JP2017155993A - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
JP2017155993A
JP2017155993A JP2016038404A JP2016038404A JP2017155993A JP 2017155993 A JP2017155993 A JP 2017155993A JP 2016038404 A JP2016038404 A JP 2016038404A JP 2016038404 A JP2016038404 A JP 2016038404A JP 2017155993 A JP2017155993 A JP 2017155993A
Authority
JP
Japan
Prior art keywords
header
heat exchanger
heat transfer
pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016038404A
Other languages
Japanese (ja)
Other versions
JP2017155993A5 (en
JP6742112B2 (en
Inventor
将之 左海
Masayuki Sakai
将之 左海
青木 泰高
Yasutaka Aoki
泰高 青木
秀哲 立野井
Hideaki Tatsunoi
秀哲 立野井
洋平 葛山
Yohei Katsurayama
洋平 葛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2016038404A priority Critical patent/JP6742112B2/en
Priority to PCT/JP2017/000974 priority patent/WO2017149950A1/en
Priority to AU2017228091A priority patent/AU2017228091B2/en
Priority to CN201780003725.8A priority patent/CN108351188A/en
Priority to EP17759422.3A priority patent/EP3355023A4/en
Publication of JP2017155993A publication Critical patent/JP2017155993A/en
Publication of JP2017155993A5 publication Critical patent/JP2017155993A5/ja
Application granted granted Critical
Publication of JP6742112B2 publication Critical patent/JP6742112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger capable of suppressing performance deterioration.SOLUTION: A heat exchanger includes: a first pipe group 22 in which a plurality of first heat transfer pipes 21 are arrayed; a first header part 52 that extends vertically and is formed into a cylindrical shape, and to which one end of each first heat transfer pipe 21 of the first pipe group 22 is communicatively connected; a plurality of second pipe groups 24 in which a plurality of second heat transfer pipes 23 are arrayed; a plurality of second header parts 53 that correspond to the plurality of second pipe groups 24, extend vertically and are formed into a cylindrical shape, and to which one end of each second heat transfer pipe 23 of the second pipe groups 24 is communicatively connected; and a plurality of communication passages that correspond to the plurality of second header parts 53, and whose one end is connected to a position in the same vertical direction as the first header part 52 and the other end is connected to any of the second header parts 53 so as to communicate between the first header part 52 and the second header parts 53.SELECTED DRAWING: Figure 2

Description

本発明は、熱交換器及び空気調和機に関する。   The present invention relates to a heat exchanger and an air conditioner.

空気調和機の熱交換器として、水平方向に延びる伝熱管を上下方向に間隔をあけて複数配置し、各伝熱管の外面にフィンを設けたものが知られている。複数の伝熱管の両端は上下方向に延びる一対のヘッダにそれぞれ接続されている。このような熱交換器は、冷媒の流路長さを確保するため、一方のヘッダに導入されて伝熱管を経て他方のヘッダに流通した冷媒を、該他方のヘッダで折り返すようにして再度伝熱管を経て一方のヘッダに戻すように構成されている。   As a heat exchanger for an air conditioner, there is known a heat exchanger tube in which a plurality of heat transfer tubes extending in the horizontal direction are arranged at intervals in the vertical direction and fins are provided on the outer surface of each heat transfer tube. Both ends of the plurality of heat transfer tubes are respectively connected to a pair of headers extending in the vertical direction. In such a heat exchanger, in order to secure the flow path length of the refrigerant, the refrigerant introduced into one header and circulated through the heat transfer tube to the other header is transmitted again by being folded back by the other header. It is configured to return to one header via a heat pipe.

折り返し側のヘッダ内は、該ヘッダ内を上下方向に区画する仕切板によって複数の領域が区画されている。これによって、一の領域内に伝熱管を経て導入された冷媒は、接続管を介して他の領域に導入された後に、該他の領域に接続された複数の伝熱管を経由して出入口側の一方のヘッダに戻される。
例えば特許文献1には、一の主管部と該主管部から複数に分岐して延びる分岐管部とを有する接続管を備えた熱交換器が開示されている。この熱交換器では、主管部が一のヘッダ内の領域に接続されており、分岐管部はそれぞれヘッダ内の複数の他の領域のいずれかに接続されている。そして、当該熱交換器を蒸発器として用いる場合には、伝熱管を介してヘッダの一の領域に導入された冷媒は、接続管における主管部及び分岐管部を経て複数の他の領域に導入される。
In the folded-back header, a plurality of regions are defined by a partition plate that partitions the header in the vertical direction. As a result, the refrigerant introduced into the one region via the heat transfer tube is introduced into the other region through the connection tube, and then the inlet / outlet side through the plurality of heat transfer tubes connected to the other region. Is returned in one of the headers.
For example, Patent Document 1 discloses a heat exchanger that includes a connecting pipe having one main pipe part and a branch pipe part that branches from the main pipe part into a plurality of branches. In this heat exchanger, the main pipe portion is connected to a region in one header, and the branch pipe portions are respectively connected to any of a plurality of other regions in the header. And when using the said heat exchanger as an evaporator, the refrigerant | coolant introduced into one area | region of the header via the heat exchanger tube is introduce | transduced into several other area | regions through the main pipe part and branch pipe part in a connection pipe. Is done.

特開2015−55404号公報Japanese Patent Laying-Open No. 2015-55404

ところで、特許文献1の熱交換器では、接続管の主管部から分岐管部に冷媒を分流する際に、各分岐管部にそれぞれ乾き度の異なる冷媒が導入されることがある。即ち、冷媒の流量や分岐の方向によっては、複数の分岐管のうちの一部のみに液相の冷媒が多く流れることがあり、均等に分流されないという問題がある。また、接続管内の冷媒は気液の密度差によっても気相と液相とに分離することがあり、流量や乾き度に偏りが生じた状態で冷媒が分流されてしまうこともある。   By the way, in the heat exchanger of patent document 1, when diverting a refrigerant | coolant from the main pipe part of a connection pipe to a branch pipe part, the refrigerant | coolant from which a dryness differs in each branch pipe part may be introduce | transduced. That is, depending on the flow rate of the refrigerant and the direction of branching, a large amount of liquid-phase refrigerant may flow through only a part of the plurality of branch pipes, resulting in a problem that the refrigerant is not evenly divided. In addition, the refrigerant in the connecting pipe may be separated into a gas phase and a liquid phase due to a gas-liquid density difference, and the refrigerant may be divided in a state where the flow rate and the dryness are uneven.

このように均等に分流が行われないと、流量によって各分岐管内の流動様相が異なるため、分流時の冷媒分配割合にも変化が生じてしまう。
そのため、ヘッダを介して再度伝熱管に冷媒が導入される際には、液相の冷媒がほとんど通過しない伝熱管が生じることになり、熱交換器の伝熱領域を十分に活用することができない。その結果、例えば熱交換器を空気調和機に用いた場合には、冷房性能や暖房性能が低くなってしまい、室内快適性が損なわれる。
If the flow is not evenly divided in this way, the flow state in each branch pipe varies depending on the flow rate, and the refrigerant distribution ratio at the time of the flow also changes.
For this reason, when the refrigerant is introduced again into the heat transfer tube via the header, a heat transfer tube through which almost no liquid-phase refrigerant passes is generated, and the heat transfer region of the heat exchanger cannot be fully utilized. . As a result, for example, when a heat exchanger is used for an air conditioner, cooling performance and heating performance are lowered, and indoor comfort is impaired.

本発明はこのような課題に鑑みてなされたものであって、性能低下を抑制することができる熱交換器、及び、該熱交換器を用いた空気調和機を提供することを目的とする。   This invention is made | formed in view of such a subject, Comprising: It aims at providing the heat exchanger which can suppress a performance fall, and the air conditioner using this heat exchanger.

本発明は、上記課題を解決するため、以下の手段を採用している。
即ち、本発明の第一態様に係る熱交換器は、水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第一伝熱管を有する第一管群と、上下方向に延びる筒状をなして前記第一管群の各前記第一伝熱管の一端が連通状態で接続される第一ヘッダ部と、水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第二伝熱管を有する複数の第二管群と、これら複数の第二管群に対応して複数が設けられ、上下方向に延びる筒状をなしてそれぞれに前記第二管群の各前記第二伝熱管の一端が連通状態で接続される第二ヘッダ部と、複数の前記第二ヘッダ部に対応して複数が設けられて、前記第一ヘッダ部と各前記第二ヘッダ部とを連通させるように、一端が前記第一ヘッダ部の同一の上下方向位置に接続されるとともに他端が各前記第二ヘッダ部のいずれかに接続された連通路と、を備える。
The present invention employs the following means in order to solve the above problems.
That is, the heat exchanger according to the first aspect of the present invention includes a first tube group that includes a first heat transfer tube that extends in the horizontal direction and in which a refrigerant circulates and a plurality of tubes are arranged at intervals in the vertical direction. A first header portion which is formed in a cylindrical shape extending in the vertical direction and one end of each of the first heat transfer tubes of the first tube group is connected in a communicating state; A plurality of second tube groups having a plurality of second heat transfer tubes arranged at intervals in the direction, and a plurality of second tube groups corresponding to the plurality of second tube groups, and having a cylindrical shape extending in the vertical direction A plurality of second header portions each connected to one end of each of the second heat transfer tubes of the second tube group in communication with each other, and a plurality of the second header portions corresponding to the plurality of second header portions; One end is the same as the first header part so that the second header part communicates with the first part. Comprising a communication passage and the other end is connected to the vertical position is connected to one of each of said second header portion.

このような熱交換器によれば、第一管群の各第一伝熱管を介して第一ヘッダ部に導入された冷媒は、第一ヘッダ部における同一の上下方向位置に接続された連通路に導入される。ここで、第一ヘッダ部内では、冷媒における気液の密度差により、第一ヘッダ部内の下部に液相が溜まり易く、上部に気相が溜まり易くなる。そのため、第一ヘッダ部内の上下方向でそれぞれ冷媒の気液割合に差が生じる。本発明の熱交換器では、複数の第二ヘッダ部にそれぞれ接続された連通路が、第一ヘッダ部の同一の上下方向位置に接続されているため、気相液相割合がほぼ同一の冷媒が各連通路に導入される。そのため、複数の連通路毎での冷媒流量の均等化を図ることができる。その結果、複数の第二伝熱管に導入される冷媒流量を均等化することができる。   According to such a heat exchanger, the refrigerant introduced into the first header portion via each first heat transfer tube of the first tube group is connected to the same vertical direction position in the first header portion. To be introduced. Here, in the first header part, due to the gas-liquid density difference in the refrigerant, the liquid phase easily accumulates in the lower part of the first header part, and the gas phase easily accumulates in the upper part. Therefore, a difference occurs in the gas-liquid ratio of the refrigerant in the vertical direction in the first header portion. In the heat exchanger of the present invention, the communication paths connected to the plurality of second header portions are connected to the same vertical position of the first header portion, so that the refrigerant having substantially the same gas phase liquid phase ratio. Is introduced into each communication path. Therefore, equalization of the refrigerant flow rate for each of the plurality of communication paths can be achieved. As a result, the flow rate of the refrigerant introduced into the plurality of second heat transfer tubes can be equalized.

上記熱交換器は、一端が第一ヘッダ部に接続されるとともに、水平方向に複数に並設された分割流路が内側に形成された主管部と、該主管部の他端側から複数に分岐して内側に前記分割流路に連通する分岐流路が形成されるとともにそれぞれ各前記第二ヘッダ部に接続された分岐管部とを有する分岐接続管を備え、各前記連通路は、それぞれ各前記分割流路及び各前記分岐流路によって形成された流路であってもよい。   The heat exchanger has one end connected to the first header portion and a plurality of divided flow paths arranged in parallel in the horizontal direction on the inside, and a plurality from the other end side of the main tube portion. A branch flow path that branches and communicates with the divided flow path is formed on the inside and includes branch connection pipes each having a branch pipe connected to each of the second header parts. It may be a channel formed by each of the divided channels and each of the branch channels.

これにより、各連通路をそれぞれ別個の接続管で構成した場合に比べて、分岐接続管の場合には第一ヘッダ部への施工箇所が一か所となるため、施工が容易となる。   Thereby, compared with the case where each communicating path is comprised with the separate connection pipe, in the case of a branch connection pipe, since the construction location to a 1st header part becomes one place, construction becomes easy.

上記熱交換器では、各前記第二管群の前記第二伝熱管の数が互いに異なり、複数の前記連通路は、前記第二伝熱管の数の多い前記第二管群が接続された前記第二ヘッダ部に接続される前記連通路ほど、流路断面積が大きくてもよい。   In the heat exchanger, the number of the second heat transfer tubes of each of the second tube groups is different from each other, and the plurality of communication paths are connected to the second tube group having a large number of the second heat transfer tubes. The communication passage connected to the second header portion may have a larger flow path cross-sectional area.

これにより、接続される第二伝熱管の数が相対的に多い第二ヘッダ部にはより多い量の冷媒が導入されることになる。一方で、接続される第二伝熱管の数が相対的に少ない第二ヘッダ部にはより少ない量の冷媒が導入される。その結果、各第二伝熱管に分流して導入される冷媒の量の均等化を図ることができる。   Accordingly, a larger amount of refrigerant is introduced into the second header portion where the number of second heat transfer tubes to be connected is relatively large. On the other hand, a smaller amount of refrigerant is introduced into the second header portion where the number of second heat transfer tubes connected is relatively small. As a result, it is possible to equalize the amount of refrigerant introduced by being divided into each second heat transfer tube.

上記熱交換器は、各前記第二管群に送風する送風部を備え、該送風部により各前記第二管群が受ける送風の速度は、各前記第二管群毎に互いに異なっており、複数の前記連通路は、受ける送風の速度が大きい前記第二管群が接続された前記第二ヘッダ部に接続される前記連通路ほど、流路断面積が大きくてもよい。   The heat exchanger includes a blower that blows air to each second tube group, and the speed of the air received by each second tube group by the blower is different for each second tube group, The plurality of communication passages may have a larger flow path cross-sectional area as the communication passage is connected to the second header portion to which the second pipe group is connected, which receives a higher speed of blowing air.

このような熱交換器では、第二管群の受ける送風の速度が大きい程、該第二管群での熱交換が促進される。したがって、受ける送風の速度が大きい第二管群に接続された第二ヘッダ部により多くの冷媒を導入することで、熱交換器全体としての熱交換効率を向上させることができる。   In such a heat exchanger, the higher the speed of the air received by the second tube group, the more the heat exchange in the second tube group is promoted. Therefore, the heat exchange efficiency as the whole heat exchanger can be improved by introducing more refrigerant into the second header portion connected to the second tube group that receives a large speed of blowing air.

上記熱交換器は、前記第一ヘッダ部と複数の前記第二ヘッダ部のいずれかとを連通させるように、前記第一ヘッダ部に接続された前記連通路と同一の高さ位置で一端が前記第一ヘッダ部に接続されるとともに、前記第二ヘッダ部に接続された前記連通路と異なる高さ位置で他端が前記第二ヘッダ部に接続された他の連通路をさらに備えていてもよい。   The heat exchanger has one end at the same height position as the communication path connected to the first header portion so that the first header portion communicates with any of the plurality of second header portions. It may be further connected to the first header part and further includes another communication path whose other end is connected to the second header part at a height position different from the communication path connected to the second header part. Good.

これにより、第二ヘッダ部には上下方向の異なる複数の箇所から冷媒が導入されることになる。したがって、第二ヘッダ部内での上下方向での冷媒の気液割合の均一化を図ることができるため、各第二伝熱管に分流される冷媒流量の均等化することができる。   Thereby, a refrigerant | coolant is introduce | transduced into the 2nd header part from the several location from which an up-down direction differs. Therefore, since the gas-liquid ratio of the refrigerant in the vertical direction in the second header portion can be made uniform, it is possible to equalize the flow rate of the refrigerant divided into each second heat transfer tube.

上記熱交換器では、上下方向に延びる筒状をなすヘッダ本体と、該ヘッダ本体内を上下に複数の領域に区画する複数の主仕切板と、を有するヘッダを備え、前記第一ヘッダ部は、前記ヘッダにおける複数の前記領域のうち最も下方の領域を含む部分であって、各前記第二ヘッダ部は、前記ヘッダにおける複数の前記領域のうち最も下方の領域以外のいずれかの領域を含む部分であってもよい。   The heat exchanger includes a header having a cylindrical header main body extending in the vertical direction and a plurality of main partition plates that divide the header main body into a plurality of regions in the vertical direction, the first header portion being , A portion including a lowermost region among the plurality of regions in the header, wherein each of the second header portions includes any region other than the lowermost region among the plurality of regions in the header. It may be a part.

一のヘッダ部内に主仕切板を介して第一ヘッダ部及び複数の第二ヘッダ部を形成することで、これら第一ヘッダ部及び複数の第二ヘッダ部を有する熱交換器を容易に構成することができる。   By forming the first header part and the plurality of second header parts through the main partition plate in one header part, a heat exchanger having these first header part and the plurality of second header parts is easily configured. be able to.

本発明の第二態様に係る空気調和機は、上記いずれかの熱交換器を備えることを特徴とする。   An air conditioner according to a second aspect of the present invention includes any one of the above heat exchangers.

これによって、冷媒の不均一分配による熱交換性能の低下を抑制し、効率の高い空気調和機を提供することができる。   Accordingly, it is possible to provide a highly efficient air conditioner by suppressing a decrease in heat exchange performance due to uneven distribution of the refrigerant.

本発明の熱交換器及び空気調和機によれば、効率低下の抑制を図ることができる。   According to the heat exchanger and the air conditioner of the present invention, efficiency reduction can be suppressed.

本発明の第一実施形態に係る空気調和機の全体構成図である。1 is an overall configuration diagram of an air conditioner according to a first embodiment of the present invention. 本発明の第一実施形態に係る熱交換器の縦断面図である。It is a longitudinal cross-sectional view of the heat exchanger which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る熱交換器の折り返し側ヘッダ及び分岐接続管の側面図である。It is a side view of the return side header and branch connection pipe of the heat exchanger which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る熱交換器の分岐接続管における主管部の流路断面形状を示す図である。It is a figure which shows the flow-path cross-sectional shape of the main pipe part in the branch connection pipe of the heat exchanger which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on 3rd embodiment of this invention. 本発明の第三実施形態に係る熱交換器の折り返し側ヘッダ及び接続管の側面図である。It is a side view of the return side header and connecting pipe of the heat exchanger which concerns on 3rd embodiment of this invention. 本発明の第四実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on 4th embodiment of this invention. 本発明の第四実施形態に係る熱交換器の折り返し側ヘッダ及び接続管の側面図である。It is a side view of the return side header and connecting pipe of the heat exchanger which concerns on 4th embodiment of this invention. 本発明の第四実施形態に係る送風部の一例を示す斜視図である。It is a perspective view which shows an example of the ventilation part which concerns on 4th embodiment of this invention. 本発明の第五実施形態に係る熱交換器の斜視図である。It is a perspective view of the heat exchanger which concerns on 5th embodiment of this invention. 本発明の第五実施形態に係る熱交換器の折り返し側ヘッダ及び接続管の側面図である。It is a side view of the return side header and connecting pipe of the heat exchanger which concerns on 5th embodiment of this invention. 本発明の第六実施形態に係る熱交換器の折り返し側ヘッダ及び接続管の側面図である。It is a side view of the return side header and connecting pipe of a heat exchanger concerning a 6th embodiment of the present invention.

以下、本発明の第一実施形態に係る熱交換器を備えた空気調和機について図1〜5を参照して説明する。
図1に示すように、空気調和機1は、圧縮機2、室内熱交換器3(熱交換器10)、膨張弁4、室外熱交換器5(熱交換器10)、四方弁6、及び、これらを接続する配管7を備えており、これらからなる冷媒回路を構成している。
Hereinafter, an air conditioner including a heat exchanger according to a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the air conditioner 1 includes a compressor 2, an indoor heat exchanger 3 (heat exchanger 10), an expansion valve 4, an outdoor heat exchanger 5 (heat exchanger 10), a four-way valve 6, and The pipe 7 for connecting them is provided, and a refrigerant circuit composed of these is constituted.

圧縮機2は、冷媒を圧縮し、圧縮した冷媒を冷媒回路に供給する。
室内熱交換器3は、冷媒と室内の空気との間で熱交換を行う。室内熱交換器3は、冷房運転時には蒸発器として用いられ室内から吸熱し、暖房運転時には凝縮器として用いられ室内へ放熱する。
膨張弁4は、凝縮器で熱交換をすることで液化した高圧の冷媒を膨張させることで低圧化する。
室外熱交換器5は、室外熱交換器5は、冷媒と室外の空気との間で熱交換を行う。冷房運転時には、凝縮器として用いられ室外へ放熱し、暖房運転時には、蒸発器として用いられ室外から吸熱する。
四方弁6は、暖房運転時と冷房運転時とで冷媒の流通する方向を切り替える。これにより、冷房運転時には、冷媒が、圧縮機2、室外熱交換器5、膨張弁4及び室内熱交換器3の順に循環する。一方、暖房運転時には、冷媒が、圧縮機2、室内熱交換器3、膨張弁4及び室外熱交換器5、の順に循環する。
The compressor 2 compresses the refrigerant and supplies the compressed refrigerant to the refrigerant circuit.
The indoor heat exchanger 3 performs heat exchange between the refrigerant and the indoor air. The indoor heat exchanger 3 is used as an evaporator during cooling operation and absorbs heat from the room, and is used as a condenser during heating operation and dissipates heat to the room.
The expansion valve 4 reduces the pressure by expanding the high-pressure refrigerant liquefied by exchanging heat with the condenser.
The outdoor heat exchanger 5 exchanges heat between the refrigerant and the outdoor air. During cooling operation, it is used as a condenser and dissipates heat to the outside, and during heating operation, it is used as an evaporator and absorbs heat from the outside.
The four-way valve 6 switches the direction in which the refrigerant flows between the heating operation and the cooling operation. Accordingly, during the cooling operation, the refrigerant circulates in the order of the compressor 2, the outdoor heat exchanger 5, the expansion valve 4, and the indoor heat exchanger 3. On the other hand, during the heating operation, the refrigerant circulates in the order of the compressor 2, the indoor heat exchanger 3, the expansion valve 4, and the outdoor heat exchanger 5.

次に、上記室内熱交換器3及び室外熱交換器5として用いられる熱交換器10について、図2〜図3を参照して説明する。
熱交換器10は、複数の伝熱管20、複数のフィン28、一対のヘッダ30、第一接続管60、及び第二接続管70を備える。
Next, the heat exchanger 10 used as the indoor heat exchanger 3 and the outdoor heat exchanger 5 will be described with reference to FIGS.
The heat exchanger 10 includes a plurality of heat transfer tubes 20, a plurality of fins 28, a pair of headers 30, a first connection tube 60, and a second connection tube 70.

伝熱管20は、水平方向に直線状に延びる管状の部材であって、内部に冷媒が流通する流路が形成されている。このような伝熱管20は、上下方向に間隔をあけて複数が配列されており、互いに平行に配置されている。
本実施形態では、各伝熱管20は扁平管状をなしており、伝熱管20の内部には、該伝熱管20の延在方向に直交する水平方向に並設された複数の流路が形成されている。これら複数の流路は互いに平行に配列されている。これにより、伝熱管20の延在方向に直交する断面の外形は、伝熱管20の延在方向に直交する水平方向を長手方向とした扁平状とされている。
The heat transfer tube 20 is a tubular member extending linearly in the horizontal direction, and a flow path through which the refrigerant flows is formed. A plurality of such heat transfer tubes 20 are arranged at intervals in the vertical direction, and are arranged in parallel to each other.
In this embodiment, each heat transfer tube 20 has a flat tubular shape, and a plurality of flow paths arranged in parallel in the horizontal direction perpendicular to the extending direction of the heat transfer tube 20 are formed inside the heat transfer tube 20. ing. The plurality of flow paths are arranged in parallel to each other. Thereby, the outer shape of the cross section orthogonal to the extending direction of the heat transfer tube 20 is a flat shape with the horizontal direction orthogonal to the extending direction of the heat transfer tube 20 as the longitudinal direction.

フィン28は、上記のように配列された伝熱管20の間にそれぞれ配置されており、本実施形態では、各伝熱管20の延在方向に向かうにしたがって上下に隣り合う伝熱管20に交互に接触するように延びるいわゆるコルゲート状に延びている。なお、フィン28の形状はこれに限定されることはなく、伝熱管20の外周面から張り出すように設けられていれば、いかなる形状であってもよい。   The fins 28 are respectively arranged between the heat transfer tubes 20 arranged as described above. In the present embodiment, the fins 28 are alternately arranged on the heat transfer tubes 20 adjacent in the vertical direction as they extend in the extending direction of the heat transfer tubes 20. It extends in a so-called corrugated shape extending so as to come into contact. In addition, the shape of the fin 28 is not limited to this, and may be any shape as long as it is provided so as to protrude from the outer peripheral surface of the heat transfer tube 20.

一対のヘッダ30は、上記複数の伝熱管20の両端にこれら伝熱管20を挟み込むように設けられている。これら一対のヘッダ30の一方は、外部から熱交換器10内への冷媒の出入り口となる出入口側ヘッダ40とされており、他方は、熱交換器10内で冷媒が折り返すための折り返し側ヘッダ50とされている。   The pair of headers 30 are provided so as to sandwich the heat transfer tubes 20 at both ends of the plurality of heat transfer tubes 20. One of the pair of headers 30 is an inlet / outlet header 40 that serves as an inlet / outlet of the refrigerant into the heat exchanger 10 from the outside, and the other is a return header 50 for returning the refrigerant in the heat exchanger 10. It is said that.

出入口側ヘッダ40は、上下方向に延びる筒状の部材であって、上端及び下端が閉塞されるとともに内部が仕切板41によって上下二つの領域に区画されている。仕切板41によって区画された下方の領域は下部出入領域42とされ、上方の領域は上部出入領域43とされている。これら下部出入領域42と上部出入領域43とは出入口ヘッダ内40で互いに非連通状態とされている。下部出入領域42及び上部出入領域43は、冷媒回路を構成する配管7がそれぞれ接続されている。
ここで、複数の伝熱管20のうち、下部出入領域42と連通状態で接続されている伝熱管20は、第一伝熱管21とされており、上部出入領域43と連通状態で接続されている伝熱管20は、第二伝熱管23とされている。
The entrance-and-exit header 40 is a cylindrical member extending in the vertical direction. The upper and lower ends are closed, and the interior is partitioned into two upper and lower areas by a partition plate 41. The lower area partitioned by the partition plate 41 is a lower entry / exit area 42, and the upper area is an upper entry / exit area 43. The lower entrance / exit area 42 and the upper entrance / exit area 43 are not in communication with each other in the entrance / exit header 40. The lower entry / exit area 42 and the upper entry / exit area 43 are connected to the pipes 7 constituting the refrigerant circuit.
Here, among the plurality of heat transfer tubes 20, the heat transfer tube 20 connected in communication with the lower access region 42 is the first heat transfer tube 21, and is connected in communication with the upper input / output region 43. The heat transfer tube 20 is a second heat transfer tube 23.

折り返し側ヘッダ50は、ヘッダ本体51及び主仕切板58を備えている。
ヘッダ本体51は、上下方向に延びる筒状をなす部材であって、上端及び下端が閉塞されている。主仕切板58は、ヘッダ本体51内に設けられ、該ヘッダ本体51内の空間を上下の領域に区画している。本実施形態では、ヘッダ本体51内に上下方向に間隔をあけて配置された二つの主仕切板58が設けられている。これによって、ヘッダ本体51内は、上下に並設された三つの領域に区画されている。
The folded-back header 50 includes a header body 51 and a main partition plate 58.
The header main body 51 is a cylindrical member extending in the vertical direction, and the upper end and the lower end are closed. The main partition plate 58 is provided in the header body 51, and divides the space in the header body 51 into upper and lower areas. In the present embodiment, two main partition plates 58 are provided in the header main body 51 so as to be spaced apart in the vertical direction. Thereby, the inside of the header body 51 is divided into three regions arranged vertically.

ヘッダ本体51内の上記三つの領域のうちの最も下方の領域を含む部分は第一ヘッダ部52とされている。また、上記三つの領域のうち、最も下方の領域以外の上方の二つの領域を含む部分は、それぞれ第二ヘッダ部53とされている。即ち、本実施形態では、ヘッダ本体51内が二つの主仕切板58によって区画されることで、折り返し側ヘッダ50に、それぞれ内部に空間を有する一つの第一ヘッダ部52及び二つの第二ヘッダ部53が形成されている。換言すれば、一の第一ヘッダ部52及び二つの第二ヘッダ部53によって折り返し側ヘッダ50が構成されている。   A portion including the lowermost region of the three regions in the header body 51 is a first header portion 52. Of the three regions, the portions including the upper two regions other than the lowermost region are respectively set as second header portions 53. That is, in the present embodiment, the header body 51 is partitioned by the two main partition plates 58, so that the folded header 50 has one first header portion 52 and two second headers each having a space therein. A portion 53 is formed. In other words, the first header section 52 and the two second header sections 53 constitute the folded-back header 50.

第一伝熱管21は、それぞれ第一ヘッダ部52内と連通状態となるように該第一ヘッダ部52に接続されている。これら複数の第一伝熱管21によって第一管群22が構成されている。換言すれば、第一ヘッダ部52に接続されている伝熱管20が第一伝熱管21とされている。   The first heat transfer tubes 21 are connected to the first header portion 52 so as to communicate with the inside of the first header portion 52, respectively. The plurality of first heat transfer tubes 21 constitute a first tube group 22. In other words, the heat transfer tube 20 connected to the first header portion 52 is the first heat transfer tube 21.

第二伝熱管23は、それぞれ各第二ヘッダ部53内と連通状態となるように該第二ヘッダ部53に接続されている。即ち、第二ヘッダ部53に接続されている伝熱管20が第二伝熱管23とされている。
そして、第二伝熱管23は、それぞれ各第二ヘッダ部53に接続されている複数の第二伝熱管23によってそれぞれ第二管群24が構成されている。即ち、本実施形態では、二つの第二ヘッダ部53を有しているため、これら二つの第二ヘッダ部53と対になるようにして、二つの第二管群24が構成されている。
The second heat transfer tubes 23 are connected to the second header portions 53 so as to be in communication with the respective second header portions 53. That is, the heat transfer tube 20 connected to the second header portion 53 is the second heat transfer tube 23.
In the second heat transfer tube 23, the second tube group 24 is configured by a plurality of second heat transfer tubes 23 connected to the respective second header portions 53. That is, in this embodiment, since the two second header portions 53 are provided, the two second pipe groups 24 are configured so as to be paired with the two second header portions 53.

なお、本実施形態では、以下、上下二つの第二ヘッダ部53のうち、下方に配置された第二ヘッダ部53を下側第二ヘッダ部54と称し、上方に配置された第二ヘッダ部53を上側第二ヘッダ部55と称する。
また、下側第二ヘッダ部54に接続された第二伝熱管23から構成される第二管群24を下側第二管群25と称し、上側第二ヘッダ部55に接続された第二伝熱管23から構成される第二管群24を上側第二管群26と称する。
In the present embodiment, of the two upper and lower second header portions 53, the second header portion 53 disposed below is hereinafter referred to as a lower second header portion 54, and the second header portion disposed above. 53 is referred to as an upper second header portion 55.
Further, the second tube group 24 composed of the second heat transfer tube 23 connected to the lower second header portion 54 is referred to as a lower second tube group 25 and is connected to the upper second header portion 55. The second tube group 24 composed of the heat transfer tubes 23 is referred to as an upper second tube group 26.

第一接続管60は、内部に流路が形成された管状の部材であって、その一端が第一ヘッダ部52に対して該第一ヘッダ部52の内部と連通状態で接続されており、他端が下側第二ヘッダ部54に対して該下側第二ヘッダ部54の内部と連通状態で接続されている。より詳細には、第一接続管60の一端は、第一ヘッダ部52における上部に接続されている。また、第一接続管60の他端は、下側第二ヘッダ部54における下部に接続されている。本実施形態では、第一接続管60内の流路が、第一ヘッダ部52と下側第二ヘッダ部54とを接続する第一連通路61(連通路)とされている。   The first connection pipe 60 is a tubular member having a flow path formed therein, and one end of the first connection pipe 60 is connected to the first header part 52 in communication with the inside of the first header part 52. The other end is connected to the lower second header portion 54 in communication with the inside of the lower second header portion 54. More specifically, one end of the first connection pipe 60 is connected to the upper portion of the first header portion 52. The other end of the first connection pipe 60 is connected to the lower part of the lower second header portion 54. In the present embodiment, the flow path in the first connection pipe 60 is a first series passage 61 (communication passage) that connects the first header portion 52 and the lower second header portion 54.

第二接続管70は、内部に流路が形成された管状の部材であって、第一接続管60と同様、一端が第一ヘッダ部52に対して該第一ヘッダ部52の内部と連通状態で接続されている。一方で、第二接続管70の他端は、第一接続管60と異なり、上側第二ヘッダ部55に対して該上側第二ヘッダ部55の内部と連通状態で接続されている。より詳細には、第二接続管70の一端は、第一ヘッダ部52における上部に接続されている。また、第一接続管60の他端は、上側第二ヘッダ部55における下部に接続されている。本実施形態では、第二接続管70内の流路が、第一ヘッダ部52と上側第二ヘッダ部55とを接続する第二連通路71(連通路)とされている。   The second connection pipe 70 is a tubular member having a flow path formed therein, and, like the first connection pipe 60, one end communicates with the inside of the first header section 52 with respect to the first header section 52. Connected in a state. On the other hand, unlike the first connection pipe 60, the other end of the second connection pipe 70 is connected to the upper second header part 55 in communication with the inside of the upper second header part 55. More specifically, one end of the second connection pipe 70 is connected to the upper portion of the first header portion 52. The other end of the first connection pipe 60 is connected to the lower part of the upper second header portion 55. In the present embodiment, the flow path in the second connection pipe 70 is a second communication path 71 (communication path) that connects the first header portion 52 and the upper second header portion 55.

ここで、本実施形態では、第一接続管60及び第二接続管70の第一ヘッダ部52への接続箇所が、互いに同一の上下方向位置とされている。即ち、第一接続管60における第一ヘッダ部52への接続箇所は、第二接続管70の第一ヘッダ部52への接続箇所と水平方向に隣接又は離間して配置されており、上下方向位置は同一とされている。
なお、「上下方向位置が同一」とは、第一接続管60及び第二接続管70の第一ヘッダ部52への接続箇所の中心の上下方向位置が同一である場合に限られず、少なくとも、第一接続管60及び第二接続管70の第一ヘッダ部52への接続箇所の少なくとも一部の上下方向位置が、互いに上下方向で重なっていればよい。
Here, in this embodiment, the connection location to the 1st header part 52 of the 1st connection pipe 60 and the 2nd connection pipe 70 is made into the mutually same up-down direction position. That is, the connection location of the first connection pipe 60 to the first header portion 52 is arranged adjacent to or spaced apart from the connection location of the second connection pipe 70 to the first header portion 52 in the horizontal direction. The positions are the same.
Note that “the same position in the vertical direction” is not limited to the case where the vertical position of the center of the connection portion of the first connection pipe 60 and the second connection pipe 70 to the first header portion 52 is the same, at least, It suffices that the vertical positions of at least some of the connecting portions of the first connection pipe 60 and the second connection pipe 70 to the first header portion 52 overlap each other in the vertical direction.

次に上記熱交換器10が蒸発器として用いられる場合の作用・効果について説明する。
なお、熱交換器10が室内熱交換器3の場合は空気調和機1の冷房運転時に蒸発器として用いられることになり、室外熱交換器5の場合には空気調和機1の暖房運転時に蒸発器として用いられることになる。
Next, operations and effects when the heat exchanger 10 is used as an evaporator will be described.
When the heat exchanger 10 is the indoor heat exchanger 3, it is used as an evaporator during the cooling operation of the air conditioner 1, and when the outdoor heat exchanger 5 is used, it evaporates during the heating operation of the air conditioner 1. It will be used as a container.

熱交換器10が蒸発器として用いられる際には、図2に示す出入口側ヘッダ40の下部出入領域42に配管7から液相分の多い気液二相冷媒が供給される。この冷媒は、下部出入領域42で複数の第一伝熱管21内に分配供給され、第一伝熱管21を流通する過程で該第一伝熱管21の外部雰囲気との間で熱交換することで蒸発が促される。これにより、第一伝熱管21から折り返し側ヘッダ50の第一ヘッダ部52内に供給される冷媒は、一部が液相から気相に変化したことで液相割合が減少した気液二相冷媒となる。   When the heat exchanger 10 is used as an evaporator, a gas-liquid two-phase refrigerant with a large liquid phase is supplied from the pipe 7 to the lower inlet / outlet region 42 of the inlet / outlet header 40 shown in FIG. This refrigerant is distributed and supplied into the plurality of first heat transfer tubes 21 in the lower entrance / exit region 42, and exchanges heat with the external atmosphere of the first heat transfer tubes 21 in the process of flowing through the first heat transfer tubes 21. Evaporation is encouraged. Accordingly, the refrigerant supplied from the first heat transfer tube 21 into the first header portion 52 of the folded-back header 50 is a gas-liquid two-phase in which the liquid phase ratio is reduced due to a partial change from the liquid phase to the gas phase. Becomes a refrigerant.

第一ヘッダ部52内に供給される気液二相冷媒のうち、液相分が多く密度の大きい冷媒が重力により第一ヘッダ部52の下部に集まり、気相分が多く密度の小さい冷媒が第一ヘッダ部52の上部に集まることになる。即ち、第一ヘッダ部52内では、冷媒の気液割合、即ち、密度が上下方向位置で異なることになる。ここで、仮に第一接続管60及び第二接続管70の第一ヘッダ部52への接続位置が互いに上下方向に異なっていれば、第一接続管60と第二接続管70に導入される冷媒の気液割合が異なることになる。その結果、第一接続管60と第二接続管70とのうち第一ヘッダ部52のより下方に接続されている方には、密度の大きい冷媒が導入される結果、冷媒の質量流量は多くなる。一方、より上方に接続されている方には、密度の小さい冷媒が導入される結果、冷媒の質量流量は少なくなる。   Among the gas-liquid two-phase refrigerant supplied into the first header portion 52, a refrigerant having a high liquid phase content and a high density gathers under the first header portion 52 due to gravity, and a refrigerant having a high gas phase content and a low density. It will gather at the top of the first header portion 52. That is, in the first header portion 52, the gas-liquid ratio of the refrigerant, that is, the density varies depending on the vertical position. Here, if the connection positions of the first connection pipe 60 and the second connection pipe 70 to the first header portion 52 are different from each other in the vertical direction, the first connection pipe 60 and the second connection pipe 70 are introduced. The gas-liquid ratio of the refrigerant will be different. As a result, a refrigerant having a high density is introduced into one of the first connecting pipe 60 and the second connecting pipe 70 that is connected to the lower side of the first header portion 52. As a result, the mass flow rate of the refrigerant is large. Become. On the other hand, a refrigerant having a lower density is introduced into the more connected one, resulting in a smaller mass flow rate of the refrigerant.

これに対して、本実施形態では、第一接続管60、第二接続管70の第一ヘッダ部52への接続位置が、互いに同一の上下方向位置とされている。そのため、第一接続管60、第二接続管70には、それぞれほぼ同一の気液割合の冷媒が導入される。その結果、第一接続管60、第二接続管70をそれぞれ介して下側第二ヘッダ部54、上側第二ヘッダ部55に導入される冷媒の気液割合は互いにほぼ同一となる。即ち、第一接続管60、第二接続管70を流通する冷媒の質量流量の均等化が図られる。   On the other hand, in this embodiment, the connection position to the 1st header part 52 of the 1st connection pipe 60 and the 2nd connection pipe 70 is made into the mutually same up-down direction position. Therefore, substantially the same gas-liquid ratio refrigerant is introduced into the first connection pipe 60 and the second connection pipe 70, respectively. As a result, the gas-liquid ratio of the refrigerant introduced into the lower second header portion 54 and the upper second header portion 55 via the first connection pipe 60 and the second connection pipe 70 is substantially the same. That is, the mass flow rate of the refrigerant flowing through the first connection pipe 60 and the second connection pipe 70 is equalized.

その後、第一接続管60又は第二接続管70を介して下側第二ヘッダ部54、上側第二ヘッダ部55に導入された冷媒は、これらに接続された複数の第二伝熱管23に分流してこれら第二伝熱管23内を流通する。そして、冷媒は、第二伝熱管23を流通する過程で該第二伝熱管23の外部雰囲気との間で熱交換することで、再度蒸発が促される。これにより、第二伝熱管23内にて、冷媒における残存していた液相が気相に変化し、出入口側ヘッダ40の上部出入領域43には気相状態の冷媒が供給される。そして、この冷媒は上部出入領域43から配管7に導入され、冷媒回路を循環することになる。   Thereafter, the refrigerant introduced into the lower second header part 54 and the upper second header part 55 via the first connection pipe 60 or the second connection pipe 70 is supplied to the plurality of second heat transfer pipes 23 connected thereto. The flow is divided and flows through the second heat transfer tubes 23. Then, the refrigerant is urged to evaporate again by exchanging heat with the external atmosphere of the second heat transfer tube 23 in the process of flowing through the second heat transfer tube 23. As a result, the liquid phase remaining in the refrigerant changes into a gas phase in the second heat transfer tube 23, and the gas phase refrigerant is supplied to the upper entrance / exit region 43 of the inlet / outlet header 40. Then, the refrigerant is introduced into the pipe 7 from the upper entrance / exit area 43 and circulates in the refrigerant circuit.

以上のように、本発明の熱交換器10では、複数の第二ヘッダ部53にそれぞれ接続された第一接続管60の第一連通路61、第二接続管70の第二連通路71が、第一ヘッダ部52の同一の上下方向位置に接続されているため、気相液相割合がほぼ同一の冷媒が各連通路に導入される。そのため、複数の連通路毎での冷媒流量の均等化を図ることができる。その結果、例えば熱交換器10を空気調和機に用いた場合には、冷房性能や暖房性能が損なわれることはない。   As described above, in the heat exchanger 10 of the present invention, the first series passage 61 of the first connection pipe 60 and the second communication path 71 of the second connection pipe 70 respectively connected to the plurality of second header portions 53 are provided. Since the first header portion 52 is connected to the same vertical position, the refrigerant having substantially the same vapor phase liquid phase ratio is introduced into each communication path. Therefore, equalization of the refrigerant flow rate for each of the plurality of communication paths can be achieved. As a result, for example, when the heat exchanger 10 is used in an air conditioner, the cooling performance and the heating performance are not impaired.

次に本発明の第二実施形態に係る熱交換器80について、図4及び図5を参照して説明する。なお、第二実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
図4に示すように、第二実施形態の熱交換器80は、第一実施形態の第一接続管60及び第二接続管70に代えて、一の分岐接続管81を備えている点で第一実施形態と相違する。
Next, the heat exchanger 80 which concerns on 2nd embodiment of this invention is demonstrated with reference to FIG.4 and FIG.5. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
As shown in FIG. 4, the heat exchanger 80 of the second embodiment is provided with one branch connection pipe 81 instead of the first connection pipe 60 and the second connection pipe 70 of the first embodiment. It is different from the first embodiment.

分岐接続管81は、主管部82及び複数(本実施形態では二つ)の分岐管部85を有している。
主管部82は、一端が第一ヘッダ部52に接続されている。そして、この第一ヘッダ部52内には、図5(a)(b)に示すように、該第一ヘッダ部52内を水平方向に二つの領域に分割されるようにして形成された二つの分割流路83が形成されている。この分割流路83は、主管部82内の一端から他端にわたって、水平方向に並設して延在している。なお、主管部82は、図5(a)に示すように、断面円形の流路の水平方向中央に分割壁部84が設けられることで二つの分割流路83が形成された構造であってもよい。また、図5(b)に示すように、断面円形の流路の一部が直線状に切り欠かれた分割流路83が、当該直線状の部分を構成する分割壁部84によって互いに並設するように設けられた構造であってもよい。
The branch connection pipe 81 has a main pipe part 82 and a plurality of (two in this embodiment) branch pipe parts 85.
One end of the main pipe part 82 is connected to the first header part 52. In the first header portion 52, as shown in FIGS. 5A and 5B, the first header portion 52 is formed so as to be divided into two regions in the horizontal direction. Two divided flow paths 83 are formed. The divided flow paths 83 extend in parallel in the horizontal direction from one end to the other end in the main pipe portion 82. As shown in FIG. 5A, the main pipe part 82 has a structure in which two divided flow paths 83 are formed by providing a divided wall part 84 at the center in the horizontal direction of the flow path having a circular cross section. Also good. Further, as shown in FIG. 5B, the divided flow passages 83 in which a part of the flow passage having a circular cross section is cut out linearly are arranged in parallel with each other by the divided wall portions 84 constituting the linear portion. The structure provided so that it may be sufficient.

分岐管部85は、主管部82の他端側から複数に分岐するようにして二つが設けられている。この分岐管部85はそれぞれ下側第二ヘッダ部54及び上側第二ヘッダ部55に接続されている。また、各分岐管部85の内側の流路である分岐流路86は、主管部82における分割流路83に一対一の関係で連通している。これによって、主管部82の二つの分割流路83のうち、一方の分割流路83は一方の分岐流路86を介して下側第二ヘッダ部54内と連通状態とされており、即ち、一方の分割流路83と一方の分岐流路86とによって第一ヘッダ部52と下側第二ヘッダ部54とを連通させる第一連通路61を形成している。また、他方の分割流路83は他方の分岐流路86を介して上側第二ヘッダ部55内と連通状態とされており、即ち、他方の分割流路83と他方の分岐流路86とによって、第一ヘッダ部52内と上側第二ヘッダ部55とを連通させる第二連通路71を形成している。   Two branch pipe portions 85 are provided so as to branch into a plurality from the other end side of the main pipe portion 82. The branch pipe portions 85 are connected to the lower second header portion 54 and the upper second header portion 55, respectively. Moreover, the branch flow path 86 which is a flow path inside each branch pipe section 85 communicates with the divided flow path 83 in the main pipe section 82 in a one-to-one relationship. As a result, of the two divided flow paths 83 of the main pipe portion 82, one divided flow path 83 is in communication with the inside of the lower second header portion 54 via one branch flow path 86. One divided channel 83 and one branch channel 86 form a first series passage 61 that allows the first header portion 52 and the lower second header portion 54 to communicate with each other. In addition, the other divided flow path 83 is in communication with the inside of the upper second header portion 55 via the other branch flow path 86, that is, by the other divided flow path 83 and the other branch flow path 86. A second communication passage 71 is formed to communicate the inside of the first header portion 52 and the upper second header portion 55.

このような第二実施形態の熱交換器80では、分岐接続管81の主管部82における二つの分割流路83は、互いに水平方向に並設されているため、これら二つの分割流路83には、ほぼ同一の密度の冷媒が導入される。そして、この冷媒は、分岐流路86を介して下側第二ヘッダ部54、上側第二ヘッダ部55にそれぞれ導入される。したがって、第一実施形態同様、下側第二ヘッダ部54及び上側第二ヘッダ部55に導入される冷媒の質量流量の均等化を図ることができる。   In such a heat exchanger 80 of the second embodiment, the two divided flow paths 83 in the main pipe portion 82 of the branch connection pipe 81 are arranged in parallel in the horizontal direction. Are introduced with refrigerant of almost the same density. The refrigerant is introduced into the lower second header portion 54 and the upper second header portion 55 via the branch flow path 86. Therefore, the mass flow rate of the refrigerant introduced into the lower second header portion 54 and the upper second header portion 55 can be equalized as in the first embodiment.

また、第一実施形態のように、第一接続管60及び第二接続管70を別個に設ける場合に比べて、第一ヘッダ部52への接続箇所が一か所のみとなるため、施工をより容易にすることができる。   Moreover, since the connection place to the 1st header part 52 becomes only one place compared with the case where the 1st connection pipe 60 and the 2nd connection pipe 70 are provided separately like 1st embodiment, construction is carried out. It can be made easier.

次に本発明の第三実施形態に係る熱交換器90について、図6及び図7を参照して説明する。なお、第三実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
図6及び図7に示すように、第三実施形態の熱交換器90は、下側第二管群25の第二伝熱管23の数と上側第二管群26の第二伝熱管23の数が互いに異なるとともに、第一接続管60と第二接続管70との流路断面積が互いに異なる点で第一実施形態と相違する。
Next, the heat exchanger 90 which concerns on 3rd embodiment of this invention is demonstrated with reference to FIG.6 and FIG.7. In the third embodiment, components similar to those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
As shown in FIGS. 6 and 7, the heat exchanger 90 of the third embodiment includes the number of the second heat transfer tubes 23 in the lower second tube group 25 and the number of the second heat transfer tubes 23 in the upper second tube group 26. The first embodiment is different from the first embodiment in that the numbers are different from each other and the cross-sectional areas of the first connection pipe 60 and the second connection pipe 70 are different from each other.

本実施形態の熱交換器90は下側第二管群25の第二伝熱管23の数よりも上側第二管群26の第二伝熱管23の数が多く設けられている。なお、各第二伝熱管23の上下方向の間隔は同一であるため、下側第二管群25の第二伝熱管23と上側第二管群26の第二伝熱管23との数の違いに応じて、下側第二ヘッダ部54よりも上側第二ヘッダ部55の方が上下方向の寸法が大きい。   The heat exchanger 90 of the present embodiment is provided with a larger number of second heat transfer tubes 23 in the upper second tube group 26 than the number of second heat transfer tubes 23 in the lower second tube group 25. In addition, since the space | interval of the up-down direction of each 2nd heat exchanger tube 23 is the same, the difference in the number of the 2nd heat exchanger tubes 23 of the lower side 2nd pipe group 25 and the 2nd heat exchanger tubes 23 of the upper side 2nd pipe group 26 is. Accordingly, the upper second header portion 55 has a larger vertical dimension than the lower second header portion 54.

さらに、第一接続管60の流路断面積よりも第二接続管70の流路断面積の方がこれら第一接続管60及び第二接続管70の延在方向全域にわたって大きく設定されている。なお、流路断面積とは、第一接続管60及び第二接続管70それぞれの延在方向に直交する断面における流路の面積である。   Furthermore, the flow passage cross-sectional area of the second connection pipe 70 is set larger than the flow passage cross-sectional area of the first connection pipe 60 over the entire extending direction of the first connection pipe 60 and the second connection pipe 70. . The channel cross-sectional area is the area of the channel in the cross section orthogonal to the extending direction of each of the first connecting pipe 60 and the second connecting pipe 70.

このように、本実施形態では、第二伝熱管23の数が相対的に少ない下側第二管群25に対応する下側第二ヘッダ部54に接続された第一接続管60の流路断面積は相対的に小さく設定されている。また、第二伝熱管23の数が相対的に多い上側第二管群26に対応する上側第二ヘッダ部55に接続された第二接続管70の流路断面積は相対的に大きく設定されている。   Thus, in this embodiment, the flow path of the 1st connection pipe 60 connected to the lower side 2nd header part 54 corresponding to the lower side 2nd pipe group 25 with relatively few 2nd heat exchanger tubes 23. The cross-sectional area is set relatively small. The flow passage cross-sectional area of the second connection pipe 70 connected to the upper second header portion 55 corresponding to the upper second pipe group 26 having a relatively large number of second heat transfer pipes 23 is set to be relatively large. ing.

第三実施形態の熱交換器90によれば、接続される第二伝熱管23の数が相対的に多い上側第二ヘッダ部55にはより多い量の冷媒が導入されることになる。一方で、接続される第二伝熱管23の数が相対的に少ない下側第二ヘッダ部54にはより少ない量の冷媒が導入される。接続される第二伝熱管23の数が多い程、より多くの冷媒を第二伝熱管23内に流通させて熱交換を促すことができるため、第二伝熱管23全体として流通する冷媒の質量流量の均等化を図ることができる。   According to the heat exchanger 90 of the third embodiment, a larger amount of refrigerant is introduced into the upper second header portion 55 having a relatively large number of second heat transfer tubes 23 connected thereto. On the other hand, a smaller amount of refrigerant is introduced into the lower second header portion 54 where the number of second heat transfer tubes 23 to be connected is relatively small. The larger the number of connected second heat transfer tubes 23, the more refrigerant can be circulated in the second heat transfer tube 23 and the heat exchange can be promoted, so the mass of the refrigerant that circulates as a whole of the second heat transfer tube 23. The flow rate can be equalized.

次に本発明の第四実施形態に係る熱交換器100について、図8〜図10を参照して説明する。なお、第三実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
図8及び図9に示すように、第四実施形態の熱交換器100は、下側第二管群25の第二伝熱管23が受ける送風の速度と上側第二管群26の第二伝熱管23が受ける送風の速度が異なり、さらに、第一接続管60と第二接続管70との流路断面積が互いに異なる点で第一実施形態と相違する。
Next, the heat exchanger 100 which concerns on 4th embodiment of this invention is demonstrated with reference to FIGS. In the third embodiment, components similar to those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
As shown in FIGS. 8 and 9, the heat exchanger 100 according to the fourth embodiment is configured so that the second heat transfer pipe 23 of the lower second pipe group 25 receives the speed of air blow and the second heat transfer of the upper second pipe group 26. It differs from the first embodiment in that the speed of the air blow received by the heat pipe 23 is different and the cross-sectional areas of the first connection pipe 60 and the second connection pipe 70 are different from each other.

本実施形態では、下側第二管群25が受ける送風の速度よりも上側第二管群26が受ける送風の速度の方が大きい。受ける送風の速度の違いは、例えば、図10に示すような送風部103によって生じる。
即ち、図10に示すように、本実施形態の熱交換器100は、当該熱交換器100を収容するケーシング101を有している。
In the present embodiment, the speed of the air received by the upper second pipe group 26 is greater than the speed of the air received by the lower second pipe group 25. The difference in the speed of the ventilation which receives is produced by the ventilation part 103 as shown in FIG. 10, for example.
That is, as shown in FIG. 10, the heat exchanger 100 of the present embodiment has a casing 101 that houses the heat exchanger 100.

このケーシング101は、ケーシング本体102、通風部104、及び上記送風部103を有している。ケーシング本体102は、上下方向に延びる略直方体形状の箱体であって、例えば4つの側面のうちの互いに隣り合う二つの側面にケーシング本体102内外で空気が流通可能な通風部104を有している。また、ケーシング本体102の天面には、鉛直軸線周りに回転可能なファンからなる送風部103が設けられている。この通風部104のファンが稼働すると、ケーシング本体102内の空気がケーシング101外部に向かって、即ち、下方から上方に向かって送られる。これに伴って、通風部104を介してケーシング本体102の外部からケーシング本体102内に空気が送られる。このように、ケーシング101の上方から空気を吐き出すようにして通風部104が稼働されると、ケーシング本体102内に配置された熱交換器100は上下方向で異なる風速の送風を受けることになる。これによって、本実施形態では、下側第二管群25が受ける送風の速度よりも上側第二管群26が受ける送風の速度が大きくなる。   The casing 101 includes a casing main body 102, a ventilation part 104, and the air blowing part 103. The casing main body 102 is a substantially rectangular parallelepiped box extending in the vertical direction. For example, the casing main body 102 has a ventilation portion 104 through which air can flow inside and outside the casing main body 102 on two side surfaces adjacent to each other among four side surfaces. Yes. In addition, the top surface of the casing main body 102 is provided with a blower unit 103 including a fan that can rotate around a vertical axis. When the fan of the ventilation section 104 is operated, the air in the casing body 102 is sent to the outside of the casing 101, that is, from below to above. Accordingly, air is sent into the casing body 102 from the outside of the casing body 102 through the ventilation portion 104. Thus, if the ventilation part 104 is operated so that air may be discharged from the upper part of the casing 101, the heat exchanger 100 arrange | positioned in the casing main body 102 will receive ventilation with a different wind speed in the up-down direction. Thereby, in this embodiment, the speed of the ventilation which the upper side 2nd pipe group 26 receives becomes larger than the speed of the ventilation which the lower side 2nd pipe group 25 receives.

そして、本実施形態では、第三実施形態同様、第一接続管60の流路断面積よりも第二接続管70の流路断面積の方がこれら第一接続管60及び第二接続管70の延在方向全域にわたって大きく設定されている。   In this embodiment, as in the third embodiment, the flow passage cross-sectional area of the second connection pipe 70 is greater than the flow passage cross-sectional area of the first connection pipe 60. Is set to be large over the entire extending direction.

このように、本実施形態では、受ける送風の速度が小さい下側第二管群25に対応する下側第二ヘッダ部54に接続された第一接続管60の流路断面積は相対的に小さく設定されている。また、受ける送風の速度が大きい第二伝熱管23の数が相対的に多い上側第二管群26に対応する上側第二ヘッダ部55に接続された第二接続管70の流路断面積は相対的に大きく設定されている。   Thus, in this embodiment, the flow path cross-sectional area of the 1st connection pipe 60 connected to the lower side 2nd header part 54 corresponding to the lower side 2nd pipe group 25 with the small speed of the ventilation received is relatively It is set small. Moreover, the flow path cross-sectional area of the second connection pipe 70 connected to the upper second header portion 55 corresponding to the upper second pipe group 26 having a relatively large number of second heat transfer pipes 23 that receive a large speed of blowing air is: It is set relatively large.

このような熱交換器100では、第二管群24の受ける送風の速度が大きい程、該第二管群24での熱交換が促進される。したがって、受ける送風の速度が大きい上側第二管群26に接続された第二ヘッダ部53により多くの冷媒を導入することで、熱交換器100全体としての熱交換効率を向上させることができる。   In such a heat exchanger 100, the higher the speed of the air received by the second tube group 24, the more the heat exchange in the second tube group 24 is promoted. Therefore, the heat exchange efficiency of the heat exchanger 100 as a whole can be improved by introducing more refrigerant into the second header portion 53 connected to the upper second pipe group 26 that receives a large speed of blowing.

次に本発明の第五実施形態に係る熱交換器110について、図11〜図12を参照して説明する。なお、第五実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
図11及び図12に示すように、本実施形態の熱交換器110は、折り返しヘッダ50内に3つの仕切板58が設けられている。即ち、これら仕切板58は上下方向に間隔をあけて設置されており、これによってヘッダ30内の領域に上下方向に4つに区画している。4つの領域のうちの最も下方の領域を含む部分は、第一実施形態同様、第一ヘッダ部52とされている。また、4つの領域のうちの最も下方の領域を除く上方の3つの領域を含む部分は、それぞれ第二ヘッダ部53とされている。本実施形態では、一つの第一ヘッダ部52と三つの第二ヘッダ部53が設けられている。
Next, a heat exchanger 110 according to a fifth embodiment of the present invention will be described with reference to FIGS. In the fifth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
As shown in FIGS. 11 and 12, the heat exchanger 110 according to the present embodiment is provided with three partition plates 58 in the folded header 50. That is, these partition plates 58 are installed at intervals in the vertical direction, thereby dividing the partition plate 58 into four areas in the vertical direction in the area within the header 30. The portion including the lowermost region of the four regions is the first header portion 52 as in the first embodiment. In addition, the portions including the upper three regions excluding the lowermost region among the four regions are set as second header portions 53, respectively. In the present embodiment, one first header portion 52 and three second header portions 53 are provided.

さらに、本実施形態では、第一ヘッダ部52と3つの第二ヘッダ部53のうちの最も下方の第二ヘッダ部53とを接続する接続管120、第一ヘッダ部52と3つの第二ヘッダ部53のうちの中央の第二ヘッダ部53とを接続する接続管120、第一ヘッダ部52と3つの第二ヘッダ部53のうちの最も上方の第二ヘッダ部53を接続する接続管120の計3つの接続管120が設けられている。各接続管120内には、第一ヘッダ部52といずれかの第二ヘッダ部53とを連通させる連通路121が形成されている。
また、各接続管120における第一ヘッダ部52との接続箇所は、第一実施形態同様に、互いに同一の上下方向位置とされている。
Furthermore, in this embodiment, the connecting pipe 120 that connects the first header portion 52 and the lowermost second header portion 53 of the three second header portions 53, the first header portion 52 and the three second headers. The connecting pipe 120 that connects the second header section 53 at the center of the sections 53, and the connecting pipe 120 that connects the uppermost second header section 53 of the first header section 52 and the three second header sections 53. A total of three connecting pipes 120 are provided. In each connecting pipe 120, a communication path 121 that connects the first header portion 52 and any one of the second header portions 53 is formed.
Moreover, the connection location with the 1st header part 52 in each connection pipe 120 is made into the mutually same up-down direction position similarly to 1st embodiment.

このような熱交換器110でも、第一実施形態と同様、第一ヘッダ部52から各第二ヘッダ部53に導入される冷媒の質量流量の均等化を図ることができる。
なお、本実施形態では、3つの第二ヘッダ部53を設けた例について説明したが、該第二ヘッダ部53が4つ以上あってもよい。その場合には、第二ヘッダ部53の数に応じて接続管120の数も増加する。
In such a heat exchanger 110 as well, as in the first embodiment, it is possible to equalize the mass flow rate of the refrigerant introduced from the first header portion 52 to each second header portion 53.
In the present embodiment, an example in which three second header portions 53 are provided has been described, but there may be four or more second header portions 53. In that case, the number of connecting pipes 120 increases in accordance with the number of second header portions 53.

次に本発明の第六実施形態に係る熱交換器130について、図13を参照して説明する。なお、第六実施形態では、第一実施形態と同様の構成要素については、第一実施形態同一の符号を付して詳細な説明を省略する。
第六実施形態は、第一接続管60及び第二接続管70がそれぞれ複数設けられている点で、第一実施形態と相違する。
Next, a heat exchanger 130 according to a sixth embodiment of the present invention will be described with reference to FIG. In the sixth embodiment, components similar to those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted.
The sixth embodiment is different from the first embodiment in that a plurality of first connecting pipes 60 and a plurality of second connecting pipes 70 are provided.

即ち、第六実施形態では、第一接続管60が複数(本実施形態では3つ)設けられている。各第一接続管60における第一ヘッダ部52との接続箇所は互いに同一の上下方向位置とされている一方、下側第二ヘッダ部54への接続箇所は、互いに上下方向の異なる位置とされている。本実施形態では3つの第一接続管60のうちの一つ目の第一接続管60が下側第二ヘッダ部54の下部に接続されており、二つ目の第二接続管70が下側第二ヘッダ部54の中央部に接続されており、三つ目の第一接続管60が下側第二ヘッダ部54の上部に接続されている。   That is, in the sixth embodiment, a plurality (three in this embodiment) of the first connection pipes 60 are provided. In each first connection pipe 60, the connection location with the first header portion 52 is the same vertical position, while the connection location to the lower second header portion 54 is a different vertical position. ing. In the present embodiment, the first first connecting pipe 60 among the three first connecting pipes 60 is connected to the lower part of the lower second header portion 54, and the second second connecting pipe 70 is connected to the lower second connecting pipe 70. The third first connection pipe 60 is connected to the upper part of the lower second header part 54 and is connected to the central part of the second side header part 54.

また、第六実施形態では、第二接続管70も複数(本実施形態では3つ)設けられている。各第二接続管70における第一ヘッダ部52との接続箇所は互いに同一の上下方向位置とされている一方、上側第二ヘッダ部55への接続箇所は、互いに上下方向の異なる位置とされている。本実施形態では3つの第一接続管60のうちの一つ目の第一接続管60が上側第二ヘッダ部55の下部に接続されており、二つ目の第二接続管70が上側第二ヘッダ部55の中央部に接続されており、三つ目の第一接続管60が上側第二ヘッダ部55の上部に接続されている。   In the sixth embodiment, a plurality (three in this embodiment) of second connection pipes 70 are also provided. The connection locations with the first header portion 52 in each second connection pipe 70 are the same vertical position, whereas the connection locations with the upper second header portion 55 are different positions in the vertical direction. Yes. In the present embodiment, the first first connecting pipe 60 among the three first connecting pipes 60 is connected to the lower part of the upper second header portion 55, and the second second connecting pipe 70 is connected to the upper first The third first connection pipe 60 is connected to the upper part of the upper second header part 55.

このような熱交換器130によれば、第一実施形態同様、下側第二ヘッダ部54及び上側第二ヘッダ部55に導入される冷媒の質量流量の均等化を図ることができる。
さらに、特に本実施形態では、第一ヘッダ部52内及び第二ヘッダ部53内には、高さ位置の異なる複数個所から冷媒が導入される。そのため、第一ヘッダ部52、第二ヘッダ部53内でそれぞれ冷媒が上下方向で混合されることにより、これら第一ヘッダ部52及び第二ヘッダ部53内での冷媒の均一化を促進させることができる。これによって、各第二伝熱管23に導入される冷媒の質量流量の均等化を図ることができる。
According to such a heat exchanger 130, the mass flow rate of the refrigerant introduced into the lower second header portion 54 and the upper second header portion 55 can be equalized as in the first embodiment.
Further, particularly in the present embodiment, the refrigerant is introduced into the first header portion 52 and the second header portion 53 from a plurality of locations having different height positions. Therefore, the refrigerant is mixed in the first header part 52 and the second header part 53 in the vertical direction, thereby promoting the uniformization of the refrigerant in the first header part 52 and the second header part 53. Can do. Thereby, equalization of the mass flow rate of the refrigerant introduced into each second heat transfer tube 23 can be achieved.

以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。   The embodiment of the present invention has been described above, but the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the present invention.

例えば、第二実施形態の分岐接続管81は、第三〜第五実施形態に適用してもよい。
また、第三実施形態と第四実施形態とを互いに組み合わせて、第二管群24を構成する第二伝熱管23の数及び各第二伝熱管23が受ける送風の風量に応じて、第一接続管60、第二接続管70の流路断面積を調整してもよい。
For example, the branch connection pipe 81 of the second embodiment may be applied to the third to fifth embodiments.
Further, the third embodiment and the fourth embodiment are combined with each other, and according to the number of the second heat transfer tubes 23 constituting the second tube group 24 and the air volume of the air received by each second heat transfer tube 23, the first The cross-sectional areas of the connecting pipe 60 and the second connecting pipe 70 may be adjusted.

1 空気調和機
2 圧縮機
3 室内熱交換器
4 膨張弁
5 室外熱交換器
6 四方弁
7 配管
10 熱交換器
20 伝熱管
21 第一伝熱管
22 第一管群
23 第二伝熱管
24 第二管群
25 下側第二管群
26 上側第二管群
28 フィン
30 ヘッダ
40 出入口側ヘッダ
41 仕切板
42 下部出入領域
43 上部出入領域
50 折り返し側ヘッダ
51 ヘッダ本体
52 第一ヘッダ部
53 第二ヘッダ部
54 下側第二ヘッダ部
55 上側第二ヘッダ部
58 主仕切板
60 第一接続管
61 第一連通路
70 第二接続管
71 第二連通路
80 熱交換器
81 分岐接続管
82 主管部
83 分割流路
84 分割壁部
85 分岐管部
86 分岐流路
90 熱交換器
100 熱交換器
101 ケーシング
102 ケーシング本体
103 送風部
104 通風部
110 熱交換器
120 接続管
121 連通路
130 熱交換器
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Compressor 3 Indoor heat exchanger 4 Expansion valve 5 Outdoor heat exchanger 6 Four-way valve 7 Pipe 10 Heat exchanger 20 Heat transfer tube 21 First heat transfer tube 22 First tube group 23 Second heat transfer tube 24 Second Pipe group 25 Lower second pipe group 26 Upper second pipe group 28 Fin 30 Header 40 Entrance / exit side header 41 Partition plate 42 Lower entrance / exit area 43 Upper entrance / exit area 50 Return side header 51 Header body 52 First header part 53 Second header Part 54 lower second header part 55 upper second header part 58 main partition plate 60 first connection pipe 61 first series passage 70 second connection pipe 71 second communication path 80 heat exchanger 81 branch connection pipe 82 main pipe part 83 Divided flow channel 84 Divided wall portion 85 Branch pipe portion 86 Branch flow channel 90 Heat exchanger 100 Heat exchanger 101 Casing 102 Casing body 103 Blower portion 104 Ventilation portion 110 Heat exchanger 120 Connecting pipe 121 Road 130 heat exchanger

Claims (7)

水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第一伝熱管を有する第一管群と、
上下方向に延びる筒状をなして前記第一管群の各前記第一伝熱管の一端が連通状態で接続される第一ヘッダ部と、
水平方向に延びて内部に冷媒が流通するとともに上下方向に間隔をあけて複数が配列された第二伝熱管を有する複数の第二管群と、
これら複数の第二管群に対応して複数が設けられ、上下方向に延びる筒状をなしてそれぞれに前記第二管群の各前記第二伝熱管の一端が連通状態で接続される第二ヘッダ部と、
複数の前記第二ヘッダ部に対応して複数が設けられて、前記第一ヘッダ部と各前記第二ヘッダ部とを連通させるように、それぞれの一端が互いに前記第一ヘッダ部の同一の上下方向位置に接続されるとともにそれぞれの他端が各前記第二ヘッダ部のいずれかに接続された連通路と、
を備える熱交換器。
A first tube group having a first heat transfer tube extending in the horizontal direction and having a plurality of refrigerants arranged in the vertical direction with the refrigerant flowing therethrough;
A first header portion that is connected in a communicating state with one end of each of the first heat transfer tubes of the first tube group in a vertically extending cylindrical shape;
A plurality of second tube groups having a second heat transfer tube that extends in the horizontal direction and in which the refrigerant circulates and is arranged at intervals in the vertical direction,
A plurality of second tube groups are provided corresponding to the plurality of second tube groups, and each of the second heat transfer tubes of the second tube group is connected in a communicating state to each other in a cylindrical shape extending in the vertical direction. A header section;
A plurality of second header portions are provided corresponding to the plurality of second header portions, and one end of each of the first header portions is the same as that of the first header portion so that the first header portions and the second header portions communicate with each other. A communication path connected to the directional position and each other end connected to one of the second header parts;
A heat exchanger.
一端が第一ヘッダ部に接続されるとともに、水平方向に複数に並設された分割流路が内側に形成された主管部と、該主管部の他端側から複数に分岐して内側に前記分割流路に連通する分岐流路が形成されるとともにそれぞれいずれかの前記第二ヘッダ部に接続された分岐管部とを有する分岐接続管を備え、
各前記連通路は、それぞれ各前記分割流路及び各前記分岐流路によって形成された流路である請求項1に記載の熱交換器。
One end is connected to the first header portion, and a plurality of divided flow paths arranged in parallel in the horizontal direction are formed on the inner side, and a plurality of branched from the other end side of the main pipe portion to the inner side A branch connection pipe having a branch pipe connected to any one of the second header parts and having a branch flow path communicating with the split flow path;
2. The heat exchanger according to claim 1, wherein each of the communication paths is a flow path formed by each of the divided flow paths and each of the branch flow paths.
各前記第二管群の前記第二伝熱管の数が互いに異なり、
前記連通路は、前記第二伝熱管の数の多い前記第二管群が接続された前記第二ヘッダ部に接続される前記連通路ほど、流路断面積が大きい請求項1又は2に記載の熱交換器。
The number of the second heat transfer tubes in each of the second tube groups is different from each other,
The flow path cross-sectional area of the said communicating path is large as the said communicating path connected to the said 2nd header part to which the said 2nd pipe group with many said 2nd heat exchanger tubes was connected. Heat exchanger.
各前記第二管群に送風する送風部を備え、
該送風部により各前記第二管群が受ける送風の速度は、各前記第二管群毎に互いに異なっており、
前記連通路は、受ける送風の速度が大きい前記第二管群が接続された前記第二ヘッダ部に接続される前記連通路ほど、流路断面積が大きい請求項1から3のいずれか一項に記載の熱交換器。
A blower for blowing air to each of the second tube groups,
The speed of the air received by each of the second tube groups by the air blowing unit is different from each other for each of the second tube groups,
4. The flow path cross-sectional area of the communication path is larger as the communication path is connected to the second header portion to which the second pipe group is connected. The heat exchanger as described in.
前記第一ヘッダ部と複数の前記第二ヘッダ部のいずれかとを連通させるように、一端が前記第一ヘッダ部に接続された前記連通路と同一の高さ位置で、前記第一ヘッダ部に接続されるとともに、他端が、前記第二ヘッダ部に接続された前記連通路と異なる高さ位置で、前記第二ヘッダ部に接続された他の連通路をさらに備える請求項1から4のいずれか一項に記載の熱交換器。   One end is at the same height position as the communication path connected to the first header part so that the first header part communicates with any of the plurality of second header parts. The other end of the communication passage further connected to the second header portion at a height position different from that of the communication passage connected to the second header portion. The heat exchanger as described in any one. 上下方向に延びる筒状をなすヘッダ本体と、該ヘッダ本体内を上下に複数の領域に区画する複数の主仕切板と、を有するヘッダを備え、
前記第一ヘッダ部は、前記ヘッダにおける複数の前記領域のうち最も下方の領域を含む部分であって、
各前記第二ヘッダ部は、前記ヘッダにおける複数の前記領域のうち最も下方の領域以外のいずれかの領域を含む部分である請求項1から5のいずれか一項に記載の熱交換器。
A header having a cylindrical main body extending in the vertical direction, and a plurality of main partition plates that vertically divide the header main body into a plurality of regions,
The first header portion is a portion including a lowermost region among the plurality of regions in the header,
6. The heat exchanger according to claim 1, wherein each of the second header portions is a portion including any region other than a lowermost region among the plurality of regions in the header.
請求項1から6のいずれか一項に記載の熱交換器を備える空気調和機。   An air conditioner comprising the heat exchanger according to any one of claims 1 to 6.
JP2016038404A 2016-02-29 2016-02-29 Heat exchanger and air conditioner Active JP6742112B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016038404A JP6742112B2 (en) 2016-02-29 2016-02-29 Heat exchanger and air conditioner
PCT/JP2017/000974 WO2017149950A1 (en) 2016-02-29 2017-01-13 Heat exchanger and air conditioner
AU2017228091A AU2017228091B2 (en) 2016-02-29 2017-01-13 Heat exchanger and air conditioner
CN201780003725.8A CN108351188A (en) 2016-02-29 2017-01-13 Heat exchanger and air-conditioning
EP17759422.3A EP3355023A4 (en) 2016-02-29 2017-01-13 Heat exchanger and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038404A JP6742112B2 (en) 2016-02-29 2016-02-29 Heat exchanger and air conditioner

Publications (3)

Publication Number Publication Date
JP2017155993A true JP2017155993A (en) 2017-09-07
JP2017155993A5 JP2017155993A5 (en) 2019-02-14
JP6742112B2 JP6742112B2 (en) 2020-08-19

Family

ID=59742708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038404A Active JP6742112B2 (en) 2016-02-29 2016-02-29 Heat exchanger and air conditioner

Country Status (5)

Country Link
EP (1) EP3355023A4 (en)
JP (1) JP6742112B2 (en)
CN (1) CN108351188A (en)
AU (1) AU2017228091B2 (en)
WO (1) WO2017149950A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100568A (en) * 2017-11-29 2019-06-24 株式会社デンソー Heat exchanger
KR20190089433A (en) * 2018-01-22 2019-07-31 엘지전자 주식회사 Outdoor Heat exchanger
WO2023190121A1 (en) * 2022-03-30 2023-10-05 株式会社富士通ゼネラル Indoor unit for air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023281731A1 (en) * 2021-07-09 2023-01-12 三菱電機株式会社 Heat exchanger and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417291U (en) * 1990-06-04 1992-02-13
WO2012098917A1 (en) * 2011-01-21 2012-07-26 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2015078833A (en) * 2013-09-11 2015-04-23 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2015178097A1 (en) * 2014-05-19 2015-11-26 三菱電機株式会社 Air-conditioning device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609916B2 (en) * 2012-04-27 2014-10-22 ダイキン工業株式会社 Heat exchanger
JP2014137177A (en) * 2013-01-16 2014-07-28 Daikin Ind Ltd Heat exchanger and refrigerator
JP5761252B2 (en) * 2013-05-22 2015-08-12 ダイキン工業株式会社 Heat exchanger
JP2015052440A (en) * 2013-09-09 2015-03-19 ダイキン工業株式会社 Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417291U (en) * 1990-06-04 1992-02-13
WO2012098917A1 (en) * 2011-01-21 2012-07-26 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2015078833A (en) * 2013-09-11 2015-04-23 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2015178097A1 (en) * 2014-05-19 2015-11-26 三菱電機株式会社 Air-conditioning device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019100568A (en) * 2017-11-29 2019-06-24 株式会社デンソー Heat exchanger
KR20190089433A (en) * 2018-01-22 2019-07-31 엘지전자 주식회사 Outdoor Heat exchanger
KR102063630B1 (en) 2018-01-22 2020-01-08 엘지전자 주식회사 Outdoor Heat exchanger
WO2023190121A1 (en) * 2022-03-30 2023-10-05 株式会社富士通ゼネラル Indoor unit for air conditioner
JP2023148248A (en) * 2022-03-30 2023-10-13 株式会社富士通ゼネラル Indoor unit for air conditioner

Also Published As

Publication number Publication date
AU2017228091B2 (en) 2019-07-18
WO2017149950A1 (en) 2017-09-08
CN108351188A (en) 2018-07-31
JP6742112B2 (en) 2020-08-19
EP3355023A4 (en) 2018-12-26
AU2017228091A1 (en) 2018-05-10
EP3355023A1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP5071597B2 (en) Heat exchanger and air conditioner
JP6202451B2 (en) Heat exchanger and air conditioner
US10041710B2 (en) Heat exchanger and air conditioner
US10309701B2 (en) Heat exchanger and air conditioner
WO2013161799A1 (en) Heat exchanger, and refrigerating cycle device equipped with heat exchanger
JP6061994B2 (en) Heat exchanger, refrigeration cycle apparatus and air conditioner equipped with this heat exchanger
US20160327343A1 (en) Heat exchanger of air conditioner
WO2017149950A1 (en) Heat exchanger and air conditioner
JP2017155989A (en) Heat exchanger and air conditioner
JP2018100800A (en) Heat exchanger and air conditioner
JP2018162900A (en) Heat exchanger and air conditioner including the same
US10544990B2 (en) Heat exchanger
JP6611335B2 (en) Heat exchanger and air conditioner
JP2015055411A (en) Heat exchanger and air conditioner
WO2017150221A1 (en) Heat exchanger and air conditioner
WO2019130394A1 (en) Heat exchanger and refrigeration cycle device
JP6853867B2 (en) Heat exchanger and air conditioner
KR102148722B1 (en) Heat exchanger and air conditional having the same
KR102169284B1 (en) Heat exchanger and air conditional having the same
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
JP5840291B2 (en) Heat exchanger, refrigeration cycle apparatus and air conditioner equipped with this heat exchanger
JP2021139530A (en) Heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160301

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200728

R150 Certificate of patent or registration of utility model

Ref document number: 6742112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150