JP2005226157A - Method and device for controlling furnace temperature of continuous annealing furnace - Google Patents

Method and device for controlling furnace temperature of continuous annealing furnace Download PDF

Info

Publication number
JP2005226157A
JP2005226157A JP2004319657A JP2004319657A JP2005226157A JP 2005226157 A JP2005226157 A JP 2005226157A JP 2004319657 A JP2004319657 A JP 2004319657A JP 2004319657 A JP2004319657 A JP 2004319657A JP 2005226157 A JP2005226157 A JP 2005226157A
Authority
JP
Japan
Prior art keywords
temperature
furnace
exhaust gas
zone
continuous annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004319657A
Other languages
Japanese (ja)
Inventor
Shintaro Harada
新太郎 原田
Kiyoshi Kawabe
潔 川邉
Yasuo Matsuura
泰夫 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004319657A priority Critical patent/JP2005226157A/en
Publication of JP2005226157A publication Critical patent/JP2005226157A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for controlling the furnace temperature of a continuous annealing furnace capable of enhancing the energy efficiency of the continuous annealing furnace and enhancing the responsiveness to the change of the furnace temperature. <P>SOLUTION: In the furnace temperature control method to control the temperature in a furnace zone of a continuous annealing furnace to a predetermined value, exhaust gas generated by a heating burner of a heating zone 3 of a continuous annealing furnace is heated by a hot gas generator 21 to adjust the sensible heat of exhaust gas, the exhaust gas and the atmospheric gas in an overaging zone 7 are heat-exchanged by a heat exchanger 23 to control the furnace temperature in the overaging zone to a predetermined value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼板の連続焼鈍炉における炉帯、たとえば過時効帯あるいは温度調整帯等の炉温を制御する、連続焼鈍炉の炉温制御方法および炉温制御装置に関する。   The present invention relates to a furnace temperature control method and a furnace temperature control apparatus for a continuous annealing furnace, which control furnace temperature of a steel sheet in a continuous annealing furnace for steel sheets, for example, an overaging zone or a temperature adjustment zone.

鋼板の熱処理に連続焼鈍炉が利用されている。図7は連続焼鈍炉の概略レイアウト、図8は溶融亜鉛メッキ設備の連続焼鈍炉の概略レイアウトを示す。図7において、デフレクターロール11からプレヒーター(予熱帯)1を通過した鋼帯13は炉内に導入され、炉内の上部及び下部の搬送ロール12により、加熱帯3、均熱帯4、徐冷帯5、1次冷却帯6、過時効帯7、2次冷却帯8、3次冷却帯9を順次搬送されて炉外のクエンチ装置10を経て次工程へ搬送される。一般に、過時効帯の炉温維持のための熱源としては、電気ヒータが使用されている。   A continuous annealing furnace is used for heat treatment of steel sheets. FIG. 7 shows a schematic layout of the continuous annealing furnace, and FIG. 8 shows a schematic layout of the continuous annealing furnace of the hot dip galvanizing equipment. In FIG. 7, a steel strip 13 that has passed through a preheater (pre-tropical) 1 from a deflector roll 11 is introduced into the furnace, and heated zone 3, soaking zone 4, slow cooling by upper and lower transport rolls 12 in the furnace. Belt 5, primary cooling zone 6, overaging zone 7, secondary cooling zone 8, and tertiary cooling zone 9 are sequentially conveyed and conveyed to the next process via quenching device 10 outside the furnace. Generally, an electric heater is used as a heat source for maintaining the furnace temperature in an overaged zone.

また、図8に示す溶融亜鉛メッキ設備では、炉内に導入された鋼帯13は、加熱帯3、均熱帯4、徐冷帯5、急冷帯33、冷却調整帯34、35を順次搬送され、スナウト36を経てメッキポット37で溶融亜鉛メッキされる。一般に、冷却調整帯の炉温維持のための熱源としても、電気ヒータが使用されている。   Further, in the hot dip galvanizing facility shown in FIG. 8, the steel strip 13 introduced into the furnace is sequentially conveyed through the heating zone 3, the soaking zone 4, the slow cooling zone 5, the quenching zone 33, and the cooling adjustment zones 34 and 35. Then, it is hot dip galvanized in a plating pot 37 through a snout 36. Generally, an electric heater is also used as a heat source for maintaining the furnace temperature in the cooling adjustment zone.

最近は多品種生産傾向が進み、過時効帯や冷却調整帯などの炉温も、通板鋼種によって大きく異なる傾向にある。鋼板はライン入側で溶接されて連続的に通板されるので、通板鋼種の変更に伴って、これら炉帯の炉温を、短時間で大きく昇温あるいは降温できる応答性の高さが要求される。   Recently, the production trend of various types has progressed, and furnace temperatures such as overaging and cooling adjustment zones tend to vary greatly depending on the steel plate type. Since the steel plates are welded on the line entry side and are continuously passed through, the responsiveness to which the furnace temperature of these furnace zones can be increased or decreased greatly in a short time is changed with the change of the plate steel type. Required.

過時効帯や冷却調整帯では、一般的に板温の保持が目的であるから、電気ヒータの設備容量は定常操業時に炉温を維持できる程度の容量とするため、炉温を短時間で昇温するための容量は備えていない。そのため、通板鋼種の変更により、炉温の大幅な昇温が必要なときは、ダミー材を通板し、上記電気ヒータとダミー材の持ち込む顕熱によって、炉温が所望の温度に達するまで、通板鋼種の変更を待たなければならない。そこで、特許文献1に記載の過時効処理では、過時効帯の雰囲気ガスの循環系を構成し、循環系の中に雰囲気ガスを加熱するガス加熱器を設置している。   In the overaging zone and the cooling adjustment zone, the purpose is generally to maintain the plate temperature, so the capacity of the electric heater is set to a capacity that can maintain the furnace temperature during normal operation. There is no capacity for heating. Therefore, when a significant increase in the furnace temperature is required due to the change in the steel plate type, the dummy material is passed through until the furnace temperature reaches the desired temperature by the sensible heat brought in by the electric heater and the dummy material. , You have to wait for the change of sheet steel grade. Therefore, in the overaging treatment described in Patent Document 1, an atmosphere gas circulation system in an overaging zone is configured, and a gas heater for heating the atmosphere gas is installed in the circulation system.

また、図9の従来の排ガス利用の概略レイアウトに示すように、加熱帯3のラジアントチューブバーナーの排ガスは、排ガスブロワ20により排ガスパイプ14を経て圧力を均一に保つプレナムチャンバ2に集め、プレナムチャンバ2から熱交換器16へ送られ、熱交換器16でプレヒーター1の予熱用ガスを熱交換により加熱する。予熱用ガスは、予熱用ガス循環ブロワ19によって予熱用ガスダクト17、プレヒーター1、予熱回収用排ガスダクト18、熱交換器16を循環させる。排ガスは、排ガスブロワ20を通ってそのまま煙突25から排気される。
特開昭57−11378号公報
Further, as shown in the schematic layout of conventional exhaust gas utilization in FIG. 9, the exhaust gas from the radiant tube burner in the heating zone 3 is collected by the exhaust gas blower 20 through the exhaust gas pipe 14 in the plenum chamber 2 where the pressure is kept uniform. 2 is sent to the heat exchanger 16, and the heat exchanger 16 heats the preheating gas of the preheater 1 by heat exchange. The preheating gas is circulated through the preheating gas duct 17, the preheater 1, the preheating recovery exhaust gas duct 18, and the heat exchanger 16 by the preheating gas circulation blower 19. The exhaust gas passes through the exhaust gas blower 20 and is exhausted from the chimney 25 as it is.
Japanese Patent Laid-Open No. 57-11378

特許文献1では、過時効帯の雰囲気ガスを外部の熱源だけを使用して加熱するためムダなエネルギーが必要となる。また、電気の場合、元来必要な電気ヒーターによる加熱熱量同等の熱量をそのガス加熱器に付与しなければならず、省エネにならないという欠点がある。   In Patent Document 1, wasteful energy is required because the overaged atmosphere gas is heated using only an external heat source. In addition, in the case of electricity, there is a disadvantage that energy equivalent to the amount of heat generated by the originally required electric heater must be applied to the gas heater, which does not save energy.

また、図9に示す加熱帯の排ガスをプレヒーターの予熱用ガスの加熱に利用するものは、排ガスを予熱用ガスとの熱交換後に煙突25からそのまま排気しているため排ガスが有効に利用されていない。   In the case of using the exhaust gas in the heating zone shown in FIG. 9 for heating the preheating gas of the preheater, the exhaust gas is effectively used because the exhaust gas is exhausted as it is from the chimney 25 after heat exchange with the preheating gas. Not.

また、炉温の応答性について見ると、図5の温度と時間による降温パターンを示すグラフ、図6の温度と時間による昇温パターンを示すグラフから、応答性について見ると、図5において、ヒートサイクルの変更により、炉温を例えば500℃から200℃に下げなければならない場合、降温に約2時間を要していた。また、図6において炉温を例えば200℃から500℃に上げなければならない場合、昇温に約3時間を要していた。そのため、降温あるいは昇温の間は、ダミーの鋼板を挟んで搬送するなどして対応しており、したがって、ラインの立ち上げ、立ち下げだけでなく、ヒートサイクル変更に対しても、高い応答性を得ることができないという問題があった。   Further, looking at the responsiveness of the furnace temperature, from the graph showing the temperature drop pattern according to temperature and time in FIG. 5 and the graph showing the temperature rise pattern according to temperature and time in FIG. When the furnace temperature had to be lowered from, for example, 500 ° C. to 200 ° C. due to a change in the cycle, it took about 2 hours to lower the temperature. Further, in FIG. 6, when the furnace temperature has to be raised from, for example, 200 ° C. to 500 ° C., it takes about 3 hours to raise the temperature. Therefore, during the temperature drop or temperature rise, the dummy steel plate is sandwiched and transported. Therefore, not only the line startup and shutdown, but also high response to heat cycle changes. There was a problem that could not get.

そこで、本発明は、連続焼鈍炉のエネルギ効率を向上させるとともに、炉温変更に対して応答性を向上させることができる、連続焼鈍炉の炉温制御方法及び炉温制御装置を提供するものである。   Therefore, the present invention provides a furnace temperature control method and a furnace temperature control device for a continuous annealing furnace that can improve the energy efficiency of the continuous annealing furnace and improve the responsiveness to changes in the furnace temperature. is there.

本発明は、連続焼鈍炉の炉帯内を所定の炉温に制御する炉温制御方法において、(1)連続焼鈍炉の加熱帯の加熱用バーナーで発生する排ガスの顕熱と、過時効帯内の雰囲気ガスとを熱交換させて過時効帯内の炉温を所定の温度に制御すること、(2)連続焼鈍炉の加熱帯の加熱用バーナーで発生する排ガスの顕熱と、連続焼鈍炉の後半で溶融亜鉛メッキポットの入側にスナウトを介して連結される溶融亜鉛メッキポットヘ導入される鋼帯の温度を調整する温度調整帯内の雰囲気ガスとを熱交換させて温度調整帯内の炉温を所定の温度に制御することを特徴とする。   The present invention relates to a furnace temperature control method for controlling the inside of a furnace zone of a continuous annealing furnace to a predetermined furnace temperature. (1) Sensible heat of exhaust gas generated by a heating burner in a heating zone of a continuous annealing furnace, and an overaging zone Heat exchange with the ambient gas in the furnace to control the furnace temperature in the overaging zone to a predetermined temperature, (2) sensible heat of exhaust gas generated by the heating burner in the heating zone of the continuous annealing furnace, and continuous annealing In the second half of the furnace, heat is exchanged with the atmospheric gas in the temperature adjustment zone for adjusting the temperature of the steel strip introduced to the hot dip galvanization pot connected to the inlet side of the hot dip galvanization pot via a snout. The furnace temperature is controlled to a predetermined temperature.

上記方法において、排ガスを熱風発生装置内に導入し、該熱風発生装置を介して排気される排ガス系路内に熱交換器を配設し、該熱交換器内に過時効帯内又は温度調整帯内の雰囲気ガスを導入して過時効帯内又は温度調整帯内の炉温を所定の温度に制御する。   In the above method, exhaust gas is introduced into the hot air generator, a heat exchanger is disposed in the exhaust gas system exhausted through the hot air generator, and the heat exchanger has an overaging zone or temperature control. The atmosphere gas in the zone is introduced to control the furnace temperature in the overaging zone or the temperature adjustment zone to a predetermined temperature.

また、雰囲気ガスの循環系路に雰囲気ガスの温度を冷却する熱交換器を配設し、雰囲気ガスの温度によって循環系路の熱交換器と上記排ガス系路の熱交換器とを切替えてもよい。   In addition, a heat exchanger that cools the temperature of the atmospheric gas is disposed in the circulation system of the atmospheric gas, and the heat exchanger of the circulation system and the heat exchanger of the exhaust gas system are switched depending on the temperature of the atmospheric gas. Good.

また、本発明は、連続焼鈍炉の加熱帯の加熱用バーナーで発生する排ガス系路内に排ガスの温度を調整する熱風発生装置を配設し、熱風発生装置から排出する排ガスを放散する煙突との間の排ガス系路内に過時効帯または温度調整帯内の雰囲気ガスを導入して前記加熱帯からの排ガスの顕熱と熱交換する熱交換器を配設したことを特徴とする。また、上記装置において、雰囲気ガスを循環する循環系路内に熱交換器を配設して切替えてもよい。そして、雰囲気ガスの炉内への導入方法は、最終目標である鋼板温度への影響が大きくかつ、熱容量の大きなハースロールの温度変化応答が遅くならないように、雰囲気ガスをハースロールに吹き付ける方式で炉内へ導入する。   The present invention also provides a chimney that disperses the exhaust gas discharged from the hot air generator by disposing a hot air generator that adjusts the temperature of the exhaust gas in the exhaust gas path that is generated by the heating burner in the heating zone of the continuous annealing furnace. A heat exchanger for introducing an atmospheric gas in an over-aged zone or a temperature adjusting zone into the exhaust gas passage between the two and exchanging heat with the sensible heat of the exhaust gas from the heating zone is provided. Moreover, in the said apparatus, you may arrange | position and switch in a circulation system path | route which circulates atmospheric gas. And the introduction method of atmospheric gas into the furnace is a method in which atmospheric gas is blown to the hearth roll so that the temperature change response of the hearth roll with a large heat capacity has a large influence on the steel plate temperature which is the final target. Introduce into the furnace.

本発明では、連続焼鈍炉の加熱帯の加熱バ−ナー排熱を、熱風発生装置で温度を調整して熱交換により再利用できることから、連続焼鈍炉全体のエネルギ一効率を向上させることができる。   In the present invention, since the heat burner exhaust heat in the heating zone of the continuous annealing furnace can be reused by adjusting the temperature with a hot air generator and heat exchange, the energy efficiency of the entire continuous annealing furnace can be improved. .

また本発明では、雰囲気ガスの温度を迅速に昇温あるいは降温することができるので、ライン立ち上げ、立ち下げ、あるいはヒートサイクル変更に対して短時間に対応できるので、炉温制御の応答性が向上する。   Further, in the present invention, the temperature of the atmospheric gas can be quickly raised or lowered, so that the response to the furnace temperature control can be made in a short time with respect to line startup, shutdown, or heat cycle change. improves.

本発明では、加熱帯や均熱帯で使用する加熱バ−ナーから排気される排ガスを、バ−ナーを備えた熱風発生装置を設置して、その燃焼量を制御することにより排ガスの温度(顕熱)調整し、これを熱交換器に通し、過時効帯あるいは温度調節帯の雰囲気ガスと熱交換することにより、過時効帯あるいは温度調節帯の炉温を制御する。過時効帯あるいは温度調節帯は、一般に板温の保持が目的であるから、定常操業において必要な熱量は、主に炉体放散熱だけであり、その必要熱量が小さいので、加熱バ−ナーの排ガスの顕熱を利用することができる。   In the present invention, exhaust gas exhausted from a heating burner used in a heating zone or soaking zone is installed with a hot air generator equipped with a burner, and the combustion amount is controlled to control the exhaust gas temperature (exposure). The temperature of the furnace in the overaging zone or the temperature control zone is controlled by exchanging heat with the ambient gas in the overaging zone or the temperature regulation zone. The overaging zone or temperature control zone is generally intended to maintain the plate temperature, so the amount of heat required for steady operation is mainly the heat dissipated in the furnace, and the required amount of heat is small. The sensible heat of exhaust gas can be used.

加熱帯や均熱帯の加熱バ−ナーの燃焼量が下がった場合は、熱風発生装置の燃焼量を増して、必要な熱量を過時効帯あるいは温度調節帯に供給する。また、加熱帯や均熱帯の加熱バーナーの燃焼量低下に伴い、排ガス温度が大きく低下した場合は、熱風発生装置での燃焼量を削減するため、雰囲気ガスとの熱交換用の熱交換器を通過した後の排ガスの一部を、熱風発生装置の入側に戻すこともできる。所定の交換熱量を得るには排ガス量が少なく、排ガス温度が熱交換器の耐熱温度以上となる場合は、エアバルブを開いてエアを導入して排ガス量を増すことにより、必要な排ガス顕熱量を維持しつつ、熱風発生装置後の排ガス温度を降温する。また、雰囲気ガスの温度が所望の温度より高くなりすぎる場合にもエアバルブにてエアを導入して調整する。   When the combustion amount of a heating zone or a soaking zone heating burner decreases, the combustion amount of the hot air generator is increased and the necessary amount of heat is supplied to the overaging zone or the temperature control zone. In addition, if the exhaust gas temperature is greatly reduced due to a decrease in the amount of combustion in the heating zone or the soaking zone, a heat exchanger for exchanging heat with the atmospheric gas is used to reduce the amount of combustion in the hot air generator. Part of the exhaust gas after passing through can be returned to the entry side of the hot air generator. When the amount of exhaust gas is small to obtain a predetermined amount of exchange heat, and the exhaust gas temperature exceeds the heat resistance temperature of the heat exchanger, open the air valve and introduce air to increase the amount of exhaust gas. While maintaining, the exhaust gas temperature after the hot air generator is lowered. Further, even when the temperature of the atmospheric gas becomes too higher than the desired temperature, the air valve is used to adjust the temperature.

炉温制御は、炉温モード時には目標炉温になるように熱風発生装置の燃焼量を制御する。ここでも熱風発生装置の後流の熱風温度が熱交換器の耐熱温度になる場合は、エアを導入降温する。板温制御モード時は、図4に示すように板温制御モデルにより、設定板温から設定炉温が演算され、これを目標に制御する。   In the furnace temperature control, the combustion amount of the hot air generator is controlled so that the target furnace temperature is reached in the furnace temperature mode. Again, when the hot air temperature downstream of the hot air generator becomes the heat-resistant temperature of the heat exchanger, air is introduced and lowered. In the plate temperature control mode, as shown in FIG. 4, the set furnace temperature is calculated from the set plate temperature by the plate temperature control model, and this is controlled as a target.

ヒートサイクル変更に伴い炉温を上げる場合は、熱風発生装置の燃焼量を増すことにより、投入熱量を増して迅速に炉温を上げることができる。また、ヒートサイクル変更に伴い炉温を下げる場合は、熱交換器をガス−水熱交換器に切り替えることで、迅速に炉温を下げることができる。   When the furnace temperature is increased in accordance with the heat cycle change, the furnace temperature can be quickly increased by increasing the amount of heat input by increasing the combustion amount of the hot air generator. Moreover, when lowering | hanging a furnace temperature with a heat cycle change, a furnace temperature can be rapidly lowered | hung by switching a heat exchanger to a gas-water heat exchanger.

図1は本発明を図7に示す連続焼鈍炉に適用した実施例の概略レイアウトであり、図7と同一構成について同一符号を付している。   FIG. 1 is a schematic layout of an embodiment in which the present invention is applied to the continuous annealing furnace shown in FIG. 7, and the same components as those in FIG.

加熱帯3はラジアントチューブバーナーなどの加熱バーナで加熱され、加熱バーナーの排ガスは排ガスパイプ14により圧力を均一に保つプレナムチャンバ2に集められ、排ガスは回転数制御の排ガスブロワ20により煙道へ導かれる。また、排ガスブロワ20の回転数は、加熱バ−ナー出側圧力が各燃焼負荷に対して適正な圧力となるように制御されている。なお、本発明は、直火バーナや蓄熱式ラジアントチューブバ−ナーなど排ガスの発生するあらゆる加熱バ−ナーに適用できる。   The heating zone 3 is heated by a heating burner such as a radiant tube burner, and the exhaust gas of the heating burner is collected in the plenum chamber 2 that keeps the pressure uniform by the exhaust gas pipe 14, and the exhaust gas is led to the flue by the exhaust gas blower 20 whose rotational speed is controlled. It is burned. Further, the rotation speed of the exhaust gas blower 20 is controlled so that the heating burner outlet pressure becomes an appropriate pressure for each combustion load. In addition, this invention is applicable to all the heating burners which generate | occur | produce exhaust gas, such as a direct fire burner and a thermal storage type radiant tube burner.

まず、加熱帯3の加熱バーナーの排ガスは、排ガスブロワ20に引かれて、プレナムチャンバ2から熱交換器16へ送られ、この熱交換器16で鋼帯13を予熱するための予熱用ガスを熱交換により加熱する。予熱用ガスは、予熱用ガス循環ブロワ19によって予熱用ガスダクト17、プレヒーター1、予熱回収用排ガスダクト18、熱交換器16を循環させる。   First, the exhaust gas from the heating burner in the heating zone 3 is drawn by the exhaust gas blower 20 and sent from the plenum chamber 2 to the heat exchanger 16, and a preheating gas for preheating the steel strip 13 in the heat exchanger 16 is used. Heat by heat exchange. The preheating gas is circulated through the preheating gas duct 17, the preheater 1, the preheating recovery exhaust gas duct 18, and the heat exchanger 16 by the preheating gas circulation blower 19.

従来、加熱帯の加熱用バーナーの排ガスは、図9に示すように、熱交換器16で予熱用ガスと熱交換した後、排ガスブロワ20を通ってそのまま煙突25から排気されていたが、本発明では、以下のフローにより煙突25から排気されていた加熱バーナーの排ガスを有効に利用することができる。   Conventionally, the exhaust gas of the heating burner in the heating zone has been exhausted from the chimney 25 as it is through the exhaust gas blower 20 after exchanging heat with the preheating gas in the heat exchanger 16, as shown in FIG. In the invention, the exhaust gas of the heating burner exhausted from the chimney 25 by the following flow can be effectively used.

排ガスブロワ20の下流には熱風発生装置21が設置され、熱風発生装置21により、排ガスは熱風発生装置21が備える熱風発生用バーナー22の直火により加熱され、発生した熱風は所望のガス温度に調整される。そして熱交換器23で過時効帯の雰囲気ガス(不活性ガスあるいは還元ガス)と熱交換された後、煙突25より排気される。   A hot air generator 21 is installed downstream of the exhaust gas blower 20, and the exhaust gas is heated by the hot air generating burner 22 provided in the hot air generator 21 by the hot air generator 21, and the generated hot air reaches a desired gas temperature. Adjusted. The heat exchanger 23 exchanges heat with an overaged atmosphere gas (inert gas or reducing gas), and then the exhaust gas is exhausted from the chimney 25.

熱風発生装置21での排ガスの加熱は、過時効帯7に設置された炉温計29、板温計28により測定された測定温度を制御装置30、31に入力して演算処理して調整弁32を調整して熱風発生装置21の熱風発生用バーナー22の燃焼量を調整し、排ガス温度を制御することにより熱交換する雰囲気ガスの温度を制御する。   Heating of the exhaust gas in the hot air generator 21 is performed by inputting the measured temperature measured by the furnace thermometer 29 and the plate thermometer 28 installed in the overaging zone 7 to the control devices 30 and 31 and performing arithmetic processing on the control valve. 32 is adjusted to adjust the combustion amount of the hot-air generating burner 22 of the hot-air generating device 21, and the exhaust gas temperature is controlled to control the temperature of the atmosphere gas for heat exchange.

過時効帯7の雰囲気ガスを循環させる循環ブロワ26は、熱交換器23で熱交換された雰囲気ガスを過時効帯7へ送り、過時効帯7から排気された雰囲気ガスを循環ダクト27から熱交換器23へと循環させる。循環ブロワ26は、定常時と、ヒートサイクル変更やライン立ち上げ、立ち下げなどの急速加熱、急速冷却時に回転数をコントロールできるように、回転数制御とする。   The circulation blower 26 that circulates the atmosphere gas in the overaging zone 7 sends the atmosphere gas exchanged by the heat exchanger 23 to the overaging zone 7, and heats the atmosphere gas exhausted from the overaging zone 7 from the circulation duct 27. Circulate to exchanger 23. The circulation blower 26 is controlled at the rotational speed so that the rotational speed can be controlled at the time of steady state, rapid heating and rapid cooling such as heat cycle change, line startup and shutdown.

本実施例では、加熱帯3の加熱用バ−ナーが最大燃焼負荷時は熱交換器16の出側ガス温が約600℃、43000Nm/hrとなり、これに熱風発生装置21で50万kcal/hr加熱し、630℃程度にし、熱交換器23で雰囲気ガスを加熱することにより過時効帯7に約100万kcal/hrの熱量が投入されることになり、炉帯放散熱量をまかなえるため、炉温を所望の過時効帯の炉温に保つことができる。 In this embodiment, when the heating burner in the heating zone 3 is at the maximum combustion load, the outlet gas temperature of the heat exchanger 16 is about 600 ° C. and 43000 Nm 3 / hr, and this is heated by the hot air generator 21 to 500,000 kcal. / Hr is heated to about 630 ° C., and the atmosphere gas is heated by the heat exchanger 23, so that a heat amount of about 1 million kcal / hr is input to the overaging zone 7 to cover the amount of heat dissipated in the furnace zone. The furnace temperature can be maintained at a furnace temperature in a desired overaging zone.

加熱帯3の加熱用バ−ナーの負荷が低下し、たとえば30%燃焼負荷の時には、予熱炉用の熱交換器16の出側ガス温が450℃程度、22000Nm/hrとなり、これを熱風発生装置で150万kcal/hr加熱し、680℃程度とする。これを過時効帯用の熱交換器23で雰囲気ガスを熱交換することで炉温を保持することができる。 For example, when the load of the heating burner in the heating zone 3 is reduced to 30% combustion load, the outlet gas temperature of the heat exchanger 16 for the preheating furnace is about 450 ° C. and 22000 Nm 3 / hr. Heat to 1,500,000 kcal / hr with a generator to a temperature of about 680 ° C. The furnace temperature can be maintained by heat-exchanging the atmospheric gas with the heat exchanger 23 for an overaging zone.

加熱帯3のバ−ナー負荷が最低燃焼状態になった際には、熱風発生装置21の燃焼量を増すが、加熱帯3の加熱用バ−ナーの排ガス量が減っており、熱交換器23の熱風の出側の温度が耐熱温度を超えてしまうので、エアを導入して排ガス量を増量し、熱風発生装置21で350万kcal/hr加熱することで対応できる。もしくは予熱炉用の熱交換器16をダクト45を介してバイパスして排ガスを高温のまま供給すれば、熱風発生装置での加熱熱量は280万kcal/hrに削減できる。   When the burner load in the heating zone 3 reaches the minimum combustion state, the combustion amount of the hot air generator 21 is increased, but the exhaust gas amount of the heating burner in the heating zone 3 is reduced, and the heat exchanger 23, the temperature at the outlet side of the hot air exceeds the heat-resistant temperature. Therefore, the amount of exhaust gas is increased by introducing air, and the hot air generator 21 is heated by 3.5 million kcal / hr. Alternatively, if the heat exchanger 16 for the preheating furnace is bypassed via the duct 45 and the exhaust gas is supplied at a high temperature, the amount of heating heat in the hot air generator can be reduced to 2.8 million kcal / hr.

作業を簡単に行うために、全操業ケースにおいて、プレヒーター用の熱交換器16をバイパスしたケース、あるいはプレヒーター用の熱交換器16が設置されていないケースで考えると、過時効帯7での所要投入熱量は従来に比べて0.25程度となる。プレヒーター用の熱交換器16をバイパスしないケースでは、予熱帯、加熱帯、過時効帯のバランスを考慮しプレヒーター用の熱交換器16と過時効帯の熱交換器23の仕様を決定することで熱効率の高い連続焼鈍炉を実現できる。   In order to simplify the work, in all operating cases, the case where the preheater heat exchanger 16 is bypassed or the case where the preheater heat exchanger 16 is not installed, The required heat input is about 0.25 compared to the conventional case. In the case where the preheater heat exchanger 16 is not bypassed, the specifications of the preheater heat exchanger 16 and the overage zone heat exchanger 23 are determined in consideration of the balance between the pretropical zone, the heating zone, and the overaging zone. Therefore, a continuous annealing furnace with high thermal efficiency can be realized.

図4に本発明の炉温制御のフローチャートを示す。   FIG. 4 shows a flowchart of the furnace temperature control of the present invention.

まず炉温調整器は、過時効帯や温度調整帯での炉温の熱バランスモデルと、熱交換器での熱バランスモデル、加熱帯の熱バランスモデルを有している。基本的な炉温制御は、設定炉温と実績炉温の偏差に基づいて熱風発生装置の燃焼量を制御するフィードバック制御とする。各段階での排ガス流量、排ガス温度は測定値でも、加熱帯での燃焼量の実績などから上記伝熱モデルにより順次演算を行っても良い。   First, the furnace temperature regulator has a heat balance model of the furnace temperature in the overaging zone and the temperature adjustment zone, a heat balance model in the heat exchanger, and a heat balance model of the heating zone. Basic furnace temperature control is feedback control that controls the combustion amount of the hot air generator based on the deviation between the set furnace temperature and the actual furnace temperature. The exhaust gas flow rate and exhaust gas temperature at each stage may be measured values, or may be calculated sequentially using the heat transfer model based on the actual amount of combustion in the heating zone.

まず設定炉温に基づいて、上記伝熱モデルにより熱風循環ブロワの回転数を設定する。加熱帯から来る排ガスの流量、温度は鋼板の通板条件により変化するので、通板条件が変わる度に、炉温の熱バランスモデル、熱交換器での熱バランスモデルにより、熱風循環ブロワの回転数を設定する。同時に、炉帯の雰囲気ガスの熱交換器入側と出側のガス温度も測定もしくは演算される。熱風循環ブロワの回転数から風量が演算され、入側と出側のガス温度から交換熱量が演算される。但し、基本的には熱風発生装置の燃焼量制御により炉温を制御するので、循環ブロワの回転数設定は通板条件が変わった時だけとするのが実用的である。   First, based on the set furnace temperature, the rotational speed of the hot air circulation blower is set by the heat transfer model. Since the flow rate and temperature of the exhaust gas coming from the heating zone change depending on the plate passing condition of the steel plate, the hot air circulation blower rotates according to the heat balance model of the furnace temperature and the heat balance model in the heat exchanger whenever the plate passing condition changes. Set the number. At the same time, the gas temperature on the inlet side and outlet side of the heat exchanger of the atmosphere gas in the furnace zone is also measured or calculated. The amount of air is calculated from the rotational speed of the hot air circulation blower, and the amount of exchange heat is calculated from the gas temperatures on the inlet and outlet sides. However, since the furnace temperature is basically controlled by controlling the amount of combustion of the hot air generator, it is practical to set the rotation speed of the circulation blower only when the plate passing condition is changed.

設定炉温維持や炉温上昇のために交換熱量が不足する際は、熱風発生装置の燃焼量を増すが、熱風発生装置後の排ガス実績温度と、熱交換器の熱収支演算から、熱交換器の耐熱温度限界と排ガス流量不足である場合はエアバルブを開き、排ガス量のボリュームを増す。   When the amount of exchange heat is insufficient due to maintaining the set furnace temperature or increasing the furnace temperature, the combustion amount of the hot air generator is increased, but heat exchange is performed based on the actual exhaust gas temperature after the hot air generator and the heat balance calculation of the heat exchanger. If the heat-resistant temperature limit of the vessel and the exhaust gas flow rate are insufficient, open the air valve and increase the volume of exhaust gas.

また、熱交換器出側の排ガス温度が、熱風発生装置出側の排ガス温度より低い場合は、熱風発生装置での燃焼による排ガス量と同等の流量を再循環するように、熱風戻りバルブ47を制御する。   When the exhaust gas temperature on the outlet side of the heat exchanger is lower than the exhaust gas temperature on the outlet side of the hot air generator, the hot air return valve 47 is set so as to recirculate a flow rate equivalent to the amount of exhaust gas caused by combustion in the hot air generator. Control.

逆に炉温を下げたい場合は、熱風発生装置の燃料量を下げる。それでも充分に下がらない場合は、雰囲気ガスを冷却用の熱交換器42に切り替えて、冷却する。   Conversely, when it is desired to lower the furnace temperature, the fuel amount of the hot air generator is lowered. If the temperature still does not drop sufficiently, the atmosphere gas is switched to the cooling heat exchanger 42 and cooled.

フィードフォワード制御としては、前述の各伝熱モデルにより、炉温を各温度に保つために必要な熱量が炉温調整器で演算されており、排ガス流量、排ガス温度と熱交換器の熱収支演算から、熱風発生装置の必要燃焼量を演算し、予測制御する。その際に、熱風発生装置後、熱交換器後の排ガス温度も演算され、前述のごとくエアバルブ、熱風戻りバルブも予測制御する。   For feed-forward control, the amount of heat required to maintain the furnace temperature at each temperature is calculated by the furnace temperature regulator using the heat transfer models described above, and the exhaust gas flow rate, exhaust gas temperature, and heat exchanger heat balance calculation. From the above, the required amount of combustion of the hot air generator is calculated and controlled predictively. At that time, the exhaust gas temperature after the hot air generator and after the heat exchanger is also calculated, and the air valve and the hot air return valve are also predicted and controlled as described above.

板温制御モード時には、図4に示すように板温制御モデルにより、設定板温から設定炉温を演算し、制御することは前述のとおりである。   In the plate temperature control mode, as described above, the set furnace temperature is calculated from the set plate temperature and controlled by the plate temperature control model as shown in FIG.

本実施例において、応答性について試験をした結果、例えば炉温を200℃から500℃に昇温させる時間は、図6に傾向を示すように、約30分であり、従来の約3時間に比べて大幅に短縮させることができ、応答性が大幅に向上した。   In the present example, as a result of testing for responsiveness, for example, the time for raising the furnace temperature from 200 ° C. to 500 ° C. is about 30 minutes as shown in FIG. Compared to this, the response time can be greatly shortened.

図2は本発明を図8に示す溶融亜鉛メッキ設備の冷却調整帯に適用した実施例の概略レイアウトを示し、図1と図8に示す構成と同一の構成には同一符号を付している。図2においても実施例1と同様にして、加熱帯3の加熱用バーナーの排ガスを熱風発生装置21に導入し、熱交換器23で発生させた熱風と冷却調整帯34、35の雰囲気ガスを熱交換させて循環ブロワ26で循環させて雰囲気ガスを設定温度にする。   FIG. 2 shows a schematic layout of an embodiment in which the present invention is applied to the cooling adjustment zone of the hot dip galvanizing equipment shown in FIG. 8, and the same components as those shown in FIGS. 1 and 8 are denoted by the same reference numerals. . 2, the exhaust gas from the heating burner in the heating zone 3 is introduced into the hot air generator 21 in the same manner as in Example 1, and the hot air generated by the heat exchanger 23 and the atmospheric gases in the cooling adjustment zones 34 and 35 are changed. The atmosphere gas is set to a set temperature by exchanging heat and circulating with the circulation blower 26.

熱風発生装置21でのバーナーの排ガスの加熱は、冷却調整帯に設置された炉温計29、板温計28により測定された測定温度を制御装置38に入力して演算処理して調整弁32を調整して熱風発生装置21の熱風発生用バーナー22の燃焼量を調整し、熱交換する雰囲気ガスの温度を制御する。   The heating of the burner exhaust gas in the hot air generator 21 is performed by inputting the measured temperature measured by the furnace thermometer 29 and the plate thermometer 28 installed in the cooling adjustment zone to the control device 38 and performing arithmetic processing on the control valve 32. Is adjusted to adjust the combustion amount of the hot air generating burner 22 of the hot air generating device 21 to control the temperature of the atmosphere gas to be heat exchanged.

図3は本発明の別実施例の概略レイアウトを示し、図1と図2に示す構成と同一の構成には同一符号を付している。   FIG. 3 shows a schematic layout of another embodiment of the present invention. The same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.

本実施例は、過時効帯7または温度調整帯34、36内の雰囲気ガスを循環する循環系路内にバイパスダクト40を設けて熱交換器42を追加したもので、熱風発生装置21の下流の熱交換器23の循環ダクト27と熱交換器42のバイパスダクト40にはそれぞれ切換弁41、43が設けられ、切替弁41、43の切換により熱交換器23を加熱用に、熱交換器42を冷却用に使用するものである。   In this embodiment, a bypass duct 40 is provided in a circulation system for circulating atmospheric gas in the overaging zone 7 or the temperature adjusting zones 34 and 36 and a heat exchanger 42 is added. The circulation duct 27 of the heat exchanger 23 and the bypass duct 40 of the heat exchanger 42 are provided with switching valves 41 and 43, respectively. By switching the switching valves 41 and 43, the heat exchanger 23 is used for heating. 42 is used for cooling.

例えば、炉温を500℃から200℃へ温度を下げる場合は、熱風発生装置21を停止させ、熱交換器23への排ガスの供給をストップさせ、雰囲気ガスを切替弁41、43の切換により熱交換器42を使用して雰囲気ガスを降温させる。   For example, when lowering the furnace temperature from 500 ° C. to 200 ° C., the hot air generator 21 is stopped, the supply of exhaust gas to the heat exchanger 23 is stopped, and the atmospheric gas is heated by switching the switching valves 41 and 43. The temperature of the atmospheric gas is lowered using the exchanger 42.

応答性について試験した結果、炉温を降温させる時間は、図5に傾向を示すように、約10分であり、従来は約2時間要していたのに比べて大幅に短縮させることができ、応答性が大幅に向上した。   As a result of testing for responsiveness, the time for lowering the furnace temperature is about 10 minutes, as shown in the trend of FIG. 5, and can be significantly shortened compared to the time required for about 2 hours in the past. The responsiveness has been greatly improved.

図10は本発明を加熱帯に蓄熱式バーナーを用いた連続焼鈍炉に適用した実施例の設備構成を示す。   FIG. 10 shows an equipment configuration of an embodiment in which the present invention is applied to a continuous annealing furnace using a regenerative burner in a heating zone.

本実施例では、加熱帯3は蓄熱式ラジアンドチューブバーナーを採用しており、実施例1のラジアンドチューブバーナーより排ガス温度が低く、燃焼負荷に応じて200〜300℃程度となる。排ガスは排ガスパイプ14を経て、プレナムチャンバ2に集められ、排ガスブロワ20により煙道に導かれる。排ガス温度が低いため、実施例1と異なり、鋼帯を予熱するための予熱用の熱交換器はないが、過時効帯の雰囲気ガスと熱交換する熱交換器23を通過した排ガスを排ガスブロワ20の前に戻す熱風戻りダクト46を設置している。   In the present embodiment, the heating zone 3 employs a heat storage type radio and tube burner, and the exhaust gas temperature is lower than that of the radio and tube burner of the first embodiment, and is about 200 to 300 ° C. depending on the combustion load. The exhaust gas is collected in the plenum chamber 2 through the exhaust gas pipe 14 and guided to the flue by the exhaust gas blower 20. Since the exhaust gas temperature is low, unlike the first embodiment, there is no preheat heat exchanger for preheating the steel strip, but the exhaust gas that has passed through the heat exchanger 23 that exchanges heat with the overaged atmosphere gas is used as the exhaust gas blower. A hot air return duct 46 that returns to the front 20 is installed.

熱風戻りダクト46がない場合は、加熱帯のバーナーが最低燃焼状態において、350万kcal/hrの熱量を熱風発生装置21にて投入しなければ、過時効帯の炉温を維持できないが、熱風戻りダクト46を設置し、さらに熱風を一部再循環することにより、熱風発生装置21での熱量を290万kcal/hrにまで削減できた。ここでは、熱風戻りダクト46を介して再循環されるガス量は、圧力バランスの関係から熱風発生装置燃焼排ガスの流量と同等に制御している。   When there is no hot air return duct 46, the furnace temperature in the overaging zone cannot be maintained unless the hot air generator 21 supplies a heat quantity of 3.5 million kcal / hr when the burner in the heating zone is in the lowest combustion state. By installing the return duct 46 and further recirculating part of the hot air, the amount of heat in the hot air generator 21 could be reduced to 2.9 million kcal / hr. Here, the amount of gas recirculated through the hot air return duct 46 is controlled to be equal to the flow rate of the hot air generator flue gas from the relationship of pressure balance.

過時効帯の雰囲気ガスとの熱交換用の熱交換器を通過した後の排ガスが、熱風発生装置入側の排ガス温度よりも高温であれば、その熱交換後の排ガスの一部を、熱風発生装置の入側に戻し、熱風発生装置入側の排ガスと混合し、再循環すると熱効率は向上する。上記のように、加熱帯に蓄熱ラジアンドチューブバーナーを採用した場合は、熱風発生装置に供給される排ガス温度が低くなるため、この熱風再循環系が特に有効となる。   If the exhaust gas after passing through the heat exchanger for heat exchange with the overaged atmosphere gas is higher than the exhaust gas temperature on the hot air generator entry side, a part of the exhaust gas after the heat exchange is Returning to the entry side of the generator, mixing with the exhaust gas on the entry side of the hot air generator, and recirculating will improve the thermal efficiency. As described above, when the heat storage radiator and tube burner is employed in the heating zone, the exhaust gas temperature supplied to the hot air generator is lowered, and this hot air recirculation system is particularly effective.

熱交換器で温度調整された炉内雰囲気ガスの炉内への導入方法は、図11のごとくハースロールに吹き付ける方式を採用する。これは炉温よりも鋼板と接触するハースロールの表面温度をより早く炉温設定変更に追従させるためである。例えば過時効帯の板温設定を100℃下げる場合の、下げ始めにおいては、雰囲気ガス温度とハースロール温度の両方が目標より100℃程度高いと推定される。その際に過時効帯入り側で100℃低い板温で鋼板を入れたとすると、相対的に高温であるハースロールから鋼板が受ける熱量は、雰囲気ガスから鋼板が受ける熱量の約8倍にも及んだ。従って、板温制御の応答性を上げるために、ハースロールの温度変化の応答性をあげるべく、雰囲気ガスの炉内への導入はハースロールに吹き付ける方式を採用した。   As a method for introducing the atmospheric gas in the furnace, the temperature of which has been adjusted by the heat exchanger, into the furnace, a method of spraying on the hearth roll as shown in FIG. 11 is adopted. This is for making the surface temperature of the hearth roll contacting the steel plate follow the furnace temperature setting change earlier than the furnace temperature. For example, when the plate temperature setting of the overaging zone is lowered by 100 ° C., it is estimated that both the atmospheric gas temperature and the hearth roll temperature are about 100 ° C. higher than the target at the beginning of the reduction. In this case, if the steel sheet is put at a plate temperature lower by 100 ° C. on the side where the overaging zone is entered, the amount of heat received by the steel plate from the relatively high hearth roll is about eight times the amount of heat received by the steel plate from the atmospheric gas. What? Therefore, in order to increase the responsiveness of the plate temperature control, a method of blowing the atmospheric gas into the furnace was adopted to increase the responsiveness of the hearth roll temperature change.

また、その効果は通常の雰囲気ガスとハースロールの自然対流伝熱に比べて、ハースロールの温度変化の応答時間が2/3以下に削減された。   In addition, the response time of the hearth roll temperature change was reduced to 2/3 or less as compared with the natural convection heat transfer of normal atmospheric gas and hearth roll.

以上の本発明は、連続焼鈍炉の高温部である加熱帯や均熱帯の設備構成や加熱装置の選択と、排ガスを利用して炉温を制御しようとする過時効帯や温度調整帯に求める温度パターンによって、最適な適用方法は異なる。しかし、最近の多品種生産傾向により問題となる、鋼種による設定炉温の変更への応答性の遅さを大きく改善し、なおかつエネルギー効率を向上する設備構成を、本発明を適用することにより実現できる。   The present invention described above requires a heating zone that is a high-temperature part of a continuous annealing furnace, selection of a soaking zone equipment configuration and a heating device, and an overaging zone and a temperature regulation zone in which the furnace temperature is controlled using exhaust gas. The optimum application method varies depending on the temperature pattern. However, by applying the present invention, an equipment configuration that greatly improves the delay in responsiveness to changes in the set furnace temperature depending on the steel type, which is a problem due to the recent trend toward multi-product production, and also improves energy efficiency. it can.

本発明を図7に示す連続焼鈍炉に適用した実施例の概略レイアウトである。It is a schematic layout of the Example which applied this invention to the continuous annealing furnace shown in FIG. 本発明を図8に示す溶融亜鉛メッキ設備の冷却調整帯に適用した実施例の概略レイアウトである。It is a schematic layout of the Example which applied this invention to the cooling adjustment zone of the hot dip galvanization equipment shown in FIG. 本発明の別実施例の概略レイアウトである。It is a schematic layout of another Example of this invention. 本発明の炉温制御のフローチャートである。It is a flowchart of the furnace temperature control of this invention. 本発明と従来技術炉温降温時のパターンを示すグラフである。It is a graph which shows the pattern at the time of this invention and prior art furnace temperature fall. 本発明と従来技術の炉温昇温時のパターンを示すグラフである。It is a graph which shows the pattern at the time of furnace temperature temperature rising of this invention and a prior art. 連続焼鈍炉の概略レイアウトである。It is a schematic layout of a continuous annealing furnace. 溶融亜鉛メッキ設備の連続焼鈍炉の概略レイアウトを示す。A schematic layout of a continuous annealing furnace of a hot dip galvanizing facility is shown. 従来の排ガス利用の概略レイアウトである。It is a schematic layout of conventional exhaust gas utilization. 本発明を加熱帯に蓄熱式バーナーを用いた連続焼鈍炉に適用した実施例の概略レイアウトである。It is a schematic layout of the Example which applied this invention to the continuous annealing furnace which used the thermal storage type burner for the heating zone. 雰囲気ガスの炉内への導入方法を示す概略図である。It is the schematic which shows the introduction method of the atmospheric gas in the furnace.

符号の説明Explanation of symbols

1プレヒーター
2プレナムチャンバ
3加熱帯
4均熱帯
5徐冷帯
6急冷帯(1次冷却帯)
7過時効帯
82次冷却帯
93次冷却帯
10クェンチ装置
11デフレクターロール
12炉内ロール
13鋼帯
14排ガスパイプ
15排ガスダクト
16熱交換器
17予熱用排ガスダクト
18予熱回収用排ガスダクト
19予熱用循環ブロワ
20排ガスブロワ
21熱風発生装置
22熱風発生用バーナ
23熱交換器
24排ガスダクト
25煙突
26熱風循環ブロワ
27熱風循環ダクト
28板温計
29炉温計
30制御装置
31制御装置
32調整弁
33急冷帯
34冷却調整帯
35冷却調整帯
36スナウト
37メッキポット
38制御装置
39排ガスダクト
40バイパスダクト
41切替弁
42熱交換器
43切替弁
44エアバルブ
45バイパスダクト
46熱風戻りダクト
47熱風戻りバルブ
48排ガスバルブ
49雰囲気ガス導入ヘッダー
1 Preheater 2 Plenum chamber 3 Heating zone 4 Soaking zone 5 Slow cooling zone 6 Quench zone (Primary cooling zone)
7 Overaging zone 82nd cooling zone 93th cooling zone 10 Quench device 11 Deflector roll 12 In-furnace roll 13 Steel strip 14 Exhaust pipe 15 Exhaust gas duct 16 Heat exchanger 17 Preheating exhaust gas duct 18 Preheating recovery exhaust gas duct 19 Preheating circulation Blower 20 Exhaust gas blower 21 Hot air generator 22 Hot air generator burner 23 Heat exchanger 24 Exhaust gas duct 25 Chimney 26 Hot air circulation blower 27 Hot air circulation duct 28 Plate thermometer 29 Furnace thermometer 30 Controller 31 Controller 32 Adjusting valve 33 Quench zone 34 Cooling adjustment zone 35 Cooling adjustment zone 36 Snout 37 Plating pot 38 Control device 39 Exhaust gas duct 40 Bypass duct 41 Switching valve 42 Heat exchanger 43 Switching valve
44 air valve 45 bypass duct 46 hot air return duct 47 hot air return valve 48 exhaust gas valve 49 atmosphere gas introduction header

Claims (8)

連続焼鈍炉の炉帯内を所定の炉温に制御する炉温制御方法において、連続焼鈍炉の加熱帯の加熱用バーナーで発生する排ガスの顕熱と、過時効帯内の雰囲気ガスとを熱交換させて、その雰囲気ガスをハースロールに吹き付ける方式で過時効帯炉内に導入することによって、過時効帯内の炉温を所定の温度に制御することを特徴とする連続焼鈍炉の炉温制御方法。   In a furnace temperature control method for controlling the inside of the continuous annealing furnace to a predetermined furnace temperature, the sensible heat of the exhaust gas generated by the heating burner in the heating zone of the continuous annealing furnace and the atmospheric gas in the overaging zone are heated. The furnace temperature of the continuous annealing furnace is characterized by controlling the furnace temperature in the overaging zone to a predetermined temperature by introducing it into the overaging zone furnace by blowing the atmosphere gas to the hearth roll. Control method. 排ガスを熱風発生装置内に導入し、該熱風発生装置を介して排気される排ガス系路内に熱交換器を配設し、該熱交換器内に過時効帯内の雰囲気ガスを導入して過時効帯内の炉温を所定の温度に制御することを特徴とする請求項1に記載の連続焼鈍炉の炉温制御方法。   An exhaust gas is introduced into the hot air generator, a heat exchanger is disposed in the exhaust gas system exhausted through the hot air generator, and an atmospheric gas in the overaging zone is introduced into the heat exchanger. The furnace temperature control method for a continuous annealing furnace according to claim 1, wherein the furnace temperature in the overaging zone is controlled to a predetermined temperature. 連続焼鈍炉の炉帯内を所定の炉温に制御する炉温制御方法において、連続焼鈍炉の加熱帯の加熱用バーナーで発生する排ガスの顕熱と、連続焼鈍炉の後半で溶融亜鉛メッキポットの入側にスナウトを介して連結される溶融亜鉛メッキポットヘ導入される鋼帯の温度を調整する温度調整帯内の雰囲気ガスとを熱交換させて、その雰囲気ガスをハースロールに吹き付ける方式で温度調整帯炉内に導入することによって、温度調整帯内の炉温を所定の温度に制御することを特徴とする連続焼鈍炉の炉温制御方法。   In the furnace temperature control method for controlling the inside of the continuous annealing furnace to a predetermined furnace temperature, the sensible heat of the exhaust gas generated by the heating burner in the heating zone of the continuous annealing furnace and the galvanizing pot in the second half of the continuous annealing furnace The temperature adjustment is performed by heat exchange with the atmosphere gas in the temperature adjustment zone that adjusts the temperature of the steel strip introduced to the hot dip galvanizing pot connected to the inlet side of the steel via a snout, and blowing the atmosphere gas to the hearth roll A furnace temperature control method for a continuous annealing furnace, wherein the furnace temperature in the temperature adjustment zone is controlled to a predetermined temperature by being introduced into the zone furnace. 排ガスを熱風発生装置内に導入し、該熱風発生装置を介して排気される排ガス系路内に熱交換器を配設し、該熱交換器内に前記温度調整帯内の雰囲気ガスを導入して温度調整帯の炉温を制御することを特徴とする請求項3に記載の連続焼鈍炉の炉温制御方法。   An exhaust gas is introduced into the hot air generator, a heat exchanger is disposed in the exhaust gas system exhausted through the hot air generator, and the atmospheric gas in the temperature adjustment zone is introduced into the heat exchanger. The furnace temperature control method for a continuous annealing furnace according to claim 3, wherein the furnace temperature in the temperature adjustment zone is controlled. 雰囲気ガスの循環系路に雰囲気ガスの温度を調整する熱交換器を配設し、雰囲気ガスの温度によって前記循環系路の熱交換器と前記排ガス系路の熱交換器とを切替えることを特徴とする請求項2又は4に記載の連続焼鈍炉の炉温調整方法。   A heat exchanger for adjusting the temperature of the atmospheric gas is disposed in the circulation system of the atmospheric gas, and the heat exchanger of the circulation system and the heat exchanger of the exhaust gas system are switched according to the temperature of the atmospheric gas. The furnace temperature adjustment method for a continuous annealing furnace according to claim 2 or 4. 連続焼鈍炉の加熱帯の加熱用バーナーで発生する排ガス系路内に排ガスの温度を調整する熱風発生装置を配設し、熱風発生装置から排出する排ガスを放散する煙突との間の排ガス系路内に過時効帯または温度調整帯内の雰囲気ガスを導入して前記加熱帯からの排ガスの顕熱と熱交換する熱交換器を配設したことを特徴とする連続焼鈍炉の炉温制御装置。   An exhaust gas path between the hot air generator that adjusts the temperature of the exhaust gas in the exhaust gas path generated by the heating burner in the heating zone of the continuous annealing furnace and the chimney that diffuses the exhaust gas discharged from the hot air generator A furnace temperature control device for a continuous annealing furnace, characterized in that a heat exchanger for introducing heat into the sensible heat of the exhaust gas from the heating zone by introducing atmospheric gas in the overaging zone or the temperature adjustment zone is disposed therein . 雰囲気ガスを循環する循環系路内に熱交換器を配設したことを特徴とする請求項6に記載の連続焼鈍炉の炉温制御装置。   The furnace temperature control device for a continuous annealing furnace according to claim 6, wherein a heat exchanger is disposed in a circulation system for circulating the atmospheric gas. 過時効帯または温度調整帯の雰囲気ガスとの熱交換用の熱交換器を通過した後の排ガスが、熱風発生装置入側の排ガス温度よりも高温である際に、熱効率を向上するために、その熱交換後の排ガスの一部を、熱風発生装置の入側に戻し、熱風発生装置入側の排ガスと混合し、再循環することを特徴とする請求項1から7に記載の炉温制御装置。   In order to improve the thermal efficiency when the exhaust gas after passing through the heat exchanger for heat exchange with the atmosphere gas in the overaging zone or the temperature adjustment zone is higher than the exhaust gas temperature on the inlet side of the hot air generator, The furnace temperature control according to any one of claims 1 to 7, wherein a part of the exhaust gas after the heat exchange is returned to the inlet side of the hot air generator, mixed with the exhaust gas on the inlet side of the hot air generator, and recirculated. apparatus.
JP2004319657A 2004-01-14 2004-11-02 Method and device for controlling furnace temperature of continuous annealing furnace Pending JP2005226157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319657A JP2005226157A (en) 2004-01-14 2004-11-02 Method and device for controlling furnace temperature of continuous annealing furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004007375 2004-01-14
JP2004319657A JP2005226157A (en) 2004-01-14 2004-11-02 Method and device for controlling furnace temperature of continuous annealing furnace

Publications (1)

Publication Number Publication Date
JP2005226157A true JP2005226157A (en) 2005-08-25

Family

ID=35001103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319657A Pending JP2005226157A (en) 2004-01-14 2004-11-02 Method and device for controlling furnace temperature of continuous annealing furnace

Country Status (1)

Country Link
JP (1) JP2005226157A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100163A (en) * 2005-10-04 2007-04-19 Nippon Steel Corp Method and unit for controlling strip temperature in continuous annealing furnace
JP2009102685A (en) * 2007-10-22 2009-05-14 Nippon Steel Engineering Co Ltd Device and method for controlling furnace temperature
CN102012169A (en) * 2010-12-28 2011-04-13 中冶南方(武汉)威仕工业炉有限公司 Method for secondarily recycling smoke gas waste heat of continuous annealing furnace
CN102534177A (en) * 2012-03-02 2012-07-04 攀钢集团西昌钢钒有限公司 Continuous annealing unit and circulating temperature control device for aging section of continuous annealing unit
CN103205540A (en) * 2013-03-29 2013-07-17 合肥德博生物能源科技有限公司 Biomass gas aluminium alloy annealing system
JP2013234361A (en) * 2012-05-09 2013-11-21 Jfe Steel Corp Furnace temperature control method and furnace temperature control device
WO2014129180A1 (en) * 2013-02-25 2014-08-28 Jfeスチール株式会社 Continuous annealing device and continuous hot-dip galvanising device for steel strip
EP2942407A1 (en) * 2013-01-28 2015-11-11 JFE Steel Corporation Method for adjusting in-furnace atmosphere of continuous heat-treating furnace
CN111378813A (en) * 2018-12-30 2020-07-07 瑨祥(宜昌)机电设备有限公司 Flow-control energy-saving annealing furnace for galvanized wire
KR102236621B1 (en) * 2019-09-30 2021-04-08 주식회사 삼우에코 Steel plate continuous heat treatment system to establish heat treatment conditions
CN114346626A (en) * 2021-12-14 2022-04-15 常州市常蒸蒸发器有限公司 Production method of roll-bond evaporator for new energy equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586939A (en) * 1981-07-06 1983-01-14 Nippon Kokan Kk <Nkk> Heating method for steel strip in continuous heat treatment furnace
JPS61166927A (en) * 1985-01-18 1986-07-28 Nippon Steel Corp Continuous annealing furnace installation
JPH01188633A (en) * 1988-01-22 1989-07-27 Sumitomo Metal Ind Ltd Continuous annealing method for metallic hoop

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586939A (en) * 1981-07-06 1983-01-14 Nippon Kokan Kk <Nkk> Heating method for steel strip in continuous heat treatment furnace
JPS61166927A (en) * 1985-01-18 1986-07-28 Nippon Steel Corp Continuous annealing furnace installation
JPH01188633A (en) * 1988-01-22 1989-07-27 Sumitomo Metal Ind Ltd Continuous annealing method for metallic hoop

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100163A (en) * 2005-10-04 2007-04-19 Nippon Steel Corp Method and unit for controlling strip temperature in continuous annealing furnace
JP2009102685A (en) * 2007-10-22 2009-05-14 Nippon Steel Engineering Co Ltd Device and method for controlling furnace temperature
CN102012169A (en) * 2010-12-28 2011-04-13 中冶南方(武汉)威仕工业炉有限公司 Method for secondarily recycling smoke gas waste heat of continuous annealing furnace
CN102534177A (en) * 2012-03-02 2012-07-04 攀钢集团西昌钢钒有限公司 Continuous annealing unit and circulating temperature control device for aging section of continuous annealing unit
JP2013234361A (en) * 2012-05-09 2013-11-21 Jfe Steel Corp Furnace temperature control method and furnace temperature control device
EP2942407A4 (en) * 2013-01-28 2016-01-27 Jfe Steel Corp Method for adjusting in-furnace atmosphere of continuous heat-treating furnace
EP2942407A1 (en) * 2013-01-28 2015-11-11 JFE Steel Corporation Method for adjusting in-furnace atmosphere of continuous heat-treating furnace
WO2014129180A1 (en) * 2013-02-25 2014-08-28 Jfeスチール株式会社 Continuous annealing device and continuous hot-dip galvanising device for steel strip
JP2014162953A (en) * 2013-02-25 2014-09-08 Jfe Steel Corp Steel strip continuous annealing apparatus and continuous hot-dip galvanizing apparatus
US9957585B2 (en) 2013-02-25 2018-05-01 Jfe Steel Corporation Continuous annealing device and continuous hot-dip galvanising device for steel strip
CN103205540A (en) * 2013-03-29 2013-07-17 合肥德博生物能源科技有限公司 Biomass gas aluminium alloy annealing system
CN111378813A (en) * 2018-12-30 2020-07-07 瑨祥(宜昌)机电设备有限公司 Flow-control energy-saving annealing furnace for galvanized wire
CN111378813B (en) * 2018-12-30 2021-09-21 瑨祥(宜昌)机电设备有限公司 Flow-control energy-saving annealing furnace for galvanized wire
KR102236621B1 (en) * 2019-09-30 2021-04-08 주식회사 삼우에코 Steel plate continuous heat treatment system to establish heat treatment conditions
CN114346626A (en) * 2021-12-14 2022-04-15 常州市常蒸蒸发器有限公司 Production method of roll-bond evaporator for new energy equipment

Similar Documents

Publication Publication Date Title
JP4480231B2 (en) Convection brazing method and apparatus for metal workpiece
JP2005226157A (en) Method and device for controlling furnace temperature of continuous annealing furnace
RU73665U1 (en) DEVICE FOR HEATING GLASS PANELS
JP6423102B2 (en) Industrial furnace and its heat utilization method
US8740612B2 (en) Regenerative firing system
CN212451524U (en) Improve radiant tube roller hearth furnace low temperature and do not have oxidation heat treatment system
CN104769137A (en) Batch type annealing thermal processing facility and method of manufacturing steel plate by using the facility
JP6133359B2 (en) Method for heat-treating a metal member
US2849221A (en) Heat treating furnace
KR20220088377A (en) Device for recycling exhaust gas of radiant tube
JP6595403B2 (en) Waste heat recovery device and waste heat recovery method
JP4110584B2 (en) Continuous heat treatment equipment for metal strip
EP4098963A1 (en) Method for heating a furnace
JP3473060B2 (en) Muffle furnace
CN108473354A (en) Float glass production process and facility
KR20010011972A (en) Hn-gas manufacturing device &amp;method for keeping pressure of furnace
KR20090037809A (en) Continuous metal strip heat treating apparatus
JPH08210780A (en) Continuous heating furnace for steel
JP3767029B2 (en) Continuous heat treatment equipment for metal strip
JP4064253B2 (en) Steel strip continuous heat treatment equipment and combustion method thereof
JP3332527B2 (en) Indirect heating type paint drying oven
JP2024522254A (en) Apparatus and method for heat treating metal strip - Patents.com
JPH057235Y2 (en)
JP2024035715A (en) Heating structure of industrial furnace
JPH09111350A (en) Continuous heating furnace and operation thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20061106

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Effective date: 20061109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061201

A131 Notification of reasons for refusal

Effective date: 20091211

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100402

Free format text: JAPANESE INTERMEDIATE CODE: A02