JP2017141493A - Heating apparatus for steel material - Google Patents

Heating apparatus for steel material Download PDF

Info

Publication number
JP2017141493A
JP2017141493A JP2016023651A JP2016023651A JP2017141493A JP 2017141493 A JP2017141493 A JP 2017141493A JP 2016023651 A JP2016023651 A JP 2016023651A JP 2016023651 A JP2016023651 A JP 2016023651A JP 2017141493 A JP2017141493 A JP 2017141493A
Authority
JP
Japan
Prior art keywords
exhaust gas
steel material
preheating
temperature
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016023651A
Other languages
Japanese (ja)
Inventor
圭一郎 泊
Keiichiro Tomari
圭一郎 泊
高橋 和雄
Kazuo Takahashi
和雄 高橋
織田 剛
Takeshi Oda
剛 織田
秋山 勝哉
Katsuya Akiyama
勝哉 秋山
悠介 茂渡
Yusuke Mowatari
悠介 茂渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016023651A priority Critical patent/JP2017141493A/en
Publication of JP2017141493A publication Critical patent/JP2017141493A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating apparatus for a steel material, which has high energy efficiency.SOLUTION: The present invention is a heating apparatus for a steel material for hot working or heat treatment, and comprises: a heating furnace for heating the steel material by a combustion gas ejected from a burner; a preheating furnace for preheating the steel material before charged into the heating furnace with a preheating gas; a heat exchanger for preheating a combustion air to be supplied to the burner; a first exhaust gas flow path for supplying the exhaust gas exhausted from the heating furnace, as the preheating gas of the preheating furnace; and a second exhaust gas flow path that is provided in parallel with the first exhaust gas flow path and supplies the exhaust gas exhausted from the heating furnace, as the preheating gas of the heat exchanger. It is preferable that the heating apparatus further comprises a mechanism for adjusting a flow rate of the exhaust gas supplied to the first exhaust gas flow path and a flow rate of the exhaust gas supplied to the second exhaust gas flow path. It is also preferable that the heating apparatus further comprises a thermometer which measures a temperature of the steel material before being heated and a mechanism which selects the steel material supplied into the preheating furnace based on the measurement result of the thermometer.SELECTED DRAWING: Figure 1

Description

本発明は、鋼材の加熱装置に関する。   The present invention relates to a steel material heating apparatus.

熱延工場等ではスラブやビレット等の鋼材を連続式又はバッチ式の加熱炉で加熱した後に熱間圧延が行われる。また、厚板工場等では厚板等の鋼材を連続式又はバッチ式の熱処理炉で加熱した後、熱処理が行われる。例えば厚板工場において厚板を製造する場合、連続式鋳造機で鋳造されたスラブが、台車等により搬送され、加熱炉の手前でストックヤードに一時的に保管される。この保管中にスラグの温度は最大で室温(約25℃)まで低下する。このため、このスラブは熱処理スケジュールに応じ順次ストックヤードから加熱炉に装入され、1200℃程度の温度まで加熱された後、圧延機へ送られ圧延処理される。   In a hot rolling factory or the like, hot rolling is performed after heating a steel material such as a slab or billet in a continuous or batch heating furnace. In a thick plate factory or the like, a steel material such as a thick plate is heated in a continuous or batch heat treatment furnace, and then heat treatment is performed. For example, when manufacturing a thick plate in a thick plate factory, a slab cast by a continuous casting machine is transported by a carriage or the like and temporarily stored in a stock yard in front of a heating furnace. During this storage, the temperature of the slag decreases to a maximum of room temperature (about 25 ° C.). For this reason, this slab is sequentially charged from a stock yard into a heating furnace according to a heat treatment schedule, heated to a temperature of about 1200 ° C., and then sent to a rolling mill for rolling.

このような加熱炉としては、スラブを装入側から抽出側まで搬送するウォーキングビーム式の搬送装置が配設され、この搬送装置の経路の上下に配設された複数のバーナーにより燃料ガスを燃焼させてスラブを加熱する加熱炉が公知である。上記バーナーには燃焼空気用ブロワにより燃焼用空気が供給され、燃料ガスが燃焼される。燃料ガスの燃焼後の排ガスは、加熱炉装入端部である炉尻から炉尻煙道を通り煙突へ送られ外部へ排気される。この加熱炉から排気される排ガスの顕熱は、リジェネバーナーやレキュペレーター等の熱交換器によりその一部が回収されて燃焼用空気の予熱に利用されるが、大半は煙突から排気される。従って、例えばレキュペレーター付属の加熱炉のエネルギー効率は50%程度に留まる。このため、例えば生産規模が200t/hの加熱炉であれば、300Mcal/t程度の燃料原単位を必要とする。   As such a heating furnace, a walking beam type conveying device for conveying the slab from the charging side to the extracting side is disposed, and the fuel gas is burned by a plurality of burners disposed above and below the path of the conveying device. A heating furnace that heats the slab is known. Combustion air is supplied to the burner by a combustion air blower, and fuel gas is combusted. The exhaust gas after the combustion of the fuel gas is sent from the furnace bottom, which is the heating furnace charging end, through the furnace bottom flue to the chimney and exhausted to the outside. Part of the sensible heat of the exhaust gas exhausted from this heating furnace is recovered by a heat exchanger such as a regenerative burner or a recuperator and used for preheating combustion air, but most is exhausted from the chimney. . Therefore, for example, the energy efficiency of the heating furnace attached to the recuperator is only about 50%. For this reason, for example, if the production scale is a heating furnace of 200 t / h, a fuel intensity of about 300 Mcal / t is required.

このエネルギー効率を向上させるために加熱炉から排気される排ガスによりスラブ等の鋼材の予熱を行う予熱炉を備えた加熱装置が提案されている(特開2014−219139号公報及び特開2011−196615号公報参照)。   In order to improve the energy efficiency, a heating apparatus including a preheating furnace that preheats a steel material such as a slab with exhaust gas exhausted from the heating furnace has been proposed (Japanese Unexamined Patent Application Publication Nos. 2014-219139 and 2011-196615). Issue gazette).

この従来の加熱装置は、加熱炉から排気される排ガスを全て予熱炉へ供給する。ところが、予熱炉に装入される前の鋼材の温度はストックヤードでの保管時間に依存してばらつきがある。このため、この従来の加熱装置では、例えば予熱炉に比較的温度の高い鋼材が装入された場合、予熱炉に導入された排ガスとの温度差が小さく排ガスの顕熱を十分に回収できないため、燃焼用空気を予熱する熱交換器へ排ガスを供給する場合よりもエネルギー効率がかえって低下するおそれがある。   This conventional heating apparatus supplies all the exhaust gas exhausted from the heating furnace to the preheating furnace. However, the temperature of the steel before being charged into the preheating furnace varies depending on the storage time in the stockyard. For this reason, in this conventional heating device, for example, when a steel material having a relatively high temperature is charged into the preheating furnace, the temperature difference from the exhaust gas introduced into the preheating furnace is small and the sensible heat of the exhaust gas cannot be sufficiently recovered. There is a possibility that the energy efficiency may be lowered rather than when exhaust gas is supplied to a heat exchanger that preheats combustion air.

特開2014−219139号公報JP 2014-219139 A 特開2011−196615号公報JP2011-196615A

本発明は、上述のような事情に基づいてなされたものであり、本発明の目的は、エネルギー効率の高い鋼材の加熱装置を提供することである。   This invention is made | formed based on the above situations, and the objective of this invention is to provide the heating apparatus of steel materials with high energy efficiency.

上記課題を解決するためになされた発明は、熱間加工又は熱処理用の鋼材の加熱装置であって、上記鋼材をバーナーから噴出される燃焼ガスにより加熱する加熱炉と、上記加熱炉へ装入される前の鋼材を予熱ガスにより予熱する予熱炉と、上記バーナーに供給される燃焼用空気を予熱する熱交換器と、上記加熱炉から排出される排ガスを上記予熱炉の予熱ガスとして供給する第1排ガス流路と、上記第1排ガス流路とは並列して設けられ、上記加熱炉から排出される排ガスを上記熱交換器の予熱ガスとして供給する第2排ガス流路とを備える。   The invention made to solve the above-mentioned problems is a steel material heating apparatus for hot working or heat treatment, wherein the steel material is heated by a combustion gas ejected from a burner, and charged into the heating furnace. A preheating furnace for preheating the steel before being heated with a preheating gas, a heat exchanger for preheating combustion air supplied to the burner, and an exhaust gas discharged from the heating furnace as a preheating gas for the preheating furnace The first exhaust gas flow path and the first exhaust gas flow path are provided in parallel, and include a second exhaust gas flow path that supplies the exhaust gas discharged from the heating furnace as a preheating gas for the heat exchanger.

当該加熱装置は、第1排ガス流路及び第2排ガス流路により加熱炉から排気される排ガスを予熱炉の予熱ガスと熱交換器の予熱ガスとに分配して供給できる。このため、当該加熱装置は、予熱ガスの顕熱を予熱炉及び熱交換器それぞれで回収できるので、予熱炉又は熱交換器のいずれか一方で回収する場合に比べて、多くの予熱ガスの顕熱が回収できる。予熱炉及び熱交換器に排ガスを供給する方法として、例えば予熱炉で鋼材の予熱に利用された排ガスを燃焼用空気の予熱に利用する方法も考えられる。しかし、この場合には空気を予熱する熱交換器へ供給される排ガスの温度が加熱炉から排気される排ガスの温度より低下するため、排ガスと燃焼用空気との温度差が小さくなり、排ガスから燃焼用空気への伝熱量が十分ではない。これに対し、当該加熱装置は加熱炉から排気される排ガスを予熱炉及び熱交換器に並列に供給するので、加熱炉から排気される排ガスの温度を大きく低下させることなく、上記予熱炉及び上記熱交換器に予熱ガスを供給できる。このため、当該加熱装置は、供給される予熱ガスと鋼材や燃焼用空気との温度差が確保し易いので、予熱ガスから鋼材や燃焼用空気への伝熱効率がよい。従って、当該加熱装置はエネルギー効率が高い。   The heating device can distribute and supply the exhaust gas exhausted from the heating furnace through the first exhaust gas channel and the second exhaust gas channel to the preheating gas of the preheating furnace and the preheating gas of the heat exchanger. For this reason, the heating device can recover the sensible heat of the preheating gas in each of the preheating furnace and the heat exchanger. Heat can be recovered. As a method of supplying the exhaust gas to the preheating furnace and the heat exchanger, for example, a method of using the exhaust gas used for preheating the steel material in the preheating furnace for preheating the combustion air is also conceivable. However, in this case, since the temperature of the exhaust gas supplied to the heat exchanger that preheats the air is lower than the temperature of the exhaust gas exhausted from the heating furnace, the temperature difference between the exhaust gas and the combustion air becomes small, and The amount of heat transferred to the combustion air is not sufficient. On the other hand, the heating device supplies the exhaust gas exhausted from the heating furnace in parallel to the preheating furnace and the heat exchanger, so that the temperature of the exhaust gas exhausted from the heating furnace is not greatly reduced, and the preheating furnace and the above Preheat gas can be supplied to the heat exchanger. For this reason, since the said heating apparatus is easy to ensure the temperature difference of the supplied preheating gas, steel materials, and combustion air, the heat transfer efficiency from preheating gas to steel materials and combustion air is good. Therefore, the heating device is energy efficient.

上記第1排ガス流路に供給する排ガスの流量と、上記第2排ガス流路に供給する排ガスの流量とを調整する機構をさらに備えるとよい。このように第1排ガス流路に供給する排ガスの流量と、第2排ガス流路に供給する排ガスの流量とを調整する機構を備えることで、エネルギー効率がさらに高まる。   A mechanism for adjusting the flow rate of the exhaust gas supplied to the first exhaust gas channel and the flow rate of the exhaust gas supplied to the second exhaust gas channel may be further provided. By providing a mechanism for adjusting the flow rate of the exhaust gas supplied to the first exhaust gas channel and the flow rate of the exhaust gas supplied to the second exhaust gas channel in this way, energy efficiency is further increased.

上記排ガス流量調整機構が上記第1排ガス流路に配設されているとよい。このように上記排ガス流量調整機構を上記第1排ガス流路に配設することで、例えば排ガスから鋼材への伝熱量が少ない場合に予熱炉へ供給する排ガスの流量を絞ることができる。これにより、エネルギー効率がさらに高まる。   The exhaust gas flow rate adjusting mechanism may be disposed in the first exhaust gas flow path. By arranging the exhaust gas flow rate adjusting mechanism in the first exhaust gas flow path as described above, the flow rate of the exhaust gas supplied to the preheating furnace can be reduced, for example, when the heat transfer amount from the exhaust gas to the steel material is small. This further increases energy efficiency.

上記排ガス流量調整機構が上記第2排ガス流路に配設されているとよい。このように上記排ガス流量調整機構を上記第2排ガス流路に配設することで、熱交換器に導入する排ガスの流量を精度よく調整できる。これにより、エネルギー効率がさらに高まる。   The exhaust gas flow rate adjusting mechanism may be disposed in the second exhaust gas flow path. Thus, by arranging the exhaust gas flow rate adjusting mechanism in the second exhaust gas flow path, the flow rate of the exhaust gas introduced into the heat exchanger can be accurately adjusted. This further increases energy efficiency.

上記予熱炉へ装入される鋼材の重量を測定する重量計、上記加熱炉へ装入される鋼材の重量を測定する重量計、予熱後の鋼材の温度を測定する温度計、上記加熱炉へ供給する燃料の流量を測定する流量計、及び上記熱交換器へ流入する燃焼用空気の流量を測定する流量計と、上記重量計、温度計及び流量計の測定結果に基づき上記排ガス流量調整機構を用いてエネルギー効率が最大化されるように上記予熱炉及び上記熱交換器へ供給する排ガス流量比を制御する機構とをさらに備えるとよい。このように上記重量計、温度計及び流量計とこれらの測定器の測定結果に基づいて排ガス流量比を制御する機構とをさらに備えることで、エネルギー効率が最大となる排ガス流量比を見積り、この見積りに基づいて、排ガス流量調整機構を用いて排ガスの流量比を調整することができる。これにより、エネルギー効率がさらに高まる。   A weigh scale that measures the weight of the steel material charged into the preheating furnace, a weigh scale that measures the weight of the steel material charged into the heating furnace, a thermometer that measures the temperature of the steel material after preheating, and the heating furnace A flow meter for measuring the flow rate of the supplied fuel, a flow meter for measuring the flow rate of combustion air flowing into the heat exchanger, and the exhaust gas flow rate adjusting mechanism based on the measurement results of the weight meter, the thermometer, and the flow meter And a mechanism for controlling the exhaust gas flow rate ratio supplied to the preheating furnace and the heat exchanger so that energy efficiency is maximized. In this way, by further comprising the above-described weigh scale, thermometer and flow meter and a mechanism for controlling the exhaust gas flow ratio based on the measurement results of these measuring instruments, the exhaust gas flow ratio at which energy efficiency is maximized is estimated, and this Based on the estimate, the exhaust gas flow rate adjustment mechanism can be used to adjust the exhaust gas flow rate ratio. This further increases energy efficiency.

上記加熱炉から排気される排ガスの温度を測定する温度計をさらに備えるとよい。このように上記加熱炉から排気される排ガスの温度を測定する温度計をさらに備えることで、エネルギー効率が最大となる排ガス流量比の見積り精度が向上する。これにより、エネルギー効率がさらに高まる。   A thermometer for measuring the temperature of the exhaust gas exhausted from the heating furnace may be further provided. As described above, by further including a thermometer for measuring the temperature of the exhaust gas exhausted from the heating furnace, the estimation accuracy of the exhaust gas flow rate ratio at which the energy efficiency is maximized is improved. This further increases energy efficiency.

加熱前の鋼材の温度を測定する温度計と、上記温度計の測定結果に基づき上記予熱炉へ装入する鋼材を選択する機構とを備えるとよい。加熱前の鋼材の温度が比較的高い鋼材を予熱炉へ装入すると、排ガス温度と鋼材との温度差が小さいため排ガスから鋼材への伝熱効率が低下する。このため、例えば一定量の排ガスの顕熱を回収するには加熱前の鋼材の温度が低い鋼材を予熱する場合に比べ、加熱前の鋼材の温度が高い鋼材を予熱する場合の方が、鋼材を予熱路内に長く滞在させる必要があり、生産性が低下する。従って、加熱前の鋼材の温度により予熱炉へ装入する鋼材を選択することで生産性の低下が抑止でき、燃料原単位を減らすことができる。   It is good to provide the thermometer which measures the temperature of the steel materials before a heating, and the mechanism which selects the steel materials inserted into the said preheating furnace based on the measurement result of the said thermometer. When a steel material having a relatively high temperature before heating is charged into the preheating furnace, the temperature difference between the exhaust gas temperature and the steel material is small, so the heat transfer efficiency from the exhaust gas to the steel material is reduced. For this reason, for example, when recovering a sensible heat of a certain amount of exhaust gas, compared to preheating a steel material with a low temperature before heating, preheating a steel material with a high temperature before heating is more Needs to stay in the preheating path for a long time, and productivity is reduced. Therefore, by selecting the steel material to be charged into the preheating furnace according to the temperature of the steel material before heating, the reduction in productivity can be suppressed and the fuel consumption rate can be reduced.

上記予熱炉から排気される排ガスの温度を測定する温度計と、上記温度計の測定結果に基づく上記予熱炉へ装入する鋼材の選択により上記予熱炉から排気される排ガスが所定温度以上となるように排ガス温度を制御する機構とを備えるとよい。このように予熱炉から排気される排ガスが所定温度以上となるように排ガス温度を制御する機構を備えることで、排ガスの酸露点腐食による予熱炉等の設備の劣化や破損を抑止できる。このため、エネルギー効率を高めつつ、安定した操業ができる。   By selecting a thermometer for measuring the temperature of the exhaust gas exhausted from the preheating furnace and a steel material charged into the preheating furnace based on the measurement result of the thermometer, the exhaust gas exhausted from the preheating furnace becomes a predetermined temperature or higher. And a mechanism for controlling the exhaust gas temperature. By providing a mechanism for controlling the exhaust gas temperature so that the exhaust gas exhausted from the preheating furnace becomes a predetermined temperature or more, it is possible to suppress deterioration and damage of equipment such as the preheating furnace due to acid dew point corrosion of the exhaust gas. For this reason, stable operation can be performed while improving energy efficiency.

上記熱交換器を迂回させる燃焼用空気のバイパス流路を備え、上記熱交換器から排気される排ガスの温度を測定する温度計と、上記温度計の測定結果に基づき燃焼用空気の一部又は全部を上記バイパス流路へ流すことにより上記熱交換器から排気される排ガスが所定温度以上となるように排ガス温度を制御する機構とを備えるとよい。このように熱交換器から排気される排ガスが所定温度以上となるように排ガス温度を制御する機構を備えることで、酸露点腐食による熱交換器等の設備の劣化や破損を抑止できる。このため、エネルギー効率を高めつつ、安定した操業ができる。   Combustion air bypass passage for bypassing the heat exchanger, a thermometer for measuring the temperature of exhaust gas exhausted from the heat exchanger, and a part of the combustion air based on the measurement result of the thermometer or It is preferable to provide a mechanism for controlling the exhaust gas temperature so that the exhaust gas exhausted from the heat exchanger becomes equal to or higher than a predetermined temperature by flowing all through the bypass channel. By providing a mechanism for controlling the exhaust gas temperature so that the exhaust gas exhausted from the heat exchanger becomes equal to or higher than a predetermined temperature in this way, it is possible to suppress deterioration and damage of equipment such as a heat exchanger due to acid dew point corrosion. For this reason, stable operation can be performed while improving energy efficiency.

上記バーナーに供給される燃料ガスの流量を調整する機構と、加熱後の鋼材の温度が所定範囲内となるように上記燃料ガス流量調整機構を用いて上記燃料ガス流量を制御する機構とを備えるとよい。このように燃料ガス流量調整機構と、この燃料ガス流量調整機構を用いて燃料ガス流量を制御する機構とを備えることで、加熱炉から抽出される鋼材の温度を所望の温度に調整し易い。このため、エネルギー効率を高めつつ、安定した操業ができる。   A mechanism for adjusting the flow rate of the fuel gas supplied to the burner; and a mechanism for controlling the fuel gas flow rate using the fuel gas flow rate adjustment mechanism so that the temperature of the heated steel material is within a predetermined range. Good. Thus, by providing the fuel gas flow rate adjusting mechanism and the mechanism for controlling the fuel gas flow rate using the fuel gas flow rate adjusting mechanism, it is easy to adjust the temperature of the steel material extracted from the heating furnace to a desired temperature. For this reason, stable operation can be performed while improving energy efficiency.

ここで、「酸露点腐食」とは、排ガス中に含まれる硫黄分等が水分との結合により硫酸等の酸となって凝縮(酸凝縮)し、金属を腐食させることをいう。また、「排ガスの流量比」とは、排ガスの総量に対する予熱炉へ供給する排ガスの比及び排ガスの総量に対する熱交換器へ供給する排ガスの比を意味する。   Here, “acid dew point corrosion” means that sulfur contained in exhaust gas is condensed (acid condensed) into an acid such as sulfuric acid by binding with moisture, and corrodes the metal. The “flow rate ratio of exhaust gas” means the ratio of exhaust gas supplied to the preheating furnace with respect to the total amount of exhaust gas and the ratio of exhaust gas supplied to the heat exchanger with respect to the total amount of exhaust gas.

以上説明したように、本発明の加熱装置は鋼材の加熱におけるエネルギー効率を高められる。   As described above, the heating device of the present invention can increase the energy efficiency in heating the steel material.

本発明の一実施形態の加熱装置を示す模式図である。It is a schematic diagram which shows the heating apparatus of one Embodiment of this invention. 図1の加熱装置の排ガス流量調整工程のフローを示す流れ図である。It is a flowchart which shows the flow of the waste gas flow rate adjustment process of the heating apparatus of FIG. 図1の加熱装置とは異なる実施形態の加熱装置を示す模式図である。It is a schematic diagram which shows the heating apparatus of embodiment different from the heating apparatus of FIG. 予熱前の鋼材温度と予熱後の鋼材の受熱量、鋼材温度、及び予熱炉から排気される排ガス温度との関係を示すグラフである。It is a graph which shows the relationship between the steel material temperature before preheating, the amount of heat received of the steel material after preheating, steel material temperature, and the exhaust gas temperature exhausted from a preheating furnace. 排ガスの流量比と、予熱炉及び熱交換器から排気される排ガス温度並びに加熱装置全体のエネルギー効率との関係を示すグラフである。It is a graph which shows the relationship between the flow rate ratio of exhaust gas, the exhaust gas temperature exhausted from a preheating furnace and a heat exchanger, and the energy efficiency of the whole heating apparatus.

以下、本発明の実施の形態を適宜図面を参照しつつ詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[第1実施形態]
図1に示す加熱装置1は、本発明の一実施形態にかかる熱間加工又は熱処理用の鋼材の加熱装置であり、厚板工場、形鋼工場、熱延工場等でのスラブ、ビレット等の鋼材の加熱に用いることができる。当該加熱装置1は、上記鋼材をバーナーから噴出される燃焼ガスにより加熱する加熱炉2と、上記加熱炉2へ装入される前の鋼材を予熱ガスにより予熱する予熱炉3と、上記バーナーに供給される燃焼用空気を予熱する熱交換器4とを主に備える。
[First Embodiment]
A heating device 1 shown in FIG. 1 is a steel material heating device for hot working or heat treatment according to an embodiment of the present invention, such as a slab, billet, etc. in a thick plate factory, a section steel factory, a hot rolling factory, etc. It can be used for heating steel materials. The heating apparatus 1 includes a heating furnace 2 that heats the steel material with a combustion gas ejected from a burner, a preheating furnace 3 that preheats the steel material before being charged into the heating furnace 2 with a preheating gas, and the burner. And a heat exchanger 4 that preheats the supplied combustion air.

また、当該加熱装置1は、3つの搬送装置(第1搬送装置5a、第2搬送装置5b、及び第3搬送装置5c)を備える。上記第1搬送装置5aは、加熱前の鋼材が一時的に保管されているストックヤードXの抽出口、予熱炉3の抽出口、加熱炉2の装入口、及び第3搬送装置5cに鋼材を搬送できる。また、上記第2搬送装置5bは、第1搬送装置5aにより搬送された鋼材を第3搬送装置5cへ搬送できる。さらに、上記第3搬送装置5cは、第2搬送装置5bにより搬送された鋼材を加熱炉2の抽出口、予熱炉3の装入口、及び当該加熱装置1の鋼材搬出口に搬送できる。   Moreover, the said heating apparatus 1 is provided with three conveying apparatuses (1st conveying apparatus 5a, 2nd conveying apparatus 5b, and 3rd conveying apparatus 5c). The first transfer device 5a is configured to supply steel materials to the extraction port of the stockyard X where the steel material before heating is temporarily stored, the extraction port of the preheating furnace 3, the charging port of the heating furnace 2, and the third transfer device 5c. Can be transported. Moreover, the said 2nd conveying apparatus 5b can convey the steel materials conveyed by the 1st conveying apparatus 5a to the 3rd conveying apparatus 5c. Furthermore, the said 3rd conveying apparatus 5c can convey the steel materials conveyed by the 2nd conveying apparatus 5b to the extraction port of the heating furnace 2, the charging inlet of the preheating furnace 3, and the steel material carrying-out port of the said heating apparatus 1. FIG.

また、当該加熱装置1は、4つの排ガス流路(第1排ガス流路6a、第2排ガス流路6b、第3排ガス流路6c、及び第4排ガス流路6d)と排ガスを外部に排出する煙突7とを備える。上記第1排ガス流路6aは、加熱炉2から排出される排ガスを上記予熱炉3の予熱ガスとして供給する流路である。また、上記第2排ガス流路6bは、上記第1排ガス流路6aとは並列して設けられ、上記加熱炉2から排出される排ガスを上記熱交換器4の予熱ガスとして供給する流路である。当該加熱装置1は、これらの第1排ガス流路6a及び第2排ガス流路6bにより、上記加熱炉2から排気される排ガスを上記予熱炉3の排ガスと上記熱交換器4の排ガスとに分配して供給できる。また、上記第3排ガス流路6c及び第4排ガス流路6dは、それぞれ上記予熱炉3及び上記熱交換器4から排気される排ガスを回収し、回収された排ガスは、煙突7から外部へ排気される。   In addition, the heating device 1 discharges exhaust gas to four exhaust gas channels (first exhaust gas channel 6a, second exhaust gas channel 6b, third exhaust gas channel 6c, and fourth exhaust gas channel 6d) to the outside. And a chimney 7. The first exhaust gas passage 6 a is a passage for supplying exhaust gas discharged from the heating furnace 2 as a preheating gas for the preheating furnace 3. The second exhaust gas flow path 6b is provided in parallel with the first exhaust gas flow path 6a and supplies the exhaust gas discharged from the heating furnace 2 as a preheating gas for the heat exchanger 4. is there. The heating apparatus 1 distributes the exhaust gas exhausted from the heating furnace 2 to the exhaust gas of the preheating furnace 3 and the exhaust gas of the heat exchanger 4 by using the first exhaust gas channel 6a and the second exhaust gas channel 6b. Can be supplied. The third exhaust gas channel 6c and the fourth exhaust gas channel 6d collect exhaust gas exhausted from the preheating furnace 3 and the heat exchanger 4, respectively, and the recovered exhaust gas exhausts from the chimney 7 to the outside. Is done.

また、当該加熱装置1は、上記予熱炉3又は熱交換器4に供給する排ガスの流量を調整する2つの排ガス流量調整弁(第1排ガス流量調整弁8a及び第2排ガス流量調整弁8b)を備える。上記第1排ガス流量調整弁8aは、上記予熱炉3へ排ガスを分配供給する第1流路6aに配設される。また、上記第2排ガス流量調整弁8bは、上記熱交換器4へ排ガスを分配供給する第2流路6bに配設される。   In addition, the heating device 1 includes two exhaust gas flow rate adjustment valves (a first exhaust gas flow rate adjustment valve 8a and a second exhaust gas flow rate adjustment valve 8b) that adjust the flow rate of the exhaust gas supplied to the preheating furnace 3 or the heat exchanger 4. Prepare. The first exhaust gas flow rate adjusting valve 8 a is disposed in the first flow path 6 a that distributes and supplies exhaust gas to the preheating furnace 3. The second exhaust gas flow rate adjustment valve 8b is disposed in the second flow path 6b that distributes and supplies the exhaust gas to the heat exchanger 4.

また、当該加熱装置1は、加熱炉2のバーナーへ供給される燃料ガスを加熱炉2へ流入させる燃料ガス流路9を備える。また、当該加熱装置1は、上記燃料ガス流路9に配設され、加熱炉2へ流入する燃料ガス流量を調整する燃料ガス流量調整弁10を備える。   In addition, the heating device 1 includes a fuel gas passage 9 through which fuel gas supplied to the burner of the heating furnace 2 flows into the heating furnace 2. The heating device 1 includes a fuel gas flow rate adjusting valve 10 that is disposed in the fuel gas flow path 9 and adjusts the flow rate of the fuel gas flowing into the heating furnace 2.

また、当該加熱装置1は、熱交換器4を介して加熱炉2へ燃焼用空気を流入させる燃焼用空気流路11と、熱交換器4を迂回させる燃焼用空気のバイパス流路12とを備える。また、当該加熱装置1は、上記バイパス流路12に配設され、熱交換器4を迂回させる燃焼用空気流量を調整するバイパス流量調整弁13を備える。   In addition, the heating device 1 includes a combustion air passage 11 through which combustion air flows into the heating furnace 2 via the heat exchanger 4 and a combustion air bypass passage 12 that bypasses the heat exchanger 4. Prepare. In addition, the heating device 1 includes a bypass flow rate adjustment valve 13 that is disposed in the bypass flow path 12 and adjusts the combustion air flow rate that bypasses the heat exchanger 4.

また、当該加熱装置1は、予熱炉3へ装入される鋼材の重量M1を測定する重量計14a、加熱炉2へ装入される鋼材の重量M2を測定する重量計14b、加熱前の鋼材の温度T1を測定する温度計14c、予熱後の鋼材の温度T2を測定する温度計14d、上記予熱炉3から排気される排ガスの温度T3を測定する温度計14e、上記熱交換器4から排気される排ガスの温度T4を測定する温度計14f、加熱炉2から排気される排ガスの温度T5を測定する温度計14g、加熱後の鋼材の温度T6を測定する温度計14h、加熱炉へ供給する燃料の流量QFを測定する流量計14i、及び熱交換器へ流入する燃焼用空気の流量QAを測定する流量計14jを備える。また、当該加熱装置1は、上記測定器の測定結果に基づき上記排ガス流量調整弁、燃料ガス流量調整弁10及びバイパス流量調整弁13の開閉量を調整する制御機構15を備える。   The heating apparatus 1 includes a weight meter 14a for measuring the weight M1 of the steel material charged into the preheating furnace 3, a weight meter 14b for measuring the weight M2 of the steel material charged into the heating furnace 2, and a steel material before heating. A thermometer 14c for measuring the temperature T1 of the steel, a thermometer 14d for measuring the temperature T2 of the preheated steel material, a thermometer 14e for measuring the temperature T3 of the exhaust gas exhausted from the preheating furnace 3, and the exhaust from the heat exchanger 4 A thermometer 14f for measuring the temperature T4 of the exhaust gas to be discharged, a thermometer 14g for measuring the temperature T5 of the exhaust gas exhausted from the heating furnace 2, a thermometer 14h for measuring the temperature T6 of the steel material after heating, and supplying to the heating furnace A flow meter 14i for measuring the flow rate QF of fuel and a flow meter 14j for measuring the flow rate QA of combustion air flowing into the heat exchanger are provided. In addition, the heating device 1 includes a control mechanism 15 that adjusts the open / close amounts of the exhaust gas flow rate adjustment valve, the fuel gas flow rate adjustment valve 10, and the bypass flow rate adjustment valve 13 based on the measurement result of the measuring instrument.

(ストックヤード)
ストックヤードXは、加熱前の鋼材を一時的に保管する。当該加熱装置1にはこのストックヤードXから抽出された鋼材が供給され、当該加熱装置1により加熱される。ストックヤードXに保管されている鋼材の温度は、鋼材が保管されている時間及び加熱前の鋼材の処理条件に依存して変わるが、通常25℃以上600℃以下の範囲である。
(Stockyard)
The stockyard X temporarily stores the steel material before heating. The heating device 1 is supplied with the steel material extracted from the stockyard X and is heated by the heating device 1. The temperature of the steel material stored in the stockyard X varies depending on the time during which the steel material is stored and the processing conditions of the steel material before heating, but is usually in the range of 25 ° C to 600 ° C.

<加熱炉>
加熱炉2は、第1搬送装置5aにより装入口に装入された鋼材を所定温度まで加熱し、抽出口から鋼材を抽出する。具体的には、加熱炉2は、燃料ガス流路9から供給される燃料ガスを燃焼用空気流路11から供給される燃焼用空気と混合してバーナーにより燃焼し、その燃焼ガスを用いて鋼材を加熱する。
<Heating furnace>
The heating furnace 2 heats the steel material charged into the charging port by the first transport device 5a to a predetermined temperature, and extracts the steel material from the extraction port. Specifically, the heating furnace 2 mixes the fuel gas supplied from the fuel gas passage 9 with the combustion air supplied from the combustion air passage 11 and burns it with a burner, and uses the combustion gas. Heat steel.

鋼材の加熱後の温度としては、特に限定されないが、例えば1100℃以上1300℃以下とできる。また、上記燃料ガスとしては、特に限定されないが、例えばコークス炉ガス(Cガス)、コークス炉ガスと高炉ガスとの混合ガス(Mガス)等を用いることができる。   Although it does not specifically limit as temperature after heating a steel material, For example, it can be set as 1100 degreeC or more and 1300 degrees C or less. The fuel gas is not particularly limited, and for example, coke oven gas (C gas), mixed gas of coke oven gas and blast furnace gas (M gas), or the like can be used.

加熱炉2としては、公知の加熱炉を用いることができる。公知の加熱炉としては、例えばウォーキングビーム式の搬送装置が配設され、鋼材が加熱炉2の装入側端部から抽出側端部まで移動する間に、鋼材の上下に配設された複数のバーナーで燃料ガスを燃焼させ、装入側から順に予熱帯、加熱帯及び均熱帯で鋼材の温度を制御する加熱炉を挙げることができる。上記加熱炉は、急速な加熱によって歪みが生じないように予熱帯で比較的緩やかな温度上昇速度で鋼材を加熱した後、加熱帯で目標の温度となるように比較的高い温度上昇速度で鋼材を加熱し、均熱帯で温度むらを解消するように緩やかに鋼材を加熱する。   As the heating furnace 2, a known heating furnace can be used. As a known heating furnace, for example, a walking beam type conveying device is provided, and a plurality of steel materials arranged above and below the steel material while the steel material moves from the charging side end to the extraction side end of the heating furnace 2. There can be mentioned a heating furnace that burns fuel gas with a burner and controls the temperature of the steel material in the pre-tropical zone, heating zone and soaking zone in order from the charging side. The heating furnace heats steel at a relatively moderate temperature rise rate in the pre-tropical zone so that no distortion is caused by rapid heating, and then at a relatively high temperature rise rate so as to reach the target temperature in the heating zone. The steel is heated gently so as to eliminate uneven temperature in the soaking zone.

また、当該加熱装置1は、鋼材の加熱に用いられた後の燃焼ガス、すなわち排ガスを第1排ガス流路6a及び第2排ガス流路6bを介して、予熱炉3の排ガスと熱交換器4の排ガスとに分配して供給することができる。この排ガスの第1排ガス流路6a及び第2排ガス流路6bへの取出口は、加熱炉2の装入口側に配設することが好ましい。上記取出口を装入口側に配設することで、燃焼ガスの流れる方向と鋼材の搬送方向とが対向するので、鋼材を効率的に加熱することができる。この排ガスの温度としては、燃料ガスの燃焼条件等により決まるが、例えば500℃以上900℃以下である。また、排ガスの流量としては、燃料ガスの燃焼条件等により決まるが、例えば10000Nm/h以上50000Nm/h以下である。 Further, the heating device 1 uses the combustion gas after being used for heating the steel material, that is, the exhaust gas, through the first exhaust gas channel 6a and the second exhaust gas channel 6b, and the heat exchanger 4 and the exhaust gas from the preheating furnace 3. Can be distributed and supplied to the exhaust gas. The outlet of the exhaust gas to the first exhaust gas channel 6 a and the second exhaust gas channel 6 b is preferably disposed on the inlet side of the heating furnace 2. By disposing the outlet on the inlet side, the direction in which the combustion gas flows and the conveying direction of the steel material face each other, so that the steel material can be efficiently heated. The temperature of the exhaust gas is determined depending on the combustion conditions of the fuel gas, but is, for example, 500 ° C. or higher and 900 ° C. or lower. Further, the flow rate of the exhaust gas is determined depending on the combustion condition of the fuel gas, but is, for example, 10000 Nm 3 / h or more and 50000 Nm 3 / h or less.

加熱炉2で加熱される鋼材の量(流量)としては、操業条件等に依存して決まるが、例えば100t/h以上250t/h以下とできる。   The amount (flow rate) of the steel material heated in the heating furnace 2 is determined depending on the operation conditions and the like, but can be, for example, 100 t / h or more and 250 t / h or less.

<予熱炉>
予熱炉3は、第3搬送装置5cにより予熱炉3の装入口から装入された鋼材を予熱する。具体的には、予熱炉3は、加熱炉2から排気される排ガスのうち第1排ガス流路6aを介して供給される排ガスを予熱ガスとして用いて鋼材を予熱する。また、予熱に用いた後の排ガスは、第3排ガス流路6cにより回収され、煙突7から排気される。予熱後の鋼材は、予熱炉3の抽出口から第1搬送装置5aへ抽出される。
<Preheating furnace>
The preheating furnace 3 preheats the steel material charged from the charging port of the preheating furnace 3 by the third transport device 5c. Specifically, the preheating furnace 3 preheats the steel material using the exhaust gas supplied from the heating furnace 2 through the first exhaust gas passage 6a as the preheating gas. Further, the exhaust gas after being used for preheating is recovered by the third exhaust gas channel 6 c and exhausted from the chimney 7. The preheated steel material is extracted from the extraction port of the preheating furnace 3 to the first transport device 5a.

予熱炉3としては、予熱ガス(排ガス)と鋼材との間で熱交換ができるものであれば、特に限定されない。例えば予熱炉3は、耐火煉瓦等の断熱材で形成された炉体と、この炉体内を予熱炉3の装入口から抽出口へ鋼材を搬送する機構とを備え、炉体内部を搬送される鋼材と接するように予熱ガスを炉体内部に流通させることで熱交換を行う予熱炉を用いることができる。   The preheating furnace 3 is not particularly limited as long as it can exchange heat between the preheating gas (exhaust gas) and the steel material. For example, the preheating furnace 3 includes a furnace body formed of a heat insulating material such as a refractory brick, and a mechanism for transporting the steel material from the loading port of the preheating furnace 3 to the extraction port in the furnace body, and is transported inside the furnace body. A preheating furnace that performs heat exchange by circulating a preheating gas inside the furnace body so as to be in contact with the steel material can be used.

第1排ガス流路6aからの排ガスの取込口は、予熱炉3の抽出口側に配設することが好ましい。また、第3排ガス流路6cへの排ガスの排気口は、予熱炉3の装入口側に配設することが好ましい。このように排ガスの取込口及び排気口を配設することで、排ガスの流れる方向と鋼材の搬送方向とが対向するので、鋼材を効率的に予熱することができる。   The exhaust gas intake port from the first exhaust gas channel 6 a is preferably disposed on the extraction port side of the preheating furnace 3. Moreover, it is preferable that the exhaust port of the exhaust gas to the third exhaust gas flow path 6 c is disposed on the charging inlet side of the preheating furnace 3. By arranging the exhaust gas intake port and the exhaust port in this manner, the direction in which the exhaust gas flows and the conveying direction of the steel material are opposed to each other, so that the steel material can be efficiently preheated.

予熱炉3での予熱後の鋼材の温度の下限としては、150℃が好ましく、200℃がより好ましい。一方、予熱炉3での予熱後の鋼材の温度の上限としては、700℃が好ましく、600℃がより好ましい。予熱炉3での予熱後の鋼材の温度が上記下限未満である場合、予熱炉3の抽出口付近においても鋼材の温度が低いため、予熱炉3内で排ガスから鋼材への総伝熱量が多くなる。このため、排ガス温度が酸露点温度以下に低下し易く、排ガスの酸露点腐食による予熱炉3の設備の劣化や破損が発生するおそれがある。逆に、予熱炉3での予熱後の鋼材の温度が上記上限を超える場合、排ガスと鋼材との温度差が小さくなるため、排ガスから鋼材への総伝熱量が小さくなる。このため、当該加熱装置1のエネルギー効率が低下するおそれがある。なお、この酸凝縮は排ガスの温度が低下した際に発生し、酸凝縮が始まる温度を「酸露点温度」という。   As a minimum of the temperature of the steel material after the preheating in the preheating furnace 3, 150 degreeC is preferable and 200 degreeC is more preferable. On the other hand, the upper limit of the temperature of the steel material after preheating in the preheating furnace 3 is preferably 700 ° C, more preferably 600 ° C. When the temperature of the steel material after preheating in the preheating furnace 3 is less than the above lower limit, the temperature of the steel material is low in the vicinity of the extraction port of the preheating furnace 3, so that the total heat transfer amount from the exhaust gas to the steel material is large in the preheating furnace 3. Become. For this reason, the exhaust gas temperature is likely to fall below the acid dew point temperature, and there is a possibility that the equipment of the preheating furnace 3 is deteriorated or broken due to the acid dew point corrosion of the exhaust gas. Conversely, when the temperature of the steel material after preheating in the preheating furnace 3 exceeds the above upper limit, the temperature difference between the exhaust gas and the steel material becomes small, so the total heat transfer amount from the exhaust gas to the steel material becomes small. For this reason, there exists a possibility that the energy efficiency of the said heating apparatus 1 may fall. This acid condensation occurs when the temperature of the exhaust gas decreases, and the temperature at which acid condensation starts is called “acid dew point temperature”.

予熱炉3での鋼材の予熱前後の温度差の下限としては、100℃が好ましく、150℃がより好ましい。一方、予熱炉3での鋼材の予熱前後の温度差の上限としては、400℃が好ましく、300℃がより好ましい。上記予熱前後の温度差が上記下限未満である場合、排ガスから鋼材への総伝熱量が小さくなり、当該加熱装置1のエネルギー効率が低下するおそれがある。逆に、上記予熱前後の温度差が上記上限を超える場合、排ガス温度が酸露点温度以下に低下し易く、排ガスの酸露点腐食による予熱炉3の設備の劣化や破損が発生するおそれがある。   As a minimum of the temperature difference before and behind preheating of steel materials in preheating furnace 3, 100 ° C is preferred and 150 ° C is more preferred. On the other hand, the upper limit of the temperature difference before and after preheating of the steel material in the preheating furnace 3 is preferably 400 ° C, and more preferably 300 ° C. When the temperature difference before and after the preheating is less than the lower limit, the total heat transfer amount from the exhaust gas to the steel material becomes small, and the energy efficiency of the heating device 1 may be reduced. Conversely, if the temperature difference before and after the preheating exceeds the upper limit, the exhaust gas temperature is likely to fall below the acid dew point temperature, and there is a risk that the equipment of the preheating furnace 3 will be deteriorated or damaged due to the acid dew point corrosion of the exhaust gas.

<熱交換器>
熱交換器4は、加熱炉2のバーナーに供給する燃焼用空気を予熱する。具体的には、熱交換器4は、加熱炉2から排気される排ガスのうち第2排ガス流路6bを介して供給される排ガスと燃焼用空気流路11を介して供給される燃焼用空気との間で熱交換を行うことで燃焼用空気を予熱する。
<Heat exchanger>
The heat exchanger 4 preheats the combustion air supplied to the burner of the heating furnace 2. Specifically, the heat exchanger 4 includes exhaust gas supplied from the heating furnace 2 through the second exhaust gas passage 6 b and combustion air supplied through the combustion air passage 11. The combustion air is preheated by exchanging heat with each other.

熱交換器4としては、燃焼用空気を予熱できる限り特に限定されないが、例えば公知のレキュペレーターやリジェネバーナー等を用いることができる。   The heat exchanger 4 is not particularly limited as long as the combustion air can be preheated. For example, a known recuperator or regenerative burner can be used.

熱交換器4での予熱後の燃焼用空気の温度の下限としては、150℃が好ましく、200℃がより好ましい。一方、熱交換器4での予熱後の燃焼用空気の温度の上限としては、700℃が好ましく、600℃がより好ましい。熱交換器4での予熱後の燃焼用空気の温度が上記下限未満である場合、熱交換器4の出口付近においても燃焼用空気の温度が低いため、熱交換器4内で排ガスから燃焼用空気への総伝熱量が多くなる。このため、排ガス温度が酸露点温度以下に低下し、排ガスの酸露点腐食による熱交換器4の設備の劣化や破損が発生するおそれがある。逆に、熱交換器4での予熱後の燃焼用空気の温度が上記上限を超える場合、排ガスと燃焼用空気との温度差が小さくなるため、排ガスから燃焼用空気への総伝熱量が小さくなる。このため、エネルギー効率が低下するおそれがある。   As a minimum of the temperature of the combustion air after preheating in heat exchanger 4, 150 ° C is preferred and 200 ° C is more preferred. On the other hand, the upper limit of the temperature of the combustion air after preheating in the heat exchanger 4 is preferably 700 ° C., more preferably 600 ° C. When the temperature of the combustion air after preheating in the heat exchanger 4 is less than the lower limit, the temperature of the combustion air is low even in the vicinity of the outlet of the heat exchanger 4, so Increases total heat transfer to the air. For this reason, exhaust gas temperature falls below an acid dew point temperature, and there exists a possibility that the deterioration and damage of the equipment of the heat exchanger 4 by the acid dew point corrosion of waste gas may generate | occur | produce. Conversely, when the temperature of the combustion air after preheating in the heat exchanger 4 exceeds the upper limit, the temperature difference between the exhaust gas and the combustion air becomes small, so the total heat transfer amount from the exhaust gas to the combustion air is small. Become. For this reason, there exists a possibility that energy efficiency may fall.

<搬送装置>
搬送装置は、鋼材をストックヤードXから抽出し、予熱炉3及び加熱炉2を経由して当該加熱装置1の鋼材搬出口へ搬送することができる。具体的には、まず第1搬送装置5aはストックヤードXから抽出された鋼材を第2搬送装置5bへ搬送し、第2搬送装置5bが上記鋼材を第3搬送装置5cへ搬送する。そして第3搬送装置5cは上記鋼材を予熱炉3の装入口に搬送し、上記鋼材が予熱炉3に装入される。次に、第1搬送装置5aは、予熱炉3の抽出口から抽出された予熱済みの鋼材を加熱炉2の装入口に搬送し、上記鋼材が加熱炉2に装入される。最後に、第3搬送装置5cは、加熱炉2の抽出口から抽出された加熱済みの鋼材を当該加熱装置1から次工程の装置、例えば圧延機へ搬出する。
<Conveyor>
The conveying device can extract the steel material from the stockyard X, and can convey the steel material to the steel material unloading port of the heating device 1 via the preheating furnace 3 and the heating furnace 2. Specifically, first, the first transport device 5a transports the steel material extracted from the stockyard X to the second transport device 5b, and the second transport device 5b transports the steel material to the third transport device 5c. And the 3rd conveying apparatus 5c conveys the said steel materials to the charging port of the preheating furnace 3, and the said steel materials are inserted into the preheating furnace 3. FIG. Next, the first transport device 5 a transports the preheated steel material extracted from the extraction port of the preheating furnace 3 to the charging port of the heating furnace 2, and the steel material is charged into the heating furnace 2. Finally, the 3rd conveying apparatus 5c carries out the heated steel material extracted from the extraction port of the heating furnace 2 to the apparatus of the next process, for example, a rolling mill, from the said heating apparatus 1. FIG.

ここで第1搬送装置5aにより鋼材を搬送できるストックヤードX、予熱炉3の抽出口、加熱炉2の装入口、及び第3搬送装置5cが第1搬送装置5aの搬送方向に沿ってこの順に配設されるとよい。また、第3搬送装置5cにより鋼材を搬送できる第2搬送装置5b、加熱炉2の抽出口、予熱炉3の装入口、及び当該加熱装置1の鋼材搬出口が第2搬送装置5bの搬送方向に沿ってこの順に配設されるとよい。このように配設することで、例えばストックヤードXから第2搬送装置5bへ鋼材を搬送する方向と、予熱炉3の抽出口から加熱炉2の装入口へ装入する方向とが一致する。従って、第1搬送装置5a、第2搬送装置5b及び第3搬送装置5cは、鋼材を同一方向に搬送する簡便な構成とできる。また、鋼材の搬送方向が同一であるので、当該加熱装置1は、鋼材を連続して処理することができる。なお、第1搬送装置5a、第2搬送装置5b及び第3搬送装置5cが双方向に搬送可能である場合は、上述の配置には限定されない。   Here, the stock yard X capable of transporting the steel material by the first transport device 5a, the extraction port of the preheating furnace 3, the charging port of the heating furnace 2, and the third transport device 5c are arranged in this order along the transport direction of the first transport device 5a. It may be arranged. Moreover, the 2nd conveying apparatus 5b which can convey steel materials with the 3rd conveying apparatus 5c, the extraction port of the heating furnace 2, the charging port of the preheating furnace 3, and the steel material carrying-out port of the said heating apparatus 1 are the conveyance directions of the 2nd conveying apparatus 5b. It is good to arrange | position in this order along. By arranging in this way, for example, the direction in which the steel material is conveyed from the stock yard X to the second conveying device 5b coincides with the direction in which the steel material is charged from the extraction port of the preheating furnace 3 into the charging port of the heating furnace 2. Therefore, the 1st conveying apparatus 5a, the 2nd conveying apparatus 5b, and the 3rd conveying apparatus 5c can be set as the simple structure which conveys steel materials in the same direction. Moreover, since the conveyance direction of steel materials is the same, the said heating apparatus 1 can process steel materials continuously. In addition, when the 1st conveying apparatus 5a, the 2nd conveying apparatus 5b, and the 3rd conveying apparatus 5c can convey in both directions, it is not limited to the above-mentioned arrangement | positioning.

上記搬送装置としては、特に限定されず、公知の搬送装置、例えばローラコンベア等を用いることができる。   The transport device is not particularly limited, and a known transport device such as a roller conveyor can be used.

<排ガス流量調整弁>
第1排ガス流量調整弁8aは、上記第1排ガス流路6aに供給する排ガスの流量を主に調整する。また、第2排ガス流量調整弁8bは、上記第2排ガス流路6bに供給する排ガスの流量を主に調整する。これら第1排ガス流量調整弁8a及び第2排ガス流量調整弁8bの開閉量を調整することで、当該加熱装置1は、予熱炉3及び熱交換器4へ供給する排ガス流量を精度よく調整することができる。なお、この開閉量の調整は、後述する制御機構15により行われる。
<Exhaust gas flow rate adjustment valve>
The first exhaust gas flow rate adjustment valve 8a mainly adjusts the flow rate of exhaust gas supplied to the first exhaust gas flow path 6a. The second exhaust gas flow rate adjustment valve 8b mainly adjusts the flow rate of exhaust gas supplied to the second exhaust gas flow path 6b. By adjusting the opening / closing amounts of the first exhaust gas flow rate adjustment valve 8a and the second exhaust gas flow rate adjustment valve 8b, the heating device 1 accurately adjusts the exhaust gas flow rate supplied to the preheating furnace 3 and the heat exchanger 4. Can do. The adjustment of the opening / closing amount is performed by the control mechanism 15 described later.

上記排ガス流量調整弁としては、特に限定されないが、例えば公知のダンパ等を用いることができる。   The exhaust gas flow rate adjustment valve is not particularly limited, and for example, a known damper or the like can be used.

また、第1排ガス流量調整弁8aは、予熱炉3に供給する排ガスを遮断できるとよい。このように第1排ガス流量調整弁8aにより予熱炉3に供給する排ガスを遮断することで、当該加熱装置1は、排ガスの全量を熱交換器4に供給することができる。このため、例えば予熱炉3に鋼材が装入されておらず予熱炉3へ排ガスを供給する必要がない場合、排ガスの全量を熱交換器4に供給することで、当該加熱装置1のエネルギー効率を高められる。   Further, the first exhaust gas flow rate adjustment valve 8a may be able to shut off the exhaust gas supplied to the preheating furnace 3. Thus, the heating apparatus 1 can supply the entire amount of exhaust gas to the heat exchanger 4 by shutting off the exhaust gas supplied to the preheating furnace 3 by the first exhaust gas flow rate adjustment valve 8a. For this reason, for example, when the steel material is not charged into the preheating furnace 3 and it is not necessary to supply exhaust gas to the preheating furnace 3, the energy efficiency of the heating device 1 is obtained by supplying the entire amount of exhaust gas to the heat exchanger 4. Can be enhanced.

<燃料ガス流量調整弁>
燃料ガス流量調整弁10は、加熱炉2へ流入する燃料ガス流量を調整する。この燃料ガス流量調整弁10の開閉度を調整することで、当該加熱装置1は、加熱炉2から抽出される鋼材の温度を調整できる。なお、この開閉量の調整は、後述する制御機構15により行われる。
<Fuel gas flow control valve>
The fuel gas flow rate adjustment valve 10 adjusts the flow rate of the fuel gas flowing into the heating furnace 2. The heating device 1 can adjust the temperature of the steel material extracted from the heating furnace 2 by adjusting the degree of opening and closing of the fuel gas flow rate adjusting valve 10. The adjustment of the opening / closing amount is performed by the control mechanism 15 described later.

上記燃料ガス流量調整弁10としては、特に限定されないが、例えば公知のダンパ等を用いることができる。   The fuel gas flow rate adjustment valve 10 is not particularly limited, and for example, a known damper or the like can be used.

<バイパス流量調整弁>
バイパス流量調整弁13は、熱交換器4を迂回させる燃焼用空気の流量を調整する。このバイパス流量調整弁13により当該加熱装置1は燃焼用空気の一部を上記バイパス流路12へ流すことができる。
<Bypass flow control valve>
The bypass flow rate adjustment valve 13 adjusts the flow rate of combustion air that bypasses the heat exchanger 4. With this bypass flow rate adjustment valve 13, the heating device 1 can flow a part of the combustion air to the bypass flow path 12.

上記バイパス流量調整弁13としては、特に限定されないが、例えば公知のダンパ等を用いることができる。   The bypass flow rate adjusting valve 13 is not particularly limited, and for example, a known damper or the like can be used.

また、バイパス流量調整弁13は、バイパス流路12に迂回させる燃焼用空気を遮断できるとよい。このようにバイパス流路12に迂回させる燃焼用空気を遮断することで、燃焼用空気の全量を熱交換器4に供給できる。このため、例えば燃焼用空気への伝熱後も排ガスの温度が酸露点温度以下とならない場合、燃焼用空気の全量を熱交換器4に供給することで、当該加熱装置1のエネルギー効率を高められる。   Further, the bypass flow rate adjusting valve 13 may be able to block the combustion air to be bypassed by the bypass flow path 12. By blocking the combustion air that is bypassed to the bypass flow path 12 in this way, the entire amount of combustion air can be supplied to the heat exchanger 4. For this reason, for example, when the temperature of the exhaust gas does not become the acid dew point temperature or less after the heat transfer to the combustion air, the entire amount of the combustion air is supplied to the heat exchanger 4 to increase the energy efficiency of the heating device 1. It is done.

<測定器>
測定器14は、上述の重量計、温度計、及び流量計により、予熱炉3へ装入される鋼材の重量M1、加熱炉2へ装入される鋼材の重量M2、加熱前の鋼材の温度T1、予熱後の鋼材の温度T2、上記予熱炉3から排気される排ガスの温度T3、上記熱交換器4から排気される排ガスの温度T4、加熱炉2から排気される排ガスの温度T5、加熱後の鋼材の温度T6、加熱炉2へ供給する燃料の流量QF、及び熱交換器4へ流入する燃焼用空気の流量QAを測定する。上記測定器14の測定結果は、後述する制御機構15に送られる。
<Measurement device>
The measuring instrument 14 includes the weight meter, the thermometer, and the flow meter described above, the weight M1 of the steel material charged into the preheating furnace 3, the weight M2 of the steel material charged into the heating furnace 2, and the temperature of the steel material before heating. T1, temperature T2 of the steel material after preheating, temperature T3 of exhaust gas exhausted from the preheating furnace 3, temperature T4 of exhaust gas exhausted from the heat exchanger 4, temperature T5 of exhaust gas exhausted from the heating furnace 2, heating The temperature T6 of the later steel material, the flow rate QF of the fuel supplied to the heating furnace 2, and the flow rate QA of the combustion air flowing into the heat exchanger 4 are measured. The measurement result of the measuring instrument 14 is sent to the control mechanism 15 described later.

予熱炉3へ装入される鋼材の重量M1及び加熱炉2へ装入される鋼材の重量M2を測定する重量計としては、例えば公知のロードセル等を用いることができる。また、予熱炉3へ装入される鋼材の重量M1の測定位置は、予熱炉3へ鋼材が装入されるより前であれば特に限定されないが、例えば第3搬送装置5cの予熱炉3の装入口手前とできる。加熱炉2へ装入される鋼材の重量M2の測定位置は、加熱炉2へ鋼材が装入されるより前であれば特に限定されないが、例えば第1搬送装置5aの加熱炉2の装入口手前とできる。   As a scale for measuring the weight M1 of the steel material charged into the preheating furnace 3 and the weight M2 of the steel material charged into the heating furnace 2, for example, a known load cell can be used. Further, the measurement position of the weight M1 of the steel material charged into the preheating furnace 3 is not particularly limited as long as it is before the steel material is charged into the preheating furnace 3, but for example, the position of the preheating furnace 3 of the third transport device 5c is not limited. Can be done before loading. Although the measurement position of the weight M2 of the steel material charged into the heating furnace 2 is not particularly limited as long as it is before the steel material is charged into the heating furnace 2, for example, the inlet of the heating furnace 2 of the first transport device 5a You can do this.

加熱前の鋼材の温度T1、予熱後の鋼材の温度T2、上記予熱炉3から排気される排ガスの温度T3、上記熱交換器4から排気される排ガスの温度T4、及び加熱炉2から排気される排ガスの温度T5を測定する温度計としては、例えば公知の放射温度計等を用いることができる。また、加熱前の鋼材の温度T1の測定位置は、特に限定されないが、例えば第1搬送装置5aのストックヤードXからの鋼材抽出口の下流側とできる。予熱後の鋼材の温度T2の測定位置は、特に限定されないが、例えば第1搬送装置5aの予熱炉3の抽出口の下流側とできる。予熱炉3から排気される排ガスの温度T3の測定位置は、特に限定されないが、例えば第3排ガス流路6cの予熱炉3の排ガス排気口の下流側とできる。熱交換器4から排気される排ガスの温度T4の測定位置は、特に限定されないが、例えば第4排ガス流路6dの熱交換器4の排ガス排気口の下流側とできる。加熱炉2から排気される排ガスの温度T5の測定位置は、特に限定されないが、例えば排ガスの第1排ガス流路6a及び第2排ガス流路6bへの取出口を結ぶ直線上とできる。加熱後の鋼材の温度T6の測定位置は、特に限定されないが、例えば第3搬送装置5cの加熱炉2の抽出口の下流側とできる。   The temperature T1 of the steel material before heating, the temperature T2 of the steel material after preheating, the temperature T3 of the exhaust gas exhausted from the preheating furnace 3, the temperature T4 of the exhaust gas exhausted from the heat exchanger 4, and the exhaust gas exhausted from the heating furnace 2 For example, a known radiation thermometer can be used as a thermometer for measuring the temperature T5 of the exhaust gas. Moreover, the measurement position of the temperature T1 of the steel material before heating is not particularly limited. For example, it can be the downstream side of the steel material extraction port from the stock yard X of the first transport device 5a. Although the measurement position of temperature T2 of the steel material after preheating is not specifically limited, For example, it can be made in the downstream of the extraction port of the preheating furnace 3 of the 1st conveying apparatus 5a. Although the measurement position of the temperature T3 of the exhaust gas exhausted from the preheating furnace 3 is not particularly limited, for example, it can be downstream of the exhaust gas exhaust port of the preheating furnace 3 in the third exhaust gas flow path 6c. Although the measurement position of the temperature T4 of the exhaust gas exhausted from the heat exchanger 4 is not particularly limited, for example, it can be downstream of the exhaust gas exhaust port of the heat exchanger 4 in the fourth exhaust gas channel 6d. The measurement position of the temperature T5 of the exhaust gas exhausted from the heating furnace 2 is not particularly limited. For example, it can be on a straight line connecting the outlets of the exhaust gas to the first exhaust gas channel 6a and the second exhaust gas channel 6b. Although the measurement position of temperature T6 of the steel material after a heating is not specifically limited, For example, it can be made into the downstream of the extraction port of the heating furnace 2 of the 3rd conveying apparatus 5c.

加熱炉2へ供給する燃料の流量QF、及び熱交換器4へ流入する燃焼用空気の流量QAを測定する流量計としては、例えば公知の電磁流量計等を用いることができる。また、加熱炉2へ供給する燃料の流量QFの測定位置は、特に限定されないが、例えば燃料ガス流路9の燃料ガス流量調整弁10の上流側とできる。熱交換器4へ流入する燃焼用空気の流量QAの測定位置は、特に限定されないが、例えば燃焼用空気流路11の熱交換器4の上流側とできる。   As a flow meter for measuring the flow rate QF of the fuel supplied to the heating furnace 2 and the flow rate QA of the combustion air flowing into the heat exchanger 4, for example, a known electromagnetic flow meter or the like can be used. The measurement position of the flow rate QF of the fuel supplied to the heating furnace 2 is not particularly limited, but can be, for example, the upstream side of the fuel gas flow rate adjustment valve 10 in the fuel gas flow path 9. The measurement position of the flow rate QA of the combustion air flowing into the heat exchanger 4 is not particularly limited, but can be, for example, the upstream side of the heat exchanger 4 in the combustion air flow path 11.

<制御機構>
制御機構15は、上記測定器14の測定結果に基づき、予熱炉3の排ガスの予測温度及び熱交換器4の排ガスの予測温度が酸露点温度以下とならない範囲で、上記排ガス流量調整機構すなわち上記排ガス流量調整弁を用いてエネルギー効率が最大化されるように予熱炉3及び熱交換器4へ供給する排ガス流量比を制御する。
<Control mechanism>
Based on the measurement result of the measuring device 14, the control mechanism 15 is configured to adjust the exhaust gas flow rate adjusting mechanism, that is, the above-described exhaust gas flow rate adjusting mechanism, that is, the above-described exhaust gas flow rate adjusting mechanism, that is, the above-described temperature range. The exhaust gas flow rate ratio supplied to the preheating furnace 3 and the heat exchanger 4 is controlled so that the energy efficiency is maximized using the exhaust gas flow rate adjustment valve.

具体的には、まず、ある排ガスの流量比を仮定し、予熱炉3の排ガスの予測温度及び熱交換器4の排ガスの予測温度を算出する。上記予測温度の算出には、以下に示す熱交換器4のエネルギー効率η1を算出する計算式(1)、及び予熱炉3のエネルギー効率η2を算出する計算式(2)を用いる。

Figure 2017141493
ここで、Cp−airは空気の比熱[J/kg/K]を意味し、Cp−exは排ガスの比熱[J/kg/K]を意味する。また、Cp−steelは鋼材の比熱[J/kg/K]を意味する。これらは、それぞれ鋼材や燃料ガス等の種類に依存した定数である。また、Qex−airが熱交換器4に供給される排ガスの流量[Nm/h]、Qex−steelが予熱炉3に供給される排ガスの流量[Nm/h]を表す。この排ガスの流量Qex−air及びQex−steelは燃焼用空気の流量QA、燃料ガスの流量QF及び排ガス流量調整弁の開閉量により決まる量である。また、Tairは、予熱後の燃焼用空気の温度[℃]を意味する。なお、上式では予熱前の燃焼用空気の温度として25℃を想定しているが、この温度は操業条件等に応じ適宜適切な温度に変更可能である。また、上式では予熱炉3へ装入する鋼材の選択温度として100℃を想定しており、T1(<100℃)とは、加熱前の鋼材の温度が100℃未満である鋼材に対してのみ演算を行うことを意味する。この予熱炉3へ装入する鋼材の選択温度は操業条件等に応じ適宜適切な温度に変更可能である。 Specifically, first, assuming the flow rate ratio of a certain exhaust gas, the predicted exhaust gas temperature of the preheating furnace 3 and the predicted exhaust gas temperature of the heat exchanger 4 are calculated. For calculating the predicted temperature, the following calculation formula (1) for calculating the energy efficiency η1 of the heat exchanger 4 and calculation formula (2) for calculating the energy efficiency η2 of the preheating furnace 3 are used.
Figure 2017141493
Here, C p-air means the specific heat of air [J / kg / K], and C p-ex means the specific heat of exhaust gas [J / kg / K]. C p-steel means the specific heat [J / kg / K] of the steel material. These are constants depending on the types of steel materials, fuel gas, and the like. Q ex-air represents the flow rate [Nm 3 / h] of the exhaust gas supplied to the heat exchanger 4, and Q ex-steel represents the flow rate [Nm 3 / h] of the exhaust gas supplied to the preheating furnace 3. The exhaust gas flow rates Q ex-air and Q ex-steel are determined by the combustion air flow rate QA, the fuel gas flow rate QF, and the exhaust gas flow rate adjustment valve opening / closing amount. T air means the temperature [° C.] of the combustion air after preheating. In the above equation, the temperature of the combustion air before preheating is assumed to be 25 ° C., but this temperature can be appropriately changed to an appropriate temperature according to the operating conditions. In the above formula, 100 ° C. is assumed as the selected temperature of the steel material to be charged into the preheating furnace 3, and T1 (<100 ° C.) is a steel material whose temperature before heating is less than 100 ° C. It means that only the operation is performed. The selection temperature of the steel material to be charged into the preheating furnace 3 can be appropriately changed to an appropriate temperature according to the operation conditions.

さらに詳細に述べると、予熱炉3の排ガスの予測温度及び熱交換器4の排ガスの予測温度は、式(1)及び式(2)を用いてT3及びT4の値を求めることで算出する。ここで、予熱炉3へ装入される鋼材の重量M1、予熱後の鋼材の温度T2、及び加熱炉2から排気される排ガスの温度T5は、測定器で測定された測定結果を用いる。また、Qex−air及びQex−steelの算出に必要な加熱炉2へ供給する燃料の流量QF及び熱交換器4へ流入する燃焼用空気の流量QAも、測定器で測定された測定結果を用いる。また、加熱前の鋼材の温度T1及び予熱後の鋼材の温度T2は、測定器の測定結果を用いてもよいが、操業条件から想定される温度(固定値)を用いてもよい。熱交換器4のエネルギー効率η1、予熱炉3のエネルギー効率η2、及び予熱後の燃焼用空気の温度Tairは、操業条件から想定されるエネルギー効率や温度(いずれも固定値)を用いる。なお、実際には流量比を変え排ガスの流量Qex−air又はQex−steelを変更するとT2やTairの温度が変化する。そこで上記式(1)、(2)を繰り返し計算することで収束解を得るようにするとよい。このように収束解を得ることで、T3及びT4の算出精度が向上する。 More specifically, the predicted temperature of the exhaust gas from the preheating furnace 3 and the predicted temperature of the exhaust gas from the heat exchanger 4 are calculated by obtaining the values of T3 and T4 using the equations (1) and (2). Here, for the weight M1 of the steel material charged into the preheating furnace 3, the temperature T2 of the steel material after preheating, and the temperature T5 of the exhaust gas exhausted from the heating furnace 2, the measurement results measured by the measuring device are used. Further, the flow rate QF of the fuel supplied to the heating furnace 2 and the flow rate QA of the combustion air flowing into the heat exchanger 4 necessary for calculating Q ex-air and Q ex-steel are also measured by the measuring device. Is used. Moreover, although the measurement result of a measuring device may be used for the temperature T1 of the steel material before a heating and the temperature T2 of the steel material after a preheating, the temperature (fixed value) assumed from operating conditions may be used. As the energy efficiency η1 of the heat exchanger 4, the energy efficiency η2 of the preheating furnace 3, and the temperature T air of the combustion air after preheating, energy efficiency and temperature assumed from the operating conditions (both are fixed values) are used. In practice, when the flow rate ratio is changed and the flow rate Q ex-air or Q ex-steel of the exhaust gas is changed, the temperature of T2 or T air changes. Therefore, it is preferable to obtain a convergent solution by repeatedly calculating the above equations (1) and (2). By obtaining the convergence solution in this way, the calculation accuracy of T3 and T4 is improved.

次に、当該加熱装置1全体のエネルギー効率Rを算出する。上記エネルギー効率Rの算出には、以下に示す当該加熱装置1全体のエネルギー効率Rの計算式(3)を用いる。

Figure 2017141493
ここで、Hv−fuelは燃料ガスの単位体積当たりの発熱量[J/m]を意味し、燃料ガスの種類に依存した固定値である。なお、上式では鋼材の加熱後の温度として1200℃を想定しているが、上式は、適宜所望の加熱温度に変更して用いることができる。また、T1(≧100℃)とは、加熱前の鋼材の温度が100℃以上である鋼材に対して演算を行うことを意味する。 Next, the energy efficiency R of the entire heating device 1 is calculated. For calculating the energy efficiency R, the following formula (3) for calculating the energy efficiency R of the entire heating device 1 is used.
Figure 2017141493
Here, H v-fuel means the calorific value [J / m 3 ] per unit volume of the fuel gas, and is a fixed value depending on the type of the fuel gas. In addition, although the above formula assumes 1200 degreeC as the temperature after heating of steel materials, the above formula can be changed to a desired heating temperature as appropriate. Further, T1 (≧ 100 ° C.) means that a calculation is performed on a steel material in which the temperature of the steel material before heating is 100 ° C. or higher.

さらに詳細に述べると、エネルギー効率Rは、予熱炉3へ装入される鋼材の重量M1、加熱炉2へ装入される鋼材の重量M2、加熱前の鋼材の温度T1、予熱後の鋼材の温度T2、及び加熱炉2へ供給する燃料の流量QFを上記式(3)に代入することで算出できる。これらの重量及び温度は、測定器により測定される重量や温度を用いることができる。   More specifically, the energy efficiency R is defined by the weight M1 of the steel material charged into the preheating furnace 3, the weight M2 of the steel material charged into the heating furnace 2, the temperature T1 of the steel material before heating, and the steel material after preheating. It can be calculated by substituting the temperature T2 and the flow rate QF of the fuel supplied to the heating furnace 2 into the above equation (3). As these weight and temperature, the weight and temperature measured by a measuring instrument can be used.

また、上記式(3)では、予熱及び加熱によって鋼材が得た熱量を元にエネルギー効率Rを算出したが、有効に使われた排ガス顕熱と予熱及び加熱によって鋼材が得た熱量とが等しいと考えられることを利用して、上記エネルギー効率Rは下記式(4)により算出してもよい。

Figure 2017141493
Moreover, in said Formula (3), although energy efficiency R was computed based on the calorie | heat amount which the steel materials obtained by preheating and heating, the exhaust gas sensible heat used effectively and the calorie | heat amount which the steel materials obtained by preheating and heating are equal. The energy efficiency R may be calculated by the following formula (4) using what is considered.
Figure 2017141493

制御機構15は、上述の予熱炉3の排ガスの予測温度及び熱交換器4の排ガスの予測温度並びにエネルギー効率計算を流量比を変化させて行う。これらの計算結果から制御機構15は、予熱炉3の排ガスの予測温度及び熱交換器4の排ガスの予測温度が酸露点温度以下とならない範囲で当該加熱装置1のエネルギー効率Rが最大化されるように上記排ガス流量調整弁の開閉量を調節する。なお、酸露点温度は、排ガスに含まれる湿度等にも依存するが、通常140℃以上160℃以下である。   The control mechanism 15 calculates the predicted temperature of the exhaust gas of the preheating furnace 3 and the predicted temperature of the exhaust gas of the heat exchanger 4 and the energy efficiency by changing the flow rate ratio. From these calculation results, the control mechanism 15 maximizes the energy efficiency R of the heating device 1 within a range where the predicted temperature of the exhaust gas from the preheating furnace 3 and the predicted temperature of the exhaust gas from the heat exchanger 4 do not fall below the acid dew point temperature. As described above, the open / close amount of the exhaust gas flow rate adjustment valve is adjusted. The acid dew point temperature is usually 140 ° C. or higher and 160 ° C. or lower, although it depends on the humidity etc. contained in the exhaust gas.

また、「エネルギー効率が最大化されるように予熱炉及び熱交換器へ供給する排ガス流量比を調整する」とは、エネルギー効率が最大となる排ガス流量比の理論値に対して、排ガス流量比が一定の差分内に収まるように排ガス流量比を調整することをいう。制御機構15により調整された排ガス流量比と上記理論値との差分の上限としては、10%が好ましく、5%がより好ましい。上記差分が上記上限を超える場合、エネルギー効率が不十分となるおそれがある。一方、上記差分の下限は特に限定されず、0%である。   In addition, “adjusting the exhaust gas flow ratio supplied to the preheating furnace and heat exchanger so that the energy efficiency is maximized” means that the exhaust gas flow ratio relative to the theoretical value of the exhaust gas flow ratio at which the energy efficiency is maximized. Is to adjust the exhaust gas flow rate ratio so as to be within a certain difference. The upper limit of the difference between the exhaust gas flow rate ratio adjusted by the control mechanism 15 and the theoretical value is preferably 10% and more preferably 5%. When the difference exceeds the upper limit, energy efficiency may be insufficient. On the other hand, the lower limit of the difference is not particularly limited and is 0%.

流量比を変化させてエネルギー効率Rが最大となる流量比を探索する方法としては、特に限定されないが、例えば予熱炉へ供給する排ガスの流量の排ガス全体の流量に対する比を離散的に複数設定し、その流量比におけるエネルギー効率Rの算出結果からエネルギー効率Rを流量比の多項次関数として近似し、その関数が最大となる流量比を算出する方法を用いることができる。また、エネルギー効率Rが最大となる流量比は、二分木探索等の公知の収束計算によって算出してもよい。   The method of searching for the flow rate ratio at which the energy efficiency R is maximized by changing the flow rate ratio is not particularly limited. For example, a plurality of ratios of the exhaust gas flow rate supplied to the preheating furnace to the overall exhaust gas flow rate are set discretely. A method of approximating the energy efficiency R as a polynomial function of the flow rate ratio from the calculation result of the energy efficiency R at the flow rate ratio and calculating the flow rate ratio at which the function becomes maximum can be used. Further, the flow rate ratio at which the energy efficiency R is maximized may be calculated by a known convergence calculation such as a binary tree search.

また、制御機構15は、予熱炉3へ装入する鋼材の選択により予熱炉3から排気される排ガスが所定温度以上となるように排ガス温度を制御する。具体的には、制御機構15は、温度計により測定される予熱炉3の排ガス温度T3が例えば酸露点温度未満まで低下している場合、予熱炉3への鋼材の装入を行わず直接加熱炉2へ鋼材を装入する。又は、制御機構15は予熱炉3の排ガス温度T3が酸露点温度以上となるように上記排ガス流量調整弁の開閉量を調節してもよいし、予熱炉3へ装入する鋼材の選択と上記排ガス流量の調整との両方を行ってもよい。   Further, the control mechanism 15 controls the exhaust gas temperature so that the exhaust gas exhausted from the preheating furnace 3 becomes equal to or higher than a predetermined temperature by selecting a steel material to be charged into the preheating furnace 3. Specifically, the control mechanism 15 directly heats the preheating furnace 3 without charging the steel material when the exhaust gas temperature T3 of the preheating furnace 3 measured by the thermometer is lowered to, for example, less than the acid dew point temperature. The steel material is charged into the furnace 2. Alternatively, the control mechanism 15 may adjust the opening / closing amount of the exhaust gas flow rate adjustment valve so that the exhaust gas temperature T3 of the preheating furnace 3 is equal to or higher than the acid dew point temperature, and the selection of the steel material charged into the preheating furnace 3 and the above. Both the adjustment of the exhaust gas flow rate may be performed.

このように制御機構15が予熱炉3から排気される排ガスが酸露点温度以上となるように排ガス温度を制御する機構を備えることで、排ガスの酸露点腐食による予熱炉3等の設備の劣化や破損を抑止できる。   In this way, the control mechanism 15 is provided with a mechanism for controlling the exhaust gas temperature so that the exhaust gas exhausted from the preheating furnace 3 becomes equal to or higher than the acid dew point temperature. Damage can be suppressed.

また、制御機構15は、燃焼用空気の一部をバイパス流路12へ流すことにより熱交換器4から排気される排ガスが所定温度以上となるように排ガス温度を制御する。具体的には、温度計により測定される熱交換器4の排ガス温度T4が例えば酸露点温度未満まで低下している場合、制御機構15はバイパス流量調整弁13の開閉量を調整して、バイパス流路12を流れる燃焼用空気の量を増加させる。又は、制御機構15は予熱炉3の排ガス温度T3が酸露点温度以上となるように上記排ガス流量調整弁の開閉量を調節してもよいし、バイパス流路12へ流す燃焼量空気の量の調整と上記排ガス流量の調整との両方を行ってもよい。   Further, the control mechanism 15 controls the exhaust gas temperature so that the exhaust gas exhausted from the heat exchanger 4 becomes a predetermined temperature or more by flowing a part of the combustion air to the bypass passage 12. Specifically, when the exhaust gas temperature T4 of the heat exchanger 4 measured by the thermometer is lowered to, for example, less than the acid dew point temperature, the control mechanism 15 adjusts the opening / closing amount of the bypass flow rate adjustment valve 13 to bypass The amount of combustion air flowing through the flow path 12 is increased. Alternatively, the control mechanism 15 may adjust the open / close amount of the exhaust gas flow rate adjustment valve so that the exhaust gas temperature T3 of the preheating furnace 3 is equal to or higher than the acid dew point temperature, or the amount of combustion air flowing into the bypass passage 12 You may perform both adjustment and adjustment of the said exhaust gas flow volume.

このように熱交換器4から排気される排ガスが酸露点温度以上となるように排ガス温度を制御する機構を備えることで、酸露点腐食による熱交換器4等の設備の劣化や破損を抑止できる。   Thus, by providing a mechanism for controlling the exhaust gas temperature so that the exhaust gas exhausted from the heat exchanger 4 becomes equal to or higher than the acid dew point temperature, it is possible to suppress deterioration and damage of equipment such as the heat exchanger 4 due to acid dew point corrosion. .

また、制御機構15は、加熱後の鋼材の温度が所定範囲内となるように上記燃料ガス流量調整機構を用いて上記燃料ガス流量を制御する。具体的には温度計により測定される加熱後の鋼材の温度T6が所望の温度、例えば1200℃未満まで低下している場合、制御機構15は燃料ガス流量調整弁10の開閉量を調整して、燃料ガス流路9を流れる燃料ガスの量を増加させる。一方、温度計により測定される加熱後の鋼材の温度T6が所望の温度を超えている場合、制御機構15は燃料ガス流量調整弁10の開閉量を調整して、燃料ガス流路9を流れる燃料ガスの量を減少させる。   Further, the control mechanism 15 controls the fuel gas flow rate by using the fuel gas flow rate adjusting mechanism so that the temperature of the heated steel material is within a predetermined range. Specifically, when the temperature T6 of the steel material after heating measured by the thermometer is lowered to a desired temperature, for example, less than 1200 ° C., the control mechanism 15 adjusts the opening / closing amount of the fuel gas flow rate adjustment valve 10. The amount of the fuel gas flowing through the fuel gas passage 9 is increased. On the other hand, when the temperature T6 of the steel material after heating measured by the thermometer exceeds a desired temperature, the control mechanism 15 adjusts the opening / closing amount of the fuel gas flow rate adjusting valve 10 and flows through the fuel gas flow path 9. Reduce the amount of fuel gas.

このように燃料ガス流量調整弁10の開閉量を調節することで、予熱炉3及び熱交換器4へ供給する排ガス流量比が変化した場合においても加熱炉2から抽出される鋼材の温度を所望の温度に調整できる。このため、当該加熱装置1は、エネルギー効率を高めつつ、安定した操業ができる。   By adjusting the opening / closing amount of the fuel gas flow rate adjusting valve 10 in this way, the temperature of the steel material extracted from the heating furnace 2 is desired even when the exhaust gas flow rate ratio supplied to the preheating furnace 3 and the heat exchanger 4 changes. The temperature can be adjusted. For this reason, the said heating apparatus 1 can operate stably, improving energy efficiency.

また、制御機構15は、加熱前の鋼材の温度T1により予熱炉3へ装入する鋼材を選択する機構を備える。具体的には、加熱前の鋼材の温度T1を測定する温度計の測定結果に基づき、加熱前の鋼材の温度T1が所定温度未満である場合に鋼材を予熱炉3へ装入し、加熱前の鋼材の温度T1が上記所定温度以上である場合には鋼材が予熱炉3を経由せず直接加熱炉2に装入されるように制御機構15が第1搬送装置5aを制御する。加熱前の鋼材の温度が比較的高い鋼材を予熱炉3へ装入すると、排ガス温度と鋼材との温度差が小さいため排ガスから鋼材への伝熱効率が低下する。このため、一定量の排ガスの顕熱を回収するには加熱前の鋼材の温度が低い場合に比べ、鋼材を予熱路内に長く滞在させる必要があり、生産性が低下する。従って、加熱前の鋼材の温度により予熱炉3へ装入する鋼材を選択することで生産性の低下が抑止でき、燃料原単位を減らすことができる。   Moreover, the control mechanism 15 is provided with the mechanism which selects the steel materials inserted into the preheating furnace 3 with the temperature T1 of the steel materials before a heating. Specifically, based on the measurement result of a thermometer that measures the temperature T1 of the steel material before heating, when the temperature T1 of the steel material before heating is less than a predetermined temperature, the steel material is charged into the preheating furnace 3 and before heating. When the temperature T1 of the steel material is equal to or higher than the predetermined temperature, the control mechanism 15 controls the first transport device 5a so that the steel material is directly inserted into the heating furnace 2 without passing through the preheating furnace 3. When a steel material having a relatively high temperature before heating is charged into the preheating furnace 3, the temperature difference between the exhaust gas temperature and the steel material is small, so the heat transfer efficiency from the exhaust gas to the steel material is reduced. For this reason, in order to collect | recover sensible heat of a fixed quantity of waste gas, compared with the case where the temperature of the steel materials before a heating is low, it is necessary to make steel materials stay in a preheating path long, and productivity falls. Therefore, by selecting the steel material to be charged into the preheating furnace 3 depending on the temperature of the steel material before heating, the reduction in productivity can be suppressed and the fuel consumption rate can be reduced.

鋼材を予熱炉3へ装入するか否かを選択する基準となる温度の上限としては、200℃が好ましく、150℃がより好ましい。上記基準温度が上記上限を超える場合、排ガスの顕熱を回収するために鋼材を予熱炉3内に長く滞在させる必要があり、生産性が低下するおそれがある。一方、上記基準温度の下限は、特に限定されない。   The upper limit of the temperature serving as a reference for selecting whether or not the steel material is charged into the preheating furnace 3 is preferably 200 ° C, and more preferably 150 ° C. When the reference temperature exceeds the upper limit, it is necessary to make the steel material stay in the preheating furnace 3 long in order to recover the sensible heat of the exhaust gas, which may reduce productivity. On the other hand, the lower limit of the reference temperature is not particularly limited.

<鋼材の加熱方法>
当該加熱装置1を用いた鋼材の加熱方法は、鋼材を予熱炉により予熱する工程と、鋼材を加熱炉により加熱する工程と、排ガスの流量を調整する工程とを備える。
<Method of heating steel>
The method for heating a steel material using the heating device 1 includes a step of preheating the steel material with a preheating furnace, a step of heating the steel material with a heating furnace, and a step of adjusting the flow rate of the exhaust gas.

予熱工程では、鋼材を予熱する。具体的には、まず、搬送装置を用いて鋼材をストックヤードXから抽出し、予熱炉へ装入する。次に、予熱炉内で装入された鋼材を排ガスにより予熱する。最後に、予熱後の鋼材を予熱炉の抽出口から抽出する。   In the preheating process, the steel material is preheated. Specifically, first, a steel material is extracted from the stockyard X using a transport device, and charged into a preheating furnace. Next, the steel material charged in the preheating furnace is preheated with exhaust gas. Finally, the preheated steel is extracted from the extraction port of the preheating furnace.

加熱工程では、鋼材を加熱する。具体的には、まず予熱後の鋼材又はストックヤードXから抽出した鋼材を搬送装置を用いて加熱炉へ装入する。次に、加熱路内で装入された鋼材をバーナーから噴出される燃焼ガスにより加熱する。最後に、加熱後の鋼材を加熱炉の抽出口から抽出し、当該加熱装置1から次工程の装置、例えば圧延機へ搬出する。   In the heating step, the steel material is heated. Specifically, first, the steel material after preheating or the steel material extracted from the stockyard X is charged into a heating furnace using a transport device. Next, the steel material charged in the heating path is heated by the combustion gas ejected from the burner. Finally, the heated steel material is extracted from the extraction port of the heating furnace, and is transported from the heating device 1 to the next process device, for example, a rolling mill.

排ガス流量調整工程では、制御機構15により排ガスの流量を調整する。この排ガス流量調整工程は、図2に示すように加熱前の鋼材の温度に基づいて予熱炉へ装入する鋼材を選択する工程(S1)と、エネルギー効率が最大化されるように上記予熱炉及び上記熱交換器へ供給する排ガス流量比を調整する工程(S2)と、予熱炉へ装入する鋼材の選択により上記予熱炉から排気される排ガスが所定温度以上となるように排ガス温度を調整する工程(S3)と、燃焼用空気の一部又は全部を上記バイパス流路へ流すことにより上記熱交換器から排気される排ガスが所定温度以上となるように排ガス温度を調整する工程(S4)と、加熱後の鋼材の温度が所定範囲内となるように燃料ガス流量を調整する工程(S5)とを備える。   In the exhaust gas flow rate adjustment step, the flow rate of the exhaust gas is adjusted by the control mechanism 15. As shown in FIG. 2, the exhaust gas flow rate adjusting step includes a step (S1) of selecting a steel material to be charged into the preheating furnace based on the temperature of the steel material before heating, and the preheating furnace so that the energy efficiency is maximized. And adjusting the exhaust gas flow ratio supplied to the heat exchanger (S2), and adjusting the exhaust gas temperature so that the exhaust gas exhausted from the preheating furnace becomes a predetermined temperature or more by selecting the steel material to be charged into the preheating furnace. A step (S3) of adjusting the exhaust gas temperature so that the exhaust gas exhausted from the heat exchanger becomes a predetermined temperature or more by flowing a part or all of the combustion air to the bypass flow path (S4) And a step (S5) of adjusting the fuel gas flow rate so that the temperature of the heated steel material is within a predetermined range.

まず、鋼材の予熱炉への装入選択工程(S1)において、制御機構15の鋼材選択機構により、加熱前の鋼材の温度T1に基づいて鋼材を予熱炉3を経ずに加熱炉2へ装入するか否かを選択する。   First, in the charging selection step (S1) of the steel material to the preheating furnace, the steel material selection mechanism of the control mechanism 15 loads the steel material into the heating furnace 2 without passing through the preheating furnace 3 based on the temperature T1 of the steel material before heating. Select whether or not to enter.

次に、排ガス流量比調整工程(S2)において、制御機構15の排ガス流量比制御機構により、測定器の測定結果に基づいて予熱炉3の排ガスの予測温度及び熱交換器4の排ガスの予測温度を算出する。この算出結果に基づき制御機構15はさらに上記予測温度が酸露点温度より大きく、かつエネルギー効率が最大となる流量比を算定する。そして算定した流量比となるように排ガス流量調整弁の開閉量を調節する。   Next, in the exhaust gas flow rate ratio adjusting step (S2), the exhaust gas flow rate control mechanism of the control mechanism 15 performs the predicted temperature of the exhaust gas of the preheating furnace 3 and the predicted temperature of the exhaust gas of the heat exchanger 4 based on the measurement result of the measuring device. Is calculated. Based on this calculation result, the control mechanism 15 further calculates a flow rate ratio at which the predicted temperature is higher than the acid dew point temperature and the energy efficiency is maximized. Then, the open / close amount of the exhaust gas flow rate adjustment valve is adjusted so that the calculated flow rate ratio is obtained.

次に、予熱炉の排ガス温度調整工程(S3)において、制御機構15の予熱器3から排気される排ガス温度の制御機構により、予熱器3の排ガス温度T3に基づいて鋼材を予熱炉3を経ずに加熱炉2へ装入するか否かを選択する。具体的には、温度計により測定される予熱炉3の排ガス温度T3が例えば酸露点温度未満まで低下している場合、制御機構15により予熱炉3への鋼材の装入を行わず直接加熱炉2へ鋼材を装入する。これにより予熱炉3で排ガスから鋼材に回収される顕熱が減少するので、予熱炉3から排気される排ガスの温度が高まる。従って、排ガス温度T3が酸露点温度以上となるように調整できる。   Next, in the exhaust gas temperature adjustment step (S3) of the preheating furnace, the steel material passes through the preheating furnace 3 based on the exhaust gas temperature T3 of the preheater 3 by the control mechanism of the exhaust gas temperature exhausted from the preheater 3 of the control mechanism 15. Whether or not to insert into the heating furnace 2 is selected. Specifically, when the exhaust gas temperature T3 of the preheating furnace 3 measured by the thermometer is lowered to, for example, less than the acid dew point temperature, the control mechanism 15 does not charge the preheating furnace 3 with the steel material and directly heats the furnace. Charge steel material to 2. As a result, the sensible heat recovered from the exhaust gas to the steel material in the preheating furnace 3 is reduced, so that the temperature of the exhaust gas exhausted from the preheating furnace 3 is increased. Therefore, the exhaust gas temperature T3 can be adjusted to be equal to or higher than the acid dew point temperature.

次に、熱交換器の排ガス温度調整工程(S4)において、制御機構15の熱交換器4から排気される排ガス温度の制御機構により、熱交換器4の排ガス温度T4に基づいてバイパス流量調整弁13の開閉量の調整する。これにより制御機構15は、バイパス流路12を流れる燃焼用空気の量を調整する。具体的には、温度計により測定される熱交換器4の排ガス温度T4が例えば酸露点温度未満まで低下している場合、制御機構15によりバイパス流路12を流れる燃焼用空気の量を増加させる。これにより熱交換器4で排ガスから燃焼用空気に回収される顕熱が減少するので、熱交換器4から排気される排ガスの温度が高まる。従って、熱交換器4から排気される排ガス温度が酸露点温度以上となるように調整できる。   Next, in the exhaust gas temperature adjusting step (S4) of the heat exchanger, the bypass flow rate adjusting valve is controlled based on the exhaust gas temperature T4 of the heat exchanger 4 by the exhaust gas temperature control mechanism exhausted from the heat exchanger 4 of the control mechanism 15. The opening / closing amount of 13 is adjusted. As a result, the control mechanism 15 adjusts the amount of combustion air flowing through the bypass passage 12. Specifically, when the exhaust gas temperature T4 of the heat exchanger 4 measured by the thermometer is lowered to, for example, less than the acid dew point temperature, the amount of combustion air flowing through the bypass passage 12 is increased by the control mechanism 15. . As a result, the sensible heat recovered from the exhaust gas into the combustion air by the heat exchanger 4 is reduced, so that the temperature of the exhaust gas exhausted from the heat exchanger 4 is increased. Therefore, the exhaust gas temperature exhausted from the heat exchanger 4 can be adjusted to be equal to or higher than the acid dew point temperature.

次に、燃料ガス流量調整工程(S5)において、制御機構15の燃料ガス流量調整弁10の開閉量調節機構により、燃料ガス流路9に供給される燃料ガスの量を調整する。具体的には、加熱後の鋼材の温度が所定温度より低い場合は制御機構15により燃料ガスの量を増加させ、加熱後の鋼材の温度が所定温度より高い場合は制御機構15により燃料ガスの量を減少させる。   Next, in the fuel gas flow rate adjustment step (S5), the amount of fuel gas supplied to the fuel gas flow path 9 is adjusted by the opening / closing amount adjustment mechanism of the fuel gas flow rate adjustment valve 10 of the control mechanism 15. Specifically, when the temperature of the steel material after heating is lower than a predetermined temperature, the amount of the fuel gas is increased by the control mechanism 15, and when the temperature of the steel material after heating is higher than the predetermined temperature, the control mechanism 15 Reduce the amount.

上記排ガス流量比調整工程(S2)から燃料ガス流量調整工程(S5)までの工程は、鋼材が予備炉3及び加熱炉2に装入されるごとに行われる。   The steps from the exhaust gas flow rate ratio adjusting step (S2) to the fuel gas flow rate adjusting step (S5) are performed each time the steel material is charged into the preliminary furnace 3 and the heating furnace 2.

<利点>
当該加熱装置1は、第1排ガス流路6a及び第2排ガス流路6bにより加熱炉から排気される排ガスを予熱炉3の予熱ガスと熱交換器4の予熱ガスとに分配して供給できる。このため、当該加熱装置1は、予熱ガスの顕熱を予熱炉3及び熱交換器4それぞれで回収できるので、予熱炉3又は熱交換器4のいずれか一方で回収する場合に比べて、多くの予熱ガスの顕熱が回収できる。また、当該加熱装置1は加熱炉2から排気される排ガスを予熱炉3及び熱交換器4に並列に供給するので、加熱炉2から排気される排ガスの温度を大きく低下させることなく、上記予熱炉3及び上記熱交換器4に予熱ガスを供給できる。このため、当該加熱装置1は、供給される予熱ガスと鋼材や燃焼用空気との温度差が確保し易いので、予熱ガスから鋼材や燃焼用空気への伝熱効率がよい。従って、当該加熱装置1はエネルギー効率が高い。
<Advantages>
The heating device 1 can distribute and supply the exhaust gas exhausted from the heating furnace through the first exhaust gas channel 6 a and the second exhaust gas channel 6 b to the preheating gas of the preheating furnace 3 and the preheating gas of the heat exchanger 4. For this reason, since the said heating apparatus 1 can collect | recover the sensible heat of preheating gas with each of the preheating furnace 3 and the heat exchanger 4, compared with the case where it collects in either the preheating furnace 3 or the heat exchanger 4, many. The sensible heat of the preheated gas can be recovered. Further, since the heating device 1 supplies the exhaust gas exhausted from the heating furnace 2 in parallel to the preheating furnace 3 and the heat exchanger 4, the preheating is performed without greatly reducing the temperature of the exhaust gas exhausted from the heating furnace 2. A preheating gas can be supplied to the furnace 3 and the heat exchanger 4. For this reason, since the said heating apparatus 1 is easy to ensure the temperature difference of the supplied preheating gas, steel materials, and combustion air, the heat transfer efficiency from preheating gas to steel materials and combustion air is good. Therefore, the heating device 1 has high energy efficiency.

[第2実施形態]
図2に示す加熱装置20は、2基の加熱炉(第1加熱炉2a及び第2加熱炉2b)と2基の予熱炉(第1予熱炉3a及び第2予熱炉3b)と2基の熱交換器(第1熱交換器4a及び第2熱交換器4b)とを備える。上記第1加熱炉2aから排気される排ガスは第1予熱炉3a及び第1熱交換器4aに供給され、上記第1熱交換器4aにより予熱された燃焼用空気は第1加熱器2aに供給される。また、上記第2加熱炉2bから排気される排ガスは第2予熱炉3b及び第2熱交換器4bに供給され、上記第2熱交換器4bにより予熱された燃焼用空気は第2加熱器2bに供給される。
[Second Embodiment]
2 includes two heating furnaces (first heating furnace 2a and second heating furnace 2b), two preheating furnaces (first preheating furnace 3a and second preheating furnace 3b), and two heating furnaces. A heat exchanger (a first heat exchanger 4a and a second heat exchanger 4b). The exhaust gas exhausted from the first heating furnace 2a is supplied to the first preheating furnace 3a and the first heat exchanger 4a, and the combustion air preheated by the first heat exchanger 4a is supplied to the first heater 2a. Is done. The exhaust gas exhausted from the second heating furnace 2b is supplied to the second preheating furnace 3b and the second heat exchanger 4b, and the combustion air preheated by the second heat exchanger 4b is supplied to the second heater 2b. To be supplied.

また、当該加熱装置20は、2基の予熱炉に供給する排ガスの流量をそれぞれ調整する排ガス流量調整弁(第1排ガス流量調整弁8c及び第2排ガス流量調整弁8d)を備える。上記第1排ガス流量調整弁8cは、上記第1加熱炉2aから第1予熱炉3aへ排ガスを分配供給する第1排ガス流路6aに配設される。また、上記第2排ガス流量調整弁8dは、上記第2加熱炉2bから第2予熱炉3bへ排ガスを分配供給する第1排ガス流路6aに配設される。   In addition, the heating device 20 includes exhaust gas flow rate adjustment valves (first exhaust gas flow rate adjustment valve 8c and second exhaust gas flow rate adjustment valve 8d) that respectively adjust the flow rates of exhaust gas supplied to the two preheating furnaces. The first exhaust gas flow rate adjusting valve 8c is disposed in the first exhaust gas flow path 6a that distributes and supplies the exhaust gas from the first heating furnace 2a to the first preheating furnace 3a. The second exhaust gas flow rate adjusting valve 8d is disposed in the first exhaust gas passage 6a that distributes and supplies the exhaust gas from the second heating furnace 2b to the second preheating furnace 3b.

また、当該加熱装置20は、第1予熱炉3aへ装入される鋼材の重量M11を測定する重量計21a、第2予熱炉3bへ装入される鋼材の重量M12を測定する重量計21b、第1加熱炉2aへ装入される鋼材の重量M21を測定する重量計21c、第2加熱炉2bへ装入される鋼材の重量M22を測定する重量計21d、加熱前の鋼材の温度T1を測定する温度計21e、第1予熱炉3aでの予熱後の鋼材の温度T21を測定する温度計21f、第2予熱炉3bでの予熱後の鋼材の温度T22を測定する温度計21g、第1予熱炉3aから排気される排ガスの温度T31を測定する温度計21h、第2予熱炉3bから排気される排ガスの温度T32を測定する温度計21i、第1熱交換器4aから排気される排ガスの温度T41を測定する温度計21j、第2熱交換器4bから排気される排ガスの温度T42を測定する温度計21k、第1加熱炉2aへ装入される鋼材の温度T51を測定する温度計21l、第2加熱炉2bへ装入される鋼材の温度T52を測定する温度計21m、第1加熱炉2aへ供給する燃料の流量QF1を測定する流量計21n、第2加熱炉2bへ供給する燃料の流量QF2を測定する流量計21o、第1熱交換器4aへ流入する燃焼用空気の流量QA1を測定する流量計21p、及び第2熱交換器4bへ流入する燃焼用空気の流量QA2を測定する流量計21qを備える。また、当該加熱装置20は、上記重量計、温度計及び流量計の測定結果に基づき上記排ガス流量調整弁の開閉量を調整する制御機構22を備える。   Further, the heating device 20 includes a weighing scale 21a for measuring the weight M11 of the steel material charged into the first preheating furnace 3a, a weighing scale 21b for measuring the weight M12 of the steel material charged into the second preheating furnace 3b, A weigh scale 21c for measuring the weight M21 of the steel material charged into the first heating furnace 2a, a weigh scale 21d for measuring the weight M22 of the steel material charged into the second heating furnace 2b, and a temperature T1 of the steel material before heating. A thermometer 21e for measuring, a thermometer 21f for measuring the temperature T21 of the steel material after preheating in the first preheating furnace 3a, a thermometer 21g for measuring the temperature T22 of the steel material after preheating in the second preheating furnace 3b, the first A thermometer 21h for measuring the temperature T31 of the exhaust gas exhausted from the preheating furnace 3a, a thermometer 21i for measuring the temperature T32 of the exhaust gas exhausted from the second preheating furnace 3b, and the exhaust gas exhausted from the first heat exchanger 4a Measure temperature T41 Thermometer 21j, thermometer 21k for measuring the temperature T42 of the exhaust gas exhausted from the second heat exchanger 4b, thermometer 21l for measuring the temperature T51 of the steel material charged into the first heating furnace 2a, the second heating furnace A thermometer 21m for measuring the temperature T52 of the steel material charged into 2b, a flow meter 21n for measuring the flow rate QF1 of the fuel supplied to the first heating furnace 2a, and a flow rate QF2 of the fuel supplied to the second heating furnace 2b A flow meter 21o, a flow meter 21p for measuring the flow rate QA1 of the combustion air flowing into the first heat exchanger 4a, and a flow meter 21q for measuring the flow rate QA2 of the combustion air flowing into the second heat exchanger 4b. Prepare. Moreover, the said heating apparatus 20 is provided with the control mechanism 22 which adjusts the opening-and-closing amount of the said waste gas flow rate adjustment valve based on the measurement result of the said weight meter, a thermometer, and a flow meter.

搬送装置、排ガス流路、煙突7、燃料ガス流路9、及び燃焼用空気流路11については、第1実施形態の加熱装置1と同様のため、同一符合を付して説明を省略する。また、個々の加熱炉、予熱炉、及び熱交換器については、第1実施形態の加熱装置1の加熱炉2、予熱炉3、及び熱交換器4と同様のため、説明を省略する。   Since the transfer device, the exhaust gas flow channel, the chimney 7, the fuel gas flow channel 9, and the combustion air flow channel 11 are the same as those of the heating device 1 of the first embodiment, the same reference numerals are given and description thereof is omitted. Moreover, about each heating furnace, a preheating furnace, and a heat exchanger, since it is the same as that of the heating furnace 2, the preheating furnace 3, and the heat exchanger 4 of the heating apparatus 1 of 1st Embodiment, description is abbreviate | omitted.

<測定器>
測定器は上述の緒量を重量計、温度計及び流量計により測定する。上記測定器の測定結果は、後述する制御機構22に送られる。上記重量計、温度計及び流量計は、第1実施形態の測定器と同様のものを用いることができる。
<Measurement device>
The measuring instrument measures the above-mentioned amount with a weight meter, a thermometer and a flow meter. The measurement result of the measuring device is sent to the control mechanism 22 described later. The weighing instrument, the thermometer, and the flow meter can be the same as the measuring instrument of the first embodiment.

第1加熱炉2aへ装入される鋼材の温度T51の測定位置としては、第1搬送装置5aの第1加熱炉2aの装入口の上流側とできる。また、第2加熱炉2bへ装入される鋼材の温度T52の測定位置としては、第1搬送装置5aの第2加熱炉2bの装入口の上流側とできる。加熱炉2へ装入される鋼材の温度T51、T52以外の温度、重量及び流量の測定位置は、第1実施形態の測定器の測定位置と同様とできる。   The measurement position of the temperature T51 of the steel material charged into the first heating furnace 2a can be the upstream side of the charging inlet of the first heating furnace 2a of the first transfer device 5a. Further, the measurement position of the temperature T52 of the steel material charged into the second heating furnace 2b can be the upstream side of the inlet of the second heating furnace 2b of the first transfer device 5a. The measurement positions of the temperature, weight and flow rate other than the temperatures T51 and T52 of the steel material charged into the heating furnace 2 can be the same as the measurement positions of the measuring instrument of the first embodiment.

<制御機構>
制御機構22は、加熱前の鋼材の温度T1により予熱炉3へ装入する鋼材を選択する機構を備える。具体的には、加熱前の鋼材の温度T1を測定する測定器21の測定結果に基づき、制御機構22が加熱前の鋼材の温度T1が所定温度未満である場合、鋼材は予熱炉を経由して加熱炉へ装入される。加熱前の鋼材の温度T1が上記所定温度以上である場合には、鋼材が予熱炉を経由せず直接加熱炉に装入されるように第1搬送装置5aを制御する。なお、予熱炉へ装入される鋼材は第1予熱炉3aで予熱された後、第2予熱炉3bへ装入され、さらに予熱される。一方、予熱後の鋼材又は予熱炉を経由しない鋼材は、第1加熱炉2a又は第2加熱炉2bのいずれかに装入される。
<Control mechanism>
The control mechanism 22 includes a mechanism for selecting a steel material to be charged into the preheating furnace 3 based on the temperature T1 of the steel material before heating. Specifically, based on the measurement result of the measuring device 21 that measures the temperature T1 of the steel material before heating, when the temperature T1 of the steel material before the heating is less than a predetermined temperature by the control mechanism 22, the steel material passes through the preheating furnace. Charged into the furnace. When the temperature T1 of the steel material before heating is equal to or higher than the predetermined temperature, the first transport device 5a is controlled so that the steel material is directly charged into the heating furnace without passing through the preheating furnace. The steel material charged in the preheating furnace is preheated in the first preheating furnace 3a, and then charged in the second preheating furnace 3b and further preheated. On the other hand, the preheated steel material or the steel material that does not pass through the preheating furnace is charged into either the first heating furnace 2a or the second heating furnace 2b.

また、制御機構22は、上記測定器21の測定結果に基づき、上記排ガス流量調整弁の開閉量の調節により予熱炉及び熱交換器へ供給する排ガス流量比を制御する機構を備える。具体的には、第1予熱炉3a、第2予熱炉3b、第1熱交換器4a、及び第2熱交換器4bに対して第1実施形態で述べた熱交換器4のエネルギー効率の計算式(1)及び予熱炉3のエネルギー効率の計算式(2)を連立し、当該加熱装置20全体のエネルギー効率が最大となるように逐次加速緩和法(SOR法;Successive Over Relaxation法)等を用いて集束計算を行うことで、上記排ガス流量調整弁の開閉量を決定できる。なお、第2実施形態では、測定器21は加熱炉2から排気される排ガスの温度を測定しない。この場合、計算式(1)及び計算式(2)に用いられる加熱炉から排気される排ガスの温度T51、T52としては、操業条件から想定される温度(固定値)を用いる。例えば加熱炉から排気される排ガスの温度T51、T52としては、鋼材の加熱温度が1200℃である場合、800℃とできる。   The control mechanism 22 includes a mechanism for controlling the exhaust gas flow rate ratio supplied to the preheating furnace and the heat exchanger by adjusting the opening / closing amount of the exhaust gas flow rate adjustment valve based on the measurement result of the measuring device 21. Specifically, the calculation of the energy efficiency of the heat exchanger 4 described in the first embodiment for the first preheating furnace 3a, the second preheating furnace 3b, the first heat exchanger 4a, and the second heat exchanger 4b. Equation (1) and the calculation formula (2) of the energy efficiency of the preheating furnace 3 are combined, and a sequential acceleration relaxation method (SOR method: Successive Over Relaxation method) or the like is performed so that the energy efficiency of the entire heating device 20 is maximized. By using the convergence calculation, the opening / closing amount of the exhaust gas flow rate adjustment valve can be determined. In the second embodiment, the measuring device 21 does not measure the temperature of the exhaust gas exhausted from the heating furnace 2. In this case, as the temperatures T51 and T52 of the exhaust gas exhausted from the heating furnace used in the calculation formulas (1) and (2), temperatures (fixed values) assumed from the operation conditions are used. For example, the temperatures T51 and T52 of the exhaust gas exhausted from the heating furnace can be 800 ° C. when the heating temperature of the steel material is 1200 ° C.

<鋼材の加熱方法>
当該加熱装置20を用いた鋼材の加熱は、鋼材を予熱炉により予熱する工程と、鋼材を加熱炉により加熱する工程と、排ガスの流量を調整する工程とを備える加熱方法により行える。予熱工程及び加熱工程は第1実施形態における予熱工程及び加熱工程と同様であるので説明を省略する。
<Method of heating steel>
Heating of the steel material using the heating device 20 can be performed by a heating method including a step of preheating the steel material with a preheating furnace, a step of heating the steel material with a heating furnace, and a step of adjusting the flow rate of the exhaust gas. Since the preheating step and the heating step are the same as the preheating step and the heating step in the first embodiment, description thereof will be omitted.

排ガス流量調整工程は、制御機構22により排ガスの流量を調整する。この排ガス流量調整工程は、鋼材の予熱炉への装入選択工程及び排ガス流量比調整工程を備える。   In the exhaust gas flow rate adjusting step, the flow rate of the exhaust gas is adjusted by the control mechanism 22. This exhaust gas flow rate adjustment process includes a charging selection process of a steel material to a preheating furnace and an exhaust gas flow rate ratio adjustment process.

まず、鋼材の予熱炉への装入選択工程において、制御機構22の鋼材選択機構により、加熱前の鋼材の温度T1に基づいて鋼材を予熱炉を経ずに加熱炉へ装入するか否かを選択する。   First, in the charging selection process of the steel material to the preheating furnace, whether the steel material is charged into the heating furnace without passing through the preheating furnace based on the temperature T1 of the steel material before heating by the steel material selection mechanism of the control mechanism 22. Select.

次に、排ガス流量比調整工程において、制御機構22の排ガス流量比制御機構により、測定器の測定結果に基づいて予熱炉の排ガスの予測温度及び熱交換器の排ガスの予測温度を算出する。この算出結果に基づき制御機構22はさらに上記予測温度が酸露点温度より大きく、かつエネルギー効率が最大となる流量比を算定する。そして算定した流量比となるように排ガス流量調整弁の開閉量を調節する。   Next, in the exhaust gas flow ratio adjustment step, the exhaust gas flow rate control mechanism of the control mechanism 22 calculates the predicted temperature of the exhaust gas of the preheating furnace and the predicted temperature of the exhaust gas of the heat exchanger based on the measurement result of the measuring device. Based on this calculation result, the control mechanism 22 further calculates a flow rate ratio at which the predicted temperature is higher than the acid dew point temperature and the energy efficiency is maximized. Then, the open / close amount of the exhaust gas flow rate adjustment valve is adjusted so that the calculated flow rate ratio is obtained.

<利点>
当該加熱装置20は、2基の加熱炉2、予熱炉3及び熱交換器4を用い、それぞれの排ガスの流量比を制御するので、エネルギー効率をさらに高めることができる。
<Advantages>
Since the said heating apparatus 20 uses the two heating furnaces 2, the preheating furnace 3, and the heat exchanger 4, and controls the flow rate ratio of each waste gas, energy efficiency can further be improved.

[その他の実施形態]
本発明の加熱装置は、上記実施形態に限定されるものではない。
[Other Embodiments]
The heating device of the present invention is not limited to the above embodiment.

上記実施形態では、制御機構が加熱前の鋼材の温度により予熱炉へ装入する鋼材を選択する機構を備える場合を説明したが、この選択機構は必須の構成ではなく、省略可能である。この選択機能を省略する場合、例えばストックヤードから抽出された鋼材は全て予熱炉へ装入される。また、上記選択機構を省略する場合、加熱前の鋼材の温度T1を測定する温度計を省略することができる。   In the above embodiment, the case where the control mechanism includes a mechanism for selecting a steel material to be charged into the preheating furnace according to the temperature of the steel material before heating has been described, but this selection mechanism is not an essential configuration and can be omitted. When this selection function is omitted, for example, all the steel material extracted from the stockyard is charged into the preheating furnace. Moreover, when abbreviate | omitting the said selection mechanism, the thermometer which measures temperature T1 of the steel materials before a heating can be abbreviate | omitted.

また、当該加熱装置が予熱後の燃焼用空気の温度を測定する温度計を備えてもよい。上記温度計により予熱後の燃焼用空気の温度を測定することで、制御機構が予熱炉及び熱交換器へ供給する排ガス流量比を調整する際の精度が向上する。   Moreover, the said heating apparatus may be equipped with the thermometer which measures the temperature of the combustion air after preheating. By measuring the temperature of the combustion air after preheating with the thermometer, the accuracy when adjusting the exhaust gas flow ratio supplied to the preheating furnace and the heat exchanger by the control mechanism is improved.

上記第1実施形態では、燃焼用空気の一部をバイパス流路へ流すことにより熱交換器から排気される排ガスが所定温度以上となるように排ガス温度を調整する方法を説明したが、燃焼用空気流路のバイパス流路への分岐と熱交換器への供給口との間に燃焼用空気を遮断できる流量調整弁を設け、上記流量調整弁の遮断により燃焼用空気の全部をバイパス流路へ流すことができる構成としてもよい。また、バイパス流量調整弁を3方弁とし、燃焼用空気の流入先を燃焼用空気流路又はバイパス流路のいずれかに切り換えられるように構成してもよい。   In the first embodiment, the method for adjusting the exhaust gas temperature so that the exhaust gas exhausted from the heat exchanger becomes equal to or higher than the predetermined temperature by flowing part of the combustion air to the bypass flow path has been described. A flow control valve capable of shutting off combustion air is provided between the branch of the air flow path to the bypass flow path and the supply port to the heat exchanger, and all of the combustion air is bypassed by shutting off the flow control valve. It is good also as a structure which can be poured into Alternatively, the bypass flow rate adjusting valve may be a three-way valve, and the combustion air inflow destination may be switched to either the combustion air flow path or the bypass flow path.

また、上記実施形態では、排ガス流量比を制御する機構を備える場合を説明したが、排ガス流量比制御機構は必須の構成要件ではなく、省略可能である。排ガス流量比制御機構を省略する場合は、第1排ガス流路と第2排ガス流路との流路の断面積比率や操業条件等により定まる流量比で加熱炉から排出される排ガスが予熱器と熱交換器とに分配される。なお、排ガス流量比制御機構を省略する場合、排ガス流量調整機構や、予熱炉へ装入される鋼材の重量を測定する重量計、上記加熱炉へ装入される鋼材の重量を測定する重量計、予熱後の鋼材の温度を測定する温度計、上記加熱炉へ供給する燃料の流量を測定する流量計、及び上記熱交換器へ流入する燃焼用空気の流量を測定する流量計を合わせて省略することができる。   Moreover, although the said embodiment demonstrated the case where the mechanism which controls exhaust gas flow ratio was provided, the exhaust gas flow ratio control mechanism is not an essential structural requirement, and can be abbreviate | omitted. When the exhaust gas flow rate control mechanism is omitted, the exhaust gas discharged from the heating furnace at the flow rate ratio determined by the cross-sectional area ratio of the first exhaust gas flow channel and the second exhaust gas flow channel, the operating conditions, etc. Distributed to the heat exchanger. When the exhaust gas flow rate control mechanism is omitted, the exhaust gas flow rate adjusting mechanism, the weigh scale for measuring the weight of the steel material charged into the preheating furnace, or the weigh scale for measuring the weight of the steel material charged into the heating furnace. , A thermometer that measures the temperature of the steel material after preheating, a flow meter that measures the flow rate of fuel supplied to the heating furnace, and a flow meter that measures the flow rate of combustion air flowing into the heat exchanger are omitted. can do.

また、上記第1実施形態では、排ガス流量調整弁が第1排ガス流路及び第2排ガス流路に配設される場合を説明し、上記第2実施形態では排ガス流量調整弁が第1排ガス流路のみに配設される場合を説明したが、排ガス流量調整弁が第2排ガス流路のみに配設される加熱装置や、排ガス流量調整弁を備えない加熱装置も本発明の意図するところである。   In the first embodiment, the case where the exhaust gas flow rate adjustment valve is disposed in the first exhaust gas flow channel and the second exhaust gas flow channel will be described. In the second embodiment, the exhaust gas flow rate adjustment valve is provided in the first exhaust gas flow rate. The case where the exhaust gas flow rate adjustment valve is provided only in the second exhaust gas flow path, and the heating device that does not include the exhaust gas flow rate adjustment valve are also intended by the present invention. .

また、予熱炉や加熱炉の数は上記実施形態に限定されるものではなく、3基以上あってもよい。また、当該加熱装置が予熱炉の数と加熱炉の数とが異なる構成であってもよい。   Further, the number of preheating furnaces and heating furnaces is not limited to the above embodiment, and there may be three or more. Further, the heating apparatus may have a configuration in which the number of preheating furnaces and the number of heating furnaces are different.

以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(実施例1)
まず、図1に示す加熱装置においてシミュレーションにより予熱前の鋼材温度と、予熱後の鋼材の受熱量、鋼材温度、及び予熱炉から排気される排ガス温度(出口排ガス温度)との関係を算出した。その際、予熱炉へ流入する排ガスの温度を800℃、排ガスの流量を30000Nm/h、鋼材流量を175t/hとしてシミュレーションを行った。なお、鋼材の予熱前の温度は25℃以上600℃以下の7条件とした。結果を図4に示す。
Example 1
First, the relationship between the steel material temperature before preheating, the amount of heat received by the steel material after preheating, the steel material temperature, and the exhaust gas temperature (outlet exhaust gas temperature) exhausted from the preheating furnace was calculated by simulation in the heating apparatus shown in FIG. At that time, the simulation was performed by setting the temperature of the exhaust gas flowing into the preheating furnace to 800 ° C., the exhaust gas flow rate to 30000 Nm 3 / h, and the steel material flow rate to 175 t / h. In addition, the temperature before preheating of steel materials was made into seven conditions of 25 degreeC or more and 600 degrees C or less. The results are shown in FIG.

次に、シミュレーションにより排ガスの流量比と、予熱炉及び熱交換器から排気される排ガス温度並びにエネルギー効率との関係を算出した。熱交換器のエネルギー効率η1を0.6、予熱炉のエネルギー効率η2を0.4、加熱炉からの排ガス温度を600℃、燃焼用空気の流量を15Nm/hとしてシミュレーションを行った。結果を図5に示す。なお、図5の横軸の流量比は、予熱炉及び熱交換器へ供給する排ガスの総流量に対する予熱炉へ供給する排ガス流量の比である。 Next, the relationship between the exhaust gas flow rate ratio, the exhaust gas temperature exhausted from the preheating furnace and the heat exchanger, and the energy efficiency was calculated by simulation. The simulation was performed by setting the energy efficiency η1 of the heat exchanger to 0.6, the energy efficiency η2 of the preheating furnace to 0.4, the exhaust gas temperature from the heating furnace to 600 ° C., and the flow rate of combustion air to 15 Nm 3 / h. The results are shown in FIG. The flow ratio on the horizontal axis in FIG. 5 is the ratio of the exhaust gas flow rate supplied to the preheating furnace to the total flow rate of exhaust gas supplied to the preheating furnace and the heat exchanger.

図4の結果から予熱前の鋼材の温度が低い鋼材の方が鋼材の受熱量が大きく、予熱炉から排気される排ガス温度が低い。このことから予熱前の温度が低い鋼材は予熱前の温度が高い鋼材に比べて排ガスとの温度差が大きいため鋼材への伝熱量が大きくなり顕熱の回収が効率的に行えることが分かる。従って、加熱前の鋼材の温度により予熱炉へ装入する鋼材を選択することで、排ガスの顕熱の回収が効率的に行われ生産性の低下が抑止でき、燃料原単位を減らすことができると考えられる。   From the result of FIG. 4, the steel material having a lower temperature of the steel material before preheating has a larger amount of heat received by the steel material, and the exhaust gas temperature exhausted from the preheating furnace is lower. From this, it can be seen that the steel material having a low temperature before preheating has a larger temperature difference from the exhaust gas than the steel material having a high temperature before preheating, so that the amount of heat transfer to the steel material increases and the sensible heat can be efficiently recovered. Therefore, by selecting the steel material to be charged into the preheating furnace according to the temperature of the steel material before heating, the recovery of sensible heat of the exhaust gas can be efficiently performed, the reduction in productivity can be suppressed, and the fuel consumption rate can be reduced. it is conceivable that.

また、図5の結果から、加熱炉から排気される排ガスを予熱炉の排ガスと熱交換器の排ガスとに分配して供給することでエネルギー効率が高まり、排ガスの流量比が約70%の位置でエネルギー効率が最大となる。このことから排ガスの流量比を調整することで、エネルギー効率を高められることが分かる。   Further, from the result of FIG. 5, the energy efficiency is improved by distributing the exhaust gas exhausted from the heating furnace to the exhaust gas of the preheating furnace and the exhaust gas of the heat exchanger, and the flow rate ratio of the exhaust gas is about 70%. Energy efficiency is maximized. This shows that the energy efficiency can be improved by adjusting the flow rate ratio of the exhaust gas.

また、図5において予熱炉へ供給する排ガス量を25%未満とすると予熱炉の排ガス温度が150℃を下回り、予熱炉へ供給する排ガス量を90%超、すなわち熱交換器へ供給する排ガス量を10%未満とすると、熱交換器の排ガス温度が150℃を下回る。酸露点温度が150℃程度であるので、排ガスの流量比を調整することで、エネルギー効率を最大化しつつ、排ガスの酸露点腐食による設備の劣化や破損を抑止できると考えられる。   In FIG. 5, if the amount of exhaust gas supplied to the preheating furnace is less than 25%, the exhaust gas temperature of the preheating furnace falls below 150 ° C., and the amount of exhaust gas supplied to the preheating furnace exceeds 90%, that is, the amount of exhaust gas supplied to the heat exchanger. Is less than 10%, the exhaust gas temperature of the heat exchanger falls below 150 ° C. Since the acid dew point temperature is about 150 ° C., it is considered that by adjusting the flow rate ratio of the exhaust gas, it is possible to maximize the energy efficiency and suppress deterioration and damage of the equipment due to the acid dew point corrosion of the exhaust gas.

(実施例2)
図2に示す加熱装置において、シミュレーションにより必要な投入熱量、排ガス流量、エネルギー効率、及び燃料原単位を算出した。ここで必要な投入熱量とは、鋼材を加熱装置により所望の温度に加熱するために必要な熱量を意味する。
(Example 2)
In the heating apparatus shown in FIG. 2, necessary input heat amount, exhaust gas flow rate, energy efficiency, and fuel intensity were calculated by simulation. The amount of input heat required here means the amount of heat necessary for heating the steel material to a desired temperature by a heating device.

シミュレーション条件は以下の通りである。鋼材の流量は400t/hとした。この鋼材のうち100℃未満の鋼材のみを予熱炉へ装入し、100℃以上の鋼材は直接加熱炉へ装入する条件とした。100℃未満の鋼材の割合を50質量%とし、100℃未満の鋼材の平均温度を25℃、100℃以上の鋼材の平均温度を350℃とした。また、第1加熱炉及び第2加熱炉から抽出される鋼材の温度は1200℃とし、排出される排ガスの温度は800℃とした。第1加熱炉から排出される排ガスの流量の40体積%を第1予熱炉へ供給し、残りの60体積%を第1熱交換器に供給した。また、第2加熱炉から排出される排ガスの流量の40体積%を第2予熱炉へ供給し、残りの60体積%を第2熱交換器に供給した。ここで、予熱炉へ供給される排ガスの流量の40体積%は、加熱装置の測定器の測定結果に基づき、制御機構により算出された最適な流量比に対応する数値である。なお、予熱炉へ装入される鋼材は、第2予熱炉、第1予熱炉の順に装入され、その後第1加熱炉又は第2加熱炉のいずれかに装入されて1200℃に加熱される。結果を表1に示す。   The simulation conditions are as follows. The flow rate of the steel material was 400 t / h. Of these steel materials, only steel materials of less than 100 ° C. were charged into the preheating furnace, and steel materials of 100 ° C. or higher were directly charged into the heating furnace. The ratio of steel materials less than 100 ° C. was 50 mass%, the average temperature of steel materials less than 100 ° C. was 25 ° C., and the average temperature of steel materials of 100 ° C. or higher was 350 ° C. Moreover, the temperature of the steel material extracted from the 1st heating furnace and the 2nd heating furnace was 1200 degreeC, and the temperature of the waste gas discharged | emitted was 800 degreeC. 40% by volume of the flow rate of exhaust gas discharged from the first heating furnace was supplied to the first preheating furnace, and the remaining 60% by volume was supplied to the first heat exchanger. Further, 40% by volume of the flow rate of the exhaust gas discharged from the second heating furnace was supplied to the second preheating furnace, and the remaining 60% by volume was supplied to the second heat exchanger. Here, 40% by volume of the flow rate of the exhaust gas supplied to the preheating furnace is a numerical value corresponding to the optimum flow rate ratio calculated by the control mechanism based on the measurement result of the measuring device of the heating device. The steel material charged in the preheating furnace is charged in the order of the second preheating furnace and the first preheating furnace, and then charged in either the first heating furnace or the second heating furnace and heated to 1200 ° C. The The results are shown in Table 1.

(比較例1)
加熱装置として、2基の加熱炉(第1加熱炉及び第2加熱炉)と2基の予熱炉(第1予熱炉及び第2予熱炉)と2基の熱交換器(第1熱交換器と第2熱交換器)とを備え、第1加熱炉からの排ガスの全量が第1予熱炉へ供給され、第2加熱炉からの排ガスの全量が第2予熱炉へ供給される加熱装置を用いた。鋼材を全て予熱炉へ装入し、第1加熱炉及び第2加熱炉からの排ガスを全て予熱炉へ供給した以外は、実施例2と同様の条件でシミュレーションを行い、必要な投入熱量、排ガス流量、エネルギー効率、及び燃料原単位を算出した。結果を表1に示す。
(Comparative Example 1)
As heating devices, two heating furnaces (first heating furnace and second heating furnace), two preheating furnaces (first preheating furnace and second preheating furnace), and two heat exchangers (first heat exchanger) And a second heat exchanger), a heating device in which the entire amount of exhaust gas from the first heating furnace is supplied to the first preheating furnace, and the entire amount of exhaust gas from the second heating furnace is supplied to the second preheating furnace. Using. Except that all the steel materials were charged into the preheating furnace and all the exhaust gas from the first heating furnace and the second heating furnace were supplied to the preheating furnace, a simulation was performed under the same conditions as in Example 2, and the necessary input heat amount and exhaust gas The flow rate, energy efficiency, and fuel intensity were calculated. The results are shown in Table 1.

Figure 2017141493
Figure 2017141493

表1の結果から、実施例2の加熱装置は、比較例1の加熱装置に比べて投入熱量及び燃料原単位が少なく、エネルギー効率が高い。比較例1の加熱装置は、加熱炉から排気される排ガスを予熱炉の排ガスと熱交換器の排ガスとに分配して供給していないため、排ガスからの伝熱量が少なくなりエネルギー効率が低くなったと考えられる。このため、鋼材を1200℃に加熱するために多くの熱量を必要とし、燃料原単位が上昇したと考えられる。一方、実施例2の加熱装置は、加熱炉から排気される排ガスを予熱炉の排ガスと熱交換器の排ガスとに分配して供給するので、多くの排ガスの顕熱が回収でき、比較例1に比べてエネルギー効率が9ポイント向上したと考えられる。   From the results of Table 1, the heating device of Example 2 has less energy input and fuel consumption than the heating device of Comparative Example 1, and has high energy efficiency. In the heating device of Comparative Example 1, the exhaust gas exhausted from the heating furnace is not distributed and supplied to the exhaust gas of the preheating furnace and the exhaust gas of the heat exchanger, so the amount of heat transfer from the exhaust gas is reduced and the energy efficiency is lowered. It is thought. For this reason, in order to heat steel materials to 1200 degreeC, many calorie | heat amounts are required, and it is thought that the fuel consumption rate rose. On the other hand, since the heating apparatus of Example 2 distributes and supplies the exhaust gas exhausted from the heating furnace to the exhaust gas of the preheating furnace and the exhaust gas of the heat exchanger, the sensible heat of many exhaust gases can be recovered. It is thought that energy efficiency improved by 9 points.

以上説明したように、本発明の加熱装置は鋼材の加熱におけるエネルギー効率を高められる。従って、当該加熱装置を用いることで燃料原単位を下げることができる。   As described above, the heating device of the present invention can increase the energy efficiency in heating the steel material. Therefore, the fuel consumption rate can be lowered by using the heating device.

1、20 加熱装置
2、2a、2b 加熱炉
3、3a、3b 予熱炉
4、4a、4b 熱交換器
5a、5b、5c 搬送装置
6a、6b、6c、6d 排ガス流路
7 煙突
8a、8b、8c、8d 排ガス流量調整弁
9 燃料ガス流路
10 燃料ガス流量調整弁
11 燃焼用空気流路
12 バイパス流路
13 バイパス流量調整弁
14a〜14j、21a〜21q 測定器(重量計、温度計、流量計)
15、22 制御機構
X ストックヤード
1, 20 Heating device 2, 2a, 2b Heating furnace 3, 3a, 3b Preheating furnace 4, 4a, 4b Heat exchangers 5a, 5b, 5c Transport devices 6a, 6b, 6c, 6d Exhaust gas flow path 7 Chimneys 8a, 8b, 8c, 8d Exhaust gas flow rate adjustment valve 9 Fuel gas flow channel 10 Fuel gas flow rate adjustment valve 11 Combustion air flow channel 12 Bypass flow channel 13 Bypass flow rate adjustment valves 14a to 14j, 21a to 21q Measuring instrument (Weigh scale, thermometer, flow rate Total)
15, 22 Control mechanism X Stockyard

Claims (10)

熱間加工又は熱処理用の鋼材の加熱装置であって、
上記鋼材をバーナーから噴出される燃焼ガスにより加熱する加熱炉と、
上記加熱炉へ装入される前の鋼材を予熱ガスにより予熱する予熱炉と、
上記バーナーに供給される燃焼用空気を予熱する熱交換器と、
上記加熱炉から排出される排ガスを上記予熱炉の予熱ガスとして供給する第1排ガス流路と、
上記第1排ガス流路とは並列して設けられ、上記加熱炉から排出される排ガスを上記熱交換器の予熱ガスとして供給する第2排ガス流路と
を備える鋼材の加熱装置。
A steel heating device for hot working or heat treatment,
A heating furnace for heating the steel material with combustion gas ejected from a burner;
A preheating furnace for preheating the steel material before being charged into the heating furnace with a preheating gas;
A heat exchanger for preheating combustion air supplied to the burner;
A first exhaust gas passage for supplying exhaust gas discharged from the heating furnace as a preheating gas of the preheating furnace;
A steel material heating apparatus, comprising: a second exhaust gas channel provided in parallel with the first exhaust gas channel and supplying exhaust gas discharged from the heating furnace as a preheating gas of the heat exchanger.
上記第1排ガス流路に供給する排ガスの流量と、上記第2排ガス流路に供給する排ガスの流量とを調整する機構をさらに備える請求項1に記載の鋼材の加熱装置。   The steel material heating apparatus according to claim 1, further comprising a mechanism for adjusting a flow rate of exhaust gas supplied to the first exhaust gas flow channel and a flow rate of exhaust gas supplied to the second exhaust gas flow channel. 上記排ガス流量調整機構が上記第1排ガス流路に配設されている請求項2に記載の鋼材の加熱装置。   The steel material heating device according to claim 2, wherein the exhaust gas flow rate adjusting mechanism is disposed in the first exhaust gas flow path. 上記排ガス流量調整機構が上記第2排ガス流路に配設されている請求項2又は請求項3に記載の鋼材の加熱装置。   The steel material heating apparatus according to claim 2 or 3, wherein the exhaust gas flow rate adjusting mechanism is disposed in the second exhaust gas flow path. 上記予熱炉へ装入される鋼材の重量を測定する重量計、上記加熱炉へ装入される鋼材の重量を測定する重量計、予熱後の鋼材の温度を測定する温度計、上記加熱炉へ供給する燃料の流量を測定する流量計、及び上記熱交換器へ流入する燃焼用空気の流量を測定する流量計と、
上記重量計、温度計及び流量計の測定結果に基づき上記排ガス流量調整機構を用いてエネルギー効率が最大化されるように上記予熱炉及び上記熱交換器へ供給する排ガス流量比を制御する機構と
をさらに備える請求項2、請求項3又は請求項4に記載の鋼材の加熱装置。
A weigh scale that measures the weight of the steel material charged into the preheating furnace, a weigh scale that measures the weight of the steel material charged into the heating furnace, a thermometer that measures the temperature of the steel material after preheating, and the heating furnace A flow meter for measuring the flow rate of fuel to be supplied, and a flow meter for measuring the flow rate of combustion air flowing into the heat exchanger;
A mechanism for controlling an exhaust gas flow ratio supplied to the preheating furnace and the heat exchanger so that energy efficiency is maximized using the exhaust gas flow rate adjustment mechanism based on the measurement results of the weight meter, the thermometer, and the flow meter; The steel material heating apparatus according to claim 2, 3 or 4, further comprising:
上記加熱炉から排気される排ガスの温度を測定する温度計をさらに備える請求項5に記載の鋼材の加熱装置。   The steel material heating apparatus according to claim 5, further comprising a thermometer for measuring a temperature of exhaust gas exhausted from the heating furnace. 加熱前の鋼材の温度を測定する温度計と、
上記温度計の測定結果に基づき上記予熱炉へ装入する鋼材を選択する機構とを備える請求項1から請求項6のいずれか1項に記載の鋼材の加熱装置。
A thermometer that measures the temperature of the steel before heating;
The steel material heating apparatus according to any one of claims 1 to 6, further comprising a mechanism for selecting a steel material to be charged into the preheating furnace based on a measurement result of the thermometer.
上記予熱炉から排気される排ガスの温度を測定する温度計と、
上記温度計の測定結果に基づく上記予熱炉へ装入する鋼材の選択により上記予熱炉から排気される排ガスが所定温度以上となるように排ガス温度を制御する機構とを備える請求項1から請求項7のいずれか1項に記載の鋼材の加熱装置。
A thermometer for measuring the temperature of the exhaust gas exhausted from the preheating furnace,
A mechanism for controlling an exhaust gas temperature so that an exhaust gas exhausted from the preheating furnace becomes a predetermined temperature or higher by selecting a steel material charged into the preheating furnace based on a measurement result of the thermometer. The steel material heating apparatus according to any one of 7.
上記熱交換器を迂回させる燃焼用空気のバイパス流路を備え、
上記熱交換器から排気される排ガスの温度を測定する温度計と、
上記温度計の測定結果に基づき燃焼用空気の一部又は全部を上記バイパス流路へ流すことにより上記熱交換器から排気される排ガスが所定温度以上となるように排ガス温度を制御する機構とを備える請求項1から請求項8のいずれか1項に記載の鋼材の加熱装置。
A bypass passage for combustion air that bypasses the heat exchanger;
A thermometer for measuring the temperature of the exhaust gas exhausted from the heat exchanger;
A mechanism for controlling the exhaust gas temperature so that the exhaust gas exhausted from the heat exchanger becomes equal to or higher than a predetermined temperature by flowing part or all of the combustion air to the bypass flow path based on the measurement result of the thermometer. The steel material heating apparatus according to any one of claims 1 to 8, further comprising:
上記バーナーに供給される燃料ガスの流量を調整する機構と、
加熱後の鋼材の温度が所定範囲内となるように上記燃料ガス流量調整機構を用いて上記燃料ガス流量を制御する機構と
を備える請求項1から請求項9のいずれか1項に記載の鋼材の加熱装置。
A mechanism for adjusting the flow rate of the fuel gas supplied to the burner;
A steel material according to any one of claims 1 to 9, further comprising a mechanism for controlling the fuel gas flow rate using the fuel gas flow rate adjustment mechanism so that the temperature of the heated steel material is within a predetermined range. Heating device.
JP2016023651A 2016-02-10 2016-02-10 Heating apparatus for steel material Pending JP2017141493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016023651A JP2017141493A (en) 2016-02-10 2016-02-10 Heating apparatus for steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016023651A JP2017141493A (en) 2016-02-10 2016-02-10 Heating apparatus for steel material

Publications (1)

Publication Number Publication Date
JP2017141493A true JP2017141493A (en) 2017-08-17

Family

ID=59628895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016023651A Pending JP2017141493A (en) 2016-02-10 2016-02-10 Heating apparatus for steel material

Country Status (1)

Country Link
JP (1) JP2017141493A (en)

Similar Documents

Publication Publication Date Title
JP6423102B2 (en) Industrial furnace and its heat utilization method
CN105579415A (en) Method for operating cement production facility
JP4653689B2 (en) Continuous steel heating furnace and method of heating steel using the same
JP7214940B2 (en) Heating furnace air volume control method
JP2008024966A (en) Method for controlling furnace temperature in continuous type heating furnace, and method for producing steel material
JP6595403B2 (en) Waste heat recovery device and waste heat recovery method
JP2010275631A (en) Heat treatment method for thick steel plate in direct fired roller-hearth type continuous heat treatment furnace and radiant-tube roller-hearth type continuous heat treatment furnace
KR101108617B1 (en) Combustion waste gas heat recovery system in reheating furnace
JP2005226157A (en) Method and device for controlling furnace temperature of continuous annealing furnace
JP2017141493A (en) Heating apparatus for steel material
JP3078434B2 (en) Heating equipment and heating method using the same
JPH1060536A (en) Continuous type heating furnace
JP2010060156A (en) NOx SUPPRESSION CONTROLLING DEVICE OF HEATING FURNACE
JP7354988B2 (en) Continuous steel heating furnace, air ratio control method for continuous steel heating furnace, and steel manufacturing method
JP3008059B2 (en) Combustion control method and apparatus for heating furnace
JP2002220620A (en) Method for controlling pressure of heating furnace
KR101377645B1 (en) Heat exchanging apparatus of reheating furnacie and controlling method thereof
JP4670715B2 (en) Sorting method of objects to be heated in continuous heating furnace group
JP2013088101A (en) Method of cooling air preheater in heating furnace
JP5976585B2 (en) Heating furnace and heating furnace control method
JP2002157023A (en) Furnace pressure control system
JP5495378B2 (en) Method and apparatus for purging exhaust gas piping
CN115341079A (en) Method for controlling reverse flow of furnace gas of continuous normalizing furnace
TW202337585A (en) Heating system and method for controlling temperature of a heating furnace
JPH0320405A (en) Method for changing temperature in furnace for multi-zones type continuous heating furnace