JP2017156290A - 流路の形成方法 - Google Patents

流路の形成方法 Download PDF

Info

Publication number
JP2017156290A
JP2017156290A JP2016041729A JP2016041729A JP2017156290A JP 2017156290 A JP2017156290 A JP 2017156290A JP 2016041729 A JP2016041729 A JP 2016041729A JP 2016041729 A JP2016041729 A JP 2016041729A JP 2017156290 A JP2017156290 A JP 2017156290A
Authority
JP
Japan
Prior art keywords
substrate
groove
etching solution
flow path
wet etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016041729A
Other languages
English (en)
Inventor
池田 貴司
Takashi Ikeda
貴司 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016041729A priority Critical patent/JP2017156290A/ja
Publication of JP2017156290A publication Critical patent/JP2017156290A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

【課題】フッ化水素酸等の危険なエッチング溶液を大量に使用せずに、ガラス製やシリコン製の基体を用いて形成されたマイクロ流路等の流路を、流路内壁面の平滑性を確保しながら低コストで形成することができる方法を提供する。
【解決手段】第1の基体の表面に溝を形成する第一の加工工程と、前記溝が形成された前記第1の基体の表面に第2の基体を接合する接合工程と、前記溝の中にエッチング溶液を流してウェットエッチングを行う第二の加工工程とを含むことを特徴とする、流路の形成方法。
【選択図】 図1

Description

本発明は、流路の形成方法に関し、特に、分析などに使用されるマイクロ流路チップの流路の形成方法に関する。
少量の試料をマイクロ流路内で反応させることにより、短時間で分析などを行う試みが近年多くなされている。マイクロ流路を形成する基体には、ガラス、シリコン、プラスチック、ゴムなどその目的に合わせて種々の材料が用いられる。例えば、光透過性が求められる場合には、プラスチックやガラスが選択される。プラスチックは射出成型により所望の形状の流路チップを安価に形成できるというメリットがあるが、一方で、耐熱性や耐薬品性において必要な特性を満たさない場合がある。また、耐薬品性や耐熱性が求められる場合には、ガラスやシリコンが基体として選択される。ガラスやシリコンからなる基体に、流路を形成する方法として、ウェットエッチング、ドライエッチング、ドリル等による切削、あるいはレーザー光による加工などが挙げられる。
ウェットエッチングは、流路を形成する箇所が開口したレジストパターニングを施した基体をエッチング溶液中に浸漬して行われる。ウェットエッチングは、エッチングが等方的に進み、また、エッチングレートが比較的速いという特徴がある。これに対してエッチングガス中でプラズマを発生させてエッチングを行うドライエッチングは、深さ方向のみエッチングすることも可能であり、かつその深さのコントロールが容易である(非特許文献1参照)。ドリルやレーザー光による加工は、レジストマスクパターニングを施す必要が無いが、加工面が比較的粗くなるという特徴を有する。(特許文献1、非特許文献2参照)
特許第5696626号公報
「マイクロリアクターの開発と応用」吉田淳一監修、シーエムシー出版、p39〜p40 産業都立産業技術研究所研究報告第7号、2004年、p9〜p12
遺伝子解析を行う場合、解析の前処理でPCR(ポリメラーゼ連鎖反応)法によるDNAの増幅がなされる場合が多々ある。PCR法では、流路内の温度は100℃近くまで加熱する必要が有ることから、PCR法によるDNAの増幅をマイクロ流路内で行う場合、ガラス製のマイクロ流路が多く選択される。また、流路内壁面の平滑性が求められるため、その加工方法としてウェットエッチングやドライエッチングが用いられる。
ガラスをウェットエッチングにより加工する場合、エッチング溶液としてフッ化水素酸が用いられるが、これは強い腐食性を有し、人体に及ぼす影響が大きい。そのため使用したフッ化水素酸を廃棄する場合、これを多量の消石灰水溶液中に攪拌して中和し、沈殿ろ過してフッ化カルシウムとして廃棄する必要がある。また、フッ化水素酸が多量に漏洩した際には、その処理作業は困難を極める。したがって、フッ化水素酸の使用量は極力少なくすることが求められる。
ドライエッチングを用いる場合、そのエッチングレートが極めて遅いため、数十ミクロンから数百ミクロンの深さの流路を形成するには多くの時間を要する。また、ドライエッチング装置は真空装置であることからランニングコストが高く、加えて加工安定性を得るために、十分な装置管理が求められる。
そこで、上記従来技術の問題点に鑑みて、本発明は、フッ化水素酸等の危険なエッチング溶液を大量に使用せずに、ガラス製やシリコン製の基体を用いて形成されたマイクロ流路等の流路を、流路内壁面の平滑性を確保しながら低コストで形成することができる方法を提供することを目的とする。
本発明の流路の形成方法は、第一の基体の表面に溝を形成する第一の加工工程と、前記溝が形成された前記第一の基体の表面に第二の基体を接合する接合工程と、前記溝の中にエッチング溶液を流してウェットエッチングを行う第二の加工工程とを含むことを特徴とする。
本発明の流路の形成方法によれば、平滑な壁面を有するマイクロ流路等の流路を容易かつ低コストで作製することが可能である。
本発明の流路形成方法の工程の概要を説明する図である。 本発明の実施例1の流路形成方法を説明する模式的断面図である。 本発明の実施例2の流路形成方法を説明する模式的断面図である。 本発明の実施例3の流路形成方法を説明する模式的断面図である。 本発明の実施例4の流路形成方法を説明する模式的断面図である。
本発明の流路の形成方法は、第一の基体の表面に溝を形成する第一の加工工程と、前記溝が形成された前記第一の基体の表面に第二の基体を接合する接合工程と、前記溝の中にエッチング溶液を流してウェットエッチングを行う第二の加工工程とを含む(図1参照)。
本発明の方法の詳細を以下に説明する。
(基体)
本発明の方法により流路が形成される代表的なものとして、複数の基体からなる流路チップが挙げられ、少なくとも1つの基体接合界面に流路が形成される。基体の材料には、流路を形成する一般的な材料が用いられ、例えば、ガラス、シリコン、樹脂、ゴムあるいは金属が挙げられる。一つの流路チップに用いられる基体は、同じ材料であっても良いし、異なる材料であっても良い。さらに、基体接合面に配線等の構造体を形成した基体を用いても良い。
(第一の加工工程)
本発明の第一の加工工程では、少なくとも1つの基体(第一の基体)表面に、エッチング溶液を流すことが可能な溝を形成する。本工程における溝形成は、所望の流路幅よりも狭く、かつ所望の流路深さよりも浅い加工が可能で、かつ部分的に所望の位置に加工可能な方法が好ましい。その様な加工方法には、フォトリソグラフィ−エッチング加工、ドリル加工、レーザー加工、ダイシング加工あるいはミリング加工が挙げられる。
(接合工程)
第一の加工工程で溝が形成された基体の表面に別の基体(第二の基体)を接合し、接合界面に形成された溝の開口部を塞ぐ。ただし、この溝は、ウェットエッチング溶液を流し入れる為の注入口とこれを排出する為の排出口とに連通するようにし、この部分に於いては局部的に開口している。接合は、選択された基体材料に適した一般的な接合方法が使用可能であり、陽極接合、拡散接合、常温接合、反応接合、共晶接合あるいは接着剤を用いた接着が使用可能である。なお、注入口及び排出口の加工は、ドリル加工やレーザー加工で行なうことができ、注入口及び排出口は、溝が形成された基体に設けてもよいし、接合時に溝の両端部に位置するように別の基体に設けてもよい。
(第二の加工工程)
第一の加工工程により形成された溝に注入口からウェットエッチング溶液を流し入れると共に、排出口から排出する。このとき、注入口や排出口の周囲がエッチングされない様に、ウェットエッチング溶液をチューブ等により注入口まで運び、チューブと注入口を連結することが好ましい。溝に注入されたウェットエッチング溶液は溝壁面を溶解しながら溝の中を排出口へ向かって進む。排出口から排出されたウェットエッチング溶液は、排出口に連結されたチューブ等を通じて回収される。ウェットエッチング溶液を注入する際には、排出口側の液圧を周囲の圧力よりも低くし、注入口や排出口からウェットエッチング溶液が漏れ出ない様にすることが好ましい。
ウェットエッチング溶液は、一般的に使用されているものが用いられ、フッ酸水溶液、水酸化カリウム、水酸化メチルアンモニウム、塩化第二鉄溶液、りん酸溶液、塩酸などが挙げられる。
ウェットエッチング溶液は、溝の中で基体を溶解させながら進むため、注入口側と比べ、排出口側でエッチングレートが遅くなる。したがって、一方向のみからウェットエッチング溶液を流し入れた場合は、形成される流路は、注入口側がやや断面積の広い形状となる。もし、流路の形状を注入側と排出口側のどちらに於いても同様の形状にしたい場合には、ウェットエッチング溶液の流す方向を変えると良い。すなわち、例えば、ウェットエッチングを行う前半は、注入口側からウェットエッチング溶液を流し、後半では排出口側から流すと良い。あるいは、ウェットエッチング溶液を流す溝の温度を場所によって変えてもよい。すなわち、例えば、注入口側から排出口側に向かって高くなるように、溝壁面の温度勾配を付けても良い。
また、異種材料からなる基体を用いる場合、あるいは基体接合面に一方の基体とは異なる材質からなる構造体が形成されている場合において、一方の基体を溶解可能なウェットエッチング溶液と、他方の基体あるいは構造体を溶解可能なウェットエッチング溶液を時間的に区切って、あるいは混合して流しても良い。
以下、本発明を実施例に基づいて具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
[実施例1]
第一の基体111および第二の基体112が共に板厚が0.625mmの石英基板であるマイクロ流路を本発明の方法により形成する例を図2を参照して説明する。
第一の基体111の片側の面にダイサー131を用いて溝121を形成する(図2(a)参照)。本実施例で用いるダイシングブレードは幅150μmのものを使用した。溝形成時には、第一の基体の表面にダイシングブレードを徐々に近づけていき、最大深さ30μmの溝を形成する。
次いで、形成した溝の両端部にドリル132を用いて貫通孔を形成し、注入口122および排出口123とする(図2(b)参照)。
第二の基体112の一方の面と第一の基体111の溝121形成面の表面をプラズマアッシングした後に、アッシングした面同士を接触させて重ね、加圧して接合する。
注入口122および排出口123にウェットエッチング溶液を流す注入口側の配管133および排出口側の配管134を接続し、50%フッ酸水溶液を流し入れる(図2(c)参照)。配管133および配管134はフッ酸耐性のあるテフロン(登録商標)製とする。また、配管133と配管134は、第一の基体111に一定の圧力で押し付ける。注入口側のウェットエッチング溶液は大気圧程度とし、排出口側に接続された配管134を通じてポンプでウェットエッチング溶液を吸引して、溝121内に9分間ウェットエッチング溶液を流す。その後、配管134からウェットエッチング溶液を流し入れる様にし、ポンプにより配管133からウェットエッチング溶液を吸引して、9分間ウェットエッチング溶液を溝121内に流す。
続いて、ウェットエッチング溶液を純水に切換えて、溝内に残留するウェットエッチング溶液を10分間洗浄除去する。
さらに、配管133および配管134を通じてドライエアーを流し入れ、配管内の純水を除去する。
上記の工程により、深さが約70μmで幅が約190μmのマイクロ流路が形成される(図2(d)参照)。
[実施例2]
第一の基体211に板厚が0.625mmの石英基板を用い、第二の基体212に板厚が0.725mmのシリコンウエハを用いるマイクロ流路を本発明の方法により形成する例を図3を参照して説明する。
第一の基体211の片側の面に歯先φ100μmのエンドミル231を用いて深さ10μmの溝221を形成する(図3(a)参照)。
また、基体接合後に、形成した溝221の両端部に位置する第二の基体212の箇所にドリル232を用いて貫通孔を形成し、注入口222および排出口223とする(図3(b)参照)。
第一の基体211の溝221形成面と第二の基体212の一方の面の表面をプラズマアッシングした後に、アッシングした面同士を接触させて重ね、加圧して接合する。
注入口222および排出口223にウェットエッチング溶液を流す注入口側の配管233および排出口側の配管234を接続し、実施例1と同様に50%フッ酸水溶液を流し入れる(図3(c)参照)。
続いて、実施例1と同様に、溝221内を洗浄し、さらにドライエアーにより配管内の純水を除去する。
上記の工程により、第一の基体211の溶解のみが進み、第二の基体212は溶解されない(溶解困難)ため、図3(d)における流路底面はシリコンウエハの平滑性がほぼ保たれる。また、注入口222と排出口223の径は、ドリルによる開口寸法がほぼ保たれる。本実施例により作製されたマイクロ流路は、流路の深さが約30μmで幅が約140μmである。
[実施例3]
第一の基体311として0.26mmのシリコンウエハを用い、第二の基体312および第三の基体313として共に板厚が0.625mmの石英基板を用いて、本発明の方法によりマイクロ流路を形成する例を図4を参照して説明する。
第一の基体311の片側の面にピコ秒レーザー光331を用いて溝321を形成する。用いるレーザー光の波長は355nmである。溝幅はおよそ10μmである(図4(a)参照)。
次いで、YAGレーザー加工装置を用いてトレパニングを行い、第二の基体312に直径300μmの貫通孔を形成し、注入口322および排出口323とする。YAGレーザー光332の波長は1064nmである(図4(b)参照)。
第一の基体311の両面と第二の基体312の一方の面、および第三の基体313の一方の面の表面をプラズマアッシングした後に、純水で洗浄し、アッシングした面同士を接触させて重ね、加圧して接合する。この時、第一の基体の溝321形成面と第二の基体を接合し、第一の基体の溝321形成面と反対側の面と第三の基体を接合させる。
注入口322および排出口323にウェットエッチング溶液を流す注入口側の配管333および排出口側の配管334を接続し、水酸化カリウム溶液を流し入れる(図4(c)参照)。配管333および配管334は水酸化カリウム耐性のあるクロロスルホン化ポリエチレン製とする。また、配管333と配管334は、第二の基体312に一定の圧力で押し付ける。注入口側のウェットエッチング溶液は大気圧程度とし、排出口側に接続された配管334を通じてポンプでウェットエッチング溶液を吸引して、溝321内に20分間ウェットエッチング溶液を流す。
続いて、ウェットエッチング溶液を純水に切換えて、溝内に残留するウェットエッチング溶液を10分間洗浄除去する。
さらに、配管333および配管334を通じてドライエアーを流し入れ、配管内の純水を除去する。
上記の工程により、注入口322と排出口323との間に挟まれた領域のシリコンが溶解する。石英は殆ど溶解しないため、おおよそ第一の基体の厚さ0.26mmの深さの流路が形成される。また、形成された流路の幅は約50μmである(図4(d)参照)。
[実施例4]
第一の基体411および第二の基体412が共に板厚が0.625mmの石英基板であり、基体接合面に温度センサが形成されたマイクロ流路を本発明の方法により形成する例を図5を参照して説明する。
実施例2(図3(a)(b)参照)と同様に、第一の基体411の片側の面にエンドミルを用いて溝421を形成し、形成した溝の両端部にドリルを用いて貫通孔を形成し、注入口422および排出口423とする。
第二の基体412の一方の面の表面に、レジストパターニング435を施した後、スパッタリングによりチタン膜(10nm)436、プラチナ膜(110nm)437および金膜(500nm)438からなる積層膜を形成する(図5(a)参照)。次いで、レジストを剥離し、リフトオフ法により所望の形状の配線を形成する。その後、さらに化学気相成長法によりテトラエトキシシランを材料として酸化シリコン膜439を形成した(図5(b)参照)。配線形成により生じた酸化シリコン膜表面の凹凸を化学機械研磨法により平滑化し、第二の基体412の表面に、二以上の異なる材料からなる積層構造物を形成する(図5(c)参照)。
第一の基体411の溝421形成面と第二の基体412の配線形成面の表面をプラズマアッシングした後、純水により洗浄し、両表面を接触させて接合した(図5(d)参照)。さらに、300℃で加熱し、両基体を強固に接合させた。
注入口422および排出口423にウェットエッチング溶液を流す注入口側の配管433および排出口側の配管434を接続し、50%フッ酸水溶液を流し入れる。配管433および配管434はフッ酸耐性のあるテフロン(登録商標)製とする。また、配管433と配管434は、第一の基体411に一定の圧力で押し付ける。注入口側のウェットエッチング溶液は大気圧程度とし、排出口側に接続された配管434を通じてポンプでウェットエッチング溶液を吸引して、溝421内に14分間ウェットエッチング溶液を流す。その後、配管434からウェットエッチング溶液を流し入れる様にし、ポンプにより配管433からウェットエッチング溶液を吸引して、14分間ウェットエッチング溶液を溝421内に流す。
続いて、ウェットエッチング溶液を純水に切換えて、溝内に残留するウェットエッチング溶液を10分間洗浄除去する(図5(e)参照)。
次いで、金をエッチングするエッチング溶液として、ヨウ素およびヨウ化カリウムを主成分とする水溶液をフッ酸水溶液と同様に流し入れる。本エッチング溶液を約2分間流し、流路内の金膜438を除去する。
その後、ウェットエッチング溶液を純水に切換えて、溝内に残留するウェットエッチング溶液を10分間洗浄除去する。
さらに、配管433および配管434を通じてドライエアーを流し入れ、配管内の純水を除去する。
上記の工程により積層構造物を部分的に溶解除去して、流路内に注入した検体溶液が接触する領域のみプラチナ膜が露出した温度センサが形成されたマイクロ流路チップを作製することが可能である。本マイクロ流路チップの流路の深さは約40μmで幅は約160μmである(図5(f)参照)。
本発明の流路の形成方法により、流路内壁面が平滑な流路を容易に作製することが可能となり、分析などに使用されるマイクロ流路チップなどの流路の形成に利用することができる。
111、211、311、411 第一の基体
112、212、312、412 第二の基体
313 第三の基体
121、221、321、421 溝(流路)
122、222、322、422 注入口
123、223、323、423 排出口
131 ダイサー
132、232 ドリル
133、233、333、433 注入口側の配管
134、234、334、434 排出口側の配管
231、431 エンドミル
331 ピコ秒レーザーのレーザー光
332 YAGレーザーのレーザー光
435 レジストパターン
436 チタン膜
437 プラチナ膜
438 金膜
439 酸化シリコン膜

Claims (10)

  1. 第一の基体の表面に溝を形成する第一の加工工程と、前記溝が形成された前記第一の基体の表面に第二の基体を接合する接合工程と、前記溝の中にエッチング溶液を流してウェットエッチングを行う第二の加工工程とを含むことを特徴とする、流路の形成方法。
  2. 前記エッチング溶液を前記溝に注入するための注入口と、前記溝に注入した前記エッチング溶液を前記溝から排出するための排出口とを形成する工程をさらに含む、請求項1に記載の流路の形成方法。
  3. 前記注入口と前記排出口とを、前記エッチング溶液により溶解されないかあるいは溶解困難である基体に形成することを特徴とする、請求項2に記載の流路の形成方法。
  4. 前記第一の基体と前記第二の基体とが、同じ材料であることを特徴とする、請求項1〜3のいずれか一項に記載の流路の形成方法。
  5. 前記第一の基体と前記第二の基体とが、異なる材料であることを特徴とする、請求項1〜3のいずれか一項に記載の流路の形成方法。
  6. 前記第二の基体の前記第一の基体と接合される表面に、二以上の異なる材料からなる積層構造物を形成する工程をさらに含み、前記第二の加工工程において前記積層構造物が部分的に溶解除去されることを特徴とする、請求項1〜5のいずれか一項に記載の流路の形成方法。
  7. 前記第一の加工工程が、フォトリソグラフィ−エッチング加工、ドリル加工、レーザー加工、ダイシング加工およびミリング加工の中から選ばれる少なくとも1つの加工方法で行われることを特徴とする、請求項1〜6のいずれか一項に記載の流路の形成方法。
  8. 前記第二の加工工程において、前記エッチング溶液を前記溝の中に流す方向を変えることを特徴とする、請求項1〜7のいずれか一項に記載の流路の形成方法。
  9. 前記第二の加工工程において、前記エッチング溶液を流す前記溝の温度を場所によって変えることを特徴とする、請求項1〜7のいずれか一項に記載の流路の形成方法。
  10. 前記流路が、マイクロ流路チップのマイクロ流路であることを特徴とする、請求項1〜9のいずれか一項に記載の流路の形成方法。
JP2016041729A 2016-03-04 2016-03-04 流路の形成方法 Pending JP2017156290A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016041729A JP2017156290A (ja) 2016-03-04 2016-03-04 流路の形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016041729A JP2017156290A (ja) 2016-03-04 2016-03-04 流路の形成方法

Publications (1)

Publication Number Publication Date
JP2017156290A true JP2017156290A (ja) 2017-09-07

Family

ID=59809633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016041729A Pending JP2017156290A (ja) 2016-03-04 2016-03-04 流路の形成方法

Country Status (1)

Country Link
JP (1) JP2017156290A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033974A (ja) * 2017-08-18 2019-03-07 株式会社三洋物産 遊技機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033974A (ja) * 2017-08-18 2019-03-07 株式会社三洋物産 遊技機

Similar Documents

Publication Publication Date Title
Metz et al. Polyimide and SU-8 microfluidic devices manufactured by heat-depolymerizable sacrificial material technique
JP5196304B2 (ja) エマルジョン形成用マイクロチップおよびその製造方法
JP5511788B2 (ja) ナノ隙間が備えられたマイクロ流体チャネルを有するマイクロ流体回路素子及びその製造方法
JP2003039396A (ja) マイクロ流体用途用マイクロ構造体の製造方法および流体デバイスの製造方法
JP6478231B2 (ja) 分離可能なチップを有するマイクロ流体チップ・パッケージ又は組立体の製造
Chen et al. A rapid and low-cost procedure for fabrication of glass microfluidic devices
EP3306650B1 (en) Plasma-assisted microstructure alignment and pre-bonding method of glass or quartz chip
Bahadorimehr et al. Fabrication of glass-based microfluidic devices with photoresist as mask
US20040258572A1 (en) Microfluidic device and method of manufacturing thereof
Iliescu et al. Wet etching of glass
CN103808776B (zh) 电化学传感器的制备方法
JP2017156290A (ja) 流路の形成方法
WO2016060080A1 (ja) ワークの貼り合わせ方法
JP6195022B2 (ja) ワークの貼り合わせ方法
US8911636B2 (en) Micro-device on glass
Knapkiewicz et al. Anodic bonding of glass-to-glass through magnetron spattered nanometric silicon layer
Doll et al. Versatile low temperature wafer bonding and bond strength measurement by a blister test method
Kotowski et al. Fast and simple fabrication procedure of whole-glass microfluidic devices with metal electrodes
JP2005305234A (ja) マイクロリアクタチップ
WO2010122720A1 (ja) 流路デバイス
CN1641346A (zh) 沉陷铜电极电化学微流控芯片的制备方法
Hazra et al. Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel Three-Dimensional-Manifold Coolers (EMMC)—Part 3: Addressing Challenges in Laser Micromachining-Based Manufacturing of Three-Dimensional-Manifolded Microcooler Devices
JP2006212040A (ja) Dna増幅装置
Hazra et al. Addressing the Challenges in Laser Micro-Machining and Bonding of Silicon Microchannel Cold-Plate and 3D-Manifold for Embedded Cooling Applications: Perfect Debris Removal
JP2005279493A (ja) マイクロリアクタ及びその製造方法

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20171214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126