JP2017152566A - 発光装置、バックライト、表示装置 - Google Patents

発光装置、バックライト、表示装置 Download PDF

Info

Publication number
JP2017152566A
JP2017152566A JP2016034333A JP2016034333A JP2017152566A JP 2017152566 A JP2017152566 A JP 2017152566A JP 2016034333 A JP2016034333 A JP 2016034333A JP 2016034333 A JP2016034333 A JP 2016034333A JP 2017152566 A JP2017152566 A JP 2017152566A
Authority
JP
Japan
Prior art keywords
light
emitting device
particles
excitation
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016034333A
Other languages
English (en)
Inventor
修 川崎
Osamu Kawasaki
修 川崎
恭子 松浦
Kyoko Matsuura
恭子 松浦
松清 秀次
Hideji Matsukiyo
秀次 松清
麻祐子 渡部
Mayuko Watabe
麻祐子 渡部
睦子 山本
Mutsuko Yamamoto
睦子 山本
遼平 小泉
Ryohei Koizumi
遼平 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2016034333A priority Critical patent/JP2017152566A/ja
Publication of JP2017152566A publication Critical patent/JP2017152566A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】バックライトとして用いたときに良好な色再現性を示す新規な発光装置を提供する。【解決手段】励起光を射出する励起光源と、励起光を吸収し、励起光よりも長波長の蛍光に変換して射出する複数の第1粒子と、第1粒子から射出される蛍光のうち一部の光を吸収し、一部の光よりも長波長の光に変換して射出する複数の第2粒子と、を備え、第1粒子は、3価テルビウムが賦活された蛍光体を含み、蛍光は、3価テルビウムの励起エネルギー準位に応じた複数の発光ピークを有し、510nm以上550nm以下の波長帯域に発光ピークを有する第1光と、470nm以上500nm以下の波長帯域に発光ピークを有するサブ光と、を含み、第2粒子は、サブ光を吸収し、サブ光よりも長波長の光である第2光を射出し、複数の第2粒子のうち少なくとも一部は、第1粒子に対し励起光源とは反対側に配置されている発光装置。【選択図】図2

Description

本発明は、発光装置、バックライト、表示装置に関するものである。
従来、励起光を射出する光源と、励起光を吸収し励起光とは異なる波長の光を射出する波長変換層と、を有する発光装置が知られている。以下の説明においては、上述のような発光装置のことを「波長変換方式」の発光装置と称することがある。また、波長変換層から射出される「励起光とは異なる波長の光」のことを「変換光」と称することがある。例えば、波長変換層において蛍光体を用いて波長を変換する場合、変換光は蛍光体が発する蛍光である。
上述したような波長変換方式の発光装置としては、励起光と変換光とが混色され、全体として白色光を射出する装置構成が知られている。このような発光装置は、表示装置のバックライトとして好適に用いられている。
波長変換方式の発光装置をバックライトとして用いる場合、一般に、変換光の発光スペクトルの半値全幅(Full width at half maximum, FWHM)が狭い方が、表示装置の色再現性が向上することが知られている。そのため、波長変換方式の発光装置においては、変換光の発光スペクトルの半値全幅を狭くする検討が行われている。
例えば、Tb3+が賦活された緑色蛍光体を用いた発光装置が検討されている(例えば、特許文献1〜3参照)。特許文献1〜3に記載の発光装置において用いられている緑色蛍光体は、緑色の波長帯域に含まれる550nm付近に、Tb3+に由来するシャープな発光ピークを有している。
特許第4413955号公報 特許第4199267号公報 国際公開第2011/027511号
上記特許文献1〜3に記載の発光装置において用いられている緑色蛍光体は、550nm付近に現れる発光ピークの他に、500nm付近にもTb3+に由来する発光ピークを有している。以下、Tb3+が賦活された緑色蛍光体において500nm付近に現れる発光ピークを「サブピーク」と称することがある。特許文献1〜3に記載の発光装置では、サブピークの光も外部に射出して利用する構成となっているが、サブピークの光は発光装置の色再現性を低下させており、改善の余地が残されていた。
本発明はこのような事情に鑑みてなされたものであって、バックライトとして用いたときに良好な色再現性を示す新規な発光装置を提供することを目的とする。また、このような発光装置を備え良好な色再現性を示すバックライトおよび表示装置を提供することをあわせて目的とする。
上記の課題を解決するため、本発明の一形態は、励起光を射出する励起光源と、前記励起光を吸収し、前記励起光よりも長波長の蛍光に変換して射出する複数の第1粒子と、前記第1粒子から射出される蛍光のうち一部の光を吸収し、前記一部の光よりも長波長の光に変換して射出する複数の第2粒子と、を備え、前記第1粒子は、3価テルビウムが賦活された蛍光体を含み、前記蛍光は、3価テルビウムの励起エネルギー準位に応じた複数の発光ピークを有し、510nm以上550nm以下の波長帯域に発光ピークを有する第1光と、470nm以上500nm以下の波長帯域に発光ピークを有するサブ光と、を含み、前記第2粒子は、前記サブ光を吸収し、前記サブ光よりも長波長の光である第2光を射出し、前記複数の第2粒子のうち少なくとも一部は、前記第1粒子に対し前記励起光源とは反対側に配置されている発光装置を提供する。
本発明の一形態においては、前記第2光は、580nm以上700nm以下の波長帯域に発光ピークを有する構成としてもよい。
本発明の一形態においては、前記第2光は、510nm以上550nm以下の波長帯域に発光ピークを有する構成としてもよい。
本発明の一形態においては、前記励起光を吸収し、580nm以上700nm以下の波長帯域に発光ピークを有する第3光を射出する第3粒子を含む構成としてもよい。
本発明の一形態においては、前記複数の第1粒子を含み前記励起光源を覆う第1層と、前記複数の第2粒子を含み前記第1層を覆う第2層と、が積層されている構成としてもよい。
本発明の一形態においては、前記励起光源は、前記励起光として紫外光を射出する構成としてもよい。
本発明の一形態においては、430nm以上510nm未満の波長帯域に発光ピークを有する光を射出する光源を有する構成としてもよい。
本発明の一形態においては、前記励起光を吸収し、430nm以上510nm未満の波長帯域に発光ピークを有する光を射出する青色発光粒子を含む構成としてもよい。
また、本発明の一形態は、上記の発光装置を含み白色光を射出する白色発光装置を備えるバックライトを提供する。
また、本発明の一形態は、上記のバックライトと、前記白色発光装置から射出された白色光を変調する液晶パネルと、前記液晶パネルによって変調された光が入射するカラーフィルタと、を有する表示装置を提供する。
本発明によれば、バックライトとして用いたときに良好な色再現性を示す新規な発光装置を提供することができる。また、このような発光装置を備え良好な色再現性を示すバックライトおよび表示装置を提供することができる。
第1実施形態の発光装置を示す概略平面図。 第1実施形態の発光装置を示す矢視断面図。 SiO:Ce3+,Tb3+の発光スペクトル。 従来の課題について説明するxy色度図。 青色カラーフィルタ、緑色カラーフィルタ、赤色カラーフィルタの透過スペクトルの一例を示す図。 液晶ディスプレイにおける色再現性を示すxy色度図。 第1粒子で使用可能な蛍光体と、第2粒子で使用可能な蛍光体との組み合わせの例について説明する説明図。 第1粒子で使用可能な蛍光体と、第2粒子で使用可能な蛍光体との組み合わせの例について説明する説明図。 第1粒子で使用可能な蛍光体と、第2粒子で使用可能な蛍光体との組み合わせの例について説明する説明図。 第2実施形態に係る発光装置101の説明図。 第3実施形態の発光装置102を示す概略平面図。 第3実施形態の発光装置102を示す矢視断面図。 第4実施形態の発光装置103を示す概略平面図。 第4実施形態の発光装置103を示す矢視断面図。 第5実施形態の発光装置104を示す概略平面図。 第6実施形態の発光装置105を示す概略平面図。 第7実施形態のバックライトを示す模式図。 第8実施形態の表示装置を示す模式図。
[第1実施形態]
以下、図1〜図9を参照しながら、本発明の第1実施形態に係る発光装置について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
図1は、本実施形態の発光装置を示す概略平面図である。図2は、図1の線分II−IIにおける矢視断面図である。
図1,2に示すように、本実施形態の発光装置100は、励起光源30、複数の第1粒子111、複数の第2粒子121を有している。また、発光装置100は、基板10、隔壁20、光源31、第1電極35、第2電極36、絶縁部39、第1封止樹脂112、第2封止樹脂122を有している。
以下、順に説明する。
基板10としては、透明基板及び不透明基板のいずれも用いることができる。不透明基板の形成材料としては、例えばセラミックスなどの無機材料や、樹脂材料などが挙げられる。また、金属基板の表面に絶縁処理を施したものを用いることもできる。透明基板の形成材料としては、例えばガラス、石英ガラス、窒化ケイ素等の無機物や、アクリル樹脂、ポリカーボネート樹脂等の樹脂材料などが挙げられる。また、光透過性を備えるならば、これらの材料を積層または混合して形成された複合材料を用いた基板を採用することもできる。また、基板10の表面には、樹脂材料を用いて公知の平坦化層を形成していてもよい。
基板10の上には、隔壁20、第1電極35、第2電極36、絶縁部39が設けられている。
隔壁20は、励起光源30および光源31の周囲を囲むように形成されており、平面視矩形の開口部21を有している。隔壁20は、例えば絶縁性の樹脂材料で形成されている。
隔壁20の形成材料としては、例えば光硬化性樹脂や熱硬化性樹脂などを挙げることができる。隔壁20の側壁は、光反射性の材料で覆われていてもよい。または、隔壁20が光反射性の材料で形成されていてもよい。光反射性の材料としては、光透過性を有する樹脂材料中に酸化チタン等の高屈折率を有する無機フィラーが高濃度に分散された高反射性樹脂材料や、アルミニウム、銀等の金属材料を挙げることができる。隔壁20の表面を覆う材料または隔壁20の形成材料がアルミニウムや銀等の金属材料である場合には、後述の第1電極35および第2電極36とは絶縁するものとする。
第1電極35、第2電極36は、隔壁20の開口部21に露出するように設けられている。また、本実施形態の発光装置100においては、平面視で第1電極35および第2電極36の間に絶縁部39が配置されている。第1電極35と第2電極36との間に、絶縁部39が介在することにより、第1電極35と第2電極36が絶縁されている。
絶縁部39は、例えば絶縁性の樹脂材料で形成されている。絶縁部39の形成材料としては、上述した隔壁20の形成材料を挙げることができる。
絶縁部39の表面は、光反射性の材料で覆われていてもよい。光反射性の材料としては、上述した隔壁20の側壁を覆う材料を挙げることができる。または、絶縁部39の形成材料は、樹脂材料中に酸化チタン等の高屈折率を有する無機フィラーが高濃度に分散された高反射性樹脂材料であってもよい。
励起光源30は、励起光を射出する発光素子である。本実施形態においては、励起光源30として、波長約370nmの紫外光を射出する紫外光LEDを用いることとして説明する。
本実施形態の発光装置100では、励起光源30は、開口部21内において第1電極35の表面にシリコーン樹脂系のダイボンドペーストによって固定されている。
光源31は、任意の光を射出する発光素子である。光源31としては、発光装置100が射出する光の色に応じて種々の波長の光を射出するものを用いることができる。本実施形態においては、光源31として、430nm以上510nm未満の光、例えば波長約450nmの青色光を射出する青色LEDを用いることとして説明する。
本実施形態の発光装置100では、光源31は、開口部21内において第2電極36の表面にシリコーン樹脂によって固定されている。光源31は、第1電極35の表面に固定されていてもよい。
なお、励起光源30および光源31は、第1電極35および第2電極36と導通可能であれば、開口部21内に露出する第1電極35、第2電極36および絶縁部39のどの位置に固定されていてもよい。以下の説明では、開口部21と、開口部21内に露出する第1電極35、第2電極36および絶縁部39とで囲まれた空間のことを「キャビティ」と称することがある。また、「開口部21内に露出する第1電極35、第2電極36および絶縁部39」のことを「キャビティの底面」と称することがある。
ここで、キャビティの底面を構成する第1電極35、第2電極36および絶縁部39を比較すると、絶縁部39を形成する樹脂材料よりも、第1電極35や第2電極36の方が熱を伝えやすい。また、LEDである励起光源30および光源31は、使用により発熱するが、一方で温度が上がると発光特性が低下することが知られている。そのため、励起光源30および光源31は、第1電極35および第2電極36の上に固定し、第1電極35および第2電極36を介した放熱を利用可能な構成とすることが好ましい。
励起光源30は、配線30a,30bを用いて第1電極35および第2電極36と電気的に接続されている。また、光源31は、配線31a,31bを用いて第1電極35および第2電極36と電気的に接続されている。配線30a,30b,31a,31bは、例えばワイヤボンディングにより形成された金ワイヤである。
本実施形態の発光装置100は、隔壁20が形成する開口部21内に、波長変換層50を有している。波長変換層50は、励起光源30を覆う第1層110と、第1層110を覆う第2層120と、を有している。発光装置100においては、励起光源30の上方で、第1層110と第2層120とが積層している。第1層110は、複数の第1粒子111を含んでいる。第2層120は、複数の第2粒子121を含んでいる。
第1粒子111は、励起光源30から射出された励起光を吸収し、励起光よりも長波長の蛍光に変換して射出する。
第1粒子111は、3価テルビウム(Tb3+)が賦活された緑色蛍光体を含んでいる。第1粒子111に含まれる蛍光体は、Tb3+イオンを含みTb3+イオンの4f−4f遷移を起源とした緑色発光を有する材料であれば、特に限定されない。このような蛍光体としては、YSiO:Ce3+,Tb3+、CaAl:Ce3+,Tb3+、Ca(Si:Ce3+,Tb3+、Ce−α−SiAlON:Tb3+を挙げることができる。
複数の第1粒子111は、励起光源30に対しキャビティの底面とは反対側に配置されている。本実施形態の発光装置100では、複数の第1粒子111は、例えば熱硬化性のシリコーン樹脂を形成材料とする第1封止樹脂112に分散して励起光源30の上に配置されている。具体的には、複数の第1粒子111は、熱硬化性のシリコーン樹脂と混練した組成物として励起光源30の上に配置され、例えば150℃で3時間加熱してシリコーン樹脂を硬化させることで固定されている。
第2粒子121は、第1粒子111から射出される蛍光のうち一部の光を吸収し、吸収した一部の光よりも長波長の光に変換して射出する。
ここで、第1粒子111から射出される蛍光は、3価テルビウムの励起エネルギー準位に応じた複数の発光ピークを有し、510nm以上550nm以下の波長帯域に発光ピークを有する第1光と、470nm以上500nm以下の波長帯域に発光ピークを有するサブ光とを含んでいる。第2粒子121は、第1粒子111が射出する蛍光のうち、サブ光を吸収し、サブ光よりも長波長の光である第2光を射出する。
このような第2粒子121としては、光を吸収し、580nm以上700nm以下の波長帯域に発光ピークを有する光を射出する赤色蛍光体を含んでいるものを採用できる。このような赤蛍光体としては、KSi:Mn4+、CaAlSiN:Eu2+(CASN:Eu2+)を挙げることができる。この場合、第2光は赤色光である。
なお、上述の赤色蛍光体は、サブ光を吸収して第2光を射出するのみならず、励起光源30から射出される励起光を吸収して第2光を射出してもよい。
また、このような第2粒子121としては、光を吸収し、510nm以上550nm未満の波長帯域に発光ピークを有する光を射出する緑色蛍光体を含んでいるものも採用できる。このような緑色蛍光体としては、β−SiAlONを挙げることができる。この場合、第2光は緑色光である。
複数の第2粒子121のうち少なくとも一部は、第1粒子111に対し励起光源30とは反対側に配置されている。本実施形態の発光装置100では、複数の第2粒子121は、例えば熱硬化性のシリコーン樹脂を形成材料とする第2封止樹脂122に分散して励起光源30の上に配置されている。具体的には、複数の第1粒子111は、熱硬化性のシリコーン樹脂と混練した組成物として開口部21の内部に配置され、シリコーン樹脂を硬化させることで固定されている。そのため、複数の第2粒子121は、一部が励起光源30と平面的に重なって配置され、また一部は、光源31と平面的に重なって配置されている。
なお、発光装置100は、開口部21の内部に耐静電素子として定電圧ダイオード(ツェナーダイオード)を実装してもよい。
本実施形態の発光装置100は、以上のような構成となっている。
次に、本実施形態の発光装置100の効果について、従来の課題について説明した後に説明する。
図3は、第1粒子111に含まれる蛍光体として用いられるYSiO:Ce3+,Tb3+の発光スペクトルである。YSiO:Ce3+,Tb3+は、Tb3+が賦活された緑色蛍光体である。
SiO:Ce3+,Tb3+は、紫外光領域の光で励起し、540nm付近の波長帯域に発光ピークを有する光を発する。図中、この発光ピークは「第1発光ピーク」として示している。第1発光ピークは、遷移による発光である。
また、YSiO:Ce3+,Tb3+は、470nm以上500nm以下の波長領域に発光ピークを有する光を発する。図中、この発光ピークは「第2発光ピーク」として示している。第2発光ピークは、遷移による発光である。この発光ピークは、本発明における「サブ光」である。
その他、YSiO:Ce3+,Tb3+は、570nm以上600nm以下の波長領域と、620nm以上630nm以下の波長領域にそれぞれ発光ピークを有する光を発する。図中、570nm以上600nm以下の波長領域の発光ピークは「第3発光ピーク」、620nm以上630nm以下の波長領域の発光ピークは「第4発光ピーク」として示している。第3発光ピークは、遷移による発光であり、第4発光ピークは、遷移による発光である。
上述した第1発光ピークから第4発光ピークは、蛍光体に含まれるTb3+の4f−4f遷移を起源としたピークである。そのため、Tb3+が賦活された蛍光体であれば、ピーク位置の多少の移動はあったとしても、ほぼ同様の位置に発光ピークが現れる。
また、第1発光ピークは、緑色を示す波長帯域に含まれており、半値全幅が狭いため、光源から射出する光として適している。第1発光ピークを利用した光源とすると、第2発光ピーク〜第4発光ピークは不要な光となる。中でも、第1発光ピークに対して、第3発光ピークや第4発光ピークはほぼ無視できるほどに弱い光であるが、第2発光ピークは、相対的に強度が大きい光であり、無視することができない。
また、第2発光ピークが現れる波長帯域は、緑色の色純度に大きな悪影響を及ぼす。図4に示すxy色度図において、符号αで示す色度座標の波長540nm付近の光と符号βで示す色度座標の波長520nm付近の光とが混色した場合、得られる光は、符号αで示す色度座標と符号βで示す色度座標を結んだ直線上の色度座標となる。このような光は、xy色度図の周囲(スペクトル軌跡)の単色光に近い光となり易く、色純度は低下しにくい。一方で、符号αで示す色度座標の光と符号γで示す色度座標の波長480nmの光とが混色した場合、得られる光は、符号αで示す色度座標と符号γで示す色度座標を結んだ直線上の色度座標となる。このような光は、xy色度図の内側の領域で示されるような彩度が低い光となり、色純度が低下しやすい。
さらに、第2発光ピークの光(サブ光)は、緑色の等色関数のピーク位置である550nmから大きく外れた波長帯域の光である。等色関数のピーク位置に近い波長の光は、人間が知覚しやすく等色関数のピーク位置から離れた波長の光は、人間が知覚しにくい。すなわち、同じ強度であれば、第2発光ピークの光は、第1発光ピークの光と比べて知覚しにくい。そのため、同じ強度であれば、第1発光ピークの光と第2発光ピークの光とを含む緑色光は、第1発光ピークのみの緑色光と比べると知覚しにくく、暗く感じる。
このように、第2発光ピークの光は、色純度、明るさの観点から不要であり、除去するほうが好ましい光と言える。しかし、Tb3+が賦活された蛍光体において、蛍光体の母体材料や結晶構造等によりピーク強度は変化したとしても、第2発光ピーク〜第4発光ピークを完全に無くすことは困難である。
このように、Tb3+が賦活された蛍光体は、半値全幅が狭い緑色光を射出可能であるが、サブ光が存在するため、得られる蛍光の色純度が低下しやすいという課題がある。
このような課題に対する解決方法の1つとして、本実施形態の発光装置100を白色バックライトとして採用する液晶ディスプレイにおいて、カラーフィルタを透過させる際にサブ光を透過させず除去することが考えられる。
図5は、一般に液晶ディスプレイに用いられる青色カラーフィルタ、緑色カラーフィルタ、赤色カラーフィルタの透過スペクトルの一例である。このようなカラーフィルタを有する液晶ディスプレイにおいては、白色バックライトから射出された光をそれぞれのカラーフィルタを透過させることで色光とし、画像表示を行う。
しかし、図に示すカラーフィルタでは、符号Xで示す470nm以上530nm以下の波長帯域において、青色カラーフィルタおよび緑色カラーフィルタのいずれも光を透過させる。すなわち、図に示すカラーフィルタに470nm以上530nm以下の波長帯域の光を照射すると、当該光は、青色カラーフィルタおよび緑色カラーフィルタのいずれにおいても透過する。
そのため、図3に示すような発光スペクトルを示す光を、図5に示すような透過スペクトルを示すカラーフィルタに照射しても、サブ光は除去されないため、緑色の色純度が低下する。また、サブ光は青色カラーフィルタも透過するため、青色の色純度が低下する。さらに、サブ光が除去されない場合、カラーフィルタを透過して射出される緑色光は、上述したようにxy色度図の内側の領域で示されるような彩度が低い光となる。
図6は、液晶ディスプレイにおける色再現性を示すxy色度図である。赤色カラーフィルタ、青色カラーフィルタをそれぞれ透過して得られる赤色光、青色光が単一ピークで半値全幅の狭い理想的な発光ピークを示す場合、例えば、緑色光が波長540nmの純色の光である場合、図中破線で示すような範囲の色を再現可能な液晶ディスプレイとすることができる。一方、緑色蛍光体から射出されたサブ光がカラーフィルタで除去されない場合、例えば、図中実線で示すような範囲の色を再現可能な液晶ディスプレイとなる。図に示すxy色度図において、実線で囲む範囲は、破線で囲む範囲よりも狭く、色再現性が低下してしまうことが分かる。
これに対し、本実施形態の発光装置100では、第1粒子111からは、図3に示すようなサブ光を含む光が射出されるが、第1粒子111に対し励起光源30とは反対側に配置された第2粒子121が、第1粒子111から射出されたサブ光を効率良く吸収する。さらに、第2粒子121は、、サブ光よりも長波長の光である第2光を射出する。具体的には、第2粒子121に含まれる蛍光体が赤色蛍光体の場合には、第2粒子121は、サブ光を吸収し第2光として赤色光を射出する。第2粒子121に含まれる蛍光体が緑色蛍光体の場合には、第2粒子121は、サブ光を吸収し第2光として、サブ光よりも長波長の緑色光を射出する。
このように、発光装置100においては、サブ光を第2粒子121で吸収するのみならず、発光装置100から射出する光として利用可能な波長の光に変換して射出する。そのため、単にサブ光を除去して上述した不具合を解消する場合よりも、エネルギー効率良く所望の光を取り出すことができる。
図7〜9は、本実施形態の発光装置100において、第1粒子111で使用可能な蛍光体と、第2粒子121で使用可能な蛍光体との組み合わせの例について説明する説明図である。
図7は、第1粒子111で使用可能な蛍光体であるYSiO:Ce3+,Tb3+の発光スペクトル、第2粒子121で使用可能な緑色蛍光体であるβ−SiAlONの吸収スペクトルおよび発光スペクトルである。図中、β−SiAlONの吸収スペクトルは符号A1、発光スペクトルは符号E1で示している。
図に示すように、β−SiAlONの吸収スペクトルは、YSiO:Ce3+,Tb3+のサブ光の波長帯域と重なっており、YSiO:Ce3+,Tb3+の第1発光ピークの波長帯域とは重なっていない。さらに、β−SiAlONの発光スペクトルは、サブ光よりも長波長の波長帯域にある。そのため、これら材料の組合せで発光装置100を作製すると、好適にサブ光を除去し、変換された波長を射出する発光装置とすることができる。
図8は、第1粒子111で使用可能な蛍光体であるYSiO:Ce3+,Tb3+の発光スペクトル、第2粒子121で使用可能な赤色蛍光体であるCaAlSiN:Eu2+の吸収スペクトルおよび発光スペクトルである。図中、CaAlSiN:Eu2+の吸収スペクトルは符号A2、発光スペクトルは符号E2で示している。
図に示すように、CaAlSiN:Eu2+の吸収スペクトルは、YSiO:Ce3+,Tb3+のサブ光の波長帯域と重なっている。また、YSiO:Ce3+,Tb3+の第1発光ピークの波長帯域にも重なっているが、第1発光ピークの波長帯域における吸収率が、サブ光の波長帯域における吸収率よりも小さい。さらに、CaAlSiN:Eu2+の発光スペクトルは、サブ光よりも長波長の波長帯域にある。
本来であれば、第2粒子121を構成する蛍光体の吸収スペクトルがYSiO:Ce3+,Tb3+のサブ光のみを吸収する領域にあるのが望ましい。しかし、第2粒子121として図8に示すような蛍光体を用いる場合であっても、第2粒子121を構成する蛍光体がYSiO:Ce3+,Tb3+の第1発光ピーク、サブ光いずれも吸収し、かつ第1発光ピークの波長帯域における吸収率がサブ光の波長帯域における吸収率より小さい場合には、蛍光体の混合量を調整すればサブ光を除去可能である。
そのため、これらの材料を用いて発光装置100を作製する場合には、CaAlSiN:Eu2+の使用量を調整することで、好適にサブ光を除去し、変換された波長を射出する発光装置とすることができる。
図9は、第1粒子111で使用可能な蛍光体であるYSiO:Ce3+,Tb3+の発光スペクトル、第2粒子121で使用可能な赤色蛍光体であるKSiF:Eu2+の吸収スペクトルおよび発光スペクトルである。図中、KSiF:Eu2+の吸収スペクトルは符号A3、発光スペクトルは符号E3で示している。
図に示すように、KSiF:Eu2+の吸収スペクトルは、YSiO:Ce3+,Tb3+のサブ光の波長帯域と重なっており、YSiO:Ce3+,Tb3+の第1発光ピークの波長帯域とは重なっていない。さらに、KSiF:Eu2+の発光スペクトルは、サブ光よりも長波長の波長帯域にある。そのため、これら材料の組合せで発光装置100を作製すると、好適にサブ光を除去し、変換された波長を射出する発光装置とすることができる。
例えば、上述した発光装置100において、第1粒子111にYSiO:Ce3+,Tb3+が含まれ、第2粒子121にKSiF:Eu2+が含まれることとする。この場合、光源31から波長450nmの青色光が射出される。また、励起光源30から射出される波長370nmの紫外光を吸収した第1粒子111が、緑色光を射出する。さらに、励起光源30から射出された励起光、光源31から射出された青色光、第1粒子111から射出されたサブ光を吸収した第2粒子121が、赤色光を射出する。このような発光装置100からは、これら青色光、緑色光、赤色光が混色した白色光が射出される。
ここで、上記発光装置100では、各色光の半値全幅が狭い。さらに、発光装置100からは第1粒子111が射出するサブ光が除去されている。そのため、以上のような構成の発光装置100によれば、バックライトとして用いたときに良好な色再現性を示す新規な発光装置となる。
[第2実施形態]
図10は、本発明の第2実施形態に係る発光装置101の説明図である。以下の実施形態において、既に説明した実施形態と共通する構成要素については同じ符号を付し、詳細な説明は省略する。
発光装置101は、隔壁20が形成する開口部21内に、波長変換層51を有している。波長変換層51では、複数の第1粒子111と、複数の第2粒子121とが、例えば熱硬化性のシリコーン樹脂を形成材料とする封止樹脂113に均一に分散している。波長変換層51は、励起光源30および光源31の上に配置されている。具体的には、複数の第1粒子111と、複数の第2粒子121とは、熱硬化性のシリコーン樹脂と混練した組成物として開口部21内に配置され、例えば150℃で3時間加熱してシリコーン樹脂を硬化させることで固定されている。
このような構成の発光装置101であっても、一部の第2粒子121は、一部の第1粒子111に対し励起光源30とは反対側に配置されている。そのため、第2粒子121は、第1粒子111から射出されるサブ光を吸収して、サブ光よりも長波長の光を射出することができる。
そのため、以上のような構成の発光装置101によれば、第1実施形態の発光装置100と同様の効果が得られ、バックライトとして用いたときに良好な色再現性を示す新規な発光装置となる。
[第3実施形態]
図11は、第3実施形態の発光装置102を示す概略平面図である。図12は、図11の線分XII−XIIにおける矢視断面図である。図11は、第1実施形態の図1に対応した図であり、図12は、第1実施形態の図2に対応した図である。
発光装置102は、隔壁20が形成する開口部21内に励起光源30を有しており、さらに励起光源30を覆う波長変換層52を有している。
波長変換層52は、励起光源30を覆う第1層130と、第1層130を覆う第2層120と、を有している。第1層130は、複数の第1粒子111と、複数の青色発光粒子131とを含んでいる。第2層120は、複数の第2粒子121を含んでいる。
青色発光粒子131は、励起光源30から射出された紫外線(励起光)を吸収し、430nm以上510nm未満の波長帯域に発光ピークを有する光を射出する青色蛍光体を含んでいる。このような青色蛍光体としては、Sr:Sn4+、SrAl1125:Eu2+、BaMgAl1017:Eu2+、SrGa:Ce3+、CaGa:Ce3+、(Ba,Sr)(Mg,Mn)Al1017:Eu2+、(Sr,Ca,Ba,Mg)10(POCl:Eu2+、BaAlSiO:Eu2+、Sr:Eu2+、Sr(POCl:Eu2+、(Sr,Ca,Ba)(POCl:Eu2+、BaMgAl1627:Eu2+、(Ba,Ca)(PO)Cl:Eu2+、BaMgSi:Eu2+、SrMgSi:Eu2+などを挙げることができる。
以上のような構成の発光装置102によっても、第1実施形態の発光装置100と同様の効果が得られ、バックライトとして用いたときに良好な色再現性を示す新規な発光装置とすることができる。
なお、本実施形態の発光装置102においては、複数の第1粒子111と、複数の青色発光粒子131とを含む第1層130と、複数の第2粒子121を含む第2層120とを有することとしたが、これに限らない。本実施形態に発光装置においては、第1粒子111、第2粒子121および青色発光粒子131がすべて含まれる層により、励起光源30が覆われる構成であってもよい。
[第4実施形態]
図13は、第4実施形態の発光装置102を示す概略平面図である。図14は、図13の線分XIV−XIVにおける矢視断面図である。図13は、第1実施形態の図1に対応した図であり、図14は、第1実施形態の図2に対応した図である。
発光装置103は、隔壁20を有している。隔壁20は、開口部21をさらに2つのサブ開口部21x、21yに分割するサブ隔壁20xを有している。サブ隔壁20xは、隔壁20と同じ形成材料を用い、同時に形成することができる。また、サブ隔壁20xの表面は、光反射性の材料で覆われていてもよい。
サブ開口部21x内には、励起光源30が配置され、さらに励起光源30を覆う波長変換層50が設けられている。本実施形態の波長変換層50においては、第2粒子121に緑色蛍光体であるβ−SiAlONが含まれていることとする。
一方、サブ開口部21y内には、光源31が配置され、さらに光源31を覆う波長変換層53が設けられている。波長変換層53は、複数の赤色発光粒子141と、例えば熱硬化性のシリコーン樹脂を形成材料とする封止樹脂142と、を含んでいる。複数の赤色発光粒子141は、封止樹脂142中に分散している。
赤色発光粒子141は、光源31から射出された青色光を吸収し、580nm以上700nm以下の波長帯域に発光ピークを有する光を射出する蛍光体を含んでいる。なかでも、赤色の光を射出する蛍光体を含んでいるとよい。
このような蛍光体としては、YS:Eu3+、YAlO:Eu3+、Ca(SIO:Eu3+、LiY(SiO:Eu3+、YVO:Eu3+、CaS:Eu3+、Gd:Eu3+、GdS:Eu3+、Y(P,V)O:Eu3+、(La,Y)S:Eu3+、MgGeOF:Mn4+、MgGe:Mn4+、KSiF:Mn4+、KEu2.5(WO6.25、SrSi:Eu2+、NaEu2.5(WO6.25、KEu2.5(MnO6.25、NaEu2.5(MoO6.25、(Sr,Ca)AlSiN:Eu2+、CaAlSiN:Eu2+、SrSiN:Eu2+、SrSrAlSiN:Eu2+、CaSi:Eu2+、SrSi:Eu2+、BaAlSi:Eu2+、SrSi:Eu2+、SrSiAl:Eu2+、SrSc:Eu2+、(Sr,Ba)SiO:Eu2+、MgTiO:Mn2+などを用いることができる。
発光装置103においては、励起光源30から射出される波長370nmの紫外光を吸収した第1粒子111が、緑色光を射出する。また、励起光源30から射出された励起光、第1粒子111から射出されたサブ光を吸収した第2粒子121が、緑色光を射出する。そのため、サブ開口部21xからは、緑色光が射出される。
一方、光源31からは、波長450nmの青色光が射出される。また、光源31から射出された青色光を吸収した赤色発光粒子141が、赤色光を射出する。そのため、サブ開口部21yからは、青色光と赤色光とが射出される。
これらの結果、発光装置103からは、これら青色光、緑色光、赤色光が混色した白色光が射出される。以上のような構成の発光装置103によっても、第1実施形態の発光装置100と同様の効果が得られ、バックライトとして用いたときに良好な色再現性を示す新規な発光装置とすることができる。また、サブ開口部21xとサブ開口部21yとが分けられているため、各色光のスペクトルの調整が容易である。
[第5実施形態]
図15は、第5実施形態の発光装置104を示す概略平面図である。図15は、第4実施形態の図13に対応した図である。
発光装置104は、サブ開口部21x内には、励起光源30が配置され、さらに励起光源30を覆う波長変換層50が設けられている。本実施形態の波長変換層50においては、第2粒子121に赤色蛍光体であるCaAlSiN:Eu2+が含まれていることとする。
一方、サブ開口部21y内には、光源31が配置され、さらに光源31を覆う透明樹脂層150が設けられている。透明樹脂層150の形成材料としては、例えば熱硬化性のシリコーン樹脂を用いることができる。
このような発光装置104においては、サブ開口部21xからは、緑色光と赤色光とが射出される。一方、サブ開口部21yからは青色光が射出される。
これらの結果、発光装置104からは、これら青色光、緑色光、赤色光が混色した白色光が射出される。以上のような構成の発光装置104によっても、第1実施形態の発光装置100と同様の効果が得られ、バックライトとして用いたときに良好な色再現性を示す新規な発光装置とすることができる。また、サブ開口部21xとサブ開口部21yとが分けられているため、各色光のスペクトルの調整が容易である。
[第6実施形態]
図16は、第6実施形態の発光装置105を示す概略平面図である。図16は、第4実施形態の図13に対応した図である。
発光装置105は、サブ開口部21x内には、励起光源30が配置され、さらに励起光源30を覆う波長変換層50が設けられている。本実施形態の波長変換層50においては、第2粒子121に赤色蛍光体であるCaAlSiN:Eu2+が含まれていることとする。
一方、サブ開口部21y内には、励起光源32が配置され、さらに励起光源32を覆う波長変換層54が設けられている。本実施形態においては、励起光源32として、波長約370nmの紫外光を射出する紫外光LEDを用いることとして説明する。
波長変換層54は、複数の青色発光粒子131と、例えば熱硬化性のシリコーン樹脂を形成材料とする封止樹脂142と、を含んでいる。複数の青色発光粒子131は、封止樹脂142中に分散している。
このような発光装置105においては、サブ開口部21xからは、緑色光と赤色光とが射出される。一方、サブ開口部21yからは青色光が射出される。
これらの結果、発光装置105からは、これら青色光、緑色光、赤色光が混色した白色光が射出される。以上のような構成の発光装置105によっても、第1実施形態の発光装置100と同様の効果が得られ、バックライトとして用いたときに良好な色再現性を示す新規な発光装置とすることができる。また、サブ開口部21xとサブ開口部21yとが分けられているため、各色光のスペクトルの調整が容易である。
[第7実施形態]
図17は、第7実施形態のバックライトを示す模式図である。
本実施形態のバックライト500は、発光装置501、導光板502、拡散板503、反射部材504を有している。
発光装置501は、上述した本発明に係る発光装置であって、白色光を射出するように構成を調整したものを用いる。
導光板502は、例えばアクリル樹脂等の光透過性を有する樹脂からなる板体である。導光板502の端面502xには、発光装置501が設けられている。導光板502は、発光装置501から射出された光を端面502xから入射させ、内部で伝播させる間に第1の主面502aから射出させる機能を有する。導光板502としては、公知のものを用いることができる。
拡散板503は、導光板502の第1の主面502aに面して設けられている。拡散板503は、第1の主面502aから射出された光を拡散させ、光の進行方向を変更する機能を有する。拡散板503としては、公知のものを用いることができる。
反射部材504は、導光板502の第2の主面502bに面して設けられている。反射部材504は、第2の主面502bから射出された光を反射して、導光板502の内部に入射させる機能を有する。反射部材504で反射した光は、導光板502の内部に入射し、一部の光は導光板の内部を伝播せずに主面502aから射出し、一部の光は更に導光板の内部を伝播した後に主面502aから射出する。
反射部材504は、第2の主面502bと離間して設けられていてもよく、第2の主面502bに接して設けられていてもよい。反射部材504としては、公知のものを用いることができる。
以上のような構成のバックライト500によれば、上述した本発明の発光装置を備え、良好な色再現性を示すものとなる。
[第8実施形態]
図18は、第8実施形態の表示装置を示す模式図である。
本実施形態の表示装置1000は、上述したバックライト500と、バックライト500から射出された白色光を変調する液晶装置600と、を有する。
液晶装置600は、第1基板610と、第2基板620と、第1基板610および第2基板620に挟持された液晶層630と、第1基板610に対向して設けられた第1偏光板640と、第2基板620に対向して設けられた第2偏光板650と、を備える。
第1基板610は、透明基板上にスイッチング素子等の素子層が形成された素子基板611と、素子基板611の液晶層630側に設けられた透明電極612と、を有している。
第2基板620は、透明基板621と、透明基板621の液晶層630側に設けられた格子状のブラックマトリクス622と、ブラックマトリクス622の液晶層630側に設けられたカラーフィルタ層623と、カラーフィルタ層623の液晶層630側に設けられた透明電極624と、を有している。
カラーフィルタ層623は、ブラックマトリクス622の開口に応じて設けられた赤色カラーフィルタ623R、緑色カラーフィルタ623G、青色カラーフィルタ623Bを有している。赤色カラーフィルタ623R、緑色カラーフィルタ623G、青色カラーフィルタ623Bの透過率は、例えば、図5に示したようなものである。
第1偏光板640と第2偏光板650は、互いの吸収軸が、例えばクロスニコルの配置で配置されている。
以上のような構成の表示装置1000によれば、上述した本発明の発光装置を備え、良好な色再現性を示すものとなる。
以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上述した実施形態においては、第1粒子111に励起光を照射する励起光源30は、紫外光を射出することとしたがこれに限らない。第1粒子111に用いるTb3+が賦活された蛍光体が青色光で励起するものであれば、励起光源30として青色光を射出するものを用いることができる。
また、上述した実施形態においては、第2粒子121が含まれる層において、第2粒子121のみ用いる構成について説明したがこれに限らない。例えば、第2粒子121として、上述した緑色蛍光体であるβ−SiAlONを含むものを用い、同じ層に励起光を吸収して580nm以上700nm以下の波長帯域に発光ピークを有する第3光を射出する第3粒子を含むこととしてもよい。第3粒子としては、上述した赤色発光粒子を用いることができる。
以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
評価にあたっては、以下に示す実施例および比較例の各構成について、射出される光のスペクトルを試算し、色再現性を評価した。
具体的には、まず、各構成の光源および各発光粒子から射出される光を混色した場合に得られる、理想的な白色のスペクトルを試算した。この際、白色スペクトルの色度座標はJIS Z8701「色の表示方法」で示される標準の光D65(0.3127,0.3290)とした。なお、計算上、各粒子が分散している封止樹脂は、光に対して影響を与えないものとして扱った。
次いで、算出された白色スペクトルと、図5に示すカラーフィルタの透過スペクトルとを掛け合わせ、青色画素、緑色画素、赤色画素を透過する光のスペクトル、および色度座標r(x,y)、g(x,y)、b(x,y)を試算した。
xy色度図において得られたr(x,y)、g(x,y)、b(x,y)で囲まれた領域を色再現性領域とし、NTSC比、BT.2020比を算出した。
なお、NTSC比とは、NTSC(National Television System Committee:全米テレビジョン放送方式標準化委員会)規格に係るNTSC色度領域の面積を基準(100%)としたときの、色度領域における面積比のことである。
また、BT.2020比とは、ITU−R(International Telecommunication Union Radiocommunications Sector:国際電気通信連合 無線通信部門)が策定したBT.2020規格に係るBT.2020色度領域の面積を基準(100%)としたときの、色度領域における面積比のことである。
NTSC比、BT.2020比ともに、数値が大きいほど色再現性がよいことを意味する。
(実施例1,2)
上述した第2実施形態の図10で示した発光装置を用いて白色発光装置のモデルを構成した。励起光源、光源、用いた第1粒子、第2粒子については表1にまとめて示す。第1粒子、第2粒子は、同じ層において分散しているものとした。
(実施例3〜6)
上述した第3実施形態の図11,12で示した発光装置を用いて白色発光装置のモデルを構成した。励起光源、光源、用いた第1粒子、第2粒子および青色発光粒子については表1にまとめて示す。第1粒子、第2粒子および青色発光粒子は、同じ層において分散しているものとした。
(比較例1,2)
波長変換層50および波長変換層53以外は、上述した第4実施形態の図13,14で示した発光装置103と同様の構成の白色発光装置のモデルを構成した。励起光源、光源、用いた第1粒子、第2粒子については、対応する番号の実施例と同じものを用いた。表1にまとめて示す。また、励起光源30と同じサブ開口部21x内には、封止樹脂中に第1粒子が分散した波長変換層が配置され、光源31と同じサブ開口部21y内には、封止樹脂中に第1粒子と第2粒子である赤色発光粒子とが分散した波長変換層が配置されているものとした。
(比較例3〜6)
波長変換層50および波長変換層54以外は、上述した第6実施形態の図16で示した発光装置105と同様の構成の白色発光装置のモデルを構成した。励起光源、光源、用いた第1粒子、第2粒子および青色発光粒子については、対応する番号の実施例と同じものを用いた。表1にまとめて示す。また、励起光源30と同じサブ開口部21x内には、封止樹脂中に第1粒子および青色発光粒子が分散した波長変換層が配置され、励起光源32と同じサブ開口部21y内には、封止樹脂中に第2粒子である赤色発光粒子が分散した波長変換層が配置されているものとした。
(評価)
上記実施例1〜6、比較例1〜6の発光装置から射出される光について、赤色、緑色、青色の各色のカラーフィルタを透過させた。得られる赤色光、緑色光、青色光について、NTSC比およびBT.2020比を求め、色再現性を評価した。
実施例の評価結果を表2、比較例の評価結果を表3にそれぞれ示す。
Figure 2017152566
Figure 2017152566
Figure 2017152566
評価の結果、用いる第1粒子、第2粒子、青色発光粒子の種類が同じであっても、本願発明の構成を採用することで、色再現性が向上することが分かった。
以上の結果より、本発明が有用であることが分かった。
30,32…励起光源、31…光源、100〜105,501…発光装置、110,130…第1層、111…第1粒子、120…第2層、121…第2粒子、131…青色発光粒子、500…バックライト、1000…表示装置

Claims (10)

  1. 励起光を射出する励起光源と、
    前記励起光を吸収し、前記励起光よりも長波長の蛍光に変換して射出する複数の第1粒子と、
    前記第1粒子から射出される蛍光のうち一部の光を吸収し、前記一部の光よりも長波長の光に変換して射出する複数の第2粒子と、を備え、
    前記第1粒子は、3価テルビウムが賦活された蛍光体を含み、
    前記蛍光は、3価テルビウムの励起エネルギー準位に応じた複数の発光ピークを有し、510nm以上550nm以下の波長帯域に発光ピークを有する第1光と、470nm以上500nm以下の波長帯域に発光ピークを有するサブ光と、を含み、
    前記第2粒子は、前記サブ光を吸収し、前記サブ光よりも長波長の光である第2光を射出し、
    前記複数の第2粒子のうち少なくとも一部は、前記第1粒子に対し前記励起光源とは反対側に配置されている発光装置。
  2. 前記第2光は、580nm以上700nm以下の波長帯域に発光ピークを有する請求項1に記載の発光装置。
  3. 前記第2光は、510nm以上550nm以下の波長帯域に発光ピークを有する請求項1に記載の発光装置。
  4. 前記励起光を吸収し、580nm以上700nm以下の波長帯域に発光ピークを有する第3光を射出する第3粒子を含む請求項2または3に記載の発光装置。
  5. 前記複数の第1粒子を含み前記励起光源を覆う第1層と、
    前記複数の第2粒子を含み前記第1層を覆う第2層と、が積層されている請求項1から4のいずれか1項に記載の発光装置。
  6. 前記励起光源は、前記励起光として紫外光を射出する請求項1から5のいずれか1項に記載の発光装置。
  7. 430nm以上510nm未満の波長帯域に発光ピークを有する光を射出する光源を有する請求項1から6のいずれか1項に記載の発光装置。
  8. 前記励起光を吸収し、430nm以上510nm未満の波長帯域に発光ピークを有する光を射出する青色発光粒子を含む請求項1から6のいずれか1項に記載の発光装置。
  9. 請求項1から8のいずれか1項に記載の発光装置を含み白色光を射出する白色発光装置を備えるバックライト。
  10. 請求項9に記載のバックライトと、
    前記白色発光装置から射出された白色光を変調する液晶パネルと、
    前記液晶パネルによって変調された光が入射するカラーフィルタと、を有する表示装置。
JP2016034333A 2016-02-25 2016-02-25 発光装置、バックライト、表示装置 Pending JP2017152566A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016034333A JP2017152566A (ja) 2016-02-25 2016-02-25 発光装置、バックライト、表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016034333A JP2017152566A (ja) 2016-02-25 2016-02-25 発光装置、バックライト、表示装置

Publications (1)

Publication Number Publication Date
JP2017152566A true JP2017152566A (ja) 2017-08-31

Family

ID=59739164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016034333A Pending JP2017152566A (ja) 2016-02-25 2016-02-25 発光装置、バックライト、表示装置

Country Status (1)

Country Link
JP (1) JP2017152566A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065887A1 (ja) * 2017-09-29 2019-04-04 デンカ株式会社 表面処理蛍光体及びその製造方法、並びに発光装置
JP2019102796A (ja) * 2017-11-28 2019-06-24 日亜化学工業株式会社 発光装置
WO2020100473A1 (ja) * 2018-11-15 2020-05-22 株式会社日立ハイテク 広帯域光源装置、及び生化学分析装置
JP2020129641A (ja) * 2019-02-12 2020-08-27 日亜化学工業株式会社 発光装置及びその製造方法
JP2020188044A (ja) * 2019-05-10 2020-11-19 国立研究開発法人物質・材料研究機構 発光装置
US10950764B2 (en) 2017-11-28 2021-03-16 Nichia Corporation Light-emitting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065887A1 (ja) * 2017-09-29 2019-04-04 デンカ株式会社 表面処理蛍光体及びその製造方法、並びに発光装置
JP2019102796A (ja) * 2017-11-28 2019-06-24 日亜化学工業株式会社 発光装置
US10950764B2 (en) 2017-11-28 2021-03-16 Nichia Corporation Light-emitting device
WO2020100473A1 (ja) * 2018-11-15 2020-05-22 株式会社日立ハイテク 広帯域光源装置、及び生化学分析装置
JP2020087974A (ja) * 2018-11-15 2020-06-04 株式会社日立ハイテク 広帯域光源装置、及び生化学分析装置
JP7102321B2 (ja) 2018-11-15 2022-07-19 株式会社日立ハイテク 広帯域光源装置、及び生化学分析装置
US11754493B2 (en) 2018-11-15 2023-09-12 Hitachi High-Tech Corporation Broadband light source device and biochemical analyzing device
JP2020129641A (ja) * 2019-02-12 2020-08-27 日亜化学工業株式会社 発光装置及びその製造方法
JP7239814B2 (ja) 2019-02-12 2023-03-15 日亜化学工業株式会社 発光装置及びその製造方法
JP2020188044A (ja) * 2019-05-10 2020-11-19 国立研究開発法人物質・材料研究機構 発光装置
JP7226789B2 (ja) 2019-05-10 2023-02-21 国立研究開発法人物質・材料研究機構 発光装置

Similar Documents

Publication Publication Date Title
US9476568B2 (en) White light illumination system with narrow band green phosphor and multiple-wavelength excitation
JP6549165B2 (ja) 光源装置および発光装置
JP2017152566A (ja) 発光装置、バックライト、表示装置
KR100946015B1 (ko) 백색 발광장치 및 이를 이용한 lcd 백라이트용 광원모듈
JP6262211B2 (ja) 照明装置、照明機器および表示装置
JP5329060B2 (ja) 発光体およびこれを用いた光デバイス
JP5864851B2 (ja) 発光装置
JP6163754B2 (ja) 発光装置に用いるバンドパスフィルタおよびこれを用いた発光装置
JP4945436B2 (ja) 白色発光ランプとそれを用いたバックライト、表示装置および照明装置
WO2012029305A1 (ja) Led電球
WO2011129429A1 (ja) Led発光装置
KR20130010283A (ko) 백색 발광 장치 및 이를 이용한 디스플레이 및 조명장치
US11756939B2 (en) Light emitting element with particular phosphors
JP5918827B2 (ja) 発光装置
JP6655716B2 (ja) オプトエレクトロニクス部品、ディスプレイ用背景照明およびオプトエレクトロニクス部品の製造方法
JP2008235458A (ja) 白色発光装置、これを用いてなるバックライトおよび表示装置並びに照明装置
JP6106307B2 (ja) 発光装置、並びに、当該発光装置を用いた照明器具及び表示装置
JP2005332963A (ja) 発光装置
JP6835000B2 (ja) 発光装置及び光源
JP6405738B2 (ja) 発光装置
JP7082272B2 (ja) 発光装置
KR100665221B1 (ko) 백색 발광 장치
CN108417694B (zh) 发光器件封装件和电子装置
US20190371972A1 (en) Light emitting device
JP2017157721A (ja) 発光装置、バックライト、表示装置