JP2017150930A - 光学式物理量測定装置及びその光源制御方法 - Google Patents

光学式物理量測定装置及びその光源制御方法 Download PDF

Info

Publication number
JP2017150930A
JP2017150930A JP2016033226A JP2016033226A JP2017150930A JP 2017150930 A JP2017150930 A JP 2017150930A JP 2016033226 A JP2016033226 A JP 2016033226A JP 2016033226 A JP2016033226 A JP 2016033226A JP 2017150930 A JP2017150930 A JP 2017150930A
Authority
JP
Japan
Prior art keywords
light source
state
physical quantity
light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016033226A
Other languages
English (en)
Other versions
JP6826814B2 (ja
Inventor
祐司 合田
Yuji Goda
祐司 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2016033226A priority Critical patent/JP6826814B2/ja
Publication of JP2017150930A publication Critical patent/JP2017150930A/ja
Application granted granted Critical
Publication of JP6826814B2 publication Critical patent/JP6826814B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】動作開始又は再開直後から高精度に媒質中の測定対象分子の数量や密度を測定する光学式物理量測定装置及びその光源制御方法を提供すること。【解決手段】測定用光検出部102は、光源101が出力する光に応じた信号を測定出力として出力する。光源状態検出部105は、光源101の状態を取得する。光源制御部103は、光源101の駆動状態を制御する。演算部104は、測定用光検出部102からの測定出力に基づいて測定対象分子の数量又は密度を算出する。光源制御部103は、演算部104からの命令により光源101に対して複数の駆動条件で、かつ、光源状態検出部105から取得される光源状態に応じて電力供給状態を制御する。演算部104は、光源制御部103を介して光源101を周期的に駆動する。【選択図】図1

Description

本発明は、光学式物理量測定装置及びその光源制御方法に関し、より詳細には、測定装置本体の動作開始又は再開直後から高精度に媒質中の測定対象分子の数量や密度を測定することができる光学式物理量測定装置及びその光源制御方法に関する。
従来、赤外線や紫外線、X線などの光の吸収、回折、散乱等を用いて媒質中の測定対象分子の数量や密度を測定する方法が知られている。
例えば、赤外線光源を用いて測定対象ガスの濃度測定を行うガス濃度測定装置としては、非分散赤外線吸収型(Non−Dispersive Infrared)ガス濃度測定装置が知られている。非分散赤外線吸収型ガス濃度測定装置は、ガスの種類によって吸収される赤外線の波長が異なることを利用し、この吸収量を検出することによりそのガス濃度を測定する。
この原理を用いたガス濃度測定装置として、例えば、測定対象ガスが吸収特性を持つ波長に限定した赤外線を透過するフィルタ(透過部材)と赤外線センサとを組み合わせ、測定対象ガスが吸収する赤外線の吸収量を測定することによってガスの濃度を測定するように構成された装置が挙げられる。
また、この原理を応用した炭酸ガス濃度測定装置が、特許文献1に開示されている。この特許文献1に開示された炭酸ガス濃度測定装置は、測定対象ガスによる赤外線の吸収が生じない波長域(以下、「測定対象ガスによる非吸収帯域」、又は単に「非吸収帯域」と称する場合がある)の赤外線を選択的に透過する参照用フィルタと、測定対象ガスによる赤外線の吸収が生じる波長域(以下、「測定対象ガスによる吸収帯域」、又は単に「吸収帯域」と称する場合がある)の赤外線を選択的に透過する測定用フィルタとをそれぞれ配置した赤外線検出素子を複数配置し、それぞれの赤外線検出素子からの出力信号に基づいて測定対象ガスの検出や濃度測定を行う。
このような炭酸ガス濃度測定装置及び炭酸ガス検出方法は、検出精度や出力の安定性を向上させることができることが、特許文献1には記載されている。以下、炭酸ガスを含めてガス濃度を測定する装置及び方法を総称してガス濃度測定装置及びガス濃度測定方法という。
例えば、特許文献1に開示された炭酸ガス濃度測定装置の動作原理は、波長による吸収度合いの差異を炭酸ガス検出に応用したものである。光源であるセラミックヒータから放射された赤外線において、波長4.3μm付近の赤外線は、気体容器内の炭酸ガスにより吸収されて、その放射強度が低下する。一方、波長3.9μm付近の赤外線は、炭酸ガスによる吸収はなく、その放射強度が低下することはない。そして、ガス測定装置の気体容器内を通過した異なる波長を含む赤外線から、波長4.3μmと波長3.9μmとの2波を、2波それぞれに対応した通過帯域を有する2種類の光学フィルタで濾波選別する。これら波長の異なる赤外線それぞれの放射強度に基づいて、気体容器内の炭酸ガスの濃度が算出される。
セラミックヒータの放射強度分布は、炭酸ガスの赤外線吸収スペクトルを含み、2μm〜50μmの波長領域でブロードであり、炭酸ガスの赤外線吸収スペクトル付近の波長領域で十分な放射強度を有する。したがって、光源にセラミックヒータを用いたガス測定装置の検出精度及び出力の安定性は向上する。
特開平9−33431号公報
例えば、従来技術による非分散赤外線吸収型ガス濃度測定装置は、種々の方法で光源を動作させ赤外線検出部で検出された信号を用いている。このとき、例えば、光源を所定時間点灯させている間に赤外線検出部から検出された信号の最大値や、光源が点灯している時の所定期間に赤外線検出部から検出された信号を積分した値や、光源の点灯開始から所定時間経過後に赤外線検出部で検出された信号などを用いている。
また、実際のガス濃度測定装置の使用においては、必要とされるガス濃度測定結果の更新速度に応じて光源を周期的に点滅させたり、光源の発光強度を周期的に変化させることで消費電力を低減することができる。この周期動作による低消費電力化は、例えば、電力供給を断つ消灯状態と、ある既定の駆動条件で電力を供給する点灯状態を交互に繰り返すことによって実現できるし、また、上述した消灯の代わりに他のある既定の駆動条件で電力を供給する状態を交互に繰り返すことによっても実現できる。
しかし、光源は電力の供給に応じて発熱し、光源の温度は時間とともに変化する。このとき、光源の温度変化によって光源から出力される赤外線の光量やスペクトルも変化する。このとき、白熱電球やセラミックヒータ、MEMS(Micro Electro Mechanical Systems)ヒータを光源として使用する場合は、熱源でもある光源からの黒体輻射として光が放出されるので、原理的に光源の温度変化は光量やスペクトルの変化となる。
また、水銀ランプを光源として使用する場合には、光源周囲の温度が変化するとランプ内の水銀の蒸気圧が変化することに依り、半導体材料を用いたLEDなどを光源として使用する場合は半導体の温度特性により、光源としての温度特性が現れ、光量やスペクトルが変化する。
上述した周期動作を一定周期のもと十分な時間繰り返すと、例えば、周期動作が点滅動作である場合、点灯開始直後の光源の温度、赤外線の光量やスペクトルは周期毎に各々毎回同じ値になり、毎回の点灯開始から一定の時間経過後に光源から出力される赤外線の光量やスペクトルは毎回同じ値になることが期待されるが、光源が十分に冷えている状態からの点滅動作開始直後等は前述の物理量が毎回同じ値になることは期待できない。よって、ガス濃度測定装置の動作開始直後から精度よくガス濃度を算出するためには何らかの対策が必要となる。
これらの課題は、非分散赤外線吸収型ガス濃度測定装置に限らず、光源を有し、光の吸収、回折、散乱等を用いて媒質中の測定対象分子の数量や密度を測定する物理量測定装置に共通のものであり、また、測定対象媒質についても気相、液相、固相に依らず共通のものである。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、測定装置本体の動作開始又は再開直後から高精度に媒質中の測定対象分子の数量や密度を測定することができる光学式物理量測定装置及びその光源制御方法を提供することにある。
本発明の第1の態様は、複数の駆動条件を用いて装置本体内に収納された光源を周期的に駆動する光学式物理量測定装置であって、前記光源が出力する光に応じた信号を測定出力として出力する測定用光検出部と、前記光源の状態を取得する光源状態検出部と、前記光源の駆動状態を制御する光源制御部と、前記測定用光検出部からの測定出力に基づいて測定対象分子の数量又は密度を算出する演算部と、を備える。
また、本発明の第2の態様は、複数の駆動条件を用いて光源を周期的に駆動する光学式物理量測定装置の光源制御方法であって、第n(nは1以上の整数)周期目の開始時に所定の駆動条件により前記光源を駆動する第1のステップと、前記第1のステップの期間中の所定のタイミングで前記光源の状態を取得する第2のステップと、前記第2のステップで取得した前記光源の状態に基づいて該第1のステップによる駆動を継続するか終了するかを決定する第3のステップと、を有する。
本発明の一態様によれば、物理量測定装置の動作開始、又は再開直後から高精度に媒質中の測定対象分子の数量や密度を測定することが可能な光学式物理量測定装置及びその光源制御方法が実現できる。
本発明に係る光学式物理量測定装置の実施形態1を説明するための構成図である。 本発明に係る光学式物理量測定装置の実施形態2を説明するための構成図である。 本実施形態における物理量測定装置の物理量測定方法を説明するためのフローチャートを示す図である。 (a)乃至(d)は、本実施形態における物理量測定装置が有する光源制御方法の優位性を示す実測データを示す図である。 本実施形態における物理量測定装置の他の物理量測定方法を説明するためのフローチャートを示す図である。
以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の具体的な構成について記載されている。しかしながら、このような特定の具体的な構成に限定されることなく他の実施態様が実施できることは明らかであろう。また、以下の実施形態は、特許請求の範囲に係る発明を限定するものではなく、実施形態で説明されている特徴的な構成の組み合わせの全てを含むものである。
以下、図面を参照して本発明の各実施形態について説明する。
<実施形態1>
図1は、本発明に係る光学式物理量測定装置の実施形態1を説明するための構成図である。
図1に示すように、本実施形態1に係る光学式物理量測定装置100は、複数の駆動条件を用いて装置本体内に収納された光源101を周期的に駆動する光学式物理量測定装置100(以下、単に物理量測定装置という)である。
測定用光検出部102は、光源101が出力する光に応じた信号を測定出力として出力する。光源状態検出部105は、光源101の状態を取得する。光源制御部103は、光源101の駆動状態を制御する。演算部104は、測定用光検出部102からの測定出力に基づいて測定対象分子の数量又は密度を算出する。
また、光源制御部103は、演算部104からの命令により光源101に対して複数の駆動条件で電力供給状態を制御し、かつ、光源状態検出部105から取得される光源状態に応じて電力供給状態を制御する。また、演算部104は、光源制御部103を介して光源101を周期的に駆動する。
本発明に係る光学式物理量測定装置の光源制御方法は、複数の駆動条件を用いて光源101を周期的に駆動する光学式物理量測定装置の光源制御方法であり、第n(nは1以上の整数)周期目の開始時に所定の駆動条件により光源101を駆動する第1のステップと、第1のステップの期間中の所定のタイミングで光源101の状態を取得する第2のステップと、第2のステップで取得した光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する第3のステップと、を有する。
また、第n(nは1以上の整数)周期目の開始時に実行される光源101の駆動条件は、複数の駆動条件の内の1つである。また、第2のステップでは、光源101の抵抗値に基づいて光源101の状態を取得する。また、第2のステップでは、参照用光検出部(図示せず)の出力に基づいて光源101の状態を取得する。また、nは1であってもよい。
つまり、第n(nは1以上の整数)周期目の開始時には1種類以上の所定の駆動条件により、1回以上実行される、光源101を駆動する第1のステップと、第1のステップの期間中の所定のタイミングで光源101の状態を取得する、1回以上実行される、第2のステップと、第2のステップで取得した光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、を用いて光源101の駆動を制御する。
まずここで、「光源を駆動する」とは、光源101に対して電力が供給されている状態を意味する。この電力の供給は、電流制御や電圧制御によって行われても良い。
また、「光源を周期的に駆動する」とは、2種類以上の複数の駆動条件により光源101を駆動する期間を複数回繰り返すことを意味する。ここで、駆動条件とは、光源101に対して供給又は印加する電力、電圧又は電流の大きさ(0を含む)及び供給時間又は印加時間である。2種以上の複数の駆動条件は、定電力を供給する条件と、電力を供給しない条件の2種でも良い。この場合、この2種の駆動条件を交互に繰り返すことで、光源101を間欠駆動することができる。
また、「周期」とは、複数の駆動条件により光源101を駆動する際、ある駆動条件の変化があって以降、この駆動条件の変化と同じ変化が生じるまでの期間を「1周期」として定義するものである。上述した間欠駆動の際には、光源101に電力を供給する期間及び電力を供給しない期間の合計の期間が「1周期」となる。なお、ここでいう「周期」は、各周期の時間間隔が必ずしも一定である必要はなく、周期毎に異なる時間間隔で光源101の駆動を行っても良い。また、「光源の状態」は、後述の方法で取得することが可能である。
なお、測定対象の分子を含む媒質は、少なくとも物理量測定装置100内の光源101と、測定用光検出部102との間に流入又は配置可能である。ここで、流入又は配置可能とは、光源101から出力された光が媒質に作用を及ぼした上で、その光そのものや励起光や散乱光又は反射光が測定用光検出部102に到達可能であることを意味する。
媒質が固相の場合は、光源101と測定用光検出部102の間にその置いても良い。媒質が気相の場合は、光源101と測定用光検出部102を含む適度に閉鎖された空間を用いてその中に封入しても良いし、光源101と測定用光検出部102の間の空間に媒質を直接流入しても良いし、測定に使用する光に対して十分な透過性を有する容器に入れた上でその容器を光源101と測定用光検出部102の間に置いても良い。また、媒質が液相の場合は、測定に使用する光に対して十分な透過性を有する容器に入れた上でその容器を光源101と測定用光検出部102の間に置いても良い。
光源101は、測定用光検出部102が感度を有する波長帯を含む光であって、測定対象の分子が吸収する光の波長帯域を含む光を出力できれば特に制限されない。例えば、測定に赤外線を用いる場合、白熱電球やセラミックヒータ、MEMS(Micro Electro Mechanical Systems)ヒータや赤外線LED(Light Emitting Diode)などが、また、例えば、測定に紫外線を用いる場合、水銀ランプや紫外線LEDなどが、また、例えば、測定にX線を用いる場合、電子ビームや電子レーザーなどが、光源101として用いることができる。本実施形態1において、光源101は、その駆動回路を含み、点灯、消灯及び出力強度調整など出力を制御する機能を含んでもよい。
測定用光検出部102は、光源101が出力する光に応じて測定出力を出力する。測定用光検出部102は、光源101が出力する光の内、測定対象の分子に作用を及ぼす帯域を含む光を検出し、光電変換した測定出力を演算部104に出力してもよい。
また、測定用光検出部102は、上述の特性を有していれば特に制限されない。例えば、測定に赤外線を用いる場合、測定用光検出部102には、焦電センサ(Pyroelectric sensor)、サーモパイル(Thermopile)、ボロメータ(Bolometer)等の熱型赤外線センサや、ダイオードやフォトトランジスタ等の量子型赤外線センサ等が好適である。また、例えば、測定に紫外線を用いる場合、ダイオードやフォトトランジスタ等の量子型紫外線センサ等が好適である。また、例えば、測定にX線を用いる場合、各種半導体センサが好適である。
演算部104は、光源制御部103を介して光源101を周期的に駆動することができ、また、第n(nは1以上の整数)周期目の開始時には1種類以上の所定の駆動条件により、1回以上実行される、光源を駆動する第1のステップと、第1のステップの期間中の所定のタイミングで前記光源の状態を取得する、1回以上実行される、第2のステップと、第2のステップで取得した光源の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、を用いて光源101の駆動を制御することができ、また、測定用光検出部102から取得した測定出力と事前に用意された換算式を用いて、媒質中の測定対象分子の数量や密度を算出することができれば特に制限されない。
光源状態検出部105は、光源101の状態を取得できれば特に制限されない。例えば、図1に示すように、光源状態検出部105が、光源101と光源制御部103の間に設けられ、光源101の抵抗値に基づいて光源101の状態を取得してもよい。この場合、光源101の端子間の電圧と光源101に流れる電流を検出することで、光源101の抵抗値を取得してもよい。また、光源101を定電流駆動する場合は、光源101の端子間電圧を検出することで光源101の抵抗値を取得してもよい。同様に光源101を定電圧駆動する場合は光源101に流れる電流を検出することで光源101の抵抗値を取得してもよい。
<実施形態2>
図2は、本発明に係る光学式物理量測定装置の実施形態2を説明するための構成図である。図1に示した実施形態1との相違は、本実施形態2においては、光源状態検出部105が、光源101から出力される光の内、測定用光検出部102とは別の波長帯に感度を有する参照用光検出部(図示せず)の出力に基づいて光源101の状態を取得する点である。
つまり、本実施形態2においては、例えば、図2に示すように、光源101から出力される光の内、測定用光検出部102とは別の波長帯に感度を有する参照用光検出部の出力に基づいて、光源101の状態を取得しても良い。この参照用光検出部が、感度を有する波長帯は測定対象ガスに作用を及ぼさない帯域で合っても良い。また、光源101の抵抗値及び参照用光検出部の出力に基づいて光源101の状態を取得してもよい。
参照用光検出部には、測定用光検出部と同様に、焦電センサ(Pyroelectric sensor)、サーモパイル(Thermopile)、ボロメータ(Bolometer)等の熱型赤外線センサや、ダイオードやフォトトランジスタ等の量子型赤外線センサ等が好適である。また、例えば、測定に紫外線を用いる場合、ダイオードやフォトトランジスタ等の量子型紫外線センサ等が好適である。また、例えば、測定にX線を用いる場合、各種半導体センサが好適である。
またここで、光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する方法としては、以下のような方法が一例として挙げられるが特にこの方法には限定されない。
例えば、光源101の抵抗値に基づいて光源101の状態を取得する場合、光源101の駆動により光源抵抗値が増大する場合は、光源抵抗値があらかじめ用意された基準抵抗値以上となった場合に第1のステップによる駆動を終了しても良いし、光源101の駆動により光源抵抗値が減少する場合は、光源抵抗値があらかじめ用意された基準抵抗値以下となった場合に第1のステップによる駆動を終了しても良い。この基準抵抗値は、物理量測定装置の校正時に装置個体ごとに任意に定めても良い。
また、例えば、参照用光検出部の出力に基づいて、光源101の状態を取得する場合、光源101の駆動により参照用光検出部の出力が増大する場合は、参照用光検出部の出力があらかじめ用意された基準出力値以上となった場合に第1のステップによる駆動を終了しても良いし、光源101の駆動により参照用光検出部の出力が減少する場合は、参照用光検出部の出力があらかじめ用意された基準出力値以下となった場合に第1のステップによる駆動を終了しても良いし、光源101の駆動により参照用光検出部の出力が増加減少する場合は、参照用光検出部の出力があらかじめ用意された基準出力値と一致した場合やその前後の既定の範囲に到達した場合に第1のステップによる駆動を終了しても良い。この基準出力値と前記既定の範囲は、物理量測定装置の校正時に装置個体ごとに任意に定めても良い。
光源制御部103は、演算部104からの命令により光源101に対して複数の駆動条件で電力供給状態を制御することができ、かつ、光源状態検出部105から取得される光源状態に応じて電力供給状態を制御することができれば特に制限されない。光源制御部103として、例えば、アナログIC、ディジタルIC及びCPU(Central Processing Unit)等が好適である。なお、演算部104や光源101自体に光源制御部103が含まれていても良い。
ここで、簡単のために、物理量測定装置100を、赤外線を用いるガス濃度測定装置とし、光源101として白熱電球を用い、光源101を一定周期で点滅動作させる場合を考える。この点滅動作において、点灯時は定電流駆動により電力を供給し、消灯時は電力の供給を断つ。すなわち、光源制御部103は、光源101を、電力供給を断つ駆動条件と、定電流駆動により電力を供給する駆動条件を一定周期で交互に繰り返して制御する場合を考えることとする。
点灯時、光源101への電力供給を開始すると、光源101である白熱電球のフィラメント温度(以下「光源温度」と称する)は時間とともに上昇し、光源101から出力される赤外線の光量も光源温度と共に上昇する。この光源温度及び赤外線出力の上昇は光源101への供給電力と赤外線出力や周囲環境による熱の吸収による放出電力とが一致するまで続く。すなわち、点灯中、光源温度は昇温過程にある。また、消灯時、光源101への電力供給を断ち、消灯させると光源温度は、周囲環境温度と一致するまで徐々に下がっていく。すなわち、消灯中、光源温度は冷却過程にある。
冷却過程が十分に長く、毎回光源温度が周囲環境温度と一致するまで冷却されるのであれば、光源点灯開始時の光源温度は、十分に長い時間周期的に駆動を繰り返した後(以下、定常駆動時という)でも、周期駆動開始直後又は定常駆動時の消灯時間よりも十分長い時間駆動を停止していた状態からの周期駆動再開直後(以下、まとめて、駆動開始時という)でも同じ光源温度となる。
しかし、冷却過程が、光源温度が周囲環境温度と一致するまで冷却されるほど長くない場合、2回目以降の点灯開始時の光源温度は周囲環境温度よりも高い温度となる。この点灯開始時の光源温度は間欠駆動を繰り返すことで徐々に上昇し、やがて定常駆動時の点灯開始時の光源温度に収束する。毎回の間欠駆動の点灯状態における駆動条件が同一であれば、点灯開始時の光源温度の違いは点灯開始から一定の時間経過後の光源温度の違い、すなわち、光源101から出力される赤外線の光量及びスペクトルの差異となって現れる。
上述したように、従来技術による非分散赤外線吸収型ガス濃度測定装置は、例えば、光源を所定時間点灯させている間に赤外線検出部から検出された信号の最大値や、光源が点灯している時の所定期間に赤外線検出部から検出された信号を積分した値や、光源の点灯開始から所定時間経過後に赤外線検出部で検出された信号などを用いている。よって、冷却過程が、毎回光源温度が周囲環境温度と一致するまで冷却されるほど長くない場合においては、ガス濃度測定装置の駆動開始時と、駆動開始から十分な時間が経過した定常駆動時とではガス濃度の算出に用いる物理量、すなわち、光源を所定時間点灯させている間に赤外線検出部から検出された信号の最大値や、光源が点灯している時の所定期間に赤外線検出部から検出された信号を積分した値や、光源の点灯開始から所定時間経過後に赤外線検出部で検出された信号などが異なってしまうため、動作開始直後は精度よくガス濃度を算出することができない。
上述した例では、簡単のため、光源101として白熱電球を用い、完全な点滅動作をさせる場合について説明したが、上述したいずれの光源を用いても、光源101を消灯状態と点灯状態を交互に繰り返す、または光源101の出力を周期的に変化させる等により、光源101の駆動条件を周期的に変化させる際には駆動開始時と定常駆動時とでは、周期上の同一時刻において光源101から出力される光量やスペクトルは異なり、測定出力も異なる。
すなわち、物理量測定装置100の駆動開始直後から、定常駆動時と同等の光源101の状態を作り出すことができれば、駆動開始時から精度よく測定対象分子の数量や密度を算出することができる。そのために、物理量測定装置100は光源101の駆動開始時に1種類以上の所定の駆動条件により、1回以上実行される、光源101を駆動する第1のステップと、第1のステップの期間中の所定のタイミングで光源101の状態を取得する、1回以上実行される、第2のステップと、第2のステップで取得した光源101の状態に基づいて該第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、を有する光源制御方法を用いることとしている。
この光源制御方法により物理量測定装置100は、光源101の駆動開始時から光源101の状態を定常駆動時と一致させることができ、精度よく測定対象分子の数量や密度(この例の場合、具体的にはガス濃度)を算出することができる。
また、実際には定常駆動時にも外気温度の変化等により、光源101の点灯開始時の光源101の温度は周期ごとに変化し得る。よって、定常駆動時であっても精度よく測定対象分子の数量や密度(この例の場合、具体的にはガス濃度)を算出するために、毎回の点灯開始時の光源101の状態は揃えられることが望ましい。そのために、物理量測定装置100は第n(nは1以上の整数)周期目の開始時に1種類以上の所定の駆動条件により、1回以上実行される、光源101を駆動する第1のステップと、第1のステップの期間中の所定のタイミングで光源101の状態を取得する、1回以上実行される、第2のステップと、第2のステップで取得した光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、を有する光源制御方法を用いてもよい。
この光源制御方法により物理量測定装置100は、毎回の点灯開始時の光源101の状態を一致させることができ、精度よく測定対象分子の数量や密度(この例の場合、具体的にはガス濃度)を算出することができる。
また、光源101を駆動することにより光源温度が上昇すればするほど、光源温度上昇幅に対する光源状態を示す物理量の変化幅がより大きくなる場合は、毎回の点灯開始時の光源101の状態をより素早くそろえるために、毎回の点灯開始時、定電圧駆動を用いる1回目の第1ステップと、1回目の第1のステップの期間中の所定のタイミングで光源101の状態を取得する1回目の第2のステップと、1回目の第2のステップで取得した光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、を有し、1回目の第1ステップによる駆動終了後は定電流駆動を用いる2回目の第1ステップと、2回目の第1のステップの期間中の所定のタイミングで光源101の状態を取得する2回目の第2のステップと、2回目の第2のステップで取得した光源101の状態に基づいて第1のステップによる駆動を継続するか終了するかを決定する、1回以上実行される、第3のステップと、をする光源制御方法を用いてもよい。
この光源制御方法により物理量測定装置100は、毎回の点灯開始時の光源101の状態を素早く一致させることができ、精度よく測定対象分子の数量や密度(この例の場合、具体的にはガス濃度)を算出することができる。なお、駆動することにより光源温度が上昇すればするほど、光源温度上昇幅に対する光源状態を示す物理量の変化幅がより大きくなる光源101として白熱電球を、物理量として白熱電球のフィラメント抵抗値を用いても良い。
上述した実施形態及び後述する実施例は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
以下、本実施形態による物理量測定装置100について実施例を用いてより具体的に説明する。
図3は、本実施形態における物理量測定装置の物理量測定方法を説明するためのフローチャートを示す図である。
物理量測定装置100は、まず、ステップS101では、測定出力(最大値)を初期化して光源101を点灯する。ステップS101の次のステップS102では、測定用光検出部102から最新の測定出力、測定出力(最新値)を取得する。ステップS102の次のステップS103では、ステップS102で取得した測定出力(最新値)がその時点で保持している測定出力(最大値)より大きければ測定出力(最新値)を新たな測定出力(最大値)として更新する。ただし、測定出力(最大値)の初期化後1回目の測定出力(最新値)に対しては、S103内の真偽判定は常に真とする。
ステップ103の次のステップ104では、光源抵抗値を取得することで光源状態を取得し、光源抵抗値が基準抵抗値未満であれば光源を点灯した状態のまま、ステップS102に戻り、基準抵抗値以上であればステップS105に進む。ステップS105では、光源101を消灯し、保持している測定出力(最大値)に基づいて物理量を算出する。
ステップS105の次のステップS106では、物理量測定装置100が測定終了の命令を受けているかを判定し、その結果が真であれば測定を終了し、偽であればステップS107に進む。ステップS107では、直前の光源消灯から既定時間経過しているかを判定し、判定結果が真となるまでステップS107にとどまる。
ステップS107の次のステップ108では、ステップ101と同様に測定出力(最大値)を初期化して光源101を点灯する。ステップS108の次のステップS109では、ステップS102と同様に測定出力(最新値)を取得する。ステップS109の次のステップS110では、ステップS103と同様に測定出力(最大値)を更新する。ステップS110の次のステップS111では、直前の光源点灯から規定時間経過しているかを判定し、判定結果が偽ならばステップS109に戻り、真ならばステップS112に進む。
ステップS112では、ステップS105と同様に光源101を消灯し、保持している測定出力(最大値)に基づいて物理量を算出する。ステップS112の次のステップS113では、ステップS106と同様に物理量測定装置100が測定終了の命令を受けている場合は測定を終了し、そうでない場合はステップS107に戻る。
本実施形態における物理量測定装置100は、光源101を周期的に駆動して物理量を算出するが、第2周期目以降の測定についてはステップS107からステップS113までを繰り返すことで一定時間周期で光源101を点灯、消灯する。一方、第1周期目の測定については光源101点灯後、光源抵抗値が基準光源抵抗値以上になるまで消灯を行わない。この基準光源抵抗値には第2周期目以降に一定時間周期での光源101の点灯、消灯を十分に繰り返した場合にステップS112で光源101を消灯する直前の光源抵抗値を用いる。
こうすることで、本実施形態における物理量測定装置100は、第1周期目から定常動作時の測定出力(最大値)と同等の値を用いて物理量を算出することができ、精度よく測定対象分子の数量や密度を算出することができる。
図4(a)乃至(d)は、本実施形態における物理量測定装置が有する光源制御方法の優位性を示す実測データを示す図である。
実測データを取得する際における物理量測定装置100は、光源101の点灯時には光源101を定電流駆動している。図4(a),(b)は、それぞれ光源制御方法で光源101を駆動した際の駆動電流波形と、測定用光検出部102の出力波形である。また、図4(c),(d)は、それぞれ、第1周期目から第2周期目以降と同様の光源101の点灯、消灯を行った際の駆動電流波形と測定用光検出部102の出力波形である。
図4(d)の測定用光検出部102の出力波形は、第1周期目には第2周期目以降と比べて小さな出力しか得られていないが、図4(b)の測定用光検出部102の出力波形は、第1周期目から第2周期目以降と同等の出力を得ることが出来ていることがわかる。これは図4(c)と図4(a)を比較すればわかるように、光源101が冷えている第1周期目のみ以降より長い時間駆動することで実現されている。
なおここでは、第1周期目にのみ、光源101の状態を取得するステップが存在しているが、本発明はこの形態のみに限られず、第2周期目以降にも光源101の状態を取得するステップを有してもよい。またここでは、光源101の状態を光源抵抗値に基づいて取得するステップが存在しているが、本発明はこの形態のみに限られず、参照用光検出部の出力に基づいて光源101の状態を取得するステップを有してもよい。
図5は、本実施形態における物理量測定装置で実施される他の物理量測定方法を説明するためのフローチャートを示す図である。
図5に示すように、本実施形態における物理量測定装置100は、まずステップS201では測定出力(最大値)を初期化して光源101を点灯する。ステップS201の次のステップS202では、測定用光検出部102から最新の測定出力、測定出力(最新値)を取得する。ステップS202の次のステップS203では、ステップS202で取得した測定出力(最新値)がその時点で保持している測定出力(最大値)より大きければ測定出力(最新値)を新たな測定出力(最大値)として更新する。ただし、測定出力(最大値)の初期化後1回目の測定出力(最新値)に対しては、S203内の真偽判定は常に真とする。
ステップ203の次のステップ204では、光源抵抗値を取得することで光源状態を取得し、光源抵抗値が基準抵抗値未満であればステップS202に、基準抵抗値以上であればステップS205に進む。ステップS205では光源101を消灯し、保持している測定出力(最大値)に基づいて物理量を算出する。ステップS205の次のステップS206では、物理量測定装置100が測定終了の命令を受けているかを判定し、その結果が真であれば測定を終了し、偽であればステップS207に進む。ステップS207では、直前の光源消灯から既定時間経過しているかを判定し、判定結果が真となるまでステップS207にとどまり、判定結果が真となるとステップS201に戻る。
本実施形態における物理量測定装置100は、光源101を周期的に駆動して物理量を算出するが、光源101点灯後、光源抵抗値が基準光源抵抗値以上になるまで消灯を行わない。この基準光源抵抗値には十分に長い時間一定時間周期での光源101の点灯、消灯を十分に繰り返した場合の光源101を消灯する直前の光源抵抗値を用いる。
こうすることで、本実施形態における物理量測定装置100は、毎回の光源101の消灯時の状態を一致させることができ、その結果、単に既定の時間で点灯と消灯を周期的に繰り返す場合と比べて、次の点灯開始時の光源101の状態を毎回揃えることができ、これにより毎周期、既定の定常動作時の測定出力(最大値)と同等の値を用いて物理量を算出することができ、精度よく測定対象分子の数量や密度を算出することができる。
以上、本発明の各実施形態について説明したが、本発明の技術的範囲は、上述した実施形態に記載の技術的範囲には限定されない。上述した実施形態に、多様な変更又は改良を加えることも可能であり、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
100 物理量測定装置
101 光源
102 測定用光検出器
103 光源制御部
104 演算部
105 光源状態検出部

Claims (10)

  1. 複数の駆動条件を用いて装置本体内に収納された光源を周期的に駆動する光学式物理量測定装置であって、
    前記光源が出力する光に応じた信号を測定出力として出力する測定用光検出部と、
    前記光源の状態を取得する光源状態検出部と、
    前記光源の駆動状態を制御する光源制御部と、
    前記測定用光検出部からの測定出力に基づいて測定対象分子の数量又は密度を算出する演算部と、
    を備える光学式物理量測定装置。
  2. 前記光源制御部が、前記演算部からの命令により前記光源に対して複数の駆動条件で電力供給状態を制御し、かつ、前記光源状態検出部から取得される光源状態に応じて電力供給状態を制御する請求項1に記載の光学式物理量測定装置。
  3. 前記演算部が、前記光源制御部を介して前記光源を周期的に駆動する請求項1又は2に記載の光学式物理量測定装置。
  4. 前記光源状態検出部が、前記光源と前記光源制御部の間に設けられ、前記光源の抵抗値に基づいて前記光源の状態を取得する請求項1,2又は3に記載の光学式物理量測定装置。
  5. 前記光源状態検出部が、前記光源から出力される光の内、前記測定用光検出部とは別の波長帯に感度を有する参照用光検出部の出力に基づいて前記光源の状態を取得する請求項1,2又は3に記載の光学式物理量測定装置。
  6. 複数の駆動条件を用いて光源を周期的に駆動する光学式物理量測定装置の光源制御方法であって、
    第n(nは1以上の整数)周期目の開始時に所定の駆動条件により前記光源を駆動する第1のステップと、
    前記第1のステップの期間中の所定のタイミングで前記光源の状態を取得する第2のステップと、
    前記第2のステップで取得した前記光源の状態に基づいて該第1のステップによる駆動を継続するか終了するかを決定する第3のステップと、
    を有する光学式物理量測定装置の光源制御方法。
  7. 前記第n(nは1以上の整数)周期目の開始時に実行される前記光源の駆動条件は、前記複数の駆動条件の内の1つである請求項6に記載の光学式物理量測定装置の光源制御方法。
  8. 前記第2のステップでは、前記光源の抵抗値に基づいて前記光源の状態を取得する請求項6又は7記載の光学式物理量測定装置の光源制御方法。
  9. 前記第2のステップでは、参照用光検出部の出力に基づいて前記光源の状態を取得する請求項6又は7記載の光学式物理量測定装置の光源制御方法。
  10. 前記nが1である請求項6乃至9のいずれか1項に記載の光学式物理量測定装置の光源制御方法。
JP2016033226A 2016-02-24 2016-02-24 光学式物理量測定装置及びその光源制御方法 Active JP6826814B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016033226A JP6826814B2 (ja) 2016-02-24 2016-02-24 光学式物理量測定装置及びその光源制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016033226A JP6826814B2 (ja) 2016-02-24 2016-02-24 光学式物理量測定装置及びその光源制御方法

Publications (2)

Publication Number Publication Date
JP2017150930A true JP2017150930A (ja) 2017-08-31
JP6826814B2 JP6826814B2 (ja) 2021-02-10

Family

ID=59741704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016033226A Active JP6826814B2 (ja) 2016-02-24 2016-02-24 光学式物理量測定装置及びその光源制御方法

Country Status (1)

Country Link
JP (1) JP6826814B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021076569A (ja) * 2019-11-05 2021-05-20 華碩電腦股▲ふん▼有限公司 外観イメージキャプチャ装置及びそれを含む外観検査装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115279A (en) * 1976-03-23 1977-09-27 Matsushita Electric Ind Co Ltd Gas analyzer
JPS63158431A (ja) * 1986-12-22 1988-07-01 Shimadzu Corp 分光光度計
US4981362A (en) * 1989-10-16 1991-01-01 Xerox Corporation Particle concentration measuring method and device
JPH10339697A (ja) * 1997-06-09 1998-12-22 Kubota Corp 比色分析装置のランプ切れ検出装置
JP2002508076A (ja) * 1997-07-01 2002-03-12 エルジェイ・ラボラトリーズ・リミテッド・ライアビリティ・カンパニー 物体の光学特性を測定するための装置および方法
JP2016505141A (ja) * 2013-01-17 2016-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 関心ガス種レベルを測定する方法と装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115279A (en) * 1976-03-23 1977-09-27 Matsushita Electric Ind Co Ltd Gas analyzer
JPS63158431A (ja) * 1986-12-22 1988-07-01 Shimadzu Corp 分光光度計
US4981362A (en) * 1989-10-16 1991-01-01 Xerox Corporation Particle concentration measuring method and device
JPH10339697A (ja) * 1997-06-09 1998-12-22 Kubota Corp 比色分析装置のランプ切れ検出装置
JP2002508076A (ja) * 1997-07-01 2002-03-12 エルジェイ・ラボラトリーズ・リミテッド・ライアビリティ・カンパニー 物体の光学特性を測定するための装置および方法
JP2016505141A (ja) * 2013-01-17 2016-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 関心ガス種レベルを測定する方法と装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021076569A (ja) * 2019-11-05 2021-05-20 華碩電腦股▲ふん▼有限公司 外観イメージキャプチャ装置及びそれを含む外観検査装置

Also Published As

Publication number Publication date
JP6826814B2 (ja) 2021-02-10

Similar Documents

Publication Publication Date Title
US10508988B2 (en) Method and system for gas detection
JP2021062289A (ja) 物質濃度監視装置および方法
CN108426837B (zh) 光声气体分析仪
JP2008505342A (ja) 赤外線放射源調整法及びその調整法を使用する装置
JP2008209350A (ja) 血液凝固時間測定装置
US20150189714A1 (en) Sensors with LED Light Sources
JP2006010697A (ja) ガスセンサ構造内の結露防止方法
JP6826814B2 (ja) 光学式物理量測定装置及びその光源制御方法
US8665424B2 (en) Optical absorption gas analyser
JP2007064632A (ja) 分光光度計
JP2006317451A (ja) ガス試料の存在、濃度の計測方法、及びガスセンサ装置
JP2006313164A (ja) ガスセンサ装置及びガス計測方法
US20160234904A1 (en) Optical analyzer
Chowdhury et al. MEMS infrared emitter and detector for capnography applications
JP5469929B2 (ja) 核酸分析装置
JP6920943B2 (ja) 光計測装置および光計測方法
JP6205656B2 (ja) オゾン濃度測定装置
JP2017142142A (ja) 粒子検出センサ、携帯型気体モニタ、及び、粒子検出方法
JP2005098765A (ja) 光源装置及びそれを用いた分析装置
JP2017032317A (ja) ガス濃度測定装置
ES2769035T3 (es) Sensor de aceite para un compresor y métodos que utilizan el sensor de aceite
JP7475151B2 (ja) 測定装置、および測定方法
JP6062767B2 (ja) ガス測定装置及びガス測定方法
JP6248460B2 (ja) 励起光照射装置
JP6421500B2 (ja) ガス分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6826814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150