WO2023281731A1 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
WO2023281731A1
WO2023281731A1 PCT/JP2021/025912 JP2021025912W WO2023281731A1 WO 2023281731 A1 WO2023281731 A1 WO 2023281731A1 JP 2021025912 W JP2021025912 W JP 2021025912W WO 2023281731 A1 WO2023281731 A1 WO 2023281731A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
intermediate header
heat exchanger
heat transfer
refrigerant
Prior art date
Application number
PCT/JP2021/025912
Other languages
French (fr)
Japanese (ja)
Inventor
皓亮 宮脇
和久 岩▲崎▼
侑哉 森下
康平 名島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023533012A priority Critical patent/JPWO2023281731A1/ja
Priority to PCT/JP2021/025912 priority patent/WO2023281731A1/en
Publication of WO2023281731A1 publication Critical patent/WO2023281731A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present disclosure relates to a heat exchanger having a first heat exchanger and a second heat exchanger and an air conditioner having such a heat exchanger.
  • An air conditioner is equipped with a heat exchanger that functions as a condenser as one of the components of the refrigeration cycle circuit.
  • the condenser heat-exchanges the incoming gaseous refrigerant with the outside air.
  • the refrigerant that has undergone heat exchange flows out of the condenser as a liquid refrigerant through a gas-liquid two-phase state.
  • a heat transfer tube group is provided on the windward side and the leeward side as a condenser, and one end of the heat transfer tube group is folded back, and the refrigerant in the gas-liquid two-phase state on the leeward side is flowed to the windward side for heat exchange.
  • the heat exchanger which is the condenser, generates a lot of liquid phase in the upper heat transfer tube when the wind speed distribution is formed while it is mounted in the top-blown housing.
  • the heat transfer tube outlets are in communication with each other in the header, the liquid refrigerant that has fallen from the upper heat transfer tube in the header cannot be lifted by only the refrigerant in the lowermost heat transfer tube in the gravity direction, and the liquid refrigerant stays, especially in the middle. Performance degrades under load.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a heat exchanger and an air conditioner having a first heat exchanger and a second heat exchanger capable of improving heat exchange performance.
  • a heat exchanger includes a first intermediate header extending in the direction of gravity, a first heat transfer tube connected to the first intermediate header and performing heat exchange between refrigerant and air, and the first intermediate header.
  • a first heat exchanger having a first partition that divides the interior into a first space and a second space arranged below the first space; and arranged side by side on the windward side of the first heat exchanger.
  • the intermediate header is provided with a first outlet through which the refrigerant flows out, the first intermediate header forming the second space is provided with a second outlet through which the refrigerant flows out, and the second intermediate header is provided with a second outlet through which the refrigerant flows out.
  • the header is connected to the first intermediate header, and has a first inlet through which the refrigerant flows into the third space through the first outlet, and a second outlet through which the refrigerant flows into the third space. and a second inlet.
  • the second intermediate header is connected to the first intermediate header, the first inlet through which the liquid-based refrigerant flows into the third space from the first outlet, and the gas-based refrigerant from the second outlet. and a second inlet through which the coolant flows into the third space.
  • FIG. 1 is a configuration diagram of an air conditioner according to Embodiment 1.
  • FIG. 1 is a perspective perspective view of an outdoor heat exchanger according to Embodiment 1.
  • FIG. 3 is a vertical cross-sectional view showing the periphery of the first intermediate header and the second intermediate header of the outdoor heat exchanger according to Embodiment 1.
  • FIG. 4 is a vertical cross-sectional view showing refrigerant flows around a first intermediate header and a second intermediate header of a conventional outdoor heat exchanger. 4 is a longitudinal sectional view showing refrigerant flows around the first intermediate header and the second intermediate header of the outdoor heat exchanger according to Embodiment 1.
  • FIG. 1 is a perspective perspective view of an outdoor heat exchanger according to Embodiment 1.
  • FIG. 3 is a vertical cross-sectional view showing the periphery of the first intermediate header and the second intermediate header of the outdoor heat exchanger according to Embodiment 1.
  • FIG. 4 is a vertical cross-sectional view showing refrigerant flows around a
  • FIG. 4 is a conceptual schematic diagram showing the flow rate of refrigerant flowing into the first intermediate header and the wind speed distribution of the outdoor heat exchanger according to Embodiment 1; 4 is a performance curve with respect to operating load in the outdoor heat exchanger according to Embodiment 1.
  • FIG. FIG. 2 is a schematic diagram showing an example of a refrigerant channel configuration of the outdoor heat exchanger according to Embodiment 1;
  • FIG. 8 is a vertical cross-sectional view showing a first intermediate header and a second intermediate header of an outdoor heat exchanger according to Embodiment 2;
  • FIG. 11 is a vertical cross-sectional view showing a first intermediate header and a second intermediate header of an outdoor heat exchanger according to Embodiment 3;
  • FIG. 11 is a cross-sectional top view of a first intermediate header and a second intermediate header according to Embodiment 4;
  • 13 is an enlarged cross-sectional view taken along line AA of FIG. 12;
  • FIG. 13 is an enlarged cross-sectional view taken along the line AA of FIG. 12, showing a first modified example of the first intermediate header and the second intermediate header according to Embodiment 4;
  • 13 is an enlarged cross-sectional view taken along the line AA of FIG. 12, showing a second modification of the first intermediate header and the second intermediate header according to the fourth embodiment;
  • FIG. 11 is a vertical cross-sectional view showing a first intermediate header and a second intermediate header of an outdoor heat exchanger according to Embodiment 3;
  • FIG. 11 is a cross-sectional top view of a first intermediate header and a second intermediate header according to Em
  • FIG. 1 is a configuration diagram of an air conditioner 200 according to Embodiment 1.
  • FIG. 1 The white arrows and black arrows along the refrigerant pipe 18 in FIG. 1 indicate the flow direction of the refrigerant during the cooling operation.
  • a white arrow indicates that the refrigerant is in a gaseous state
  • a black arrow indicates that the refrigerant is in a liquid state.
  • hatched arrows attached near the first intermediate header 1 and the second intermediate header 2 schematically indicate a gas-liquid two-phase state.
  • the refrigerant flows when the outdoor heat exchanger 10 functions as a condenser.
  • the AF direction indicates the direction of air flow
  • the direction of the arrow 90 indicates the direction of gravity.
  • the air conditioner 200 includes a compressor 14 that compresses the refrigerant, an outdoor heat exchanger 10 that functions as a condenser, an expansion device 17 that decompresses and expands the refrigerant, and an indoor heat exchanger 16 that functions as an evaporator. ing.
  • a compressor 14, an outdoor heat exchanger 10, an expansion device 17, and an indoor heat exchanger 16 are sequentially connected by refrigerant pipes 18 to form a refrigeration cycle circuit.
  • the compressor 14 and the outdoor heat exchanger 10 are housed in the outdoor unit 201.
  • the housing of the outdoor unit 201 is a top-blowing housing provided with a blower 13 that supplies outdoor air to the outdoor heat exchanger 10 and blows the air upward.
  • the indoor heat exchanger 16 and the expansion device 17 are housed in the indoor unit 202 .
  • the indoor unit 202 also accommodates an indoor fan (not shown) that supplies the indoor heat exchanger 16 with indoor air, which is the air in the space to be air-conditioned.
  • the outdoor heat exchanger 10 has a first heat exchanger 11 and a second heat exchanger 12.
  • the first heat exchanger 11 includes a first intermediate header 1 extending in the direction of gravity 90, and a first heat transfer tube 3_1 (see FIG. 3) connected to the first intermediate header 1 and performing heat exchange between refrigerant and air.
  • the second heat exchanger 12 is arranged in parallel on the windward side of the first heat exchanger 11 and is connected to the second intermediate header 2 extending in the direction of gravity 90 and the second intermediate header 2 to heat the refrigerant and the air. It has a second heat transfer tube 3_2 to be exchanged.
  • FIG. 2 is a perspective perspective view of the outdoor heat exchanger 10 according to Embodiment 1.
  • FIG. FIG. 3 is a longitudinal sectional view showing the periphery of the first intermediate header 1 and the second intermediate header 2 of the outdoor heat exchanger 10 according to Embodiment 1. As shown in FIG. This FIG. 3 is a longitudinal sectional view parallel to the extending direction of the first heat transfer tube 3_1 and the second heat transfer tube 3_2.
  • the outdoor heat exchanger 10 is mounted in a top-blowing housing 203 of an outdoor unit 201 having a blower 13 that blows air upward.
  • the top-blowing housing 203 has an air outlet at the top through which the air sent from the blower 13 is discharged.
  • the outdoor heat exchanger 10 has a first heat exchanger 11 and a second heat exchanger 12 provided upstream of the first heat exchanger 11 in the air flow direction AF. .
  • the outdoor heat exchanger 10 is composed of at least two rows of first heat exchangers 11 and second heat exchangers 12 .
  • the first heat exchanger 11 has a plurality of first heat transfer tubes 3_1.
  • the first heat transfer pipes 3_1 extend in the horizontal direction and are arranged at regular intervals in the vertical direction.
  • the second heat exchanger 12 has a plurality of second heat transfer tubes 3_2.
  • the second heat exchangers 12 extend horizontally and are arranged at regular intervals in the vertical direction.
  • Embodiment 1 When the outdoor heat exchanger 10 functions as a condenser, the refrigerant flowing through the first heat transfer tube 3_1 and the second heat transfer tube 3_2 is cooled and condensed by the outdoor air.
  • a plurality of fins 4 are connected to a plurality of first heat transfer tubes 3_1 and a plurality of fins 4 are connected to a plurality of second heat transfer tubes 3_2 in order to promote heat exchange between the refrigerant and the outdoor air.
  • a plurality of fins (not shown) are connected.
  • the first heat exchanger 11 provided downstream of the airflow and the second heat exchanger 12 provided upstream of the airflow are sequentially connected via the first intermediate header 1 and the second intermediate header 2 .
  • the first intermediate header 1 has a structure in which the first heat transfer pipe 3_1 is inserted into a pipe having a constant volume.
  • the second intermediate header 2 is configured such that a second heat transfer tube 3_2 is inserted into a pipe having a constant volume.
  • the first intermediate header 1 is a header that connects at least two of the first heat transfer tubes 3_1 in the same row in the same space.
  • the second intermediate header 2 is a header that connects at least two of the second heat transfer tubes 3_2 in the same row in the same space.
  • the first intermediate header 1 is partitioned by a first partition 35 into a first space 21 provided on the upper side and a second space 22 provided on the lower side. At least one of the first heat transfer tubes 3_1 connected to the first intermediate header 1 is connected to the first space 21 . At least two first heat transfer tubes 3_1 among the first heat transfer tubes 3_1 connected to the first intermediate header 1 are connected to the second space 22 .
  • a pipe wall of the first intermediate header 1 that defines the first space 21 is provided with a first outflow port 31_1 through which the refrigerant flows out.
  • a pipe wall of the first intermediate header 1 that defines the second space 22 is provided with a second outlet 32_1 through which the refrigerant flows.
  • the second intermediate header 2 is partitioned by a second partition 36 into a third space 23 provided on the upper side and a fourth space 24 provided on the lower side. At least one second heat transfer tube 3_2 is connected to the third space 23 .
  • the tube wall of the second intermediate header 2 forming the third space 23 has a first inlet 33_1 and a second inlet 34_1 into which the refrigerant flows.
  • the first connection pipe 31 connects the first outlet 31_1 to the first inlet 33_1 and communicates the first space 21 with the third space 23 .
  • the second connection pipe 32 connects the second outlet 32_1 to the second inlet 34_1 and communicates the second space 22 with the third space 23 .
  • the second outflow port 32_1 is provided above the second partition 36 .
  • first outlet 31_1 and the first inlet 33_1 may be directly connected without using the first connection pipe 31.
  • second outlet 32_1 and the second inlet 34_1 may be directly connected without using the second connecting pipe 32 .
  • the sum of the number of first heat transfer tubes 3_1 connected to the first space 21 and the number of the first heat transfer tubes 3_1 connected to the second space is greater than the number of second heat transfer tubes 3_2. .
  • the high-temperature, high-pressure gas refrigerant that has flowed into the indoor heat exchanger 16 is cooled while supplying heat to the indoor air, and flows out of the indoor heat exchanger 16 as a low-temperature liquid refrigerant.
  • the liquid refrigerant flowing out of the indoor heat exchanger 16 is decompressed by the expansion device 17 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, and flows into a distributor (not shown) of the outdoor heat exchanger 10 functioning as an evaporator.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the distributor of the outdoor heat exchanger 10 is distributed to the second heat transfer tubes 3_2.
  • the refrigerant flowing through the second heat transfer pipe 3_2 is heated by the outdoor air to evaporate, and flows through the first connection pipe 31 and the second connection pipe 32 through the first heat transfer pipe 3_1.
  • the refrigerant flowing through the first heat transfer tube 3_1 is heated by the outdoor air, evaporates, becomes a low-pressure gas refrigerant, and flows out from the first heat transfer tube 3_1.
  • the low-pressure gas refrigerant that has flowed out of the first heat transfer pipe 3_1 flows out of the outdoor heat exchanger 10 after being merged in a union pipe (not shown).
  • the low-pressure gas refrigerant that has flowed out of the outdoor heat exchanger 10 is sucked into the compressor 14 after passing through a four-way valve (not shown).
  • the low-pressure gas refrigerant sucked into the compressor 14 is again compressed by the compressor 14 into high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the junction pipe of the outdoor heat exchanger 10 is distributed to the first heat transfer pipes 3_1 of the outdoor heat exchanger 10. Then, the refrigerant flowing through the first heat transfer pipe 3_1 is cooled by the outdoor air, condensed, becomes a low-temperature liquid refrigerant, and flows through the second heat transfer pipe 3_2 via the first connection pipe 31 and the second connection pipe 32. , flows out from the second heat transfer tube 3_2.
  • the low-temperature liquid refrigerant that has flowed out of the second heat transfer pipe 3_2 flows out of the outdoor heat exchanger 10 after joining at a distributor (not shown).
  • the liquid refrigerant flowing out of the outdoor heat exchanger 10 is depressurized by the expansion device 17 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 16 functioning as an evaporator.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 16 evaporates while absorbing heat from the indoor air, and flows out of the indoor heat exchanger 16 as a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant flowing out of the indoor heat exchanger 16 is sucked into the compressor 14 after passing through a four-way valve (not shown), where it is again compressed into a high-temperature and high-pressure gas refrigerant.
  • the gas refrigerant exchanges heat with the leeward airflow in the first heat exchanger 11, and changes from a gas state to a gas-liquid state. phase changes.
  • the refrigerant changed to the gas-liquid two-phase state flows from the first heat transfer tubes 3_1 of the first heat exchanger 11 into the first space 21 and the second space 22 of the first intermediate header 1 .
  • This gas-liquid two-phase refrigerant is mixed inside the first space 21 and the second space 22, respectively, and then flows from the first space 21 and the second space 22 through the first connecting pipe 31 and the second connecting pipe 32, respectively. It flows into the third space 23 of the second intermediate header 2 of the second heat exchanger 12 .
  • the gas-liquid two-phase refrigerant flowing from the first connecting pipe 31 and the second connecting pipe 32 is mixed and divided into the heat transfer tubes 3 of the second heat exchanger 12 to exchange heat with the upwind airflow. .
  • FIG. 4 is a longitudinal sectional view showing refrigerant flows around the first intermediate header 1 and the second intermediate header 2 of the conventional outdoor heat exchanger 10.
  • the first heat transfer tubes 3_1 of the first heat exchanger 11 on the downstream side of the airflow are arranged with a specified interval in the vertical direction and connected to the first intermediate header 1.
  • the second heat transfer tubes 3_2 of the second heat exchanger 12 on the upstream side of the airflow are arranged at regular intervals in the vertical direction and connected to the second intermediate header 2 .
  • the first intermediate header 1 and the second intermediate header 2 are connected by a first connecting pipe 31 .
  • the gaseous refrigerant that has flowed into the first heat exchanger 11 exchanges heat with the downstream air stream, enters a two-phase state, and flows into the first intermediate header 1 .
  • the airflow passing through the first heat exchanger 11 is increased in velocity between the first heat transfer tube 3_1 and the fins 4 provided on the upper side by the blower 13 provided in the top-blowing housing that blows air upward.
  • the velocity of the wind flowing between the first heat transfer tube 3_1 and the fins 4 provided on the lower side becomes smaller.
  • the liquid-based refrigerant 102 having a larger mass flow rate ratio of the liquid refrigerant than the outlet on the lower side flows into the inside of the first intermediate header 1 .
  • the gas-based refrigerant 103 having a larger mass flow rate ratio of the gas refrigerant than the outlet on the upper side flows into the inside of the first intermediate header 1 .
  • the driving force for causing the refrigerant to flow upward is the inertial force of the refrigerant flowing out from the first heat transfer tube 3_1 downstream of the lower portion of the first space 21 and upstream of the refrigerant flow.
  • the inertial force of the refrigerant is small, and the liquid refrigerant that has fallen is not lifted upward, causing a liquid stagnation 104 .
  • the flow rate of the refrigerant is small, and the inertial force of the refrigerant in the horizontal direction in the first heat transfer tube 3_1 is small.
  • a liquid backflow 105 occurs.
  • FIG. 5 is a longitudinal sectional view showing refrigerant flows around the first intermediate header 1 and the second intermediate header of the outdoor heat exchanger 10 according to the first embodiment.
  • the first intermediate header 1 is partitioned into the first space 21 and the second space 22 by the first partition 35 .
  • the first heat transfer tubes 3_1 connected to the first intermediate header 1 at least one first heat transfer tube 3_1 is connected to the first space 21 from above.
  • At least two or more first heat transfer tubes 3_1 provided on the lower side are connected to the second space 22 .
  • the liquid-based refrigerant 102 flowing out from the upper first heat transfer tubes 3_1 does not enter the second space 22 inside the first intermediate header 1 .
  • the liquid-based refrigerant 102 flows into the third space 23 of the second intermediate header 2 via the first connecting pipe 31 .
  • the liquid stagnation 104 inside the second space 22 is reduced, a region for heat exchange is secured, and the heat exchange performance of the condenser is improved.
  • the flow rate of refrigerant flowing through the second connection pipe 32 is the sum of the flow rates of refrigerant flowing from the plurality of first heat transfer tubes 3_1 connected to the second space 22 .
  • the flow path diameter of the second connection pipe 32 can be designed without depending on the flow path diameter of the first heat transfer tube 3_1, backflow 105 of the liquid from the third space 23 to the second space 22 can be suppressed (see FIG. 4).
  • FIG. 6 is a conceptual schematic diagram showing the flow rate of refrigerant flowing into the first intermediate header 1 of the conventional outdoor heat exchanger 10 and the wind velocity distribution.
  • FIG. 6 is a white bar graph showing the flow rate of the refrigerant flowing through the first heat transfer tube 3_1 connected to the conventional first intermediate header 1 for each height of the heat transfer tube. It is a figure which shows distribution with a solid line.
  • FIG. 7 is a conceptual schematic diagram showing the flow rate of refrigerant flowing into the first intermediate header 1 and the wind speed distribution of the outdoor heat exchanger 10 according to the first embodiment.
  • FIG. 7 shows the flow rate of the refrigerant flowing through the first heat transfer tube 3_1 connected to the first intermediate header 1 according to Embodiment 1 by a black bar graph for each height of the heat transfer tube. It is a figure which shows the wind speed distribution of a direction with a solid line.
  • the gas-liquid two-phase refrigerant has the characteristic that when the gas refrigerant is large, the volume flow rate of the refrigerant is large and the refrigerant pressure loss is large, and when the liquid refrigerant is large, the refrigerant volume flow rate is small and the refrigerant pressure loss is small.
  • the refrigerants at the outlets of the first heat transfer tubes 3_1 are mixed at the outlet of the first intermediate header 1 and mixed through the first connecting pipe 31 to the second intermediate header 2 .
  • the refrigerant flow rate difference between the first heat transfer tubes 3_1 is small as shown in FIG.
  • the wind speed is high on the upper side where the air flow path length is short, and the wind speed is low on the lower side where the air flow path length is long. As a result, the difference between the wind velocity distribution and the refrigerant flow rate distribution becomes large, which is a factor in the deterioration of performance.
  • the first space 21, which is the outlet of the upper first heat transfer tube 3_1, and the second space 22, which is the outlet of the lower first heat transfer tube 3_1, are not communicated with each other. partitioned. Therefore, as shown in FIG. 7, the flow rate of the refrigerant in the first heat transfer tube 3_1 connected to the first space 21 into which the liquid-based refrigerant 102 flows is the first It increases with respect to the refrigerant flow rate of the heat transfer tube 3_1. Therefore, the divergence between the wind speed distribution and the refrigerant flow rate distribution is reduced, and the heat exchange performance is improved.
  • FIG. 8 is a performance curve for the operating load of the outdoor heat exchanger 10 according to Embodiment 1.
  • FIG. The horizontal axis indicates the ratio of cooling capacity to the maximum cooling capacity, and the vertical axis indicates the ratio of each operating capacity to the theoretical maximum performance of the outdoor heat exchanger 10 .
  • the solid line indicates the characteristic curve of the first embodiment, and the dashed line indicates the conventional characteristic curve.
  • liquid stagnation 104 occurred in the first intermediate header 1, especially during low-load operation, resulting in performance degradation.
  • the performance of the outdoor heat exchanger 10 is improved due to the effect of suppressing liquid retention, particularly during low-load operation.
  • the performance of the outdoor heat exchanger 10 from low load to high load operation is improved, and the energy saving performance of the air conditioner 200 is improved. improves.
  • the outdoor unit 201 is not a top-blowing housing, by mounting the outdoor heat exchanger 10, the liquid refrigerant falling to the lower part of the second space 22 of the first intermediate header 1 is reduced, so the performance is improved. It works. Furthermore, when the outdoor heat exchanger 10 is mounted in the top-blowing housing, a large amount of liquid refrigerant is formed on the upper side of gravity during cooling operation. For this reason, compared with the conventional configuration, the amount of liquid refrigerant falling into the lower portion of the second space 22 of the first intermediate header 1 is reduced for the same capacity, and the performance improvement effect is large.
  • the air conditioner 200 described above is an example of the air conditioner 200 according to the first embodiment.
  • the outdoor heat exchanger 10 may be installed in the indoor unit 202 of the air conditioner 200.
  • the number of divided spaces in the first intermediate header 1 is three or more, there is no problem with the effect, and it is a design item selected from the improvement effect and the manufacturing cost.
  • the first space 21 and the second space 22 are partitioned by the first partition 35, but the effect can be obtained even if the first space 21 and the second space 22 are formed by separate headers. Absent.
  • the number of outdoor units 201 and indoor units 202 is not limited to one, and a plurality of them may be provided in the air conditioner 200 .
  • the type of refrigerant circulating in the refrigeration cycle circuit of the air conditioner 200 is not particularly limited.
  • the refrigerant includes R32, R410A, or at least refrigerants having a lower gas density relative to R32 refrigerants, including olefinic refrigerants, propane, or DME (dimethyl ether). With such a refrigerant, the deviation between the wind speed distribution and the refrigerant distribution due to the pressure loss of the gas refrigerant can be suppressed, so the performance improvement effect is greater.
  • the first heat transfer tube 3_1 and the second heat transfer tube 3_2 of the outdoor heat exchanger 10 are not limited to circular heat transfer tubes, and the cross section orthogonal to the axial direction of the first heat transfer tube 3_1 and the second heat transfer tube 3_2 Various heat transfer tubes such as a flat heat transfer tube whose long axis is along the air flow direction can be used.
  • a flat heat transfer tube whose long axis is along the air flow direction can be used.
  • the flow path diameter in the vertical direction of the header is larger than the length of the long axis of the flat tubes, so the cross-sectional area of the flow path is increased.
  • the flow velocity in the second space 22 is reduced, and the amount of liquid refrigerant stagnation 104 is increased.
  • the sum of the number of first heat transfer tubes 3_1 connected to the first space 21 and the number of first heat transfer tubes 3_1 connected to the second space 22 is the third
  • the number of heat transfer tubes connected to the space may be greater than or equal to that of the heat transfer tubes.
  • FIG. 9 is a schematic diagram showing an example of the refrigerant channel configuration of the outdoor heat exchanger 10 according to Embodiment 1.
  • the outdoor heat exchanger 10 is composed of a parallel flow condenser in which two or more rows of headers are provided at both ends of heat transfer tubes.
  • the sum of the number of first heat transfer tubes 3_1 connected to the first space 21 and the number of first heat transfer tubes 3_1 connected to the second space 22 is greater than the number of second heat transfer tubes 3_2 connected to the third space 23. .
  • the liquid refrigerant in the lower portion of the first intermediate header 1 needs to flow upward, so the application of this configuration has a large improvement effect.
  • the first connecting pipe 31 connecting the first space 21 and the third space 23 has an average height of the first heat transfer pipe 3_1 connected to the first space 21. It is provided below the height.
  • the average height is the average height of all the first heat transfer tubes 3_1 connected to the first space 21 in the vertical direction.
  • the outdoor heat exchanger 10 of Embodiment 1 it is possible to suppress liquid retention under the gravity of the first heat exchanger 11 and the first intermediate header 1 .
  • the first intermediate header 1 does not have the first partition 35, as in the conventional art, the liquid refrigerant that has fallen from the upper side of the first intermediate header 1 due to gravity cannot be lifted up only by the refrigerant in the lowermost heat transfer tube in the direction of gravity. Liquid stays, especially at intermediate loads.
  • the first intermediate header 1 is provided with the first partition 35 .
  • the liquid-based refrigerant in the first space 21 and the gas-based refrigerant in the second space 22 are joined in the third space 23 of the second intermediate header 2 by the first connection pipe 31 and the second connection pipe 32, respectively.
  • Embodiment 2 items that are not particularly described are the same as those in Embodiment 1, and the same functions and configurations are described using the same reference numerals.
  • FIG. 10 is a longitudinal sectional view showing the first intermediate header 1 and the second intermediate header 2 of the outdoor heat exchanger 10 according to Embodiment 2.
  • FIG. 10 is a longitudinal sectional view showing the first intermediate header 1 and the second intermediate header 2 of the outdoor heat exchanger 10 according to Embodiment 2.
  • the third space 23 is located below the third space 23 and connected to at least one second heat transfer tube 3_2 separated from the third space 23.
  • 4 spaces 24 are provided in the second intermediate header 2 .
  • a first partition 35 that partitions the first space 21 and the second space 22 is provided above a second partition 36 that partitions the third space 23 and the fourth space 24 .
  • the first partition 35 and the second partition 36 are plate members.
  • the outdoor heat exchanger 10 By configuring the outdoor heat exchanger 10 in this way, the head difference between the first partition 35 and the second partition 36 causes liquid refrigerant to flow from the first space 21 to the third space 23 via the first connection pipe 31 . of the liquid is promoted to suppress the retention of the liquid inside the first space 21 . Thereby, the cooling performance of the air conditioner 200 is improved.
  • Embodiment 3 In Embodiment 3, items that are not particularly described are the same as those in Embodiments 1 and 2, and the same functions and configurations are described using the same reference numerals.
  • FIG. 11 is a longitudinal sectional view showing the first intermediate header 1 and the second intermediate header 2 of the outdoor heat exchanger 10 according to Embodiment 3.
  • FIG. Embodiment 3 is different from Embodiment 2 in that the second outlet 32_1 in the second space 22 of the first intermediate header 1 of the second connection pipe 32 is the third space separating the third space 23 and the fourth space 24. It is a configuration provided above the second partition 36 .
  • the second connection pipe 32 connects the second space 22 of the first intermediate header 1 and the third space 23 of the second intermediate header 2 .
  • the head difference between the second outlet 32_1 in the second space 22 and the second partition 36 causes the liquid refrigerant to flow back 105 (see FIG. 4) into the second space 22. ) is suppressed, and the cooling performance of the air conditioner 200 is improved.
  • Embodiment 4 In Embodiment 4, items that are not particularly described are the same as those in Embodiment 3, and the same functions and configurations are described using the same reference numerals.
  • FIG. 12 is a cross-sectional top view of the first intermediate header 1 and the second intermediate header 2 according to Embodiment 4.
  • FIG. 13 is an enlarged cross-sectional view taken along the line AA of FIG. 12.
  • 71 indicates the central axis of the first intermediate header 1 in the extending direction
  • 72 indicates the central axis of the second intermediate header 2 in the extending direction
  • 73 indicates the central axis of the connecting pipe.
  • Two dashed lines extending from the central axis 72 of the second intermediate header 2 in the extending direction indicate the range in which the pipe wall 38 of the first intermediate header 1 can be seen.
  • 111 indicates the refrigerant flow from the first space 21 to the third space 23
  • 112 indicates the refrigerant flow from the second space 22 to the third space 23 .
  • the first outflow port 31_1 is the first outlet in the range in which the first intermediate header 1 can be seen when viewed from the central axis 72 in the extending direction of the first intermediate header and the extending direction of the second intermediate header 2 . It is provided on the tube wall 38 of the intermediate header 1 . That is, the first outflow port 31_1 is provided in the pipe wall 38 of the first intermediate header 1 on the second intermediate header 2 side.
  • the path length of the first connecting pipe 31 from the first space 21 to the third space 23 is shortened, and the flow of the refrigerant flow 111 is promoted. Retention of the liquid refrigerant in the first space 21 is suppressed. Further, the route length of the second connection pipe 32 from the second space 22 to the third space 23 is shortened, and the coolant is transported to the third space 23 without greatly reducing the inertia force of the coolant flow 112 . Therefore, a large amount of the gas-based refrigerant is supplied upward due to gravity in the third space 23, and the refrigerant can be distributed according to the wind speed distribution of the top-blowing housing.
  • FIG. 14 is an enlarged sectional view taken along the line AA of FIG. 12, showing a first modification of the first intermediate header 1 and the second intermediate header 2 according to the fourth embodiment.
  • the height of the first outlet 31_1 to the third space 23 in the first space 21 of the first intermediate header 1 is is the same as or higher than the height position of the first inlet 33_1 from the first space 21 in .
  • the flow of the refrigerant flow 111 is promoted due to the head difference between the height position of the first outlet 31_1 and the first inlet 33_1, and the first space 21 Stagnation of the liquid refrigerant inside is suppressed. Thereby, the performance of the condenser is improved, and the cooling performance of the air conditioner 200 is improved.
  • the height position of the second outflow port 32_1 to the third space 23 in the second space 22 of the first intermediate header 1 is the second It is a higher configuration than the height position of the partition 36 .
  • FIG. 15 is an enlarged sectional view taken along line AA of FIG. 12, showing a second modification of the first intermediate header 1 and the second intermediate header 2 according to the fourth embodiment.
  • the first outlet 31_1 and the second outlet 32_1 are partitioned by the first partition 35 . That is, the first partition 35 is provided within the height range of one opening provided in the tube wall of the first intermediate header 1, and the upper side of the first partition 35 of this opening is the first outlet 31_1. , the lower side is the second outflow port 32_1.
  • the first connection pipe 31 and the second connection pipe 32 may be integrally configured with one pipe. good.
  • the performance of the condenser is improved, and the cooling performance of the air conditioner 200 is improved.
  • the improvement effect is large in low-load operation where the refrigerant flow velocity becomes small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This heat exchanger includes: a first heat exchanger having a first intermediate header extending in the direction of gravity, a first heat transfer tube connected to the first intermediate header and performing heat exchange between a refrigerant and air, and a first partition partitioning the inside of the first intermediate header into a first space and a second space disposed below the first space; and a second heat exchanger provided side-by-side with and upwind of the first heat exchanger and having a second intermediate header extending in the direction of gravity, a second heat transfer tube connected to the second intermediate header and performing heat exchange between a refrigerant and air, and a second partition partitioning the inside of the second intermediate header into a third space and a fourth space disposed below the third space. The first heat transfer tube is provided in a plurality, and the plurality of first heat transfer tubes include a first heat transfer tube connecting to the first space, and a first heat transfer tube connecting to the second space. The first intermediate header constituting the first space is provided with a first outflow port from which the refrigerant flows out, and the first intermediate header constituting the second space is provided with a second outflow port from which the refrigerant flows out. The second intermediate header connects to the first intermediate header and includes a first inflow port through which the refrigerant flows into the third space from the first outflow port, and a second inflow port through which the refrigerant flows into the third space from the second outflow port.

Description

熱交換器及び空気調和装置heat exchangers and air conditioners
 本開示は、第1熱交換器及び第2熱交換器を有する熱交換器及びこのような熱交換器を備えた空気調和装置に関する。 The present disclosure relates to a heat exchanger having a first heat exchanger and a second heat exchanger and an air conditioner having such a heat exchanger.
 空気調和装置は、冷凍サイクル回路の構成要素の1つとして、凝縮器として機能する熱交換器を備えている。凝縮器は、流入したガス冷媒を外部空気と熱交換する。熱交換が行われた冷媒は気液二相状態を経て液冷媒として凝縮器から流出する。このとき、凝縮器として、風上側と風下側に伝熱管群をそれぞれ設け、伝熱管群の一端を折り返し、風下側で気液二相状態になった冷媒を風上側へ流すことで、熱交換器性能を向上する手段がある。従来の折り返し手段として、風下側の伝熱管出口のヘッダで冷媒を合流させて、風上側の伝熱管入口のヘッダへ冷媒を供給する方法がある(例えば特許文献1参照)。 An air conditioner is equipped with a heat exchanger that functions as a condenser as one of the components of the refrigeration cycle circuit. The condenser heat-exchanges the incoming gaseous refrigerant with the outside air. The refrigerant that has undergone heat exchange flows out of the condenser as a liquid refrigerant through a gas-liquid two-phase state. At this time, a heat transfer tube group is provided on the windward side and the leeward side as a condenser, and one end of the heat transfer tube group is folded back, and the refrigerant in the gas-liquid two-phase state on the leeward side is flowed to the windward side for heat exchange. There are ways to improve device performance. As a conventional folding means, there is a method of merging the refrigerant at the header of the heat transfer tube outlet on the leeward side and supplying the refrigerant to the header of the heat transfer tube inlet on the windward side (see, for example, Patent Document 1).
特開2019-132537号公報JP 2019-132537 A
 従来の冷媒回路構成において凝縮器となる熱交換器は、上吹き筐体に搭載された状態で風速分布が形成されると、上側の伝熱管で液相が多く発生する。しかし、ヘッダにおいて伝熱管出口同士が連通していると、ヘッダ内で上側の伝熱管から落下した液冷媒を重力方向最下部の伝熱管の冷媒のみでは持ち上げられず液冷媒が滞留し、特に中間負荷において性能が低下する。 In the conventional refrigerant circuit configuration, the heat exchanger, which is the condenser, generates a lot of liquid phase in the upper heat transfer tube when the wind speed distribution is formed while it is mounted in the top-blown housing. However, if the heat transfer tube outlets are in communication with each other in the header, the liquid refrigerant that has fallen from the upper heat transfer tube in the header cannot be lifted by only the refrigerant in the lowermost heat transfer tube in the gravity direction, and the liquid refrigerant stays, especially in the middle. Performance degrades under load.
 本開示は、上記実情に鑑みてなされたものであり、熱交換性能を向上できる第1熱交換器及び第2熱交換器を有する熱交換器及び空気調和装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and aims to provide a heat exchanger and an air conditioner having a first heat exchanger and a second heat exchanger capable of improving heat exchange performance.
 本開示に係る熱交換器は、重力方向に延びた第1中間ヘッダと、前記第1中間ヘッダに接続され、冷媒と空気との熱交換を行う第1伝熱管と、前記第1中間ヘッダの内部を、第1空間と、前記第1空間より下側に配置された第2空間とに仕切る第1仕切りとを有する第1熱交換器と、前記第1熱交換器の風上に並設され、前記重力方向に延びた第2中間ヘッダと、前記第2中間ヘッダに接続され、前記冷媒と前記空気との熱交換を行う第2伝熱管と、前記第2中間ヘッダの内部を、第3空間と、前記第3空間より下側に配置された第4空間とに仕切る第2仕切りとを有する第2熱交換器とを具備し、前記第1伝熱管は複数であり、前記複数の前記第1伝熱管は、前記第1空間に接続される前記第1伝熱管と、前記第2空間に接続される前記第1伝熱管とを有し、前記第1空間を構成する前記第1中間ヘッダには、前記冷媒が流出する第1流出口が設けられ、前記第2空間を構成する前記第1中間ヘッダには、前記冷媒が流出する第2流出口が設けられ、前記第2中間ヘッダは、前記第1中間ヘッダと接続され、前記第1流出口から前記冷媒が前記第3空間に流入する第1流入口と、前記第2流出口から前記冷媒が前記第3空間に流入する第2流入口とを具備する。 A heat exchanger according to the present disclosure includes a first intermediate header extending in the direction of gravity, a first heat transfer tube connected to the first intermediate header and performing heat exchange between refrigerant and air, and the first intermediate header. A first heat exchanger having a first partition that divides the interior into a first space and a second space arranged below the first space; and arranged side by side on the windward side of the first heat exchanger. a second intermediate header extending in the gravitational direction; a second heat transfer tube connected to the second intermediate header for exchanging heat between the refrigerant and the air; A second heat exchanger having a second partition that partitions into three spaces and a fourth space arranged below the third space, wherein the first heat transfer tubes are a plurality, and the plurality of The first heat transfer tube has the first heat transfer tube connected to the first space and the first heat transfer tube connected to the second space, and the first heat transfer tube constituting the first space The intermediate header is provided with a first outlet through which the refrigerant flows out, the first intermediate header forming the second space is provided with a second outlet through which the refrigerant flows out, and the second intermediate header is provided with a second outlet through which the refrigerant flows out. The header is connected to the first intermediate header, and has a first inlet through which the refrigerant flows into the third space through the first outlet, and a second outlet through which the refrigerant flows into the third space. and a second inlet.
 本開示によれば、第2中間ヘッダは、第1中間ヘッダと接続され、第1流出口から液主体の冷媒が第3空間に流入する第1流入口と、第2流出口からガス主体の冷媒が第3空間に流入する第2流入口とを具備する。これにより、第3空間において、液主体の冷媒と、ガス主体の冷媒とが混合し、液冷媒の第2中間ヘッダの底への落下を抑制することができ、その結果、冷房の熱交換性能を向上することができる。 According to the present disclosure, the second intermediate header is connected to the first intermediate header, the first inlet through which the liquid-based refrigerant flows into the third space from the first outlet, and the gas-based refrigerant from the second outlet. and a second inlet through which the coolant flows into the third space. As a result, the liquid-based refrigerant and the gas-based refrigerant are mixed in the third space, and it is possible to suppress the liquid refrigerant from falling to the bottom of the second intermediate header. can be improved.
実施の形態1に係る空気調和装置の構成図である。1 is a configuration diagram of an air conditioner according to Embodiment 1. FIG. 実施の形態1に係る室外熱交換器の斜視透視図である。1 is a perspective perspective view of an outdoor heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る室外熱交換器の第1中間ヘッダ及び第2中間ヘッダ周辺を示す縦断面図である。3 is a vertical cross-sectional view showing the periphery of the first intermediate header and the second intermediate header of the outdoor heat exchanger according to Embodiment 1. FIG. 従来の室外熱交換器の第1中間ヘッダ及び第2中間ヘッダ周辺の冷媒流れを示す縦断面図である。FIG. 4 is a vertical cross-sectional view showing refrigerant flows around a first intermediate header and a second intermediate header of a conventional outdoor heat exchanger. 実施の形態1に係る室外熱交換器の第1中間ヘッダ及び第2中間ヘッダ周辺の冷媒流れを示す縦断面図である。4 is a longitudinal sectional view showing refrigerant flows around the first intermediate header and the second intermediate header of the outdoor heat exchanger according to Embodiment 1. FIG. 従来の室外熱交換器の第1中間ヘッダに流入する冷媒流量と風速分布を示す概念模式図である。It is a conceptual schematic diagram which shows the refrigerant|coolant flow volume which flows into the 1st intermediate header of the conventional outdoor heat exchanger, and wind speed distribution. 実施の形態1に係る室外熱交換器の第1中間ヘッダに流入する冷媒流量と風速分布を示す概念模式図である。FIG. 4 is a conceptual schematic diagram showing the flow rate of refrigerant flowing into the first intermediate header and the wind speed distribution of the outdoor heat exchanger according to Embodiment 1; 実施の形態1に係る室外熱交換器における運転負荷に対する性能曲線である。4 is a performance curve with respect to operating load in the outdoor heat exchanger according to Embodiment 1. FIG. 実施の形態1に係る室外熱交換器の冷媒流路構成の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a refrigerant channel configuration of the outdoor heat exchanger according to Embodiment 1; 実施の形態2に係る室外熱交換器の第1中間ヘッダ及び第2中間ヘッダを示す縦断面図である。FIG. 8 is a vertical cross-sectional view showing a first intermediate header and a second intermediate header of an outdoor heat exchanger according to Embodiment 2; 実施の形態3に係る室外熱交換器の第1中間ヘッダ及び第2中間ヘッダを示す縦断面図である。FIG. 11 is a vertical cross-sectional view showing a first intermediate header and a second intermediate header of an outdoor heat exchanger according to Embodiment 3; 実施の形態4に係る第1中間ヘッダ及び第2中間ヘッダの上視断面図である。FIG. 11 is a cross-sectional top view of a first intermediate header and a second intermediate header according to Embodiment 4; 図12のA-A方向断面拡大図である。13 is an enlarged cross-sectional view taken along line AA of FIG. 12; FIG. 実施の形態4に係る第1中間ヘッダ及び第2中間ヘッダの第1変形例を示す図12のA-A方向断面拡大図である。FIG. 13 is an enlarged cross-sectional view taken along the line AA of FIG. 12, showing a first modified example of the first intermediate header and the second intermediate header according to Embodiment 4; 実施の形態4に係る第1中間ヘッダ及び第2中間ヘッダの第2変形例を示す図12のA-A方向断面拡大図である。13 is an enlarged cross-sectional view taken along the line AA of FIG. 12, showing a second modification of the first intermediate header and the second intermediate header according to the fourth embodiment; FIG.
 以下の各実施の形態で、本開示に係る熱交換器及び空気調和装置の一例について、図面等を参照しながら説明する。なお、以下の各図面において、同一の符号を付した構成は、同一又はこれに相当する構成である。以下の実施の形態で記載されている各構成の形態は、あくまでも例示である。本開示に係る熱交換器及び空気調和装置は、以下の実施の形態で記載されている各構成に限定されるものではない。また、構成同士の組み合わせは、同一の実施の形態における組み合わせのみに限定するものではなく、異なる実施の形態に記載した構成同士を組み合わせてもよい。以下の各図面では、各構成部材の大きさの関係が本開示を実施した実物とは異なる場合がある。 An example of a heat exchanger and an air conditioner according to the present disclosure will be described in the following embodiments with reference to the drawings and the like. In addition, in each drawing below, the configurations denoted by the same reference numerals are the same or equivalent configurations. The form of each configuration described in the following embodiments is merely an example. The heat exchanger and air conditioner according to the present disclosure are not limited to each configuration described in the following embodiments. Moreover, the combination of configurations is not limited to the combination in the same embodiment, and the configurations described in different embodiments may be combined. In each of the drawings below, the size relationship of each constituent member may differ from the actual product in which the present disclosure is implemented.
実施の形態1.
<構成>
 図1は、実施の形態1に係る空気調和装置200の構成図である。なお、図1の冷媒配管18に沿って付された白抜き矢印及び黒矢印は、冷房運転時の冷媒の流れ方向を示している。白抜き矢印は、冷媒がガス状態であること、黒矢印は冷媒が液状態であることを示している。また、第1中間ヘッダ1及び第2中間ヘッダ2近傍に付された網掛け矢印は気液二相状態であることを模式的に示している。室外熱交換器10が凝縮器として機能する際の冷媒の流れを示している。図1において、AFの方向は、空気の流れ方向を示し、90の矢印の方向は重力方向を示す。
Embodiment 1.
<Configuration>
FIG. 1 is a configuration diagram of an air conditioner 200 according to Embodiment 1. FIG. The white arrows and black arrows along the refrigerant pipe 18 in FIG. 1 indicate the flow direction of the refrigerant during the cooling operation. A white arrow indicates that the refrigerant is in a gaseous state, and a black arrow indicates that the refrigerant is in a liquid state. Further, hatched arrows attached near the first intermediate header 1 and the second intermediate header 2 schematically indicate a gas-liquid two-phase state. The refrigerant flows when the outdoor heat exchanger 10 functions as a condenser. In FIG. 1, the AF direction indicates the direction of air flow, and the direction of the arrow 90 indicates the direction of gravity.
 空気調和装置200は、冷媒を圧縮する圧縮機14、凝縮器として機能する室外熱交換器10、冷媒を減圧して膨張させる絞り装置17、及び、蒸発器として機能する室内熱交換器16を備えている。圧縮機14、室外熱交換器10、絞り装置17及び室内熱交換器16が順次冷媒配管18で接続され、冷凍サイクル回路が構成されている。 The air conditioner 200 includes a compressor 14 that compresses the refrigerant, an outdoor heat exchanger 10 that functions as a condenser, an expansion device 17 that decompresses and expands the refrigerant, and an indoor heat exchanger 16 that functions as an evaporator. ing. A compressor 14, an outdoor heat exchanger 10, an expansion device 17, and an indoor heat exchanger 16 are sequentially connected by refrigerant pipes 18 to form a refrigeration cycle circuit.
 圧縮機14及び室外熱交換器10は、室外機201に収容されている。室外機201の筐体は、室外熱交換器10に室外空気を供給し、空気を上側へ送風する送風機13を備える上吹き筐体である。また、室内熱交換器16及び絞り装置17は、室内機202に収容されている。室内機202には、室内熱交換器16に空調対象空間の空気である室内空気を供給する、図示せぬ室内送風機も収容されている。 The compressor 14 and the outdoor heat exchanger 10 are housed in the outdoor unit 201. The housing of the outdoor unit 201 is a top-blowing housing provided with a blower 13 that supplies outdoor air to the outdoor heat exchanger 10 and blows the air upward. Also, the indoor heat exchanger 16 and the expansion device 17 are housed in the indoor unit 202 . The indoor unit 202 also accommodates an indoor fan (not shown) that supplies the indoor heat exchanger 16 with indoor air, which is the air in the space to be air-conditioned.
 室外熱交換器10は、第1熱交換器11及び第2熱交換器12を有する。第1熱交換器11は、重力方向90に延びた第1中間ヘッダ1と、第1中間ヘッダ1に接続され、冷媒と空気との熱交換を行う第1伝熱管3_1(図3参照)とを有する。第2熱交換器12は、第1熱交換器11の風上に並設され、重力方向90に延びた第2中間ヘッダ2と、第2中間ヘッダ2に接続され、冷媒と空気との熱交換を行う第2伝熱管3_2とを有する。 The outdoor heat exchanger 10 has a first heat exchanger 11 and a second heat exchanger 12. The first heat exchanger 11 includes a first intermediate header 1 extending in the direction of gravity 90, and a first heat transfer tube 3_1 (see FIG. 3) connected to the first intermediate header 1 and performing heat exchange between refrigerant and air. have The second heat exchanger 12 is arranged in parallel on the windward side of the first heat exchanger 11 and is connected to the second intermediate header 2 extending in the direction of gravity 90 and the second intermediate header 2 to heat the refrigerant and the air. It has a second heat transfer tube 3_2 to be exchanged.
 続いて、室外熱交換器10の詳細構成について説明する。 Next, the detailed configuration of the outdoor heat exchanger 10 will be described.
 図2は、実施の形態1に係る室外熱交換器10の斜視透視図である。また、図3は、実施の形態1に係る室外熱交換器10の第1中間ヘッダ1及び第2中間ヘッダ2周辺を示す縦断面図である。この図3は、第1伝熱管3_1及び第2伝熱管3_2の延びる方向に平行な縦断面図となっている。 FIG. 2 is a perspective perspective view of the outdoor heat exchanger 10 according to Embodiment 1. FIG. FIG. 3 is a longitudinal sectional view showing the periphery of the first intermediate header 1 and the second intermediate header 2 of the outdoor heat exchanger 10 according to Embodiment 1. As shown in FIG. This FIG. 3 is a longitudinal sectional view parallel to the extending direction of the first heat transfer tube 3_1 and the second heat transfer tube 3_2.
 図2に示すように、室外熱交換器10は、空気を上側へ送風する送風機13を備える室外機201の上吹き筐体203に搭載される。上吹き筐体203は、送風機13から送出される空気を流出させる吹出口を、上部に備えている。図3に示すように、室外熱交換器10は、第1熱交換器11と、第1熱交換器11よりも空気の流れ方向AFにおける上流に設けられた第2熱交換器12とを有する。室外熱交換器10は、少なくとも2列の第1熱交換器11及び第2熱交換器12から構成されている。 As shown in FIG. 2, the outdoor heat exchanger 10 is mounted in a top-blowing housing 203 of an outdoor unit 201 having a blower 13 that blows air upward. The top-blowing housing 203 has an air outlet at the top through which the air sent from the blower 13 is discharged. As shown in FIG. 3, the outdoor heat exchanger 10 has a first heat exchanger 11 and a second heat exchanger 12 provided upstream of the first heat exchanger 11 in the air flow direction AF. . The outdoor heat exchanger 10 is composed of at least two rows of first heat exchangers 11 and second heat exchangers 12 .
 第1熱交換器11は、複数の第1伝熱管3_1を有する。第1伝熱管3_1は、水平方向に延び、上下方向に規定の間隔を空けて配置されている。第2熱交換器12は、複数の第2伝熱管3_2を有する。第2熱交換器12は、水平方向に延び、上下方向に規定の間隔を空けて配置されている。 The first heat exchanger 11 has a plurality of first heat transfer tubes 3_1. The first heat transfer pipes 3_1 extend in the horizontal direction and are arranged at regular intervals in the vertical direction. The second heat exchanger 12 has a plurality of second heat transfer tubes 3_2. The second heat exchangers 12 extend horizontally and are arranged at regular intervals in the vertical direction.
 室外熱交換器10が凝縮器として機能する場合、第1伝熱管3_1及び第2伝熱管3_2を流れる冷媒は、室外空気によって冷却されて凝縮する。実施の形態1では、図3に示すように、冷媒と室外空気との熱交換を促進するため、複数の第1伝熱管3_1に複数のフィン4が接続され、複数の第2伝熱管3_2に複数の図示せぬフィンが接続されている。 When the outdoor heat exchanger 10 functions as a condenser, the refrigerant flowing through the first heat transfer tube 3_1 and the second heat transfer tube 3_2 is cooled and condensed by the outdoor air. In Embodiment 1, as shown in FIG. 3 , a plurality of fins 4 are connected to a plurality of first heat transfer tubes 3_1 and a plurality of fins 4 are connected to a plurality of second heat transfer tubes 3_2 in order to promote heat exchange between the refrigerant and the outdoor air. A plurality of fins (not shown) are connected.
 気流下流に設ける第1熱交換器11と気流上流の第2熱交換器12とは第1中間ヘッダ1及び第2中間ヘッダ2を介して順次接続される。なお、第1中間ヘッダ1は一定容積を持つ配管に第1伝熱管3_1が挿入される構成である。第2中間ヘッダ2は一定容積を持つ配管に第2伝熱管3_2が挿入される構成である。第1中間ヘッダ1は同じ列の第1伝熱管3_1の少なくとも2つを同じ空間で接続するヘッダである。第2中間ヘッダ2は同じ列の第2伝熱管3_2の少なくとも2つを同じ空間で接続するヘッダである。 The first heat exchanger 11 provided downstream of the airflow and the second heat exchanger 12 provided upstream of the airflow are sequentially connected via the first intermediate header 1 and the second intermediate header 2 . The first intermediate header 1 has a structure in which the first heat transfer pipe 3_1 is inserted into a pipe having a constant volume. The second intermediate header 2 is configured such that a second heat transfer tube 3_2 is inserted into a pipe having a constant volume. The first intermediate header 1 is a header that connects at least two of the first heat transfer tubes 3_1 in the same row in the same space. The second intermediate header 2 is a header that connects at least two of the second heat transfer tubes 3_2 in the same row in the same space.
 第1中間ヘッダ1は、第1仕切り35により、上側に設けられた第1空間21と下側に設けられた第2空間22とに仕切られている。第1空間21には、第1中間ヘッダ1に接続される第1伝熱管3_1のうち、少なくとも1本の第1伝熱管3_1が接続される。第2空間22には、第1中間ヘッダ1に接続される第1伝熱管3_1のうち、少なくとも2本の第1伝熱管3_1が接続される。 The first intermediate header 1 is partitioned by a first partition 35 into a first space 21 provided on the upper side and a second space 22 provided on the lower side. At least one of the first heat transfer tubes 3_1 connected to the first intermediate header 1 is connected to the first space 21 . At least two first heat transfer tubes 3_1 among the first heat transfer tubes 3_1 connected to the first intermediate header 1 are connected to the second space 22 .
 第1空間21を構成する第1中間ヘッダ1の管壁には、冷媒が流出する第1流出口31_1が設けられる。第2空間22を構成する第1中間ヘッダ1の管壁には、冷媒が流出する第2流出口32_1が設けられる。 A pipe wall of the first intermediate header 1 that defines the first space 21 is provided with a first outflow port 31_1 through which the refrigerant flows out. A pipe wall of the first intermediate header 1 that defines the second space 22 is provided with a second outlet 32_1 through which the refrigerant flows.
 第2中間ヘッダ2は、第2仕切り36により、上側に設けられた第3空間23と下側に設けられた第4空間24とに仕切られている。第3空間23には少なくとも1つの第2伝熱管3_2が接続される。第3空間23を構成する第2中間ヘッダ2の菅壁には、冷媒が流入する第1流入口33_1及び第2流入口34_1を有する。 The second intermediate header 2 is partitioned by a second partition 36 into a third space 23 provided on the upper side and a fourth space 24 provided on the lower side. At least one second heat transfer tube 3_2 is connected to the third space 23 . The tube wall of the second intermediate header 2 forming the third space 23 has a first inlet 33_1 and a second inlet 34_1 into which the refrigerant flows.
 第1接続配管31は、第1流出口31_1を第1流入口33_1に接続し、第1空間21を第3空間23に連通する。第2接続配管32は、第2流出口32_1を第2流入口34_1に接続し、第2空間22を第3空間23に連通する。第2流出口32_1は、第2仕切り36よりも上側に設けられている。 The first connection pipe 31 connects the first outlet 31_1 to the first inlet 33_1 and communicates the first space 21 with the third space 23 . The second connection pipe 32 connects the second outlet 32_1 to the second inlet 34_1 and communicates the second space 22 with the third space 23 . The second outflow port 32_1 is provided above the second partition 36 .
 なお、第1流出口31_1と第1流入口33_1とは、第1接続配管31を使用せずに、直接接続されていても良い。また、第2流出口32_1と第2流入口34_1とは、第2接続配管32を使用せずに、直接接続されていても良い。 Note that the first outlet 31_1 and the first inlet 33_1 may be directly connected without using the first connection pipe 31. Also, the second outlet 32_1 and the second inlet 34_1 may be directly connected without using the second connecting pipe 32 .
 また、第1空間21に接続される第1伝熱管3_1の数と、前記第2空間に接続される前記第1伝熱管3_1の数との和が、第2伝熱管3_2の数よりも多い。 Further, the sum of the number of first heat transfer tubes 3_1 connected to the first space 21 and the number of the first heat transfer tubes 3_1 connected to the second space is greater than the number of second heat transfer tubes 3_2. .
<動作>
 続いて、空気調和装置200の動作について説明する。
<暖房運転>
 まず、空気調和装置200の暖房運転時の動作について説明する。圧縮機14で圧縮された高温高圧のガス冷媒は、図示せぬ四方弁を通って、凝縮器として機能する室内熱交換器16に流入する。
<Action>
Next, the operation of the air conditioner 200 will be described.
<Heating operation>
First, the operation of the air conditioner 200 during heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 14 passes through a four-way valve (not shown) and flows into the indoor heat exchanger 16 functioning as a condenser.
 室内熱交換器16に流入した高温高圧のガス冷媒は、室内空気に熱を供給しながら冷却され、低温の液冷媒となって室内熱交換器16から流出する。室内熱交換器16から流出した液冷媒は、絞り装置17で減圧されて低温低圧の気液二相冷媒となり、蒸発器として機能する室外熱交換器10の図示せぬ分配器に流入する。 The high-temperature, high-pressure gas refrigerant that has flowed into the indoor heat exchanger 16 is cooled while supplying heat to the indoor air, and flows out of the indoor heat exchanger 16 as a low-temperature liquid refrigerant. The liquid refrigerant flowing out of the indoor heat exchanger 16 is decompressed by the expansion device 17 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, and flows into a distributor (not shown) of the outdoor heat exchanger 10 functioning as an evaporator.
 室外熱交換器10の分配器に流入した低温低圧の気液二相冷媒は、第2伝熱管3_2に分配される。そして、第2伝熱管3_2を流れる冷媒は、室外空気によって加熱されて蒸発し第1接続配管31及び第2接続配管32を介して、第1伝熱管3_1を流れる。第1伝熱管3_1を流れる冷媒は、室外空気によって加熱されて蒸発し、低圧のガス冷媒となって第1伝熱管3_1から流出する。第1伝熱管3_1から流出した低圧のガス冷媒は、図示せぬ合流管で合流した後に室外熱交換器10から流出する。室外熱交換器10から流出した低圧のガス冷媒は、図示せぬ四方弁を通った後に圧縮機14に吸い込まれる。圧縮機14に吸い込まれた低圧のガス冷媒は、圧縮機14で高温高圧のガス冷媒に再び圧縮される。 The low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the distributor of the outdoor heat exchanger 10 is distributed to the second heat transfer tubes 3_2. The refrigerant flowing through the second heat transfer pipe 3_2 is heated by the outdoor air to evaporate, and flows through the first connection pipe 31 and the second connection pipe 32 through the first heat transfer pipe 3_1. The refrigerant flowing through the first heat transfer tube 3_1 is heated by the outdoor air, evaporates, becomes a low-pressure gas refrigerant, and flows out from the first heat transfer tube 3_1. The low-pressure gas refrigerant that has flowed out of the first heat transfer pipe 3_1 flows out of the outdoor heat exchanger 10 after being merged in a union pipe (not shown). The low-pressure gas refrigerant that has flowed out of the outdoor heat exchanger 10 is sucked into the compressor 14 after passing through a four-way valve (not shown). The low-pressure gas refrigerant sucked into the compressor 14 is again compressed by the compressor 14 into high-temperature and high-pressure gas refrigerant.
<冷房運転>
 次に、空気調和装置200の冷房運転時の動作について説明する。
 圧縮機14で圧縮された高温高圧のガス冷媒は、図示せぬ四方弁を通って、凝縮器として機能する室外熱交換器10の図示せぬ合流管に流入する。
<Cooling operation>
Next, the operation of the air conditioner 200 during cooling operation will be described.
The high-temperature, high-pressure gas refrigerant compressed by the compressor 14 passes through a four-way valve (not shown) and flows into a confluence pipe (not shown) of the outdoor heat exchanger 10 that functions as a condenser.
 室外熱交換器10の合流管に流入した高温高圧のガス冷媒は、室外熱交換器10の第1伝熱管3_1に分配される。そして、第1伝熱管3_1を流れる冷媒は、室外空気によって冷却されて凝縮し、低温の液冷媒となって第1接続配管31及び第2接続配管32を介して、第2伝熱管3_2を流れ、第2伝熱管3_2から流出する。 The high-temperature and high-pressure gas refrigerant that has flowed into the junction pipe of the outdoor heat exchanger 10 is distributed to the first heat transfer pipes 3_1 of the outdoor heat exchanger 10. Then, the refrigerant flowing through the first heat transfer pipe 3_1 is cooled by the outdoor air, condensed, becomes a low-temperature liquid refrigerant, and flows through the second heat transfer pipe 3_2 via the first connection pipe 31 and the second connection pipe 32. , flows out from the second heat transfer tube 3_2.
 第2伝熱管3_2から流出した低温の液冷媒は、図示せぬ分配器で合流した後に室外熱交換器10から流出する。室外熱交換器10から流出した液冷媒は、絞り装置17で減圧されて低温低圧の気液二相冷媒となり、蒸発器として機能する室内熱交換器16に流入する。室内熱交換器16に流入した低温低圧の気液二相冷媒は、室内空気から熱を吸収しながら蒸発し、低圧のガス冷媒となって室内熱交換器16から流出する。室内熱交換器16から流出した低圧のガス冷媒は、図示せぬ四方弁を通った後に圧縮機14に吸い込まれ、圧縮機14で高温高圧のガス冷媒に再び圧縮される。 The low-temperature liquid refrigerant that has flowed out of the second heat transfer pipe 3_2 flows out of the outdoor heat exchanger 10 after joining at a distributor (not shown). The liquid refrigerant flowing out of the outdoor heat exchanger 10 is depressurized by the expansion device 17 to become a low-temperature, low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 16 functioning as an evaporator. The low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 16 evaporates while absorbing heat from the indoor air, and flows out of the indoor heat exchanger 16 as a low-pressure gas refrigerant. The low-pressure gas refrigerant flowing out of the indoor heat exchanger 16 is sucked into the compressor 14 after passing through a four-way valve (not shown), where it is again compressed into a high-temperature and high-pressure gas refrigerant.
 このように構成された空気調和装置200においては、室外熱交換器10が凝縮器として機能する際、ガス冷媒が第1熱交換器11において風下側気流と熱交換し、ガス状態から気液二相状態に変化する。気液二相状態に変化した冷媒は、第1熱交換器11の第1伝熱管3_1から第1中間ヘッダ1の第1空間21及び第2空間22に流入する。この気液二相冷媒は、第1空間21及び第2空間22内部でそれぞれ混合されたのち、第1空間21及び第2空間22からそれぞれ第1接続配管31及び第2接続配管32を介して第2熱交換器12の第2中間ヘッダ2の第3空間23に流入する。第3空間23において、第1接続配管31及び第2接続配管32から流入した気液二相冷媒が混合され、第2熱交換器12の伝熱管3に分流して風上気流と熱交換する。 In the air conditioner 200 configured in this way, when the outdoor heat exchanger 10 functions as a condenser, the gas refrigerant exchanges heat with the leeward airflow in the first heat exchanger 11, and changes from a gas state to a gas-liquid state. phase changes. The refrigerant changed to the gas-liquid two-phase state flows from the first heat transfer tubes 3_1 of the first heat exchanger 11 into the first space 21 and the second space 22 of the first intermediate header 1 . This gas-liquid two-phase refrigerant is mixed inside the first space 21 and the second space 22, respectively, and then flows from the first space 21 and the second space 22 through the first connecting pipe 31 and the second connecting pipe 32, respectively. It flows into the third space 23 of the second intermediate header 2 of the second heat exchanger 12 . In the third space 23, the gas-liquid two-phase refrigerant flowing from the first connecting pipe 31 and the second connecting pipe 32 is mixed and divided into the heat transfer tubes 3 of the second heat exchanger 12 to exchange heat with the upwind airflow. .
<効果>
 続いて、実施の形態1に係る室外熱交換器10の第1中間ヘッダ1及び第2中間ヘッダ2の効果について説明する。まず始めに、図4を用いて、実施の形態1に係る室外熱交換器10の比較対象である、従来の室外熱交換器10について説明する。
<effect>
Next, effects of the first intermediate header 1 and the second intermediate header 2 of the outdoor heat exchanger 10 according to Embodiment 1 will be described. First, with reference to FIG. 4, a conventional outdoor heat exchanger 10, which is a comparison target of the outdoor heat exchanger 10 according to Embodiment 1, will be described.
 図4は、従来の室外熱交換器10の第1中間ヘッダ1及び第2中間ヘッダ2周辺の冷媒流れを示す縦断面図である。 FIG. 4 is a longitudinal sectional view showing refrigerant flows around the first intermediate header 1 and the second intermediate header 2 of the conventional outdoor heat exchanger 10. FIG.
 従来の室外熱交換器10は、気流下流の第1熱交換器11の第1伝熱管3_1は、上下方向に規定の間隔を空けて配置され、第1中間ヘッダ1に接続されている。気流上流の第2熱交換器12の第2伝熱管3_2は、上下方向に規定の間隔を空けて配置され、第2中間ヘッダ2に接続されている。第1中間ヘッダ1と第2中間ヘッダ2とは、第1接続配管31で接続されている。 In the conventional outdoor heat exchanger 10, the first heat transfer tubes 3_1 of the first heat exchanger 11 on the downstream side of the airflow are arranged with a specified interval in the vertical direction and connected to the first intermediate header 1. The second heat transfer tubes 3_2 of the second heat exchanger 12 on the upstream side of the airflow are arranged at regular intervals in the vertical direction and connected to the second intermediate header 2 . The first intermediate header 1 and the second intermediate header 2 are connected by a first connecting pipe 31 .
 第1熱交換器11に流入したガス冷媒は、気流下流と熱交換し、二相状態となって第1中間ヘッダ1へ流入する。この時、第1熱交換器11を通る気流は、上向きに送風する上吹き筐体に備えている送風機13によって、上側に設けられる第1伝熱管3_1及びフィン4間を流れる風速が大きくなる。下側に設けられる第1伝熱管3_1及びフィン4間を流れる風速は小さくなる。上側の第1伝熱管3_1の出口からは、下側の出口に対して液冷媒の質量流量比が大きい液主体冷媒102が、第1中間ヘッダ1内部に流入する。下側の第1伝熱管3_1の出口からは、上側の出口に対してガス冷媒の質量流量比が大きいガス主体冷媒103が第1中間ヘッダ1内部に流入する。 The gaseous refrigerant that has flowed into the first heat exchanger 11 exchanges heat with the downstream air stream, enters a two-phase state, and flows into the first intermediate header 1 . At this time, the airflow passing through the first heat exchanger 11 is increased in velocity between the first heat transfer tube 3_1 and the fins 4 provided on the upper side by the blower 13 provided in the top-blowing housing that blows air upward. The velocity of the wind flowing between the first heat transfer tube 3_1 and the fins 4 provided on the lower side becomes smaller. From the outlet of the first heat transfer tube 3_1 on the upper side, the liquid-based refrigerant 102 having a larger mass flow rate ratio of the liquid refrigerant than the outlet on the lower side flows into the inside of the first intermediate header 1 . From the outlet of the first heat transfer tube 3_1 on the lower side, the gas-based refrigerant 103 having a larger mass flow rate ratio of the gas refrigerant than the outlet on the upper side flows into the inside of the first intermediate header 1 .
 このとき、液冷媒100はガス冷媒101に対して、密度が大きいため、第1中間ヘッダ1内部で下方に落下する。第1空間21の下部において、冷媒を上向きに流す駆動力は、第1空間21の下部よりも下方の、冷媒流れ上流の第1伝熱管3_1から流出した冷媒の慣性力である。冷媒流量が少ない第1中間ヘッダ1内部の下部では冷媒の慣性力が小さく、落下した液冷媒が上方に持ち上がらずに液の滞留104が発生する。特に低負荷運転においては、冷媒流量が小さく、第1伝熱管3_1内の水平方向の冷媒の慣性力が小さいため、下方の第1伝熱管3_1に第1空間21下部に液冷媒が侵入し、液の逆流105が発生する。 At this time, since the liquid refrigerant 100 has a higher density than the gas refrigerant 101 , it falls downward inside the first intermediate header 1 . In the lower portion of the first space 21 , the driving force for causing the refrigerant to flow upward is the inertial force of the refrigerant flowing out from the first heat transfer tube 3_1 downstream of the lower portion of the first space 21 and upstream of the refrigerant flow. In the lower portion inside the first intermediate header 1 where the flow rate of the refrigerant is small, the inertial force of the refrigerant is small, and the liquid refrigerant that has fallen is not lifted upward, causing a liquid stagnation 104 . Especially in low-load operation, the flow rate of the refrigerant is small, and the inertial force of the refrigerant in the horizontal direction in the first heat transfer tube 3_1 is small. A liquid backflow 105 occurs.
 このため、従来の室外熱交換器10では、空気調和装置200の低能力運転時のように冷凍サイクル回路内の冷媒循環量が小さい条件において、冷媒の流れが阻害され、冷媒の滞留及び逆流105が発生する。その結果、第1熱交換器11の熱交換する領域が小さくなり、凝縮器の熱交換性能が低下してしまう。 Therefore, in the conventional outdoor heat exchanger 10, under conditions where the amount of refrigerant circulating in the refrigeration cycle circuit is small, such as during low-capacity operation of the air conditioner 200, the flow of the refrigerant is obstructed, causing the refrigerant to stagnate and flow backward 105. occurs. As a result, the heat exchange area of the first heat exchanger 11 becomes smaller, and the heat exchange performance of the condenser deteriorates.
 図5は、実施の形態1に係る室外熱交換器10の第1中間ヘッダ1及び第2中間ヘッダ周辺の冷媒流れを示す縦断面図である。 FIG. 5 is a longitudinal sectional view showing refrigerant flows around the first intermediate header 1 and the second intermediate header of the outdoor heat exchanger 10 according to the first embodiment.
 実施の形態1に係る室外熱交換器10においては、第1中間ヘッダ1は第1仕切り35により、第1空間21と第2空間22とに仕切られる。第1空間21には、第1中間ヘッダ1に接続する第1伝熱管3_1のうち、上側から少なくとも1本の第1伝熱管3_1が接続される。第2空間22には、下側に設けられた少なくとも2本以上の第1伝熱管3_1が接続されている。 In the outdoor heat exchanger 10 according to Embodiment 1, the first intermediate header 1 is partitioned into the first space 21 and the second space 22 by the first partition 35 . Of the first heat transfer tubes 3_1 connected to the first intermediate header 1, at least one first heat transfer tube 3_1 is connected to the first space 21 from above. At least two or more first heat transfer tubes 3_1 provided on the lower side are connected to the second space 22 .
 このため、上方の第1伝熱管3_1から流出する液主体冷媒102は第1中間ヘッダ1内部で、第2空間22へ侵入することがない。液主体冷媒102は、第1接続配管31を介して第2中間ヘッダ2の第3空間23へ流入する。これにより、第2空間22内部の液の滞留104が低減し、熱交換する領域が確保されて、凝縮器の熱交換性能が向上する。 Therefore, the liquid-based refrigerant 102 flowing out from the upper first heat transfer tubes 3_1 does not enter the second space 22 inside the first intermediate header 1 . The liquid-based refrigerant 102 flows into the third space 23 of the second intermediate header 2 via the first connecting pipe 31 . As a result, the liquid stagnation 104 inside the second space 22 is reduced, a region for heat exchange is secured, and the heat exchange performance of the condenser is improved.
 特に冷媒流量が小さくなる低負荷運転において効果が大きい。なお、実施の形態1においては、第2接続配管32を流れる冷媒流量は、第2空間22に接続する複数の第1伝熱管3_1から流れる冷媒流量の和となる。また、第2接続配管32の流路径は第1伝熱管3_1の流路径によることなく設計できるため、第3空間23から第2空間22への液の逆流105を抑制できる(図4参照)。  It is particularly effective in low-load operation where the refrigerant flow rate is small. Note that in Embodiment 1, the flow rate of refrigerant flowing through the second connection pipe 32 is the sum of the flow rates of refrigerant flowing from the plurality of first heat transfer tubes 3_1 connected to the second space 22 . In addition, since the flow path diameter of the second connection pipe 32 can be designed without depending on the flow path diameter of the first heat transfer tube 3_1, backflow 105 of the liquid from the third space 23 to the second space 22 can be suppressed (see FIG. 4).
 図6は、従来の室外熱交換器10の第1中間ヘッダ1に流入する冷媒流量と風速分布を示す概念模式図である。図6は、従来の第1中間ヘッダ1に接続される第1伝熱管3_1に流れる冷媒の流量を、伝熱管の高さごとに白抜き棒グラフで示し、上吹き筐体の高さ方向の風速分布を実線で示す図である。 FIG. 6 is a conceptual schematic diagram showing the flow rate of refrigerant flowing into the first intermediate header 1 of the conventional outdoor heat exchanger 10 and the wind velocity distribution. FIG. 6 is a white bar graph showing the flow rate of the refrigerant flowing through the first heat transfer tube 3_1 connected to the conventional first intermediate header 1 for each height of the heat transfer tube. It is a figure which shows distribution with a solid line.
 図7は、実施の形態1に係る室外熱交換器10の第1中間ヘッダ1に流入する冷媒流量と風速分布を示す概念模式図である。図7は、実施の形態1に係る第1中間ヘッダ1に接続する第1伝熱管3_1に流れる冷媒の流量を、伝熱管の高さごとに黒塗り棒グラフで示し、上吹き筐体の高さ方向の風速分布を実線で示す図である。 FIG. 7 is a conceptual schematic diagram showing the flow rate of refrigerant flowing into the first intermediate header 1 and the wind speed distribution of the outdoor heat exchanger 10 according to the first embodiment. FIG. 7 shows the flow rate of the refrigerant flowing through the first heat transfer tube 3_1 connected to the first intermediate header 1 according to Embodiment 1 by a black bar graph for each height of the heat transfer tube. It is a figure which shows the wind speed distribution of a direction with a solid line.
 ところで、気液二相冷媒は、ガス冷媒が多いと冷媒の体積流量が大きいため冷媒圧力損失が大きく、液冷媒が多いと冷媒の体積流量が小さくなり、冷媒圧力損失が小さくなる特性がある。 By the way, the gas-liquid two-phase refrigerant has the characteristic that when the gas refrigerant is large, the volume flow rate of the refrigerant is large and the refrigerant pressure loss is large, and when the liquid refrigerant is large, the refrigerant volume flow rate is small and the refrigerant pressure loss is small.
 図4に示すように、従来の室外熱交換器10では、各第1伝熱管3_1出口の冷媒が第1中間ヘッダ1の出口において混合されて第1接続配管31を介して第2中間ヘッダ2に流入するため、図6に示すように第1伝熱管3_1ごとの冷媒流量差が小さい。一方で、上吹き筐体において気流の経路長が短い上方側の風速が大きく、気流の経路長が長い下方側の風速が小さくなる。このため、風速分布と冷媒流量分布の乖離とが大きくなり、性能低下の要因となっていた。 As shown in FIG. 4 , in the conventional outdoor heat exchanger 10 , the refrigerants at the outlets of the first heat transfer tubes 3_1 are mixed at the outlet of the first intermediate header 1 and mixed through the first connecting pipe 31 to the second intermediate header 2 . , the refrigerant flow rate difference between the first heat transfer tubes 3_1 is small as shown in FIG. On the other hand, in the top-blowing housing, the wind speed is high on the upper side where the air flow path length is short, and the wind speed is low on the lower side where the air flow path length is long. As a result, the difference between the wind velocity distribution and the refrigerant flow rate distribution becomes large, which is a factor in the deterioration of performance.
 一方、実施の形態1に係る室外熱交換器10では、上方の第1伝熱管3_1の出口である第1空間21と下方の第1伝熱管3_1の出口である第2空間22が連通しないよう仕切られている。このため、図7に示すように、液主体冷媒102が流入する第1空間21に接続する第1伝熱管3_1の冷媒流量が、ガス主体冷媒103が流入する第2空間22に接続する第1伝熱管3_1の冷媒流量に対して多くなる。従って、風速分布と冷媒流量分布の乖離が小さくなり、熱交換性能が向上する。 On the other hand, in the outdoor heat exchanger 10 according to Embodiment 1, the first space 21, which is the outlet of the upper first heat transfer tube 3_1, and the second space 22, which is the outlet of the lower first heat transfer tube 3_1, are not communicated with each other. partitioned. Therefore, as shown in FIG. 7, the flow rate of the refrigerant in the first heat transfer tube 3_1 connected to the first space 21 into which the liquid-based refrigerant 102 flows is the first It increases with respect to the refrigerant flow rate of the heat transfer tube 3_1. Therefore, the divergence between the wind speed distribution and the refrigerant flow rate distribution is reduced, and the heat exchange performance is improved.
 図8は、実施の形態1に係る室外熱交換器10における運転負荷に対する性能曲線である。横軸に冷房の最大能力に対する能力比を、縦軸に各運転能力の室外熱交換器10の理論最大性能に対する性能比を示す。図8において、実線が実施の形態1の特性曲線を示し、破線が従来の特性曲線を示す。 FIG. 8 is a performance curve for the operating load of the outdoor heat exchanger 10 according to Embodiment 1. FIG. The horizontal axis indicates the ratio of cooling capacity to the maximum cooling capacity, and the vertical axis indicates the ratio of each operating capacity to the theoretical maximum performance of the outdoor heat exchanger 10 . In FIG. 8, the solid line indicates the characteristic curve of the first embodiment, and the dashed line indicates the conventional characteristic curve.
 従来の構成においては、特に低負荷運転において第1中間ヘッダ1で液の滞留104(図4参照)が発生し、性能低下が発生していた。実施の形態1の構成では、特に低負荷運転において、液の滞留の抑制効果により室外熱交換器10の性能が改善する。さらに、第1伝熱管3_1の冷媒分配を上吹き筐体の風速分布に合わせることで、低負荷~高負荷運転までの室外熱交換器10の性能が改善し、空気調和装置200の省エネルギー性が向上する。 In the conventional configuration, liquid stagnation 104 (see FIG. 4) occurred in the first intermediate header 1, especially during low-load operation, resulting in performance degradation. In the configuration of Embodiment 1, the performance of the outdoor heat exchanger 10 is improved due to the effect of suppressing liquid retention, particularly during low-load operation. Furthermore, by matching the refrigerant distribution of the first heat transfer tube 3_1 with the wind speed distribution of the top-blowing housing, the performance of the outdoor heat exchanger 10 from low load to high load operation is improved, and the energy saving performance of the air conditioner 200 is improved. improves.
 なお、室外機201は上吹き筐体でなくても、室外熱交換器10を搭載することで、第1中間ヘッダ1の第2空間22の下部に落下する液冷媒が低減するため、性能改善効果はある。さらに、上吹き筐体に室外熱交換器10を搭載すると冷房運転において液冷媒が重力上側に多く形成される。このため、同一能力当たりで従来構成に対し第1中間ヘッダ1の第2空間22の下部に落下する液冷媒が低減し、性能改善効果が大きい。 Even if the outdoor unit 201 is not a top-blowing housing, by mounting the outdoor heat exchanger 10, the liquid refrigerant falling to the lower part of the second space 22 of the first intermediate header 1 is reduced, so the performance is improved. It works. Furthermore, when the outdoor heat exchanger 10 is mounted in the top-blowing housing, a large amount of liquid refrigerant is formed on the upper side of gravity during cooling operation. For this reason, compared with the conventional configuration, the amount of liquid refrigerant falling into the lower portion of the second space 22 of the first intermediate header 1 is reduced for the same capacity, and the performance improvement effect is large.
 上記した空気調和装置200は、実施の形態1に係る空気調和装置200の一例である。例えば、室外熱交換器10を空気調和装置200の室内機202に搭載してもよい。また、第1中間ヘッダ1内の分割空間数は3以上でも効果に支障はなく、改善効果と製造コストより選定する設計事項である。図3において、第1空間21と第2空間22とは第1仕切り35により仕切られているが、第1空間21と第2空間22とを別体のヘッダで構成しても効果に支障はない。 The air conditioner 200 described above is an example of the air conditioner 200 according to the first embodiment. For example, the outdoor heat exchanger 10 may be installed in the indoor unit 202 of the air conditioner 200. Also, even if the number of divided spaces in the first intermediate header 1 is three or more, there is no problem with the effect, and it is a design item selected from the improvement effect and the manufacturing cost. In FIG. 3, the first space 21 and the second space 22 are partitioned by the first partition 35, but the effect can be obtained even if the first space 21 and the second space 22 are formed by separate headers. Absent.
 また、例えば、室外機201及び室内機202の数は1つに限定されることはなく、空気調和装置200に複数設けられていてもよい。また、空気調和装置200の冷凍サイクル回路を循環する冷媒の種類は、特に限定されない。例えば、冷媒は、R32、R410A、又は少なくともオレフィン系冷媒、プロパン又はDME(ジメチルエーテル)を含むR32冷媒に対してガス密度の小さい冷媒を含む。このような冷媒によれば、ガス冷媒の圧力損失による風速分布と冷媒分配の乖離を抑制できるため、より性能改善効果が大きい。 Also, for example, the number of outdoor units 201 and indoor units 202 is not limited to one, and a plurality of them may be provided in the air conditioner 200 . Moreover, the type of refrigerant circulating in the refrigeration cycle circuit of the air conditioner 200 is not particularly limited. For example, the refrigerant includes R32, R410A, or at least refrigerants having a lower gas density relative to R32 refrigerants, including olefinic refrigerants, propane, or DME (dimethyl ether). With such a refrigerant, the deviation between the wind speed distribution and the refrigerant distribution due to the pressure loss of the gas refrigerant can be suppressed, so the performance improvement effect is greater.
 室外熱交換器10の第1伝熱管3_1及び第2伝熱管3_2は、円管状の伝熱管に限定されるものではなく、第1伝熱管3_1及び第2伝熱管3_2の軸方向に直交する断面の長軸が気流方向に沿う扁平伝熱管等、種々の伝熱管を用いることができる。特に、扁平伝熱管を直接第1中間ヘッダ1に挿入する構成において、ヘッダの鉛直方向の流路径は扁平管の長軸長さよりも大きくなるため、流路断面積が大きくなる。これにより、第2空間22の流速が低下し、液冷媒の滞留104が多くなり、本構成による改善効果が大きい。 The first heat transfer tube 3_1 and the second heat transfer tube 3_2 of the outdoor heat exchanger 10 are not limited to circular heat transfer tubes, and the cross section orthogonal to the axial direction of the first heat transfer tube 3_1 and the second heat transfer tube 3_2 Various heat transfer tubes such as a flat heat transfer tube whose long axis is along the air flow direction can be used. In particular, in the configuration in which the flat heat transfer tubes are directly inserted into the first intermediate header 1, the flow path diameter in the vertical direction of the header is larger than the length of the long axis of the flat tubes, so the cross-sectional area of the flow path is increased. As a result, the flow velocity in the second space 22 is reduced, and the amount of liquid refrigerant stagnation 104 is increased.
 また、図2、図3及び図5に示すように、第1空間21に接続する第1伝熱管3_1の数と第2空間22に接続する第1伝熱管3_1の数の和が、第3空間に接続する伝熱管本数よりも多く構成してもよいし、同じでもよい。 2, 3, and 5, the sum of the number of first heat transfer tubes 3_1 connected to the first space 21 and the number of first heat transfer tubes 3_1 connected to the second space 22 is the third The number of heat transfer tubes connected to the space may be greater than or equal to that of the heat transfer tubes.
 図9は、実施の形態1に係る室外熱交換器10の冷媒流路構成の一例を示す模式図である。図9に示すように、室外熱交換器10を伝熱管の両端にヘッダを2列以上設けて構成するパラレルフローコンデンサーで構成する。第1空間21に接続する第1伝熱管3_1の数と第2空間22に接続する第1伝熱管3_1の数の和が、第3空間23に接続する第2伝熱管3_2の数よりも多い。このような構成においては、第1中間ヘッダ1内下部の液冷媒を上向きに流す必要があるため、本構成適用による改善効果が大きくなる。 FIG. 9 is a schematic diagram showing an example of the refrigerant channel configuration of the outdoor heat exchanger 10 according to Embodiment 1. FIG. As shown in FIG. 9, the outdoor heat exchanger 10 is composed of a parallel flow condenser in which two or more rows of headers are provided at both ends of heat transfer tubes. The sum of the number of first heat transfer tubes 3_1 connected to the first space 21 and the number of first heat transfer tubes 3_1 connected to the second space 22 is greater than the number of second heat transfer tubes 3_2 connected to the third space 23. . In such a configuration, the liquid refrigerant in the lower portion of the first intermediate header 1 needs to flow upward, so the application of this configuration has a large improvement effect.
 また、図2、図3及び図5に示すように、第1空間21と第3空間23とを接続する第1接続配管31は、第1空間21に接続する第1伝熱管3_1の平均高さよりも下方に設けられる。平均高さとは、第1空間21に接続する全ての第1伝熱管3_1の上下方向の高さの平均である。このような構成により、第1空間21内部の液冷媒の滞留を抑制できるため、性能改善効果が大きい。 Further, as shown in FIGS. 2, 3 and 5, the first connecting pipe 31 connecting the first space 21 and the third space 23 has an average height of the first heat transfer pipe 3_1 connected to the first space 21. It is provided below the height. The average height is the average height of all the first heat transfer tubes 3_1 connected to the first space 21 in the vertical direction. With such a configuration, it is possible to suppress retention of the liquid refrigerant inside the first space 21, so that the performance improvement effect is large.
 ただし、第1接続配管31を第1伝熱管3_1の平均高さよりも高く配置しても、第1空間21の下部が第3空間23下部よりも上方に設ければ、サイホンの原理により液冷媒は第1空間21より流出するため、性能改善の効果に支障はない。 However, even if the first connection pipe 31 is arranged higher than the average height of the first heat transfer pipe 3_1, if the lower part of the first space 21 is provided above the lower part of the third space 23, the liquid refrigerant can be flows out from the first space 21, there is no problem in improving the performance.
 従って、実施の形態1の室外熱交換器10によれば、第1熱交換器11及び第1中間ヘッダ1の重力下側における液滞留を抑制することができる。従来のように、第1中間ヘッダ1に第1仕切り35がない構成では、第1中間ヘッダ1内で重力上側から落下した液冷媒を重力方向最下部の伝熱管の冷媒のみで持ち上げられず、特に中間負荷において液が滞留する。実施の形態1の室外熱交換器10の構成では、第1中間ヘッダ1に第1仕切り35が設けられる。そして、第1空間21の液主体冷媒を第1接続配管31で、第2空間22のガス主体冷媒を第2接続配管32で第2中間ヘッダ2の第3空間23で合流させる。これにより、第3空間23内で第2伝熱管3_2複数本分の冷媒で液の落下を抑制できる。従って、室外熱交換器10における液の滞留を抑制しつつ、第3空間23で気液冷媒を混合可能となり、冷房性能が改善する。 Therefore, according to the outdoor heat exchanger 10 of Embodiment 1, it is possible to suppress liquid retention under the gravity of the first heat exchanger 11 and the first intermediate header 1 . In a configuration where the first intermediate header 1 does not have the first partition 35, as in the conventional art, the liquid refrigerant that has fallen from the upper side of the first intermediate header 1 due to gravity cannot be lifted up only by the refrigerant in the lowermost heat transfer tube in the direction of gravity. Liquid stays, especially at intermediate loads. In the configuration of the outdoor heat exchanger 10 of Embodiment 1, the first intermediate header 1 is provided with the first partition 35 . The liquid-based refrigerant in the first space 21 and the gas-based refrigerant in the second space 22 are joined in the third space 23 of the second intermediate header 2 by the first connection pipe 31 and the second connection pipe 32, respectively. As a result, it is possible to suppress liquid from falling in the third space 23 with the refrigerant for the plurality of second heat transfer tubes 3_2. Therefore, it is possible to mix the gas-liquid refrigerant in the third space 23 while suppressing the retention of the liquid in the outdoor heat exchanger 10, thereby improving the cooling performance.
実施の形態2.
 実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 2.
In Embodiment 2, items that are not particularly described are the same as those in Embodiment 1, and the same functions and configurations are described using the same reference numerals.
 図10は、実施の形態2に係る室外熱交換器10の第1中間ヘッダ1及び第2中間ヘッダ2を示す縦断面図である。 FIG. 10 is a longitudinal sectional view showing the first intermediate header 1 and the second intermediate header 2 of the outdoor heat exchanger 10 according to Embodiment 2. FIG.
 実施の形態2に係る室外熱交換器10は、実施の形態1において、第3空間23よりも下方に、第3空間23とは仕切られた少なくとも一本の第2伝熱管3_2と接続する第4空間24を第2中間ヘッダ2に設ける。第1空間21と第2空間22とを仕切る第1仕切り35は、第3空間23と第4空間24とを仕切る第2仕切り36よりも上側に設けられる構成である。第1仕切り35及び第2仕切り36は、板状部材である。 In the outdoor heat exchanger 10 according to Embodiment 2, in Embodiment 1, the third space 23 is located below the third space 23 and connected to at least one second heat transfer tube 3_2 separated from the third space 23. 4 spaces 24 are provided in the second intermediate header 2 . A first partition 35 that partitions the first space 21 and the second space 22 is provided above a second partition 36 that partitions the third space 23 and the fourth space 24 . The first partition 35 and the second partition 36 are plate members.
 このように室外熱交換器10を構成することにより、第1仕切り35と第2仕切り36とのヘッド差により、第1接続配管31を介した第1空間21から第3空間23への液冷媒の流動を促進して第1空間21内部での液の滞留が抑制される。これにより、空気調和装置200の冷房性能が改善する。 By configuring the outdoor heat exchanger 10 in this way, the head difference between the first partition 35 and the second partition 36 causes liquid refrigerant to flow from the first space 21 to the third space 23 via the first connection pipe 31 . of the liquid is promoted to suppress the retention of the liquid inside the first space 21 . Thereby, the cooling performance of the air conditioner 200 is improved.
実施の形態3.
 実施の形態3において、特に記述しない項目については実施の形態1~実施の形態2のいずれかと同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 3.
In Embodiment 3, items that are not particularly described are the same as those in Embodiments 1 and 2, and the same functions and configurations are described using the same reference numerals.
 図11は、実施の形態3に係る室外熱交換器10の第1中間ヘッダ1及び第2中間ヘッダ2を示す縦断面図である。実施の形態3は実施の形態2とは異なり、第2接続配管32の第1中間ヘッダ1の第2空間22における第2流出口32_1は、第3空間23と第4空間24とを仕切る第2仕切り36よりも上側に設けられている構成である。第2接続配管32は、第1中間ヘッダ1の第2空間22と第2中間ヘッダ2の第3空間23とを接続する。 11 is a longitudinal sectional view showing the first intermediate header 1 and the second intermediate header 2 of the outdoor heat exchanger 10 according to Embodiment 3. FIG. Embodiment 3 is different from Embodiment 2 in that the second outlet 32_1 in the second space 22 of the first intermediate header 1 of the second connection pipe 32 is the third space separating the third space 23 and the fourth space 24. It is a configuration provided above the second partition 36 . The second connection pipe 32 connects the second space 22 of the first intermediate header 1 and the third space 23 of the second intermediate header 2 .
 このように構成された室外熱交換器10においては、第2空間22における第2流出口32_1と第2仕切り36とのヘッド差により、第2空間22への液冷媒の逆流105(図4参照)が抑制され、空気調和装置200の冷房性能が改善する In the outdoor heat exchanger 10 configured in this way, the head difference between the second outlet 32_1 in the second space 22 and the second partition 36 causes the liquid refrigerant to flow back 105 (see FIG. 4) into the second space 22. ) is suppressed, and the cooling performance of the air conditioner 200 is improved.
実施の形態4.
 実施の形態4において、特に記述しない項目については実施の形態3と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 4.
In Embodiment 4, items that are not particularly described are the same as those in Embodiment 3, and the same functions and configurations are described using the same reference numerals.
 図12は、実施の形態4に係る第1中間ヘッダ1及び第2中間ヘッダ2の上視断面図である。図13は、図12のA-A方向断面拡大図である。 FIG. 12 is a cross-sectional top view of the first intermediate header 1 and the second intermediate header 2 according to Embodiment 4. FIG. 13 is an enlarged cross-sectional view taken along the line AA of FIG. 12. FIG.
 図12において、71は第1中間ヘッダ1の延伸方向の中心軸を示し、72は第2中間ヘッダ2の延伸方向の中心軸を示す。73は、接続配管の中心軸を示す。第2中間ヘッダ2の延伸方向の中心軸72から延びる2本の破線は、第1中間ヘッダ1の管壁38が見える範囲を示す。図13において、111は第1空間21から第3空間23への冷媒流れを示し、112は第2空間22から第3空間23への冷媒流れを示す。 In FIG. 12, 71 indicates the central axis of the first intermediate header 1 in the extending direction, and 72 indicates the central axis of the second intermediate header 2 in the extending direction. 73 indicates the central axis of the connecting pipe. Two dashed lines extending from the central axis 72 of the second intermediate header 2 in the extending direction indicate the range in which the pipe wall 38 of the first intermediate header 1 can be seen. In FIG. 13 , 111 indicates the refrigerant flow from the first space 21 to the third space 23 and 112 indicates the refrigerant flow from the second space 22 to the third space 23 .
 実施の形態4においては、第1流出口31_1は、第1中間ヘッダの延伸方向、かつ第2中間ヘッダ2の延伸方向の中心軸72から見て、第1中間ヘッダ1が見える範囲における第1中間ヘッダ1の管壁38に設けられている。つまり、第1流出口31_1は、第1中間ヘッダ1の第2中間ヘッダ2側の管壁38に設けられている。 In Embodiment 4, the first outflow port 31_1 is the first outlet in the range in which the first intermediate header 1 can be seen when viewed from the central axis 72 in the extending direction of the first intermediate header and the extending direction of the second intermediate header 2 . It is provided on the tube wall 38 of the intermediate header 1 . That is, the first outflow port 31_1 is provided in the pipe wall 38 of the first intermediate header 1 on the second intermediate header 2 side.
 実施の形態4のように第1中間ヘッダ1を構成することにより、第1空間21から第3空間23までの第1接続配管31の経路長が短くなり、冷媒流れ111の流動が促進され、第1空間21内の液冷媒の滞留が抑制される。また、第2空間22から第3空間23までの第2接続配管32の経路長が短くなり、冷媒流れ112の慣性力を大きく低減することなく第3空間23へ冷媒が輸送される。このため、第3空間23においてガス主体冷媒を重力上向きに多く供給し、上吹き筐体の風速分布に合わせて冷媒分配が可能となる。 By configuring the first intermediate header 1 as in the fourth embodiment, the path length of the first connecting pipe 31 from the first space 21 to the third space 23 is shortened, and the flow of the refrigerant flow 111 is promoted. Retention of the liquid refrigerant in the first space 21 is suppressed. Further, the route length of the second connection pipe 32 from the second space 22 to the third space 23 is shortened, and the coolant is transported to the third space 23 without greatly reducing the inertia force of the coolant flow 112 . Therefore, a large amount of the gas-based refrigerant is supplied upward due to gravity in the third space 23, and the refrigerant can be distributed according to the wind speed distribution of the top-blowing housing.
 図14は、実施の形態4に係る第1中間ヘッダ1及び第2中間ヘッダ2の第1変形例を示す図12のA-A方向断面拡大図である。 FIG. 14 is an enlarged sectional view taken along the line AA of FIG. 12, showing a first modification of the first intermediate header 1 and the second intermediate header 2 according to the fourth embodiment.
 図14に示す本実施の形態4の変形例は第1中間ヘッダ1の第1空間21における第3空間23への第1流出口31_1の高さは、第2中間ヘッダ2の第3空間23における第1空間21からの第1流入口33_1の高さ位置に対して、同じか、より高い構成である。 In the modification of the fourth embodiment shown in FIG. 14, the height of the first outlet 31_1 to the third space 23 in the first space 21 of the first intermediate header 1 is is the same as or higher than the height position of the first inlet 33_1 from the first space 21 in .
 本変形例のように第1中間ヘッダ1を構成することにより、第1流出口31_1の高さ位置と第1流入口33_1とのヘッド差により冷媒流れ111の流動が促進され、第1空間21内の液冷媒の滞留が抑制される。これにより、凝縮器性能が向上し、空気調和装置200の冷房性能が改善する。 By configuring the first intermediate header 1 as in this modification, the flow of the refrigerant flow 111 is promoted due to the head difference between the height position of the first outlet 31_1 and the first inlet 33_1, and the first space 21 Stagnation of the liquid refrigerant inside is suppressed. Thereby, the performance of the condenser is improved, and the cooling performance of the air conditioner 200 is improved.
 また、図14に示す実施の形態4の変形例は第1中間ヘッダ1の第2空間22における第3空間23への第2流出口32_1の高さ位置が、第2中間ヘッダ2の第2仕切り36の高さ位置に対して、より高い構成である。 14, the height position of the second outflow port 32_1 to the third space 23 in the second space 22 of the first intermediate header 1 is the second It is a higher configuration than the height position of the partition 36 .
 本変形例のように、第2流出口32_1を第2仕切り36上部よりも重力方向上向きに設けることで、第3空間23から第2空間22への液冷媒の逆流105(図4参照)が低減される。これにより、凝縮器性能が向上し、空気調和装置200の冷房性能が改善する。特に冷媒流速が小さくなる低負荷運転において改善効果が大きい。 As in this modification, by providing the second outlet 32_1 upward in the gravitational direction than the upper portion of the second partition 36, the backflow 105 (see FIG. 4) of the liquid refrigerant from the third space 23 to the second space 22 is prevented. reduced. Thereby, the performance of the condenser is improved, and the cooling performance of the air conditioner 200 is improved. In particular, the improvement effect is large in low-load operation where the refrigerant flow velocity becomes small.
 図15は、実施の形態4に係る第1中間ヘッダ1及び第2中間ヘッダ2の第2変形例を示す図12のA-A方向断面拡大図である。図15に示すように、実施の形態4の第2変形例は、第1流出口31_1及び第2流出口32_1が第1仕切り35で仕切られている。すなわち、第1中間ヘッダ1の管壁に設けられた1つの開口の高さの範囲内に、第1仕切り35が設けられていて、この開口の第1仕切り35の上側が第1流出口31_1、下側が第2流出口32_1となっている。 FIG. 15 is an enlarged sectional view taken along line AA of FIG. 12, showing a second modification of the first intermediate header 1 and the second intermediate header 2 according to the fourth embodiment. As shown in FIG. 15, in the second modification of the fourth embodiment, the first outlet 31_1 and the second outlet 32_1 are partitioned by the first partition 35 . That is, the first partition 35 is provided within the height range of one opening provided in the tube wall of the first intermediate header 1, and the upper side of the first partition 35 of this opening is the first outlet 31_1. , the lower side is the second outflow port 32_1.
 本変形例のように第1流出口31_1及び第2流出口32_1がそれぞれ異なる流出口を形成する限り、第1接続配管31及び第2接続配管32を1本の配管で一体に構成してもよい。本変形例は第1空間21から第3空間23に冷媒を供給するまでに、第1仕切り35上部の液冷媒を上側に上昇させる必要がないため、第1空間21の液冷媒の滞留を抑制できる。これにより、凝縮器性能が向上され、空気調和装置200の冷房性能が改善する。特に冷媒流速が小さくなる低負荷運転において改善効果が大きい。 As long as the first outflow port 31_1 and the second outflow port 32_1 form different outflow ports as in this modification, the first connection pipe 31 and the second connection pipe 32 may be integrally configured with one pipe. good. In this modified example, it is not necessary to raise the liquid refrigerant above the first partition 35 until the refrigerant is supplied from the first space 21 to the third space 23, so the retention of the liquid refrigerant in the first space 21 is suppressed. can. Thereby, the performance of the condenser is improved, and the cooling performance of the air conditioner 200 is improved. In particular, the improvement effect is large in low-load operation where the refrigerant flow velocity becomes small.
 実施の形態は、例として提示したものであり、請求の範囲を限定することは意図していない。実施の形態は、その他の様々な形態で実施されることが可能であり、実施の形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことができる。これら実施の形態及びその変形は、実施の形態の範囲及び要旨に含まれる。 The embodiment is presented as an example and is not intended to limit the scope of claims. Embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the gist of the embodiments. These embodiments and modifications thereof are included in the scope and gist of the embodiments.
 1 第1中間ヘッダ、2 第2中間ヘッダ、3_1 第1伝熱管、3_2 第2伝熱管、4 フィン、10 室外熱交換器、11 第1熱交換器、12 第2熱交換器、13 送風機、 14 圧縮機、16 室内熱交換器、17 絞り装置、18 冷媒配管、21 第1空間、22 第2空間、23 第3空間、24 第4空間、31 第1接続配管、31_1 第1流出口、32 第2接続配管、32_1 第2流出口、33_1 第1流入口、34_1 第2流入口、35 第1仕切り、36 第2仕切り、38 管壁、71第1中間ヘッダ1の延伸方向の中心軸、72 第2中間ヘッダ2の延伸方向の中心軸、73 接続配管の中心軸、90 重力方向、100 液冷媒、101 ガス冷媒、102 液主体冷媒、103 ガス主体冷媒、104 液冷媒の滞留、105 液冷媒の逆流、111 第1空間から第3空間への冷媒流れ、112 第2空間から第3空間への冷媒流れ、200 空気調和装置、201 室外機、202 室内機、203 上吹き筐体、300 風速分布、AF 空気の流れ方向。 1 first intermediate header, 2 second intermediate header, 3_1 first heat transfer tube, 3_2 second heat transfer tube, 4 fins, 10 outdoor heat exchanger, 11 first heat exchanger, 12 second heat exchanger, 13 blower, 14 compressor, 16 indoor heat exchanger, 17 expansion device, 18 refrigerant pipe, 21 first space, 22 second space, 23 third space, 24 fourth space, 31 first connection pipe, 31_1 first outlet, 32 second connection pipe, 32_1 second outlet, 33_1 first inlet, 34_1 second inlet, 35 first partition, 36 second partition, 38 pipe wall, 71 center axis of the first intermediate header 1 in the extending direction , 72 Center axis in extension direction of second intermediate header 2, 73 Center axis of connecting pipe, 90 Gravity direction, 100 Liquid refrigerant, 101 Gas refrigerant, 102 Liquid-based refrigerant, 103 Gas-based refrigerant, 104 Retention of liquid refrigerant, 105 Backflow of liquid refrigerant, 111 refrigerant flow from the first space to the third space, 112 refrigerant flow from the second space to the third space, 200 air conditioner, 201 outdoor unit, 202 indoor unit, 203 upward blowing housing, 300 Wind speed distribution, AF air flow direction.

Claims (12)

  1.  重力方向に延びた第1中間ヘッダと、
     前記第1中間ヘッダに接続され、冷媒と空気との熱交換を行う第1伝熱管と、
     前記第1中間ヘッダの内部を、第1空間と、前記第1空間より下側に配置された第2空間とに仕切る第1仕切りと
    を有する第1熱交換器と、
     前記第1熱交換器の風上に並設され、前記重力方向に延びた第2中間ヘッダと、
     前記第2中間ヘッダに接続され、前記冷媒と前記空気との熱交換を行う第2伝熱管と、
     前記第2中間ヘッダの内部を、第3空間と、前記第3空間より下側に配置された第4空間とに仕切る第2仕切りと
    を有する第2熱交換器と
    を具備し、
     前記第1伝熱管は複数であり、前記複数の前記第1伝熱管は、前記第1空間に接続される前記第1伝熱管と、前記第2空間に接続される前記第1伝熱管とを有し、
     前記第1空間を構成する前記第1中間ヘッダには、前記冷媒が流出する第1流出口が設けられ、
     前記第2空間を構成する前記第1中間ヘッダには、前記冷媒が流出する第2流出口が設けられ、
     前記第2中間ヘッダは、前記第1中間ヘッダと接続され、前記第1流出口から前記冷媒が前記第3空間に流入する第1流入口と、前記第2流出口から前記冷媒が前記第3空間に流入する第2流入口とを具備する
    熱交換器。
    a first intermediate header extending in the direction of gravity;
    a first heat transfer tube connected to the first intermediate header and performing heat exchange between refrigerant and air;
    a first heat exchanger having a first partition that divides the inside of the first intermediate header into a first space and a second space arranged below the first space;
    a second intermediate header arranged in parallel on the windward side of the first heat exchanger and extending in the direction of gravity;
    a second heat transfer tube connected to the second intermediate header and performing heat exchange between the refrigerant and the air;
    a second heat exchanger having a second partition that divides the inside of the second intermediate header into a third space and a fourth space arranged below the third space;
    There are a plurality of the first heat transfer tubes, and the plurality of the first heat transfer tubes includes the first heat transfer tube connected to the first space and the first heat transfer tube connected to the second space. have
    The first intermediate header forming the first space is provided with a first outlet through which the refrigerant flows,
    The first intermediate header forming the second space is provided with a second outlet through which the refrigerant flows,
    The second intermediate header is connected to the first intermediate header, and has a first inlet through which the refrigerant flows into the third space from the first outlet, and a first outlet through which the refrigerant flows into the third space from the second outlet. and a second inlet that flows into the space.
  2.  前記第1伝熱管及び前記第2伝熱管は、前記第1伝熱管及び前記第2伝熱管の軸方向に直交する断面の長軸が気流方向に沿う扁平伝熱管である
    請求項1に記載の熱交換器。
    2. The first heat transfer tube and the second heat transfer tube according to claim 1, wherein the flat heat transfer tube has a long axis of a cross section orthogonal to an axial direction of the first heat transfer tube and the second heat transfer tube along an airflow direction. Heat exchanger.
  3.  前記第2伝熱管は、前記第3空間に接続され、
     前記第1空間に接続される前記第1伝熱管の数と、前記第2空間に接続される前記第1伝熱管の数との和が、前記第2伝熱管の数よりも多い
    請求項1又は2に記載の熱交換器。
    The second heat transfer tube is connected to the third space,
    2. The sum of the number of said first heat transfer tubes connected to said first space and the number of said first heat transfer tubes connected to said second space is greater than the number of said second heat transfer tubes. Or the heat exchanger according to 2.
  4.  前記第1流出口と、前記第1流入口とを接続する第1接続配管を具備し、
     前記第1接続配管は、前記第1空間に接続される前記第1伝熱管の平均高さよりも下方に設けられる
    請求項1~3のいずれか1項に記載の熱交換器。
    A first connection pipe that connects the first outlet and the first inlet,
    The heat exchanger according to any one of claims 1 to 3, wherein the first connection pipe is provided below an average height of the first heat transfer pipes connected to the first space.
  5.  前記第1仕切りは、前記第2仕切りよりも上側に設けられている
    請求項1~4のいずれか1項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 4, wherein the first partition is provided above the second partition.
  6.  前記第2流出口は、前記第2仕切りよりも上側に設けられている
    請求項1~5のいずれか1項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 5, wherein the second outlet is provided above the second partition.
  7.  前記第2流出口と、前記第2流入口とを接続する第2接続配管を具備する
    請求項4に記載の熱交換器。
    5. The heat exchanger according to claim 4, further comprising a second connecting pipe connecting said second outlet and said second inlet.
  8.  前記第1流出口は、前記第1中間ヘッダの延伸方向に見て、前記第2中間ヘッダの中心軸から前記第1中間ヘッダが見える範囲の前記第1中間ヘッダの菅壁に設けられる
    請求項1~7のいずれか1項に記載の熱交換器。
    3. The first outflow port is provided in the tube wall of the first intermediate header within a range where the first intermediate header can be seen from the central axis of the second intermediate header when viewed in the extending direction of the first intermediate header. The heat exchanger according to any one of 1 to 7.
  9.  前記第1流出口は、前記第1流入口よりも高い位置に設けられる
    請求項1~8のいずれか1項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 8, wherein the first outlet is provided at a position higher than the first inlet.
  10.  前記冷媒はR32、R410A又は少なくともオレフィン系冷媒、プロパン、DMEを含むR32冷媒に対してガス密度の小さい冷媒を含む、
    請求項1~9のいずれか1項に記載の熱交換器。
    The refrigerant comprises R32, R410A, or at least a refrigerant having a lower gas density than R32 refrigerants, including olefinic refrigerants, propane, and DME.
    A heat exchanger according to any one of claims 1-9.
  11.  請求項1~10のいずれか1項に記載の熱交換器を備えた空気調和装置。 An air conditioner comprising the heat exchanger according to any one of claims 1 to 10.
  12.  前記空気調和装置は、
     空気を上側へ送風する送風機と、
     前記送風機に送風された空気を流出するための吹出口を備える上吹き筐体と
    を備え、
     前記熱交換器は前記筐体に搭載される
    請求項11に記載の空気調和装置。
    The air conditioner is
    a blower for blowing air upward;
    a top-blowing housing including an outlet for discharging the air blown by the blower,
    The air conditioner according to claim 11, wherein the heat exchanger is mounted on the housing.
PCT/JP2021/025912 2021-07-09 2021-07-09 Heat exchanger and air conditioner WO2023281731A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023533012A JPWO2023281731A1 (en) 2021-07-09 2021-07-09
PCT/JP2021/025912 WO2023281731A1 (en) 2021-07-09 2021-07-09 Heat exchanger and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025912 WO2023281731A1 (en) 2021-07-09 2021-07-09 Heat exchanger and air conditioner

Publications (1)

Publication Number Publication Date
WO2023281731A1 true WO2023281731A1 (en) 2023-01-12

Family

ID=84800589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025912 WO2023281731A1 (en) 2021-07-09 2021-07-09 Heat exchanger and air conditioner

Country Status (2)

Country Link
JP (1) JPWO2023281731A1 (en)
WO (1) WO2023281731A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149950A1 (en) * 2016-02-29 2017-09-08 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
JP2018162934A (en) * 2017-03-27 2018-10-18 ダイキン工業株式会社 Heat exchanger unit
WO2019130394A1 (en) * 2017-12-25 2019-07-04 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2019132537A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Heat exchanger, or refrigeration device having heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149950A1 (en) * 2016-02-29 2017-09-08 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
JP2018162934A (en) * 2017-03-27 2018-10-18 ダイキン工業株式会社 Heat exchanger unit
WO2019130394A1 (en) * 2017-12-25 2019-07-04 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2019132537A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Heat exchanger, or refrigeration device having heat exchanger

Also Published As

Publication number Publication date
JPWO2023281731A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
US8235101B2 (en) Parallel flow heat exchanger for heat pump applications
JP6364539B2 (en) Heat exchange device and air conditioner using the same
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
JP5071597B2 (en) Heat exchanger and air conditioner
US20140102131A1 (en) Outdoor unit of refrigeration system
JP6061994B2 (en) Heat exchanger, refrigeration cycle apparatus and air conditioner equipped with this heat exchanger
WO2018173356A1 (en) Heat exchanger and air conditioner using same
US10041710B2 (en) Heat exchanger and air conditioner
JP6419882B2 (en) Air conditioner
JP6466047B1 (en) Heat exchanger and air conditioner
JP5716496B2 (en) Heat exchanger and air conditioner
JP6742112B2 (en) Heat exchanger and air conditioner
WO2023281731A1 (en) Heat exchanger and air conditioner
WO2019155571A1 (en) Heat exchanger and refrigeration cycle device
JP7327214B2 (en) Heat exchanger
WO2023199466A1 (en) Heat exchanger, and air conditioning device including same
US20240175643A1 (en) Heat exchanger and outdoor unit comprising said heat exchanger
JP7327213B2 (en) Heat exchanger
JP7310655B2 (en) Heat exchanger
JP6698196B2 (en) Air conditioner
JP2016191540A (en) Heat exchanger
JP5840291B2 (en) Heat exchanger, refrigeration cycle apparatus and air conditioner equipped with this heat exchanger
CN118049698A (en) Heat exchanger and air conditioning system
JPWO2021117107A1 (en) Distributor, heat exchanger with distributor and air conditioner with the heat exchanger
CN111750730A (en) Heat exchanger flow divider

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533012

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE