generator can be used. For example, a general-purpose water-cooled ozone generator, a silent discharge type ozone generator, and the like are available, and are commercially available from Sumitomo Precision Industries, Regal Joint, Ecodesign, etc. Has been.

純水は不純物質が除去された水であり、通常は、電気抵抗率15MΩ・cm以上のものが使用される。電子部品またはその製造装置もしくは洗浄装置に使用される部品(以下、電子部品等という)の洗浄の観点から、好ましくは電気抵抗率17MΩ・cm以上の超純水が使用される。なお、電気抵抗率は、市販の比抵抗率計を用いて測定することができる。   Pure water is water from which impurities have been removed, and usually water having an electrical resistivity of 15 MΩ · cm or more is used. From the viewpoint of cleaning an electronic component or a component used in its manufacturing apparatus or cleaning device (hereinafter referred to as an electronic component or the like), ultrapure water having an electrical resistivity of 17 MΩ · cm or more is preferably used. The electrical resistivity can be measured using a commercially available specific resistivity meter.

オゾン水中のオゾン濃度は本発明の目的が達成される限り特に制限されず、通常は1〜100ppm、特に3〜50ppmである。オゾン濃度が低下すれば、洗浄の効果が低下し、オゾン濃度が高くなると、オゾンを純水に溶解する工程が極めて困難になる。図1に示すように、ポンプ11と紫外線照射処理槽6とを連結する管路12の中途に、オゾンの濃度を計測するための濃度計21(例えば、吸光光度計「ウォーターライザー」(倉敷紡績社製)、インライン型溶存オゾンモニタ(荏原実業社製)など)を設けて、オゾン濃度を算出、計測できる。本明細書中、濃度等を示す単位「ppm」は重量基準での全量に対する割合を示すものとする。   The ozone concentration in the ozone water is not particularly limited as long as the object of the present invention is achieved, and is usually 1 to 100 ppm, particularly 3 to 50 ppm. If the ozone concentration decreases, the cleaning effect decreases, and if the ozone concentration increases, the process of dissolving ozone in pure water becomes extremely difficult. As shown in FIG. 1, a concentration meter 21 (for example, an absorptiometer “Water Riser” (Kurashiki Spinning) for measuring the concentration of ozone is provided in the middle of a pipe 12 connecting the pump 11 and the ultraviolet irradiation treatment tank 6. Etc.), an in-line dissolved ozone monitor (Ebara Jitsugyo Co., Ltd.) etc. is provided, and the ozone concentration can be calculated and measured. In the present specification, the unit “ppm” indicating concentration and the like indicates a ratio to the total amount on a weight basis.

オゾン水にはさらに、水溶性有機物をさらに溶解させることが好ましい。オゾン水に水溶性有機物を溶解させておくことにより、後述する紫外線照射によるヒドロキシラジカルの生成が促進される。その結果、洗浄液による汚染物質除去能がより一層向上するだけでなく、比較的長期にわたって維持される。なお、水溶性有機物5の添加は、純水にオゾンを溶解させる前、オゾン溶解と同時、オゾン溶解の後、のいずれであってもよいが、純水にオゾンを溶解させる前、オゾン溶解と同時であるのが好ましい。   It is preferable to further dissolve water-soluble organic substances in ozone water. By dissolving a water-soluble organic substance in ozone water, generation of hydroxy radicals by ultraviolet irradiation described later is promoted. As a result, the ability to remove contaminants by the cleaning liquid is not only further improved, but also maintained for a relatively long time. The water-soluble organic substance 5 may be added before dissolving ozone in pure water, simultaneously with ozone dissolution, or after ozone dissolution, but before dissolving ozone in pure water, It is preferred that they be simultaneous.

水溶性有機物は、後述する紫外線照射によるヒドロキシラジカル発生の観点から、オゾン反応速度定数10L/mol/sec以下、特に1.0L/mol/sec以下、好ましくは0.001〜1.0L/mol/secのものが使用される。オゾン反応速度定数はオゾンとの反応時における反応速度定数であり、小さいほどオゾンと反応し難いことを示す。上記のようにオゾン反応速度定数が比較的小さい水溶性有機物を使用することにより、オゾンによるヒドロキシラジカルの発生を阻害することなく、水溶性有機物自体も紫外線照射によってラジカルの発生に寄与できる。種々の化合物のオゾン反応速度定数は公知の文献より知見でき、例えば、第4回「オゾン・ラジカル殺菌および脱臭研究会」より発行された「オゾン処理とヒドロキシルラジカル」(中山繁樹著)における表2.2「オゾンおよびOHラジカルと化合物の水中での反応速度定数」に記載されている。   The water-soluble organic substance is an ozone reaction rate constant of 10 L / mol / sec or less, particularly 1.0 L / mol / sec or less, preferably 0.001 to 1.0 L / mol / from the viewpoint of generation of hydroxy radicals by ultraviolet irradiation described later. The one of sec is used. The ozone reaction rate constant is a reaction rate constant at the time of reaction with ozone. The smaller the ozone reaction rate constant, the more difficult it is to react with ozone. By using a water-soluble organic substance having a relatively small ozone reaction rate constant as described above, the water-soluble organic substance itself can also contribute to the generation of radicals by ultraviolet irradiation without inhibiting the generation of hydroxy radicals by ozone. The ozone reaction rate constants of various compounds can be known from known literatures, for example, Table 2 in “Ozone treatment and hydroxyl radical” (written by Shigeki Nakayama) published by the 4th “Ozone Radical Sterilization and Deodorization Study Group”. .2 “Reaction rate constants of ozone and OH radicals and compounds in water”.

そのような水溶性有機物として、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、t−ブタノール等のアルコール類、アセトン、酢酸、蟻酸、クエン酸等が挙げられる。   Examples of such water-soluble organic substances include alcohols such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, and t-butanol, acetone, acetic acid, formic acid, citric acid, and the like. .

上記水溶性有機物の中でも、電子部品等の洗浄の観点からは、沸点が比較的低いものが好ましく使用され、例えば、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、t−ブタノール等が挙げられる。最も好ましい水溶性有機物はiso−プロパノール(イソプロパノール)である。   Among the above water-soluble organic substances, those having a relatively low boiling point are preferably used from the viewpoint of washing of electronic parts and the like, for example, n-propanol, iso-propanol, n-butanol, iso-butanol, t-butanol and the like. Is mentioned. The most preferred water-soluble organic substance is iso-propanol (isopropanol).

水溶性有機物の濃度は通常、100ppm以下であり、好ましくは0.001〜10ppm、より好ましくは0.01〜5ppmである。水溶性有機物の濃度は、ポンプ11と紫外線照射処理槽6とを連結する管路12の中途に、濃度計(図示しない)(たとえばUV有機物計UVAS−sc(セントラル科学社製)など)を設けて計測できる。   The concentration of the water-soluble organic substance is usually 100 ppm or less, preferably 0.001 to 10 ppm, more preferably 0.01 to 5 ppm. Concentration of the water-soluble organic matter is provided in the middle of the pipe 12 connecting the pump 11 and the ultraviolet irradiation treatment tank 6 (not shown) (for example, UV organic matter meter UVAS-sc (manufactured by Central Science Co., Ltd.)). Can be measured.

オゾン水を得た後は、当該オゾン水に紫外線を照射し、洗浄液を調製する。洗浄液の調製方法は、オゾン水に対して紫外線を照射できれば特に制限されず、例えば、オゾン溶解装置1内で調製されたオゾン水を、ポンプ11等によって管路12を経て紫外線照射処理槽6に供給し、当該装置内で紫外線ランプを発光させることによって、洗浄液を得ることができる。オゾン水を紫外線照射処理槽6に供給するに際しては、図1に示すように、ポンプ11から管路を分岐させ、管路13によってオゾン水をオゾン溶解装置1内に戻して循環させてもよい。   After obtaining the ozone water, the ozone water is irradiated with ultraviolet rays to prepare a cleaning liquid. The cleaning liquid preparation method is not particularly limited as long as it can irradiate ozone water with ultraviolet rays. For example, ozone water prepared in the ozone dissolving apparatus 1 is applied to the ultraviolet irradiation treatment tank 6 through a pipe line 12 by a pump 11 or the like. The cleaning liquid can be obtained by supplying and causing the ultraviolet lamp to emit light in the apparatus. When supplying the ozone water to the ultraviolet irradiation treatment tank 6, as shown in FIG. 1, the pipe may be branched from the pump 11, and the ozone water may be returned to the ozone dissolving apparatus 1 through the pipe 13 and circulated. .

オゾン水に対する紫外線照射によって、以下に示す経路(I)および(II)に基づいてヒドロキシラジカルが生成する。   Hydroxyl radicals are generated based on the following routes (I) and (II) by ultraviolet irradiation of ozone water.

経路(I);
+HO→HO +OH
HO +OH→2HO
+HO・→OH・+2O
Route (I);
O 3 + H 2 O → HO 3 + + OH
HO 3 + + OH → 2HO 2 ·
O 3 + HO 2 → OH / + 2O 2

経路(II);
+HO+hν→H+O
+hν→2OH・
Pathway (II);
O 3 + H 2 O + hν → H 2 O 2 + O 2
H 2 O 2 + hν → 2OH ·

このような経路により発生したヒドロキシラジカルは、以下の作用・メカニズムに基づいて、汚染物質の除去効果を発揮する。ヒドロキシラジカルは強力な酸化作用および殺菌作用を有するので、汚染物質が有する電荷を中和して、中和した汚染物質を被洗浄物表面から遊離させ、再付着しにくくさせるように作用する。しかも、そのような洗浄液は、被洗浄物に影響を与えることなく、上述したような汚染物質の除去効果を発揮できる。さらにこの効果は、ヒドロキシラジカルが生成した洗浄液を系外に取り出して使用した場合であっても、実用的な時間レベルにおいて維持される。このため、そのような洗浄液を被洗浄物に対して、後述するように、浸漬方式だけでなく、シャワー方式で接触させても、当該効果を有効に発揮できる。   Hydroxyl radicals generated by such a route exert a contaminant removal effect based on the following actions and mechanisms. Since the hydroxy radical has a strong oxidizing action and bactericidal action, it acts to neutralize the electric charge of the pollutant so that the neutralized pollutant is released from the surface of the object to be cleaned and hardly reattached. Moreover, such a cleaning liquid can exhibit the above-described contaminant removal effect without affecting the object to be cleaned. Further, this effect is maintained at a practical time level even when the cleaning liquid in which hydroxy radicals are generated is taken out of the system and used. For this reason, even if such a cleaning liquid is brought into contact with an object to be cleaned by a shower method as well as an immersion method, the effect can be effectively exhibited.

水溶性有機物をオゾン水に溶解させておくことにより、洗浄液の汚染物質除去能がより一層向上するだけでなく、比較的長期にわたって維持される現象の詳細は明らかではないが、以下の作用・メカニズムに基づくものと考えられる。紫外線照射によって水溶性有機物がヒドロキシルラジカルと連鎖的に反応し、ヒドロキシラジカルと相乗効果を示すため、汚染物質除去能の顕著な向上と長期継続が達成されるものと考えられる。   Dissolving water-soluble organic substances in ozone water not only improves the ability of the cleaning liquid to remove contaminants, but details of the phenomenon that is maintained over a relatively long period of time are not clear. It is thought that it is based on. Since water-soluble organic substances react with hydroxyl radicals in a chain reaction by ultraviolet irradiation and show a synergistic effect with hydroxy radicals, it is considered that a remarkable improvement and long-term continuation of pollutants can be achieved.

紫外線ランプは公知の紫外線発生器が使用可能で、例えば、低圧水銀ランプSUV−40(セン特殊光源社製)などが挙げられる。   A known ultraviolet generator can be used as the ultraviolet lamp, and examples thereof include a low-pressure mercury lamp SUV-40 (manufactured by Sen Special Light Source Co., Ltd.).

紫外線は、本発明の目的が達成される程度に照射されればよく、例えば後述のヒドロキシルラジカル濃度が洗浄液中で達成されるような照射量で照射されればよい。具体的には紫外線ランプは通常、0.1〜25W/Lで1〜600秒間相当の照射量で照射させればよい。   The ultraviolet light may be irradiated to such an extent that the object of the present invention is achieved. For example, the ultraviolet light may be irradiated at such an irradiation amount that a hydroxyl radical concentration described below is achieved in the cleaning liquid. Specifically, the ultraviolet lamp is usually irradiated at an irradiation dose corresponding to 1 to 600 seconds at 0.1 to 25 W / L.

洗浄液中に含まれるヒドロキシラジカルの存在は、洗浄液を、フリーラジカルモニタJES−FR30(日本電子社製)を用いた電子スピン共鳴(E S R : Electron Spin Resonance)(Electron Paramagnetic Resonanceとも呼ばれる。)に供することによって確認できる。例えば、紫外線照射によって得られた洗浄液を上記モニタに供し、得られたESRチャートから、ヒドロキシラジカルの存在を示すピークが存在しているか否かで確認することができる。   Presence of hydroxy radicals contained in the cleaning liquid is to be used for electron spin resonance (ESR: Electron Spin Resonance) (also called Electron Paramagnetic Resonance) using a free radical monitor JES-FR30 (manufactured by JEOL Ltd.). Can be confirmed. For example, the cleaning liquid obtained by the ultraviolet irradiation is applied to the monitor, and it can be confirmed from the obtained ESR chart whether or not there is a peak indicating the presence of hydroxy radicals.

洗浄液中のヒドロキシラジカルの濃度は、本発明の目的が達成される限り特に制限されるものではなく、例えば1.0×10−6〜8.0×10−5mol/L、特に2.0×10−6〜4.0×10−5mol/Lが好適である。 The concentration of the hydroxy radical in the cleaning liquid is not particularly limited as long as the object of the present invention is achieved. For example, the concentration is 1.0 × 10 −6 to 8.0 × 10 −5 mol / L, particularly 2.0. × 10 −6 to 4.0 × 10 −5 mol / L is preferable.

ヒドロキシラジカルの濃度は例えば、DMSO(ジメチルスルホキシド)法によって測定できる。詳しくは、調製直後の洗浄液を分取し、これにDMSOを添加することにより、DMSOとヒドロキシラジカルとを反応させる。反応は以下の反応式に従うものであって、すなわち反応によって生成したメタンスルホン酸の量は、反応したDMSOの量およびヒドロキシラジカルの量に等しい。よって、反応によって生成したメタンスルホン酸の量をイオンクロマトグラフで測定して得られた測定値および測定に供された洗浄液の量よりヒドロキシラジカル濃度を算出できる。   The concentration of the hydroxy radical can be measured, for example, by DMSO (dimethyl sulfoxide) method. Specifically, the washing liquid immediately after preparation is collected, and DMSO is added thereto to react DMSO with hydroxy radicals. The reaction follows the following reaction equation: the amount of methanesulfonic acid produced by the reaction is equal to the amount of DMSO reacted and the amount of hydroxy radicals. Therefore, the hydroxy radical concentration can be calculated from the measured value obtained by measuring the amount of methanesulfonic acid produced by the reaction with an ion chromatograph and the amount of the cleaning solution used for the measurement.

(CHSO+・OH→CHS(O)OH+・CH
CHS(O)OH+・OH+O→CHS(O)OH+・OOH
(CHSO+・OOH→CHS(O)OH+・CH
(CH 3 ) 2 SO + · OH → CH 3 S (O) OH + · CH 3
CH 3 S (O) OH + · OH + O 2 → CH 3 S (O) 2 OH + · OOH
(CH 3 ) 2 SO + · OOH → CH 3 S (O) 2 OH + · CH 3

本発明で使用される洗浄液は、酸化還元電位が800mVから200mVまで100mV/秒以下の低下率での低下を示すものであることが好ましい。酸化還元電位の低下率が100mV/秒を超える洗浄液を用いる場合には、ヒドロキシラジカルの含有量が低いと考えられ、洗浄効果が低くなる傾向にあるためである。上記酸化還元電位の低下率は10mV/秒以下であると、より優れた洗浄効果を示すため、より好ましい。   The cleaning liquid used in the present invention preferably exhibits a reduction in oxidation-reduction potential from 800 mV to 200 mV at a reduction rate of 100 mV / second or less. This is because when the cleaning liquid having a reduction rate of the oxidation-reduction potential exceeding 100 mV / second is used, the content of hydroxy radicals is considered to be low, and the cleaning effect tends to be low. The reduction rate of the oxidation-reduction potential is more preferably 10 mV / second or less because a more excellent cleaning effect is exhibited.

洗浄液の酸化還元電位の低下率は以下の方法によって測定可能である。例えば、図1における調製直後の洗浄液を、ポータブルORP計RM−20P(東亜ディーケーケー社製)のORP電極を差し込んだ100ml容のビーカーに供給してオーバーフローさせた後、当該ビーカーを装置の系外に外し、ビーカーヘの洗浄液の供給を停止する。そして、ポータブルORP計RM−20Pにて測定された、ビーカーを系外に外した直後、および10秒後のORP値から、1秒あたりの酸化還元電位の低下率を算出する。   The decreasing rate of the oxidation-reduction potential of the cleaning liquid can be measured by the following method. For example, after the cleaning liquid immediately after preparation in FIG. 1 is supplied to a 100 ml beaker into which an ORP electrode of a portable ORP meter RM-20P (manufactured by Toa DKK Corporation) is inserted and overflowed, the beaker is removed from the system. Remove the cleaning liquid supply to the beaker. Then, the rate of reduction of the oxidation-reduction potential per second is calculated from the ORP values measured by the portable ORP meter RM-20P immediately after removing the beaker and after 10 seconds.

また例えば、図1に示すように、紫外線照射処理槽6と洗浄液を被洗浄物に接触させるための手段7とを連結する管路15の中途に、酸化還元電位計23(たとえば工業用ORP計HDM−138A(東亜ディーケーケー社製)など)を設け、これによって酸化還元電位を測定してもよい。基本的な測定方法は、上記ポータブルORP計RM−20Pを使用する場合と同様である。   Further, for example, as shown in FIG. 1, an oxidation-reduction potentiometer 23 (for example, an industrial ORP meter) is provided in the middle of a pipe line 15 that connects the ultraviolet irradiation treatment tank 6 and a means 7 for bringing the cleaning liquid into contact with the object to be cleaned. HDM-138A (manufactured by Toa DKK Co., Ltd.) may be provided, and thereby the oxidation-reduction potential may be measured. The basic measurement method is the same as that when the portable ORP meter RM-20P is used.

洗浄液を得た後は、当該洗浄液を被洗浄物に接触させる。詳しくは、紫外線照射処理槽6内で得られた洗浄液を管路15を経て、洗浄液を被洗浄物に接触させるための手段7に供給する。   After obtaining the cleaning liquid, the cleaning liquid is brought into contact with the object to be cleaned. Specifically, the cleaning liquid obtained in the ultraviolet irradiation treatment tank 6 is supplied to the means 7 for bringing the cleaning liquid into contact with the object to be cleaned through the conduit 15.

洗浄液を被洗浄物に接触させるための手段7は、洗浄液と被洗浄物との接触を確保できる限り特に制限されず、例えば、被洗浄物に対してシャワー方式で洗浄液を付与するためのシャワーヘッドであってもよいし、洗浄液中に被洗浄物を浸漬させるための浸漬槽であってもよい。接触手段7はいずれの方式を採用する場合であって、汚染物質の有効除去の観点から、洗浄液は流動していることが好ましい。例えば、浸漬槽を使用する場合、洗浄液は浸漬槽内で撹拌されながら使用される。被洗浄物がフィルタである場合、接触手段7は、管路15に連結して配設された管路内に当該フィルタを取り付けて、洗浄液流を透過させるためのフィルタ取り付け器具であってよい。   The means 7 for bringing the cleaning liquid into contact with the object to be cleaned is not particularly limited as long as the contact between the cleaning liquid and the object to be cleaned can be ensured. For example, a shower head for applying the cleaning liquid to the object to be cleaned by the shower method. It may be an immersion tank for immersing the object to be cleaned in the cleaning liquid. The contact means 7 employs any method, and the cleaning liquid is preferably flowing from the viewpoint of effective removal of contaminants. For example, when an immersion tank is used, the cleaning liquid is used while being stirred in the immersion tank. When the object to be cleaned is a filter, the contact means 7 may be a filter attaching device for attaching the filter in a pipe line connected to the pipe line 15 and permeating the cleaning liquid flow.

洗浄液と被洗浄物との接触時間は、一概に規定できるものではなく、被洗浄物の汚染の程度、接触手段7の方式、必要とする洗浄度合い等に応じて設定すればよい。   The contact time between the cleaning liquid and the object to be cleaned cannot be generally defined, and may be set according to the degree of contamination of the object to be cleaned, the method of the contact means 7, the required degree of cleaning, and the like.

以上に説明した本発明の洗浄方法によれば、洗浄液中のヒドロキシラジカル濃度が比較的高くなり、しかも当該濃度を維持できるので、洗浄効果が向上し、そのような優れた洗浄効果を比較的長期にわたって有し得る。例えば、後述する実験例5で得られる図6に示すように、水溶性有機物を含有するオゾン水に紫外線を照射した洗浄液X1は、紫外線を照射しない洗浄液X3と比較して、洗浄液中のヒドロキシラジカル濃度を高く維持できるので、洗浄効果が向上し、そのような優れた洗浄効果を比較的長期にわたって有し得る。図6は各種洗浄液中のヒドロキシラジカル濃度の経時変化を示すグラフであり、このときのオゾン濃度の経時変化を図7に示す。   According to the cleaning method of the present invention described above, the concentration of hydroxy radicals in the cleaning liquid becomes relatively high and the concentration can be maintained, so that the cleaning effect is improved and such an excellent cleaning effect is maintained for a relatively long time. Can have. For example, as shown in FIG. 6 obtained in Experimental Example 5 which will be described later, the cleaning liquid X1 obtained by irradiating ozone water containing a water-soluble organic substance with ultraviolet rays is more hydroxyl radicals in the cleaning liquid than the cleaning liquid X3 not irradiated with ultraviolet rays. Since the concentration can be maintained high, the cleaning effect is improved, and such an excellent cleaning effect can be obtained over a relatively long period. FIG. 6 is a graph showing the change with time of the hydroxy radical concentration in various cleaning solutions. FIG. 7 shows the change with time of the ozone concentration at this time.

特に、本発明においては、オゾン水に紫外線を照射して洗浄液を得た直後に、当該洗浄液を被洗浄物に接触させることにより、被洗浄物との接触時における洗浄液中のヒドロキシラジカル濃度をより一層高くできるので、洗浄効果がさらに向上する。例えば、図6の洗浄液X2が示すように、水溶性有機物を含有するオゾン水は、紫外線を照射されると、洗浄液中のヒドロキシラジカル濃度が顕著に高くなるので、紫外線を照射した直後に洗浄液を被洗浄物に接触させると洗浄効果が顕著に優れる。   In particular, in the present invention, immediately after the cleaning liquid is obtained by irradiating ozone water with ultraviolet rays, the cleaning liquid is brought into contact with the object to be cleaned, thereby further increasing the hydroxy radical concentration in the cleaning liquid at the time of contact with the object to be cleaned. Since it can be made higher, the cleaning effect is further improved. For example, as shown in the cleaning liquid X2 in FIG. 6, when ozone water containing a water-soluble organic substance is irradiated with ultraviolet rays, the concentration of hydroxy radicals in the cleaning liquid is significantly increased. When brought into contact with an object to be cleaned, the cleaning effect is remarkably excellent.

紫外線を照射して洗浄液を得てから、当該洗浄液を被洗浄物に接触させるまでの時間は短いほど、洗浄液中のヒドロキシラジカル濃度は高いため好ましい。本発明において具体的には当該時間は360秒間以下が好ましく、より好ましくは180秒間以下、さらに好ましくは60秒間以下である。   The shorter the time from when the cleaning liquid is obtained by irradiating ultraviolet rays until the cleaning liquid is brought into contact with the object to be cleaned, the higher the hydroxy radical concentration in the cleaning liquid, the better. In the present invention, specifically, the time is preferably 360 seconds or less, more preferably 180 seconds or less, and still more preferably 60 seconds or less.

本発明を以下の実験例によりさらに詳しく説明するが、本発明は以下の実験例に限定されて解釈されるべきではないことは明らかである。   The present invention will be described in more detail by the following experimental examples, but it is obvious that the present invention should not be construed as being limited to the following experimental examples.

図1に示す洗浄装置によってフィルタの洗浄を行った。すなわち各実験例において所定の操作条件で製造した各種洗浄液を使用し、洗浄評価を行った。詳しくは、洗浄液を被洗浄物に接触させるための手段7として、管路15に連結して配設された管路内に被洗浄物としてのフィルタを取り付けて、洗浄液を当該フィルタに透過させるためのフィルタ取り付け器具を用いた。接触手段7において被洗浄物(フィルタ)を透過した直後の洗浄液について、粒子カウンター(KL22;リオン社製)により粒径0.2μmの粒子を積算カウントした。当該粒子は洗浄液の透過によりフィルタから遊離・除去されたものである。
洗浄されるフィルタは、30℃の超純水(電気抵抗率18MΩ・cm)に1週間浸漬したポリテトラフルオロエチレン製のフィルタ(アドバンテック社製)である。
The filter was cleaned by the cleaning apparatus shown in FIG. That is, cleaning evaluation was performed using various cleaning solutions manufactured under predetermined operating conditions in each experimental example. Specifically, as means 7 for bringing the cleaning liquid into contact with the object to be cleaned, a filter as the object to be cleaned is attached in a pipe line connected to the pipe line 15 so that the cleaning liquid permeates the filter. The filter mounting tool was used. With respect to the cleaning liquid immediately after passing through the object to be cleaned (filter) in the contact means 7, particles having a particle diameter of 0.2 μm were cumulatively counted by a particle counter (KL22; manufactured by Lion Corporation). The particles are released and removed from the filter by permeation of the cleaning liquid.
The filter to be cleaned is a polytetrafluoroethylene filter (manufactured by Advantech) immersed in ultrapure water (electric resistivity 18 MΩ · cm) at 30 ° C. for one week.

純水2は超純水製造装置によって製造された超純水(電気抵抗率18MΩ・cm)を、オゾン溶解装置へ1L/分で供給した。
オゾナイザ3の運転を行う場合、酸素ボンベ4から酸素ガスをオゾナイザ3としての無声放電方式オゾン発生器(リガルジョイント社製)へ1L/分で供給した。オゾナイザ3でオゾンガスを発生させ、オゾン溶解装置1(散気管方式)へ1L/分で供給した。オゾン溶解装置1では超純水製造装置から供給された超純水を常時、2L貯水し、そこでオゾンガスを散気管で超純水に吹き込みオゾン水を生成した。
オゾン溶解装置1で生成したオゾン水は、ポンプで11で一部を循環しながら、0.8L/分で紫外線照射処理槽6へ供給し、0.2L/分でオーバーフロー排水した。
水溶性有機物5を供給する場合、水溶性有機物5はiso−プロパノールを用い、予め超純水と混合した1000ppm溶液の形態で、所定濃度になるようにオゾン溶解装置に供給した。
紫外線を照射する場合、低圧水銀ランプSUV−40(セン特殊光源社製)を0.3W/Lで5秒間相当の照射量で照射させた。
As pure water 2, ultrapure water (electric resistivity 18 MΩ · cm) produced by an ultrapure water production apparatus was supplied to the ozone dissolution apparatus at 1 L / min.
When the operation of the ozonizer 3 was performed, oxygen gas was supplied from the oxygen cylinder 4 to a silent discharge type ozone generator (manufactured by Regal Joint) as the ozonizer 3 at 1 L / min. Ozone gas was generated by the ozonizer 3 and supplied to the ozone dissolution apparatus 1 (aeration tube system) at 1 L / min. In the ozone dissolving apparatus 1, the ultrapure water supplied from the ultrapure water production apparatus was always stored in 2 L, and ozone gas was blown into the ultrapure water through a diffuser tube to generate ozone water.
The ozone water generated by the ozone dissolving apparatus 1 was supplied to the ultraviolet irradiation treatment tank 6 at 0.8 L / min while partially circulating with a pump 11, and overflowed at 0.2 L / min.
When supplying the water-soluble organic substance 5, the water-soluble organic substance 5 was supplied to the ozone dissolution apparatus so as to have a predetermined concentration in the form of a 1000 ppm solution previously mixed with ultrapure water using iso-propanol.
In the case of irradiation with ultraviolet rays, a low-pressure mercury lamp SUV-40 (manufactured by Sen Special Light Source) was irradiated at a dose equivalent to 5 W at 0.3 W / L.

オゾン濃度は濃度計21(吸光光度計「ウォーターライザー」(倉敷紡績社製))で算出測定した。
酸化還元電位の低下率は酸化還元電位計23(工業用ORP計HDM−138A;東亜ディーケーケー社製)で測定した。
ヒドロキシラジカル濃度は、後述の実験例と同一の条件にて得られた別途洗浄液を用いてDMSO法によって測定した。
図1の洗浄装置は連続運転式であり、流速0.8L/分で洗浄液が製造されるように、超純水を継続して供給し、ポンプ11を使用した。洗浄液が紫外線照射処理槽6を出てから被洗浄物としてのフィルタに到達するまでの時間は2秒間であった。
The ozone concentration was calculated and measured with a densitometer 21 (an absorptiometer “Water Riser” (manufactured by Kurashiki Boseki)).
The reduction rate of the oxidation-reduction potential was measured with an oxidation-reduction potentiometer 23 (industrial ORP meter HDM-138A; manufactured by Toa DKK Corporation).
The hydroxy radical concentration was measured by the DMSO method using a separate cleaning solution obtained under the same conditions as in the experimental examples described later.
The cleaning apparatus in FIG. 1 is a continuous operation type, and ultrapure water was continuously supplied and a pump 11 was used so that a cleaning liquid was produced at a flow rate of 0.8 L / min. The time from when the cleaning liquid left the ultraviolet irradiation treatment tank 6 to the filter as the object to be cleaned was 2 seconds.

(実験例1)
実験開始から20分間経過するまで、超純水2および水溶性有機物5の供給運転は行ったが、オゾナイザ3の運転および低圧水銀ランプの発光は停止して、洗浄液A1を製造し、洗浄評価を行った。オゾン濃度は0ppm、水溶性有機物濃度は1ppm、酸化還元電位の低下率は0mV/秒、ヒドロキシラジカル濃度は0mol/Lであった。
実験開始20分後から60分間経過するまで、超純水2および水溶性有機物5の供給運転、オゾナイザ3の運転および低圧水銀ランプの発光を行って、洗浄液B1を製造し、洗浄評価を行った。オゾン濃度は4ppm、水溶性有機物濃度は1ppm、酸化還元電位の低下率は1mV/秒以下、ヒドロキシラジカル濃度は3.0×10−6mol/Lであった。
実験開始80分後から30分間経過するまで、超純水2および水溶性有機物5の供給運転ならびにオゾナイザ3の運転は行ったが、低圧水銀ランプの発光は停止して、洗浄液C1を製造し、洗浄評価を行った。オゾン濃度は4ppm、水溶性有機物濃度は1ppm、酸化還元電位の低下率は1mV/秒以下、ヒドロキシラジカル濃度は0.9×10−6mol/Lであった。
実験開始110分後から30分間経過するまで、超純水2および水溶性有機物5の供給運転は行ったが、オゾナイザ3の運転および低圧水銀ランプの発光は停止して、洗浄液D1を製造し、洗浄評価を行った。オゾン濃度は0ppm、水溶性有機物濃度は1ppm、酸化還元電位の低下率は0mV/秒、ヒドロキシラジカル濃度は0mol/Lであった。
評価結果を図2(A)および図2(B)に示した。図2(B)は図2(A)の拡大図である。なお、図2(A)および図2(B)の縦軸は、洗浄液B2によって除去された汚染物質粒子の数のピーク値を1として示している。
(Experimental example 1)
The operation of supplying the ultrapure water 2 and the water-soluble organic substance 5 was performed until 20 minutes passed from the start of the experiment. However, the operation of the ozonizer 3 and the light emission of the low-pressure mercury lamp were stopped, and the cleaning liquid A1 was produced and the cleaning evaluation was performed. went. The ozone concentration was 0 ppm, the water-soluble organic substance concentration was 1 ppm, the reduction rate of the redox potential was 0 mV / second, and the hydroxy radical concentration was 0 mol / L.
From the 20 minutes after the start of the experiment until 60 minutes passed, the supply operation of the ultrapure water 2 and the water-soluble organic substance 5, the operation of the ozonizer 3 and the light emission of the low-pressure mercury lamp were performed to produce the cleaning liquid B1, and the cleaning evaluation was performed. . The ozone concentration was 4 ppm, the water-soluble organic substance concentration was 1 ppm, the reduction rate of the redox potential was 1 mV / second or less, and the hydroxy radical concentration was 3.0 × 10 −6 mol / L.
The operation of supplying the ultrapure water 2 and the water-soluble organic substance 5 and the operation of the ozonizer 3 were performed until 80 minutes after the start of the experiment, but the emission of the low-pressure mercury lamp was stopped to produce the cleaning liquid C1. Cleaning evaluation was performed. The ozone concentration was 4 ppm, the water-soluble organic substance concentration was 1 ppm, the reduction rate of the oxidation-reduction potential was 1 mV / second or less, and the hydroxy radical concentration was 0.9 × 10 −6 mol / L.
The supply operation of the ultrapure water 2 and the water-soluble organic substance 5 was performed until 30 minutes after 110 minutes from the start of the experiment, but the operation of the ozonizer 3 and the light emission of the low-pressure mercury lamp were stopped to produce the cleaning liquid D1. Cleaning evaluation was performed. The ozone concentration was 0 ppm, the water-soluble organic substance concentration was 1 ppm, the reduction rate of the redox potential was 0 mV / second, and the hydroxy radical concentration was 0 mol / L.
The evaluation results are shown in FIGS. 2 (A) and 2 (B). FIG. 2B is an enlarged view of FIG. 2A and 2B, the vertical axis indicates the peak value of the number of contaminant particles removed by the cleaning liquid B2.

(実験例2)
実験開始から20分間経過するまで、実験例1における洗浄液A1と同様の方法により、洗浄液A2を製造し、洗浄評価を行った。オゾン濃度は0ppm、水溶性有機物濃度は1ppm、酸化還元電位の低下率は0mV/秒、ヒドロキシラジカル濃度は0ppmであった。
実験開始20分後から60分間経過するまで、超純水2および水溶性有機物5の供給運転ならびにオゾナイザ3の運転は行ったが、低圧水銀ランプの発光は停止して、洗浄液B2を製造し、洗浄評価を行った。オゾン濃度は4ppm、水溶性有機物濃度は1ppm、酸化還元電位の低下率は1mV/秒以下、ヒドロキシラジカル濃度は0.9×10−6mol/Lであった。
実験開始80分後から30分間経過するまで、超純水2および水溶性有機物5の供給運転、オゾナイザ3の運転および低圧水銀ランプの発光を行って、洗浄液C2を製造し、洗浄評価を行った。オゾン濃度は4ppm、水溶性有機物濃度は1ppm、酸化還元電位の低下率は1mV/秒以下、ヒドロキシラジカル濃度は3.0×10−6mol/Lであった。
実験開始110分後から30分間経過するまで、実験例1における洗浄液D1と同様の方法により、洗浄液D2を製造し、洗浄評価を行った。オゾン濃度は0ppm、水溶性有機物濃度は1ppm、酸化還元電位の低下率は0mV/秒、ヒドロキシラジカル濃度は0mol/Lであった。
評価結果を図3(A)および図3(B)に示した。図3(B)は図3(A)の拡大図である。なお、図3(A)および図3(B)の縦軸は、洗浄液B2によって除去された汚染物質粒子の数のピーク値を1として示している。
(Experimental example 2)
A cleaning liquid A2 was produced and evaluated for cleaning by the same method as the cleaning liquid A1 in Experimental Example 1 until 20 minutes passed from the start of the experiment. The ozone concentration was 0 ppm, the water-soluble organic substance concentration was 1 ppm, the reduction rate of the redox potential was 0 mV / second, and the hydroxy radical concentration was 0 ppm.
The operation of supplying the ultrapure water 2 and the water-soluble organic substance 5 and the operation of the ozonizer 3 were performed until 60 minutes after the start of the experiment, but the emission of the low-pressure mercury lamp was stopped to produce the cleaning liquid B2. Cleaning evaluation was performed. The ozone concentration was 4 ppm, the water-soluble organic substance concentration was 1 ppm, the reduction rate of the oxidation-reduction potential was 1 mV / second or less, and the hydroxy radical concentration was 0.9 × 10 −6 mol / L.
From 80 minutes after the start of the experiment, until 30 minutes have passed, the operation of supplying the ultrapure water 2 and the water-soluble organic substance 5, the operation of the ozonizer 3, and the light emission of the low-pressure mercury lamp were performed to produce the cleaning liquid C2, and the cleaning evaluation was performed. . The ozone concentration was 4 ppm, the water-soluble organic substance concentration was 1 ppm, the reduction rate of the redox potential was 1 mV / second or less, and the hydroxy radical concentration was 3.0 × 10 −6 mol / L.
A cleaning solution D2 was produced and evaluated for cleaning by the same method as the cleaning solution D1 in Experimental Example 1 until 30 minutes passed from 110 minutes after the start of the experiment. The ozone concentration was 0 ppm, the water-soluble organic substance concentration was 1 ppm, the reduction rate of the redox potential was 0 mV / second, and the hydroxy radical concentration was 0 mol / L.
The evaluation results are shown in FIGS. 3 (A) and 3 (B). FIG. 3B is an enlarged view of FIG. 3A and 3B, the vertical axis indicates the peak value of the number of contaminant particles removed by the cleaning liquid B2.

(実験例3)
実験例2と同様の方法により洗浄液を製造し、洗浄評価を行った。
評価結果を図4(A)および図4(B)に示した。図4(B)は図4(A)の拡大図である。なお、図4(A)および図4(B)の縦軸は、洗浄液B2によって除去された汚染物質粒子の数のピーク値を1として示している。
(Experimental example 3)
A cleaning solution was produced in the same manner as in Experimental Example 2, and cleaning evaluation was performed.
The evaluation results are shown in FIGS. 4 (A) and 4 (B). FIG. 4B is an enlarged view of FIG. 4A and 4B, the vertical axis of the number of contaminant particles removed by the cleaning liquid B2 is shown as 1.

(実験例4)
実験開始から20分間経過するまで、超純水2の供給運転は行ったが、水溶性有機物5の供給運転、オゾナイザ3の運転および低圧水銀ランプの発光は停止して、洗浄液A4を製造し、洗浄評価を行った。オゾン濃度は0ppm、水溶性有機物濃度は0ppm、酸化還元電位の低下率は0mV/秒、ヒドロキシラジカル濃度は0mol/Lであった。
実験開始20分後から60分間経過するまで、超純水2の供給運転およびオゾナイザ3の運転は行ったが、水溶性有機物5の供給運転および低圧水銀ランプの発光は停止して、洗浄液B4を製造し、洗浄評価を行った。オゾン濃度は4ppm、水溶性有機物濃度は0ppm、酸化還元電位の低下率は1mV/秒以下、ヒドロキシラジカル濃度は0.7×10−6mol/Lであった。
実験開始80分後から30分間経過するまで、超純水2の供給運転、オゾナイザ3の運転および低圧水銀ランプの発光は行ったが、水溶性有機物5の供給は停止して、洗浄液C4を製造し、洗浄評価を行った。オゾン濃度は4ppm、水溶性有機物濃度は0ppm、酸化還元電位の低下率は1mV/秒以下、ヒドロキシラジカル濃度は1.5×10−6mol/Lであった。
実験開始110分後から30分間経過するまで、超純水2および水溶性有機物5の供給運転、オゾナイザ3の運転および低圧水銀ランプの発光を行って、洗浄液D4を製造し、洗浄評価を行った。オゾン濃度は4ppm、水溶性有機物濃度は1ppm、酸化還元電位の低下率は1mV/秒以下、ヒドロキシラジカル濃度は3.0×10−6mol/Lであった。
評価結果を図5(A)および図5(B)に示した。図5(B)は図5(A)の拡大図である。なお、図5(A)および図5(B)の縦軸は、洗浄液B4によって除去された汚染物質粒子の数のピーク値を1として示している。
(Experimental example 4)
The operation of supplying the ultrapure water 2 was performed until 20 minutes passed from the start of the experiment, but the operation of supplying the water-soluble organic matter 5, the operation of the ozonizer 3, and the light emission of the low-pressure mercury lamp were stopped to produce the cleaning liquid A4. Cleaning evaluation was performed. The ozone concentration was 0 ppm, the water-soluble organic substance concentration was 0 ppm, the reduction rate of the redox potential was 0 mV / second, and the hydroxy radical concentration was 0 mol / L.
The operation of supplying the ultrapure water 2 and the operation of the ozonizer 3 were performed until 20 minutes after the start of the experiment, but the operation of supplying the water-soluble organic substance 5 and the light emission of the low-pressure mercury lamp were stopped, and the cleaning liquid B4 was removed. Manufactured and evaluated for cleaning. The ozone concentration was 4 ppm, the water-soluble organic substance concentration was 0 ppm, the reduction rate of the oxidation-reduction potential was 1 mV / sec or less, and the hydroxy radical concentration was 0.7 × 10 −6 mol / L.
The operation of supplying the ultrapure water 2, the operation of the ozonizer 3, and the light emission of the low-pressure mercury lamp were performed until 80 minutes after the start of the experiment, but the supply of the water-soluble organic substance 5 was stopped to produce the cleaning liquid C4. Then, cleaning evaluation was performed. The ozone concentration was 4 ppm, the water-soluble organic substance concentration was 0 ppm, the reduction rate of the oxidation-reduction potential was 1 mV / sec or less, and the hydroxy radical concentration was 1.5 × 10 −6 mol / L.
Until the elapse of 30 minutes after 110 minutes from the start of the experiment, the operation of supplying the ultrapure water 2 and the water-soluble organic substance 5, the operation of the ozonizer 3, and the light emission of the low-pressure mercury lamp were performed to produce the cleaning liquid D4 and evaluated the cleaning. . The ozone concentration was 4 ppm, the water-soluble organic substance concentration was 1 ppm, the reduction rate of the redox potential was 1 mV / second or less, and the hydroxy radical concentration was 3.0 × 10 −6 mol / L.
The evaluation results are shown in FIGS. 5 (A) and 5 (B). FIG. 5B is an enlarged view of FIG. Note that the vertical axis of FIGS. 5A and 5B indicates 1 as the peak value of the number of contaminant particles removed by the cleaning liquid B4.

図2(A)および図2(B)より、水溶性有機物添加、オゾン処理およびUV処理を行って得られた洗浄液B1を用いると、オゾン処理およびUV処理を行わなかった洗浄液A1を用いても除去できなかった汚染物質を除去できることが明らかである。   From FIG. 2 (A) and FIG. 2 (B), when the cleaning liquid B1 obtained by adding the water-soluble organic substance, ozone treatment and UV treatment is used, the cleaning liquid A1 which has not been subjected to the ozone treatment and UV treatment can be used. Obviously, contaminants that could not be removed can be removed.

図3(A)および図3(B)ならびに図4(A)および図4(B)より、水溶性有機物添加、オゾン処理およびUV処理を行って得られた洗浄液C2を用いると、オゾン処理およびUV処理を行わなかった洗浄液A2やUV処理を行わなかった洗浄液B2を用いても除去できなかった汚染物質を除去できることが明らかである。   From FIGS. 3 (A) and 3 (B), and FIGS. 4 (A) and 4 (B), when the cleaning liquid C2 obtained by performing water-soluble organic substance addition, ozone treatment and UV treatment is used, ozone treatment and It is clear that contaminants that could not be removed even using the cleaning liquid A2 that was not subjected to UV treatment or the cleaning liquid B2 that was not subjected to UV treatment could be removed.

図5(A)および図5(B)より、オゾン処理およびUV処理を行って得られた洗浄液C4を用いると、水溶性有機物添加、オゾン処理およびUV処理を行わなかった洗浄液A4やUV処理を行わなかった洗浄液B4を用いても除去できなかった汚染物質を除去できることが明らかである。さらには、水溶性有機物添加、オゾン処理およびUV処理を行って得られた洗浄液D4を用いると、水溶性有機物添加を行わなかった洗浄液C4を用いても除去できなかった汚染物質を除去でき、汚染物質の除去効果がより一層向上することが明らかである。   From FIG. 5 (A) and FIG. 5 (B), when the cleaning liquid C4 obtained by performing the ozone treatment and the UV treatment is used, the cleaning liquid A4 and the UV treatment not subjected to the addition of the water-soluble organic substance, the ozone treatment and the UV treatment are used. It is clear that the contaminants that could not be removed using the cleaning liquid B4 that was not performed can be removed. Furthermore, when the cleaning liquid D4 obtained by performing water-soluble organic substance addition, ozone treatment and UV treatment is used, contaminants that could not be removed using the cleaning liquid C4 without water-soluble organic substance addition can be removed. It is clear that the substance removal effect is further improved.

(実験例5)
超純水(電気抵抗率18MΩ・cm)に対してオゾンをオゾナイザにより8ppm濃度で溶解させながら、水溶性有機物としてのiso−プロパノール(超純水の水溶液;濃度1000ppm)を10ppm濃度になるように添加した。その後、得られたオゾン水に対して速やかに低圧水銀ランプにより紫外線を0.3W/Lで20秒間照射し、洗浄液X1を得た。洗浄液X1中のヒドロキシラジカル濃度およびオゾン濃度の経時変化を、紫外線照射直後から追跡し、それぞれ図6および図7に示した。
(Experimental example 5)
While dissolving ozone at a concentration of 8 ppm with an ozonizer in ultrapure water (electric resistivity 18 MΩ · cm), iso-propanol (aqueous solution of ultrapure water; concentration 1000 ppm) as a water-soluble organic substance is adjusted to a concentration of 10 ppm. Added. Thereafter, the obtained ozone water was quickly irradiated with ultraviolet rays at 0.3 W / L for 20 seconds with a low-pressure mercury lamp to obtain a cleaning liquid X1. Changes over time in the hydroxy radical concentration and ozone concentration in the cleaning liquid X1 were traced immediately after UV irradiation and are shown in FIGS. 6 and 7, respectively.

紫外線照射を行わなかったこと以外、洗浄液X1の製造方法と同様の方法により洗浄液X2を得た。洗浄液X2中のヒドロキシラジカル濃度およびオゾン濃度の経時変化を、iso−プロパノールの添加直後から追跡し、それぞれ図6および図7に示した。なお、洗浄液X2については、iso−プロパノールを添加してから180秒後に低圧水銀ランプにより紫外線を0.3W/Lで20秒間照射した。   A cleaning liquid X2 was obtained by the same method as the manufacturing method of the cleaning liquid X1, except that no ultraviolet irradiation was performed. Changes over time in the hydroxy radical concentration and ozone concentration in the cleaning liquid X2 were traced immediately after the addition of iso-propanol, and are shown in FIGS. 6 and 7, respectively. In addition, about the washing | cleaning liquid X2, after adding iso-propanol, the ultraviolet-ray was irradiated by 0.3 W / L for 20 second with the low pressure mercury lamp 180 second after.

紫外線照射を行わなかったこと以外、洗浄液X1の製造方法と同様の方法により洗浄液X3を得た。洗浄液X3中のヒドロキシラジカル濃度およびオゾン濃度の経時変化を、iso−プロパノールの添加直後から追跡し、それぞれ図6および図7に示した。結果として、360秒後のヒドロキシルラジカル濃度は、最初に紫外線照射を行うよりも、180秒後に紫外線照射を行う方が、高い濃度を示すことがわかった。このことから、例えば1カ所のオゾン水製造装置から、複数の洗浄槽にオゾン水を供給する場合のように、オゾン水製造装置から各洗浄槽までのオゾン水供給に時間がかかる場合には、紫外線照射工程を各洗浄槽近辺で行うことが洗浄効果を向上させるため好ましい方法であるといえる。   A cleaning liquid X3 was obtained by the same method as the manufacturing method of the cleaning liquid X1, except that ultraviolet irradiation was not performed. Changes over time in the hydroxy radical concentration and ozone concentration in the cleaning liquid X3 were traced immediately after the addition of iso-propanol, and are shown in FIGS. 6 and 7, respectively. As a result, it was found that the hydroxyl radical concentration after 360 seconds showed a higher concentration when irradiated with ultraviolet rays after 180 seconds than when irradiated with ultraviolet rays first. From this, for example, when it takes time to supply ozone water from the ozone water production apparatus to each cleaning tank, such as when supplying ozone water from one ozone water production apparatus to a plurality of cleaning tanks, It can be said that performing the ultraviolet irradiation step in the vicinity of each cleaning tank is a preferable method for improving the cleaning effect.

本発明の洗浄方法を採用した洗浄装置の一例の概略模式図である。It is a schematic diagram of an example of the washing | cleaning apparatus which employ | adopted the washing | cleaning method of this invention. (A)および(B)は実験例1で行った実験結果を示すグラフである。(A) And (B) is a graph which shows the experimental result performed in Experimental example 1. FIG. (A)および(B)は実験例2で行った実験結果を示すグラフである。(A) And (B) is a graph which shows the experimental result performed in Experimental example 2. FIG. (A)および(B)は実験例3で行った実験結果を示すグラフである。(A) And (B) is a graph which shows the experimental result performed in Experimental example 3. FIG. (A)および(B)は実験例4で行った実験結果を示すグラフである。(A) And (B) is a graph which shows the experimental result performed in Experimental example 4. FIG. 実験例5で得られた各種洗浄液のヒドロキシラジカル濃度の経時変化を示すグラフである。6 is a graph showing temporal changes in hydroxy radical concentrations of various cleaning liquids obtained in Experimental Example 5. 実験例5で得られた各種洗浄液のオゾン濃度の経時変化を示すグラフである。6 is a graph showing changes over time in ozone concentrations of various cleaning liquids obtained in Experimental Example 5.

符号の説明Explanation of symbols

1:オゾン溶解装置、2:純水、3:オゾナイザ、4:酸素ボンベ、5:水溶性有機物、6:紫外線照射処理槽、7:洗浄液の被洗浄物への接触手段、11:ポンプ、12:13:15:管路、21:オゾン濃度計、23:酸化還元電位計。   1: ozone dissolving device, 2: pure water, 3: ozonizer, 4: oxygen cylinder, 5: water-soluble organic substance, 6: ultraviolet irradiation treatment tank, 7: means for contacting the cleaning liquid with the object to be cleaned, 11: pump, 12 : 13:15: pipeline, 21: ozone concentration meter, 23: oxidation-reduction potentiometer.

Claims (18)

純水にオゾンおよび水溶性有機物を溶解させたオゾン水に紫外線を照射して洗浄液を得た後、該洗浄液を被洗浄物に接触させることを特徴とする洗浄方法。   A cleaning method comprising: irradiating ozone water in which ozone and a water-soluble organic substance are dissolved in pure water with ultraviolet rays to obtain a cleaning liquid, and then bringing the cleaning liquid into contact with an object to be cleaned. 水溶性有機物のオゾン反応速度定数が10L/mol/sec以下である請求項1に記載の洗浄方法。   The cleaning method according to claim 1, wherein the ozone reaction rate constant of the water-soluble organic material is 10 L / mol / sec or less. オゾン水における水溶性有機物の含有量が0.001〜10ppmである請求項1または2に記載の洗浄方法。   The cleaning method according to claim 1 or 2, wherein the content of the water-soluble organic substance in the ozone water is 0.001 to 10 ppm. 水溶性有機物がメタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、t−ブタノールからなる群から選択される請求項1〜3のいずれかに記載の洗浄方法。   The cleaning method according to any one of claims 1 to 3, wherein the water-soluble organic substance is selected from the group consisting of methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, and t-butanol. 水溶性有機物がイソプロパノールである請求項1〜3のいずれかに記載の洗浄方法。   The cleaning method according to claim 1, wherein the water-soluble organic substance is isopropanol. 純水が電気抵抗率17MΩ・cm以上の超純水である請求項1〜5のいずれかに記載の洗浄方法。   The cleaning method according to claim 1, wherein the pure water is ultrapure water having an electric resistivity of 17 MΩ · cm or more. 被洗浄物が電子部品またはその製造装置もしくは洗浄装置に使用される部品である請求項1〜6のいずれかに記載の洗浄方法。   The cleaning method according to any one of claims 1 to 6, wherein the object to be cleaned is an electronic component or a component used in a manufacturing apparatus or a cleaning apparatus thereof. 純水にオゾンおよび水溶性有機物を溶解させたオゾン水に紫外線を照射して洗浄液を得るための紫外線照射処理槽、および該紫外線照射処理槽内で得た洗浄液を被洗浄物に接触させるための手段を備えたことを特徴とする洗浄装置。 Ultraviolet irradiation treatment tank for obtaining cleaning liquid by irradiating ozone water in which ozone and water-soluble organic substance are dissolved in pure water to obtain cleaning liquid, and for bringing the cleaning liquid obtained in the ultraviolet irradiation treatment tank into contact with the object to be cleaned A cleaning device comprising means. 水溶性有機物のオゾン反応速度定数が10L/mol/sec以下である請求項8に記載の洗浄装置。   The cleaning apparatus according to claim 8, wherein an ozone reaction rate constant of the water-soluble organic substance is 10 L / mol / sec or less. オゾン水における水溶性有機物の含有量が0.001〜10ppmである請求項8または9に記載の洗浄装置。   The cleaning apparatus according to claim 8 or 9, wherein the content of the water-soluble organic substance in the ozone water is 0.001 to 10 ppm. 水溶性有機物がメタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、t−ブタノールからなる群から選択される請求項8〜10のいずれかに記載の洗浄装置。   The cleaning apparatus according to any one of claims 8 to 10, wherein the water-soluble organic substance is selected from the group consisting of methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, and t-butanol. 水溶性有機物がイソプロパノールである請求項8〜10のいずれかに記載の洗浄装置。   The washing apparatus according to any one of claims 8 to 10, wherein the water-soluble organic substance is isopropanol. 純水が電気抵抗率17MΩ・cm以上の超純水である請求項8〜12のいずれかに記載の洗浄装置。   The cleaning apparatus according to any one of claims 8 to 12, wherein the pure water is ultrapure water having an electric resistivity of 17 MΩ · cm or more. 被洗浄物が電子部品またはその製造装置もしくは洗浄装置に使用される部品である請求項8〜13のいずれかに記載の洗浄装置。   The cleaning apparatus according to any one of claims 8 to 13, wherein the object to be cleaned is an electronic part or a part used in a manufacturing apparatus or a cleaning apparatus thereof. 純水にオゾンおよび水溶性有機物を溶解させたオゾン水に紫外線を照射してヒドロキシラジカルを生成含有せしめた洗浄液を得た後、該洗浄液を被洗浄物に接触させることを特徴とする請求項1〜7いずれかに記載の洗浄方法。2. A cleaning liquid in which ozone water in which ozone and a water-soluble organic substance are dissolved in pure water is irradiated with ultraviolet rays to obtain and contain hydroxy radicals is obtained, and then the cleaning liquid is brought into contact with an object to be cleaned. The washing | cleaning method in any one of -7. 洗浄液を得た後、該洗浄液を被洗浄物に接触させるまでの時間が、360秒までとすることができる、請求項1〜7、請求項15いずれかに記載の洗浄方法。The cleaning method according to claim 1, wherein the time until the cleaning liquid is brought into contact with an object to be cleaned can be up to 360 seconds after the cleaning liquid is obtained. 純水にオゾンおよび水溶性有機物を溶解させたオゾン水に紫外線を照射してヒドロキシラジカルを生成含有せしめた洗浄液を得るための紫外線照射処理槽、および該紫外線照射処理槽内で得た該洗浄液を被洗浄物に接触させるための手段を備えたことを特徴とする請求項8〜14いずれかに記載の洗浄装置。Ultraviolet irradiation treatment tank for obtaining a cleaning liquid in which ozone water in which ozone and a water-soluble organic substance are dissolved in pure water is irradiated with ultraviolet rays to generate and contain hydroxy radicals, and the cleaning liquid obtained in the ultraviolet irradiation processing tank The cleaning apparatus according to claim 8, further comprising means for bringing into contact with an object to be cleaned. 洗浄液を得た後、該洗浄液を被洗浄物に接触させるまでの時間が、360秒までとすることができる、請求項8〜14、請求項17いずれかに記載の洗浄装置。The cleaning apparatus according to any one of claims 8 to 14 and claim 17, wherein a time until the cleaning liquid is brought into contact with an object to be cleaned after the cleaning liquid is obtained can be up to 360 seconds.
JP2008286740A 2007-11-09 2008-11-07 Cleaning method and cleaning apparatus Active JP5638193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286740A JP5638193B2 (en) 2007-11-09 2008-11-07 Cleaning method and cleaning apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007292000 2007-11-09
JP2007292000 2007-11-09
JP2008286740A JP5638193B2 (en) 2007-11-09 2008-11-07 Cleaning method and cleaning apparatus

Publications (2)

Publication Number Publication Date
JP2009131841A JP2009131841A (en) 2009-06-18
JP5638193B2 true JP5638193B2 (en) 2014-12-10

Family

ID=40864299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286740A Active JP5638193B2 (en) 2007-11-09 2008-11-07 Cleaning method and cleaning apparatus

Country Status (1)

Country Link
JP (1) JP5638193B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404523B2 (en) * 2010-05-14 2014-02-05 倉敷紡績株式会社 Method and apparatus for measuring hydroxyl radical concentration
JP5598829B2 (en) * 2012-04-27 2014-10-01 独立行政法人科学技術振興機構 Patterning method using ozone water
JP6357319B2 (en) * 2014-02-17 2018-07-11 株式会社プレテック Method and apparatus for cleaning substrate to be cleaned
WO2015125739A1 (en) * 2014-02-24 2015-08-27 倉敷紡績株式会社 Hydroxyl radical-containing water supply device and hydroxyl radical-containing water supply method
WO2022158540A1 (en) * 2021-01-22 2022-07-28 学校法人工学院大学 Gas/liquid mixing device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016301B2 (en) * 1992-04-15 2000-03-06 三菱電機株式会社 Cleaning method
JPH11121417A (en) * 1997-10-09 1999-04-30 Mitsubishi Electric Corp Treating system and treating method for semiconductor substrates
JP3125753B2 (en) * 1998-06-30 2001-01-22 日本電気株式会社 Substrate cleaning method and substrate cleaning apparatus
JP4039662B2 (en) * 2002-08-13 2008-01-30 株式会社Sumco Method for cleaning semiconductor substrate or element
JP2005152803A (en) * 2003-11-26 2005-06-16 Siltronic Japan Corp Ozone water supply method
JP4513122B2 (en) * 2004-03-31 2010-07-28 栗田工業株式会社 Ozone water supply method and ozone water supply device
US7921859B2 (en) * 2004-12-16 2011-04-12 Sematech, Inc. Method and apparatus for an in-situ ultraviolet cleaning tool
JP2005136437A (en) * 2005-01-04 2005-05-26 Tadahiro Omi Semiconductor manufacturing system and clean room

Also Published As

Publication number Publication date
JP2009131841A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
JP5731972B2 (en) Hydroxyl radical-containing water supply method and hydroxyl radical-containing water supply device
KR100926743B1 (en) Hydrogen Dissolved Water Production Equipment
TW522177B (en) System and process for recycling of spent fluid from plating bath
JP2743823B2 (en) Semiconductor substrate wet treatment method
JP5638193B2 (en) Cleaning method and cleaning apparatus
US11306014B2 (en) Wash water processing method
JP2013208539A (en) Radical water
JP2010069460A (en) Method for reducing hydrogen peroxide, device for reducing the same, device for manufacturing ultrapure water and cleaning method
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP5512357B2 (en) Pure water production method and apparatus
JPH07114191B2 (en) Cleaning method
JP2013111537A (en) Method and device for cleaning equipment
JP4175002B2 (en) Oxidation / reducing agent injection rate control method
JP4747659B2 (en) Cleaning method for ultrapure water production and supply equipment
JP2000015272A (en) Method and apparatus for producing ozone water
JPWO2015125739A1 (en) Hydroxyl radical-containing water supply device and hydroxyl radical-containing water supply method
JP6471816B2 (en) pH / redox potential adjustment water production equipment
JP2010135810A (en) METHOD OF CONTROLLING pH VALUE OF SOLUTION AND OXIDATION-REDUCTION POTENTIAL, AND APPARATUS
JPS60153982A (en) Surface washing method
JP4039662B2 (en) Method for cleaning semiconductor substrate or element
JP4952297B2 (en) Photomask cleaning method and photomask cleaning apparatus
JP5512358B2 (en) Pure water production method and apparatus
JP6575288B2 (en) Ozone-containing wastewater treatment method and treatment equipment
JPH0440292A (en) Process for simultaneous removal of organic substance and dissolved oxygen
JP4835498B2 (en) Water treatment apparatus for ultrapure water production and water treatment system for ultrapure water production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141022

R150 Certificate of patent or registration of utility model

Ref document number: 5638193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250