JP2017137854A - 可変容量ベーンポンプ - Google Patents

可変容量ベーンポンプ Download PDF

Info

Publication number
JP2017137854A
JP2017137854A JP2016244536A JP2016244536A JP2017137854A JP 2017137854 A JP2017137854 A JP 2017137854A JP 2016244536 A JP2016244536 A JP 2016244536A JP 2016244536 A JP2016244536 A JP 2016244536A JP 2017137854 A JP2017137854 A JP 2017137854A
Authority
JP
Japan
Prior art keywords
oil
valve
discharge
chamber
control oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016244536A
Other languages
English (en)
Inventor
貴俊 渡邊
Takatoshi Watanabe
貴俊 渡邊
藤木 謙一
Kenichi Fujiki
謙一 藤木
小林 徹
Toru Kobayashi
徹 小林
淳一 宮島
Junichi Miyajima
淳一 宮島
悠也 加藤
Yuya Kato
悠也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamada Manufacturing Co Ltd
Original Assignee
Yamada Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada Seisakusho KK filed Critical Yamada Seisakusho KK
Priority to CN201710057040.3A priority Critical patent/CN107023478A/zh
Priority to US15/416,795 priority patent/US20170218953A1/en
Priority to DE102017201246.3A priority patent/DE102017201246A1/de
Publication of JP2017137854A publication Critical patent/JP2017137854A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

【目的】各回転数域に応じた適正なオイルの吐出量にすることができ、またそのための構造が極めて簡単なものにすることができる可変容量ベーンポンプとすること。【構成】ベーンロータ2が収められる内部ハウジング3と、ベーンロータ2は回転中心を不動とすると共に前記内部ハウジング3は移動自在としたポンプハウジング1と、内部ハウジング3を吐出量が減少する方向に移動させる第1制御油室S1及び内部ハウジング3を吐出量が増加する方向に移動させる第2制御油室S2と、圧力調整バルブ5と、感温バルブ4と、内部ハウジング3を弾性付勢する弾性部材7とを備えたこと。感温バルブ4は油温が変化するに従い次第に流路面積が変化するものとし、圧力調整バルブ5は、吐出オイルの圧力の増加にて排出量が変化すること。【選択図】 図1

Description

本発明は、各回転数域に応じた適正なオイルの吐出量にすることができ、またそのための構造が極めて簡単なものにすることができる可変容量ベーンポンプに関する。
従来、ベーンポンプにおいて、吐出量を変化させることができるタイプが種々存在している。その代表的なものとして特許文献1が存在する。特許文献1ではカムリング(5)を揺動させることでポンプの吐出容量を可変できる可変容量形ポンプが開示されている。特許文献1の実施形態では、吐出ポート(12)と、ワックスペレット(41)の膨張又は収縮によって開閉する感温弁(6)、その下流に油圧によって開閉するパイロット弁(7)、またその下流に第2制御油室(17)が形成されている。
特開2015−021400号公報
第2制御油室(17)に油圧を掛けたり掛けなかったりすることでカムリング(5)を揺動させ、ポンプの吐出容量を変化させるものとなっている。特許文献1の構成には以下の課題が存在する。まず、第1コイルばね(27)、第2コイルばね(28)という2つのばねが用いられており、部品点数の増大、設置スペースの増大が起きる。次に、油温によって開閉する感温弁(6)の下流に直列に、油圧によって開閉するパイロット弁(7)の下流に直列に、第2制御油室(17)の順に配置されることで、実際に第2制御油室(17)の油圧を調節するのはパイロット弁(7)となっている。
油通路(36)と給排通路(37)とは、パイロット弁(7)のスプール弁(52)の軸方向位置がある特定の位置だった時のみ連通し、その時のみ感温弁(6)と第2制御油室(17)が連通し、感温弁(6)からの油圧が第2制御油室(17)に伝搬する構成となっている。感温弁(6)と第2制御油室(17)が連通していない場合は、油圧の制御はパイロット弁(7)のみで行われていることになり、制御の自由度を高くすることが困難であった。
次に、パイロット弁(7)は、給排通路(37)を介して第2制御油室(17)に油圧を掛けるか、油圧を抜くかの2通りの制御しか行うことができない。よって制御の自由度を高くすることが困難であった。次に、連通路(35)の上流端(35a)とドレンポート(54)、油通路(36)と第2ドレンポート(56)、連通路(35)の開口端(35b)と第1ドレンポート(59)は全ての回転数において連通しない構成となっている。
ポンプの吐出ポート(12)から吐出されたオイルはどこからも排出(リリーフ)されることなく、全て制御油室(16、17)又はメインオイルギャラリー(13)(エンジン)に送られることになる。よって本構成において高油圧時の油圧上昇を抑制するリリーフバルブを仮に設けたい場合は、本構成とは別にリリーフバルブを設ける必要があり、スペース及びコストの増大となっていた。
そこで、本発明の目的(解決しようとする課題)は、各回転数域に応じた適正なオイルの吐出量にすることができ、またそのための構造を極めて簡単なものにすることができる可変容量ベーンポンプを提供することにある。
そこで、発明者は、上記課題を解決すべく、鋭意研究を重ねた結果、請求項1の発明を、複数のベーンが出没可能に挿入されたロータ部とからなるベーンロータと、該ベーンロータが収められるロータ室を有する内部ハウジングと、前記ベーンロータは回転中心を不動とすると共に前記内部ハウジングは移動自在とした収納室を有するポンプハウジングと、該ポンプハウジングの前記収納室内の前記内部ハウジングを吐出量が減少する方向に移動させる第1制御油室と、前記ポンプハウジングの前記収納室内の前記内部ハウジングを吐出量が増加する方向に移動させる第2制御油室と、前記ポンプハウジングの前記第2制御油室内のオイルを排出する圧力調整バルブと、吐出オイルの一部が流入する感温バルブと、前記ポンプハウジングに設けられ前記内部ハウジングを前記ベーンロータによる吐出量を増加させる方向に弾性付勢する弾性部材とを備え、前記感温バルブは油温が変化するに従い次第に流路面積が変化するものとし、前記圧力調整バルブは、吐出オイルの圧力の増加にて排出量が変化してなる可変容量ベーンポンプとしたことにより、上記課題を解決した。
請求項2の発明を、請求項1において、前記感温バルブは吐出オイルの一部をリリーフする役目を有してなる可変容量ベーンポンプとしたことにより、上記課題を解決した。請求項3の発明を、請求項1において、前記ポンプハウジングの前記収納室内の前記内部ハウジングを吐出量が減少する方向に移動させる第3制御油室が設けられ、該第3制御油室は前記感温バルブと連通し吐出オイルの一部を流入可能としてなる可変容量ベーンポンプとしたことにより、上記課題を解決した。
請求項4の発明を、請求項1,2又は3の何れか1項の記載において、前記圧力調整バルブは、シリンダとスプール弁体とを備え、前記シリンダには吐出オイルの一部が流入するシリンダ流入部が設けられ、該シリンダ流入部側を基点として軸方向に沿って第1流入口,第1排出口,第2流入口と第2排出口とが形成され、前記スプール弁体には、軸方向に沿って、第1連通部と第2連通部とを有し、前記第1連通部は前記第1流入口と第1排出口とを連通し、前記第2連通部は前記第2流入部と前記第2排出口とを連通してなる可変容量ベーンポンプとしたことにより、上記課題を解決した。
請求項5の発明を、請求項1,2又は3の何れか1項の記載において、前記圧力調整バルブは、シリンダとスプール弁体とを備え、前記シリンダには吐出オイルの一部が流入するシリンダ流入部が設けられ、該シリンダ流入部側を基点として前記シリンダには第1排出口,第2排出口,第3排出口の順に形成され且つ前記第1排出口,前記第2排出口,前記第3排出口と連通可能な共通流入口が形成され、前記スプール弁体には共通連通部が形成され、該共通連通部は前記共通流入口,前記第1排出口,前記第2排出口,前記第3排出口と連通可能としてなる可変容量ベーンポンプとしたことにより上記課題を解決した。
請求項6の発明を、請求項1,2又は3の何れか1項の記載において、前記圧力調整バルブは、シリンダとスプール弁体とを備え、前記シリンダには吐出オイルの一部が流入するシリンダ流入部が設けられ、該シリンダ流入部側を基点として前記シリンダには軸方向に沿って第1流入口,第2流入口,第1排出口と第2排出口とが形成され、前記スプール弁体は弁内室部と、該弁内室部と前記スプール弁体の外部とを連通する弁内流入孔と弁内流出孔とを有し、前記弁内流入孔と前記弁内流出孔との間隔は前記第1流入口と前記第1排出口及び前記第2流入口と前記第2排出口との間隔と等しくしてなる可変容量ベーンポンプとしたことにより、上記課題を解決した。
請求項7の発明を、請求項1,2,3,4,5又は6の何れか1項の記載において、前記第2制御油室の流入部にはオリフィスが設けられてなる可変容量ベーンポンプとしたことにより、上記課題を解決した。請求項8の発明を、請求項1,2,3,4,5,6又は7の何れか1項の記載において、前記第3制御油室の下流にはオリフィス及びドレンが設けられてなる可変容量ベーンポンプとしたことにより、上記課題を解決した。
請求項9の発明を、請求項1,2,3,4,5,6,7又は8の何れか1項の記載において、前記内部ハウジングは方形状の板状部とし、該板状部の中間箇所に円形状とした前記ロータ室が形成されてなる可変容量ベーンポンプとしたことにより、上記課題を解決した。請求項10の発明を、請求項1,2,3,4,5,6,7又は8の何れか1項の記載において、前記内部ハウジングは、環状部と操作突出部とからなり、前記ポンプハウジングの収納室の一部に凹状操作領域が形成され、該凹状操作領域内に前記操作突出部が配置される構成としてなる可変容量ベーンポンプとしたことにより、上記課題を解決した。
請求項1の発明では、本発明の内部ハウジングを可動させる構造を安価にすることができる。感温バルブは、サーモワックス、形状記憶合金、バイメタルなどの非電子的手段にて油温によって開閉するバルブ機構とすることで、非電子的手段による構成にでき、耐久性,信頼性の優れた装置にできる。さらに、第2制御油室からオイルを排出する圧力調整バルブは、リリーフバルブとしての機能も兼ねており、別途リリーフバルブを設ける必要がないため、部品点数の減少、設置スペースの縮小が図れる。請求項2の発明では、前記感温バルブは吐出オイルの一部をリリーフする役目を有したことにより、吐出オイルの圧力に対して広い範囲でのリリーフ制御ができる。
請求項3の発明では、第3制御油室に連通して、感温バルブを設けたことによって、様々な油温と油圧に対応したきめ細やかな制御が行え、より燃費向上効果が大きくできる。請求項4の発明では、第2制御油室におけるきめ細かい2段階の圧力制御を行うことができ、これによって各状況における吐出オイルの調整が可能となる。請求項5の発明では、第2制御油室内の圧力調整を極めて簡単な構成にて多段階の圧力制御を行うことができる。請求項6の発明では、請求項4の発明と同様にきめ細かい2段階の圧力制御を行うことができる。
請求項7の発明では、前記第2制御油室の流入部にオリフィスが設けられたことにより、第2制御油路にオイルが流れる時に、第1制御油室と第2制御油室との油圧に適切な圧力差を生じさせることができるので圧力調整バルブを用いた制御をより正確にできる。請求項8の発明では、前記第3制御油室の下流にはオリフィス及びドレンが設けられたことにより、オイルが流れる量を調整することで第3制御油室の油圧を適切な値にすることができる。
請求項9の発明では、前記内部ハウジングは方形状の板状部とし、該板状部の中間箇所に円形状とした前記ロータ室が形成された構成により、極めて安価な構造にできる。請求項10の発明では、前記内部ハウジングは、環状部と操作突出部とからなり、前記ポンプハウジングの収納室の一部に凹状操作領域が形成され、該凹状操作領域内に前記操作突出部が配置される構成としたことにより、極めて精度が高い吐出量の調整ができる。
(A)は第1実施形態の内部ハウジング及び圧力調整バルブを備えた本発明におけるオイル潤滑回路の略示図、(B)はベーンロータと内部ハウジングの1回転当たりの吐出量最小状態を示す略示図、(C)はベーンロータと内部ハウジングの1回転当たりの吐出量最大状態を示す略示図である。 (A)は第1実施形態の内部ハウジング及び圧力調整バルブを備えた本発明における回転数一定(750rpm)での低油温時の動作を示す略示図、(B)は(A)の(I)部拡大図、(C)は(A)の(II)部拡大図である。 (A)は第1実施形態の内部ハウジング及び圧力調整バルブを備えた本発明における回転数一定(750rpm)での中油温時の動作を示す略示図、(B)は(A)の(III)部拡大図、(C)は(A)の(IV)部拡大図である。 (A)は第1実施形態の内部ハウジング及び圧力調整バルブを備えた本発明における回転数一定(750rpm)での高油温時の動作を示す略示図、(B)は(A)の(V)部拡大図、(C)は(A)の(VI)部拡大図である。 (A)は第1実施形態の内部ハウジング及び圧力調整バルブを備えた本発明における中油温且つ回転数750rpm時の動作を示す略示図、(B)は(A)の(VII)部拡大図、(C)は(A)の(VIII)部拡大図。 (A)は第1実施形態の内部ハウジング及び圧力調整バルブを備えた本発明における中油温且つ回転数1000rpm乃至1500rpm時の動作を示す略示図、(B)は(A)の(IX)部拡大図、(C)は(A)の(X)部拡大図である。 (A)は第1実施形態の内部ハウジング及び圧力調整バルブを備えた本発明における中油温且つ回転数2000rpm時の動作を示す略示図、(B)は(A)の(XI)部拡大図、(C)は(A)の(XII)部拡大図。 (A)は第1実施形態の内部ハウジング及び圧力調整バルブを備えた本発明における中油温且つ回転数2400rpm時の動作を示す略示図、(B)は(A)の(XIII)部拡大図、(C)は(A)の(XIV)部拡大図である。 (A)は第1実施形態の内部ハウジング及び圧力調整バルブを備えた本発明における中油温且つ回転数3000rpm時の動作を示す略示図、(B)は(A)の(XV)部拡大図、(C)は(A)の(XVI)部拡大図。 (A)は第2実施形態の内部ハウジングを備えた本発明における第2実施形態を備えたオイル潤滑回路の略示図、(B)はベーンロータと内部ハウジングの1回転当たりの吐出量最小状態における略示図である。 感温バルブをリリーフバルブとして使用した実施形態のオイル潤滑回路の略示図である。 (A)は第2実施形態の圧力調整バルブを備えた本発明の要部略示図、(B)は圧力調整バルブの第1段オイル排出状態を示す縦断側面略示図、(C)は圧力調整バルブの第2段オイル排出状態を示す縦断側面略示図、(D)は圧力調整バルブの第3段オイル排出状態を示す縦断側面略示図である。 (A)は第3実施形態の圧力調整バルブを備えた本発明の要部略示図、(B)は圧力調整バルブの第1段オイル排出状態を示す縦断側面略示図、(C)は圧力調整バルブのオイル排出の停止状態を示す縦断側面略示図、(D)は圧力調整バルブの第2段オイル排出状態を示す縦断側面略示図である。
以下、本発明の実施形態を図面に基づいて説明する。本発明の可変容量ベーンポンプは、エンジン等の機器のオイル潤滑回路に組み込まれる。本発明の可変容量ベーンポンプは、ポンプハウジング1と、ベーンロータ2と、内部ハウジング3と、感温バルブ4と、圧力調整バルブ5と、弾性部材7とから構成される〔図1(A)参照〕。感温バルブ4と、圧力調整バルブ5と、ポンプハウジング1とは別の部品として独立した部品としたり、又はポンプハウジング1に組み込んで一体として単体のポンプユニットとすることもある。
ポンプハウジング1は、ハウジング本体部11に収納室12が形成されている。また、収納室12には、ベーンロータ2の回転中心位置が不動となるように装着されている。ポンプハウジング1には、オイルを吸入する吸入部13と、オイルを吐出する吐出部14が形成されている。
ベーンロータ2は、ロータ部21とベーン22とから構成される。ロータ部21には、複数のベーン溝部21a,21a,…が形成され、これらベーン溝部21a,21a,…にベーン22が挿入されたものである〔図1(B),(C)参照〕。ロータ部21は、ポンプハウジング1の収納室12に対して回転中心位置が不動の状態で組み付けられ、エンジンの動力又はモータにて回転する。ロータ部21の回転にともなってベーン22は、その一部が遠心力や油圧、図示しないガイドリング等にてベーン溝部21aの外部に飛び出し、後述する内部ハウジング3のロータ室32の内周壁に当接する。
ポンプハウジング1の収納室12には、内部ハウジング3が配置される。該内部ハウジング3は、可動本体部31とロータ室32とからなる。可動本体部31は、方形状且つ板状に形成されており、その外形は長方形又は正方形である〔図1(B),(C)参照〕。可動本体部31の中間位置には中空円筒状のロータ室32が形成されている。該ロータ室32には、前記ベーンロータ2が収まる構成となっている。
内部ハウジング3には、二つの実施形態が存在する。内部ハウジング3の第1実施形態は、直線移動タイプとしたものである。内部ハウジング3は、ポンプハウジング1の収納室12内を外部の油圧によって移動することができる。前述したように、ベーンロータ2は、ポンプハウジング1の収納室12に対して位置が不動であり、内部ハウジング3は収納室12に対して移動可能である。つまり、ベーンロータ2と内部ハウジング3とは、相対的に位置が移動する。
そして、内部ハウジング3の移動によってロータ室32が共に移動し、該ロータ室32の移動によって、ベーンロータ2の回転中心Paと、ロータ室32の直径中心Pbとの間隔が変動し、オイルの吐出量が変化する。そして、ベーンロータ2の回転中心Paと、ロータ室32の直径中心Pbとの間隔が小さくなると吐出部14からのオイル吐出量が少なくなり〔図1(B)参照〕、回転中心Paと、直径中心Pbとの間隔が大きくなるとオイル吐出量が多くなる〔図1(C)参照〕。
本発明の説明では、内部ハウジング3が第2制御油室S2側から第1制御油室S1側に移動すると、回転中心Paと直径中心Pbとの間隔が大きくなり、オイル吐出量が増加し、回転中心Paと直径中心Pbとの間隔が最大で、オイル吐出量が最大となる。内部ハウジング3が第1制御油室S1側から第2制御油室S2側に移動すると、回転中心Paと直径中心Pbとの間隔が小さくなりオイル吐出量が減少し、回転中心Paと直径中心Pbとの間隔が最小で、オイル吐出量が最小となる。
また、内部ハウジング3は、ポンプハウジング1の収納室12内を移動し、何れの位置であっても、内部ハウジング3は、常時、吸入部13からオイルを吸入し、吐出部14からオイルを吐出することができる。
ポンプハウジング1の収納室12に対して、内部ハウジング3は直線状に往復移動するものである。略長方形状に形成された収納室12に対して内部ハウジング3の移動方向両側には拡縮する空隙室が生じる。空隙室は、前記収納室12が内部ハウジング3によって仕切られた二つ以上の室のことである。この空隙室は、後述する第1制御油室S1,第2制御油室S2及び第3制御油室S3となる(図1参照)。
第1制御油室S1と第3制御油室S3は、共に内部ハウジング3の同一側に形成される(図1参照)。第2制御油室S2は、第1制御油室S1とは反対側に形成される(図1参照)。また、内部ハウジング3の移動方向において同一側に位置する第1制御油室S1と第3制御油室S3とは、内部ハウジング3に設けられた仕切り部31aによって仕切られる〔図1(B),(C)参照〕。
収納室12には前記仕切り部31aが挿入される凹部12aが形成されており、内部ハウジング3が収納室12内を移動すると共に仕切り部31aも移動し、該仕切り部31aが凹部12a内を摺動する構成となる。したがって、第1制御油室S1と第3制御油室S3とは、仕切り部31aによって連通することはない。つまり、第1制御油室S1に流入したオイルと、第3制御油室S3に流入したオイルは圧力が異なる。
前記第2制御油室S2には弾性部材7が設けられる。該弾性部材7は、前記内部ハウジング3を第1制御油室S1側に向かって弾性付勢する。つまり、弾性部材7は、内部ハウジング3をベーンロータ2に対して吐出量を増加させる方向に移動させようとするその方向に弾性付勢する役目をなす〔図1(B),(C)参照〕。
ポンプハウジング1の吐出部14には、吐出主流路Jが設けられている〔図1(A)参照〕。該吐出主流路Jは、エンジン等の潤滑オイルを必要とする機器9が組み込まれた流路であり、吐出部14から機器9を介して吸入部13に向かってオイルの循環が行われる。前記吐出主流路J内には、オイルパン17が備えられることもある(図1参照)。前記吐出主流路Jには、該吐出主流路Jから分岐して前記第1制御油室S1に吐出オイルの一部を送る第1制御油路J1が設けられている。
該第1制御油路J1を流れる吐出オイルの一部を第1分岐オイルk1と称する。また、同様に前記吐出主流路Jには、該吐出主流路Jから分岐して前記第3制御油室S3に吐出オイルの一部を送る第3制御油路J3が設けられている。該第3制御油路J3を流れる吐出オイルの一部を第3分岐オイルk3と称する。
また、同様に吐出部14の吐出主流路Jから分岐して第2制御油室S2に吐出オイルの一部を送る第2制御油路J2が設けられている。該第2制御油路J2を流れる吐出オイルの一部を第2分岐オイルk2と称する(図2乃至図4等参照)。第1分岐オイルk1,第2分岐オイルk2及び第3分岐オイルk3は、その流れを図2乃至図4において矢印にて示している。
感温バルブ4は、オイルの温度によって開閉するバルブである。感温バルブ4は、第3制御油路J3内に組み込まれている〔図1(A)参照〕。感温バルブ4は、感温部41とピストン部42とシリンダ部43とから構成されている。ただし感温部41は、オイルの温度を感知し易いようにするために、吐出主流路Jに突入または隣接していることが好ましい。感温バルブ4は、オイルが高油温時のみ閉じるものであり、オイルの油温が変化(低油温から次第に上昇)するに従い、流路面積が次第に変化(減少)するものである。
前記感温バルブ4の具体的な構成を示すと、ピストン部42には感温弁部44が装着されている。該感温弁部44は、略円筒形の逆カップ状に形成されたものである。その頂部には、上流側の第3制御油路J3と連通する流入孔44aが形成されている。また、シリンダ部43には、下流側の第3制御油路J3と連通する流出口43aが形成されている。オイルは、上流側の第3制御油路J3から感温弁部44の流入孔44aを通過して、シリンダ部43内に流入する。
そして、感温部41が油温を検知することで、ピストン部42と共に感温弁部44がシリンダ部43内を上下方向に移動し、流出口43aを開閉するものである。このような構成によって、前述したように、オイルの油温が変化(低油温から次第に上昇)するに従い、感温弁部44は動作(下降)して、流出口43aの流路面積を次第に変化(減少)させる。
感温バルブ4の仕様には、二つの異なる実施形態が存在する。まず、感温バルブ4の仕様の第1実施形態は、ポンプハウジング1の収納室12内における内部ハウジング3の移動動作を制御する役目をなすものである(図1乃至図10参照)。次に、感温バルブ4の仕様における第2実施形態は、吐出オイルの温度変化などに伴う圧力上昇により、吐出オイルのリリーフが必要となったときのリリーフバルブとしての役目をなすものである(図11参照)。
この実施形態では、感温バルブ4のシリンダ部43の流出口43aからオイルが大気排出されるものである。つまり、感温バルブ4からオイルをオイルパン17又はポンプハウジング1の吸入部13側に戻す構成とするものである。具体的には、シリンダ部43の流出口43aと、オイルパン17とを下流側の第3制御油路J3を介して連通させたものである(図11の実線で描かれた第3制御油路J3を参照)。
或いは、感温バルブ4とポンプハウジング1の吸入部13付近の流路とを下流側の第3制御油路J3を介して連通させたものである(図11の想像線で描かれた第3制御油路J3を参照)。感温バルブ4の仕様における第2実施形態では、ポンプハウジング1には第3制御油室S3への流路は設けられず、したがって第3制御油室S3のオイルの流出入は行われない構成となる(図11参照)。
圧力調整バルブ5は、第2制御油室S2内のオイルを排出するものである。該圧力調整バルブ5には、複数の実施形態が存在する。まず、圧力調整バルブ5の第1実施形態を説明する。圧力調整バルブ5は、主にシリンダ51と、スプール弁体52と、弾性部材53等を備えている。シリンダ51には、シリンダ流入部510と、第1流入口511と、第2流入口512と、第1排出口513と、第2排出口514とが形成されている。スプール弁体52には、弁の軸方向に沿って、二つの細径部が設けられ、その一方を第1連通部521と称し、他方を第2連通部522と称する。第1連通部521と第2連通部522は、弁の軸方向に離間して直列状態で設けられている(図1,図2,図3等参照)。
圧力調整バルブ5は、前記ポンプハウジング1の第2制御油室S2と排出油路J6によって連通されている。該排出油路J6は、圧力調整バルブ5の第1流入口511と、第2流入口512にそれぞれ連通しており、具体的には、第1流入口511と、第2流入口512の付近で二股状に流路が分岐する構成となっている〔図1(A)参照〕。
シリンダ51内には弾性部材53が備えられ、該弾性部材53によって弾性付勢されたスプール弁体52が第1排出口513,第2排出口514を閉鎖状態とするように構成されている。シリンダ51のシリンダ流入部510は、吐出主流路Jから分岐する分岐路J5と連通しており、分岐路J5に存在するオイルの圧力が掛かる部位である。該分岐路J5及びシリンダ51内に存在するオイルの圧力増加に伴ってスプール弁体52はシリンダ51内をシリンダ流入部510側の位置を基点として、該基点の位置から離間するように移動する。
なお、スプール弁体52の基点とは、ポンプの非動作時においてオイルの圧力が掛からない状態のときのスプール弁体52の先端の位置のことである。該スプール弁体52の先端とは、前記シリンダ流入部510と対向する端部のことである。スプール弁体52の移動により、第1流入口511と第1排出口513同士及び第2流入口512と第2排出口514同士が連通及び遮断を行いオイルの排出の制御を行う。第1排出口513及び第2排出口514は、オイルパン17又は吸入部13の上流側に連通する〔図1(A)参照〕。
スプール弁体52は、分岐路J5を流れて圧力調整バルブ5内に流入するオイルの圧力の増減と弾性部材53の弾性付勢力にしたがって、シリンダ51内の軸方向に往復移動する。そして、スプール弁体52がシリンダ51内を移動するにしたがい、スプール弁体52の第1連通部521が第1流入口511と第1排出口513の位置に到達することで、第1流入口511と第1排出口513が連通し、排出油路J6を介して第2制御油室S2内のオイル排出を可能とする。
さらに、スプール弁体52が移動することで、第1流入口511と第1排出口513との連通が遮断され、このとき第2流入口512と第2排出口514とは連通していない。そして、スプール弁体52がさらに移動することで、該スプール弁体52の第2連通部522が、第2流入口512と第2排出口514の位置に到達することで第2流入口512と第2排出口514を連通させ、排出油路J6を介して第2制御油室S2内のオイル排出を可能とする。
このとき、第1流入口511と第1排出口513の連通は遮断される。このように、回転数の増加によって分岐路J5からのオイルの圧力が増加し、これによって、低回転数域から高回転数域にわたって、圧力調整バルブ5の動作は、エンジンの始動初期では全閉状態によるオイル排出停止であり、その後、第1段目の第1排出口513からのオイル排出動作及び第2段目の第2排出口514からのオイル排出動作が行われる。第1段目の第1排出口513からのオイル排出動作と、第2段目の第2排出口514からのオイル排出動作との間のオイル圧力では、全閉状態によるオイル排出停止範囲が存在する。
このように圧力調整バルブ5の第1実施形態では、第2制御油室S2内のオイル排出を2段階にて行い、第1段階と第2段階におけるオイル排出の間のオイル圧力では、オイル排出が停止される範囲を有している。つまり回転数が増加しても内部ハウジング3は、第2制御油室S2側に移動し、吐出圧を略一定に保つことができる。また、圧力調整バルブ5の第1実施形態では、前述したように、オイル排出動作を2段階とする構造としているが、スプール弁体52における連通部の数を増加すると共に、シリンダ51側でも流入口及び流出口の数を増加することで、3段階以上とした多段階のオイル排出も可能となる。
次に、圧力調整バルブ5の第2実施形態は、図12に示すように、第1実施形態と略同様に、シリンダ51とスプール弁体52とを備え、前記シリンダ51には、シリンダ流入部510が設けられ、該シリンダ流入部510と、吐出主流路Jから分岐する分岐路J5とが連通しており、該分岐路J5を介してシリンダ51内に吐出オイルの圧力が伝わり、そのオイルの圧力によってスプール弁体52が移動する構成となっている。
前記シリンダ51には、図12に示すように、シリンダ流入部510側つまり基点となる位置から所定間隔をおいて離間した位置に共通流入口517が形成されている。さらに、シリンダ51には、第1排出口513と、第2排出口514と第3排出口516とが形成されている。前記第1排出口513は、前記第1流入口511と軸方向同一位置で且つ周方向に異なる位置に形成されている。
また、第2排出口514及び第3排出口516は、前記第1排出口513と軸方向にそれぞれ異なる位置で、且つ該第1流入口511よりもシリンダ流入部510から遠い位置に形成されている。つまり、シリンダ51のシリンダ流入部510の位置に最も近く第1排出口513が形成され、次いで第2排出口514,第3排出口516の順で軸方向に離間して配置される。
前記共通流入口517は、ポンプハウジング1の第2制御油室S2と、排出油路J6によって連通されている。スプール弁体52は、主弁部52aと先頭部52bと細軸部52cとから構成される。該細軸部52cは、主弁部52aと先頭部52bとを軸方向に沿って連結している。また、細軸部52cは、主弁部52a及び先頭部52bより直径が小さく形成されている。
そして、スプール弁体52には、主弁部52aと先頭部52bとの間に細軸部52cによって1つの窪みが形成され、この窪みを共通連通部523と称する。また、該共通連通部523の軸方向の範囲、つまり主弁部52a及び先頭部52bとの間隔は、少なくとも共通流入口517,第1排出口513,第2排出口514及び第3排出口516の全てを連通することができる大きさである(図12参照)。
スプール弁体52は、弾性部材53によって常時シリンダ流入部510側つまり前記基点側に向かうように弾性付勢され、ポンプの非動作状態でスプール弁体52の先頭部52b側が、シリンダ流入部510側の基点の位置となるように停止している〔図12(A)参照〕。この状態のときには共通流入口517及び第1排出口513は、スプール弁体52の主弁部52aによって完全に閉じた状態(全閉状態)にある。スプール弁体52は、吐出主流路Jから分岐する分岐路J5を介して圧力調整バルブ5内のオイルの圧力の増減と弾性部材53の弾性付勢力にしたがって、シリンダ51内の軸方向に往復移動する。
そして、吐出オイルの圧力の上昇と共にスプール弁体52がシリンダ流入部510の位置つまり基点の位置から離間する方向に移動するが、移動初期においては、主弁部52aが共通流入口517と第1排出口513とを閉じた状態であり、排出油路J6のオイルの流出は行われず、よって第2制御油室S2のオイル排出は行われない。
スプール弁体52がオイルの圧力のさらなる上昇により移動し続けると、スプール弁体52の主弁部52aが、共通流入口517と第1排出口513とを開き、スプール弁体52の共通連通部523の範囲内に共通流入口517と第1排出口513とが位置することで、共通連通部523,共通流入口517及び第1排出口513とが連通し、第1段目の第2制御油室S2のオイル排出を行う〔図12(B)参照〕。
次いで、吐出オイルの圧力が上昇し続けて、スプール弁体52がさらに移動し、第2排出口514が開くと共にスプール弁体52の共通連通部523の範囲内に位置することとなり、前記共通流入口517と連通することにより第2段目の第2制御油室S2のオイル排出を行う〔図12(C)参照〕。このとき、第1排出口513も共通連通部523内に位置しており、第1排出口513と第2排出口514とからオイルの流出が行われる。
さらに、スプール弁体52の移動が続くことにより、第3排出口516が開くと共にスプール弁体52の共通連通部523の範囲内に位置することとなり、前記共通流入口517と連通することにより第3段目の第2制御油室S2のオイル排出を行う〔図12(D)参照〕。このとき、第1排出口513,第2排出口514も共通連通部523内に位置しており、第1排出口513,第2排出口514,第3排出口516とからオイルの流出が行われる。この第1段目から第3段目までのオイル排出は、それぞれの段階の間でオイル排出が停止されることはなく、連続的且つ排出量が増加するように行われる〔図12(B),(C),(D)参照〕。
また、圧力調整バルブ5の第2実施形態では、第1排出口513,第2排出口514及び第3排出口516によって3段のオイル排出ができるようにしたが、必要に応じて、第第1排出口513のみの1段のオイル排出構造としたり、或いは4個以上の排出口を設けて4段以上の多段オイル排出構造としてもよい。
次に、圧力調整バルブ5の第3実施形態は、第1及び第2実施形態と略同様に、シリンダ51とスプール弁体52とを備え、前記シリンダ51には、シリンダ流入部510が設けられ、該シリンダ流入部510と、吐出主流路Jから分岐する分岐路J5とが連通しており、該分岐路J5を介してシリンダ51内に吐出オイルの圧力が伝わり、そのオイルの圧力によってスプール弁体52が移動する構成となっている(図13参照)。
そして、シリンダ流入部510側をスプール弁体52の基点とし、前記シリンダ51には、この基点から第1流入口511,第2流入口512,第1排出口513と第2排出口514の順で軸方向に離間して形成されている。スプール弁体52は、内部に空隙としての弁内室部524を有している。そして、該弁内室部524とスプール弁体52の外部とを連通する弁内流入孔525と弁内流出孔526とを有している。弁内流入孔525は弁内流出孔526よりもシリンダ流入部510側に位置している。スプール弁体52は、弾性部材53によって、常時シリンダ流入部510側に弾性付勢され、ポンプの非動作状態でスプール弁体52はシリンダ流入部510寄りの端部に停止している〔図13(A)参照〕。
そして、この状態のときには、第1流入口511と第2流入口512とはスプール弁体52によって全部閉じている。スプール弁体52がシリンダ51内のシリンダ流入部510側とは反対側の方向に移動し、弁内流入孔525が第1流入口511の位置に到達したときには、弁内流出孔526は第1排出口513に到達し、第1流入口511と第1排出口513とは弁内室部524を介して連通する〔図13(B)参照〕。
また、スプール弁体52がさらにシリンダ流入部510側と反対側の方向に移動し、弁内流入孔525が第2流入口512の位置に到達したときには、弁内流出孔526は第2排出口514に到達し、第2流入口512と第2排出口514とは弁内室部524を介して連通する〔図13(D)参照〕。このように、吐出オイルの圧力の上昇と共にスプール弁体52が移動するにしたがい、まず、弁内流入孔525と第1流入口511及び第1排出口513と弁内流出孔526との位置が一致し、これらが弁内室部524を介して連通し、1段目の第2制御油室S2内のオイル排出を行う。
さらに、吐出オイルの圧力上昇によりスプール弁体52がシリンダ流入部510の位置と反対側に移動すると、弁内流入孔525と第2流入口512及び第2排出口514と弁内流出孔526とが弁内室部524を介して連通し、2段目の第2制御油室S2内のオイル排出を行う。この第3実施形態では、第1段目のオイル排出と、第2段目のオイル排出との間のオイル圧力ではオイル排出の停止範囲が存在する。
次に、本発明の可変容量ベーンポンプの第1制御油室S1,第2制御油室S2及び第3制御油室S3と、感温バルブ4,圧力調整バルブ5との動作について説明する。まず、第1制御油室S1には、吐出主流路Jから分岐する第1制御油路J1を介して第1分岐オイルk1が常時、連通し、第1制御油室S1に油圧が伝播される。つまり、吐出部14から吐出主流路Jに流れるオイルの吐出圧と略同等の油圧が第1制御油室S1にかかるものである。
次に、第2制御油室S2では、該第2制御油室S2に内装された弾性部材7によって、内部ハウジング3を常時、吐出オイルの吐出量が増加しつつ最大となる方向に弾性付勢している。第2制御油室S2には、吐出主流路Jから分岐する第2制御油路J2を介して第2分岐オイルk2が流入し、第2制御油室S2に油圧が伝播される。つまり、第2制御油室S2へのオイルの流れがない場合は吐出部14から吐出主流路Jに流れるオイルの吐出圧と略同等の油圧が第2制御油室S2にかかるものである。
さらに、第2制御油室S2は、排出油路J6によって圧力調整バルブ5に連通されている。圧力調整バルブ5のスプール弁体52は、吐出主流路Jから分岐する分岐路J5に存在するオイルの圧力によって移動する。そして、吐出部14からの吐出圧の増減に対応してスプール弁体52は移動動作を行い、第2制御油路J2から流入したオイルの排出量を制御することができる。
次に第3制御油室S3には、吐出主流路Jから分岐する第3制御油路J3と感温バルブ4を介して第3分岐オイルk3が流れる。そして、第3制御油室S3に流入するオイルの量を調節することで第3制御油室S3の油圧を変更できる。
次に、前記内部ハウジング3の第2実施形態を図10に基づいて説明する。第2実施形態の内部ハウジング3は揺動タイプである。揺動タイプの内部ハウジング3は、環状部35と操作突出部36とから構成されるものとした。環状部35の内周側にはロータ室32が形成され、外周側には突起状の揺動基部35aが形成されている。
また、収納室12の内周の一部には、窪み状の揺動受部12bが形成され、該揺動受部12bには前記揺動基部35aが挿入される。また、収納室12の周方向の適宜の一部には凹状操作領域12cが形成されており、前記操作突出部36が揺動可能に配置される。
そして、内部ハウジング3は、収納室12に対して前記揺動基部35aと揺動受部12bとを揺動中心として揺動する。内部ハウジング3が揺動することによって、環状部35の直径中心Pbと、ベーンロータ2の回転中心Paとの間隔を変化させることができる。前記凹状操作領域12cは、内装される操作突出部36によって、二つの空隙部が形成され、その一方が第1制御油室S1となり、他方が第2制御油室S2となる。
また、内部ハウジング3の環状部35の外周と、収納室12の内周で且つ前記揺動基部35aと操作突出部36との間に形成される空隙が第3制御油室S3となる。そして、第1制御油室S1には第1制御油路J1が連通され、第2制御油室S2には第2制御油路J2が連通され、第3制御油室S3には第3制御油路J3が連通される。
第2実施形態の可変容量ベーンポンプの動作は、第1実施形態の可変容量ベーンポンプと同等である。また、前記第1制御油路J1と前記第3制御油路J3については、前記第1制御油室S1に第3制御油路J3が連通され、第3制御油室S3に第1制御油路J1が連通される構成としてもよく、この場合でも同等の制御ができる。ただし、第1制御油室S1と第3制御油室S3とは連通しない。
また、第2制御油室S2と第2制御油路J2との接続部には断面積が絞られたオリフィス15が設けられる構造とする実施形態が存在する。圧力調整バルブ5からオイルが排出される時、前記オリフィス15が設けられることにより、第2制御油路J2を介して第2制御油室S2に作用する油圧の力と、第1制御油路J1を介して第1制御油室S1に作用する油圧の力に適切な差を生じさせることができる。
これにより、第2制御油室S2側が第1制御油室S1側よりも圧力が小さくなり、第1制御油室S1と第2制御油室S2の面積が同一でも内部ハウジング3を吐出部14からの吐出量が少なくなる方向に移動させる傾向を強くすることができる。つまり、オイルの無駄な仕事を常時、防ごうとする傾向になり易くすることができる。
第3制御油室S3の下流側には、断面積が絞られたドレンオリフィス16が設けられる
実施形態が存在する。ドレンオリフィス16は、第3制御油室S3のオイルを排出しにくくする役目をなす。ドレンオリフィス16は、絞り弁として使用され、上流側に位置する第3制御油室S3からの排出量を微量とし、第3制御油室S3を流れるオイルの量の大小により該第3制御油室S3の油圧を適切に調整することができ、この油圧制御に用いることができる。なお、感温バルブ4の仕様の第2実施形態とした場合(図11参照)では、ポンプハウジング1には第3制御油室S3にはオイルの流出入は行われないので、該第3制御油室S3による油圧制御は行われない。
次に、本発明の作用を種々の状況に応じて説明する。まず、回転数を一定とし、油温が次第に上昇する状況において説明する。ここでは、回転数域は低回転数域とし、具体的にエンジンの回転数は750rpmに設定する。但し、低回転数域は、ここに上げた数値に特に限定されるものではなく、数値が増減してもかまわない。また、図中において、種々の状況におけるオイルの流れ又は油圧伝播は各流路に沿って記載された矢印にて示した。
〔低油温,回転数一定〕
低油温は、40°Cに設定した。但し、低油温の数値はこれに限定されず、この数値は増減しても構わない。低油温且つ低回転数域では、図2に示すように、第1制御油室S1には、吐出主流路J,第1制御油路J1によって、吐出部14の吐出圧で圧力が伝播される。同様に、第2制御油室S2にも、吐出主流路J,第2制御油路J2によって、吐出部14の吐出圧で油圧が伝播される。そして、第1制御油室S1と第2制御油室S2とは、略同等の油圧及び受圧面積を有しており、第1制御油室S1の油圧P1と、第2制御油室S2の油圧P2とは、それぞれの油圧が内部ハウジング3にかかる圧力が略等しく、相互に打ち消し合う。
よって、内部ハウジング3には弾性部材7の弾性力のみの力が残り、弾性部材7の弾性付勢力がそのまま掛かる。また、第2制御油室S2では、排出油路J6及び圧力調整バルブ5によるオイル排出は行われていない〔図2(C)参照〕。
感温バルブ4は、低油温時には全開である〔図2(B)参照〕。これによって、第3制御油室S3は、オイル流れが大のため高油圧が発生し、この高油圧が弾性部材7の弾性力に勝り、内部ハウジング3は、第2制御油室S2側〔図2(A)のポンプハウジング1の左側〕に最大限移動する。これによって、吐出部14からのオイル吐出量は最小となり、1回転当たりの吐出量を少なくし、燃費を向上させることができる。
〔中油温,回転数一定〕
中油温は、80°Cに設定した。但し、中油温の数値はこれに限定されず、この数値は増減しても構わない。中油温且つ低回転数域では、図3に示すように、ベーンロータ2が低回転数域のため吐出部14からの吐出圧は低いままである。第1制御油室S1及び第2制御油室S2には、油圧が伝播される。また、第2制御油室S2では、排出油路J6及び圧力調整バルブ5によるオイル排出は行われていない〔図3(C)参照〕。
感温バルブ4は、中油温のため半開となり〔図3(B)参照〕、流路面積が減少する。よって、第3制御油室S3を流れるオイル量が減少するため油圧P3は低下し、前記第1制御油室S1の油圧P1による力に第3制御油室S3の油圧P3による力を足した力は減少し、内部ハウジング3は、第1制御油室S1側〔図3(A)のポンプハウジング1の右側〕に移動する。これによって、1回転当たりの吐出量は増加する。
〔高油温,回転数一定〕
高油温は、120°Cに設定した。但し、高油温の数値はこれに限定されず、この数値は増減しても構わない。高油温且つ低回転数域では、図4に示すように、ベーンロータ2が低回転数域のため吐出部14からの吐出圧は低いままである。第1制御油室S1及び第2制御油室S2には、油圧が伝播される。また、第2制御油室S2では、排出油路J6及び圧力調整バルブ5によるオイル排出は行われていない〔図4(C)参照〕。
感温バルブ4は、高油温のため全閉となり〔図4(B)参照〕、オイルの流れは停止する。よって、第3制御油室S3の油圧P3は略大気圧となり、第1制御油室S1と第2制御油室S2との油圧P1と油圧P2とは等しいので、内部ハウジング3には弾性部材7の弾性付勢力のみが掛かり、内部ハウジング3は第1制御油室S1側〔図4(A)のポンプハウジング1の右側〕の位置に最大限に移動する。これによって、吐出部14からの回転当たりの吐出量は最大となる。
次に、油温を一定とし、回転数が変化するときの状況を説明する。ここでは、油温は、80°Cに設定する。但し、油温は、ここに上げた数値に特に限定されるものではなく、数値が若干増減してもかまわない。
〔油温一定及び回転数750rpm〕
エンジン回転数は750rpmに設定した。但し、この数値はこれに限定されず、この数値は若干増減しても構わない。図5に示すように、第1制御油室S1には、吐出主流路J及び第1制御油路J1によって、吐出部14の吐出圧で圧力が伝播され、第2制御油室S2にも、吐出主流路J及び第2制御油路J2によって、油圧が伝播される。
そして、第1制御油室S1と第2制御油室S2とは、略同等の油圧及び受圧面積を有しており、第1制御油室S1の油圧P1と、第2制御油室S2の油圧P2とは、それぞれの油圧が内部ハウジング3にかかる力が略等しく、相互に打ち消し合う。内部ハウジング3には弾性部材7の弾性力のみの力が残り、弾性部材7の弾性付勢力がそのまま掛かる。また、分岐路J5のオイルの圧力の力は弾性部材53の力よりも小さく、スプール弁体52を1段目開口位置まで移動させることができず、圧力調整バルブ5によるオイル排出は行われない〔図5(C)参照〕。
感温バルブ4は、80°Cでは半開状態である〔図5(B)参照〕。第3分岐オイルk3は第3制御油路J3を介して第3制御油室S3に流入する。これによって、第3制御油室S3は、油圧が発生するが感温バルブ4が半開状態であるため油圧は低く、この油圧による力が弾性部材7の弾性力より若干大きいため、内部ハウジング3は、第2制御油室S2側〔図5(A)のポンプハウジング1の左側〕に若干移動する。これによって、吐出部14からのオイル吐出量は中間状態となる。
〔油温一定及び回転数1000rpm〕
回転数は1000rpmに設定した。但し、この数値はこれに限定されず、この数値は若干増減しても構わない。図6に示すように、第1制御油室S1には、吐出主流路J及び第1制御油路J1によって、吐出部14の吐出圧で圧力が伝播され、第2制御油室S2にも、吐出主流路J及び第2制御油路J2によって、油圧が伝播される。
そして、第1制御油室S1と第2制御油室S2とは、略同等の油圧及び受圧面積を有しており、第1制御油室S1の油圧P1と、第2制御油室S2の油圧P2とは、それぞれの油圧が内部ハウジング3にかかる力が略等しく、相互に打ち消し合う。内部ハウジング3には弾性部材7の弾性力のみの力が残り、弾性部材7の弾性付勢力がそのまま掛かる。また、分岐路J5のオイルの圧力の力は弾性部材53の力よりも小さく、スプール弁体52を1段目開口位置まで移動させることができず、圧力調整バルブ5によるオイル排出は行われない〔図6(C)参照〕。
感温バルブ4は、半開状態である〔図6(B)参照〕。吐出主流路Jの圧力が750rpm時よりも高くなるため第3分岐オイルk3の流量は、750rpm時に比べて大きくなる。よって第3制御油室S3の圧力は750rpm時に比べて大きくなり、この油圧による力が弾性部材7の弾性力より大きくなるため、内部ハウジング3は、第2制御油室S2側〔図6(A)のポンプハウジング1の左側〕に若干移動する。これによって、吐出部14からの1回転当たりのオイル吐出量は、回転数750rpmのときよりも若干減少する。
〔油温一定及び回転数1500rpm〕
回転数は1500rpmに設定した。但し、この数値はこれに限定されず、この数値は若干増減しても構わない。回転数は1500rpmに設定した場合の内部ハウジング3,感温バルブ4及び圧力調整バルブ5の状態は、図6に示すように、回転数を1000rpmに設定した場合と略同等である。また、回転数は増加しているので吐出部14からのオイル吐出量は、回転数1000rpmのときよりも増加する。このように、回転数1000rpm乃至1500rpmに設定した場合では、感温バルブ4及び圧力調整バルブ5の状態は略同等となる。
〔油温一定及び回転数2000rpm〕
回転数は2000rpmに設定した。但し、この数値はこれに限定されず、この数値は若干増減しても構わない。図7に示すように、第1制御油室S1には、吐出主流路J及び第1制御油路J1によって、吐出部14の吐出圧で圧力が伝播され、第2制御油室S2にも、吐出主流路J及び第2制御油路J2によって、オイルが流入し、油圧が伝播される。
回転数が2000rpmとなることにより、吐出部14からの吐出量が増加し、オイルの圧力が増加する。分岐路J5に存在するオイルの圧力による力が増加し、弾性部材53の弾性力を上回り、スプール弁体52が移動する。これによって、第1流入口511と第1排出口513とが連通し、第2制御油室S2内のオイルは圧力調整バルブ5によって排出が行われる〔図7(C)参照〕。そのために前記第2制御油室S2の圧力P2は第1制御油室S1の圧力より小さくなる。
感温バルブ4は半開状態であり〔図7(B)参照〕、第3分岐オイルk3の流量は少なくない状態で、第3分岐オイルk3は第3制御油路J3を介して第3制御油室S3に流入する。これによって、第1制御油室S1と第3制御油室S3の足されたオイルの圧力による力が弾性部材7の弾性力と第2制御油室S2のオイルの圧力による力の合力を上回り、内部ハウジング3は、第2制御油室S2側〔図7(A)のポンプハウジング1の左側〕に移動する。これによって、吐出部14からの1回転当たりのオイル吐出量は、減少方向となる。
〔油温一定及び回転数2400rpm〕
図8では、回転数は2400rpmに設定した。但し、この数値はこれに限定されず、この数値は若干増減しても構わない。回転数を2400rpmに設定した場合の感温バルブ4の状態は、図8に示すように、回転数を2000rpm(図7参照)に設定した場合と略同等である。
回転数が2400rpmとなることにより、回転数2000rpmのときよりも吐出部14からの吐出量及び圧力がさらに増加し、分岐路J5に存在するオイルの圧力が増加する。これによって、圧力調整バルブ5のスプール弁体52はさらに左に移動をし、圧力調整バルブ5は一旦全閉状態となり、第2制御油室S2のオイルの排出は行われない〔図8(C)参照〕。感温バルブ4は半開状態である〔図8(B)参照〕。第2制御油室S2には第2制御油路J2からのオイルの圧力がそのまま伝わり、弾性部材7と共に、内部ハウジング3を第1制御油室S1側〔図8(A)のポンプハウジング1の右側〕に移動させる。これによって、吐出部14からのオイル吐出量は、増加方向となる。
〔油温一定及び回転数3000rpm〕
図9では、回転数は3000rpmに設定した。但し、この数値はこれに限定されず、この数値は若干増減しても構わない。回転数は3000rpmに設定した場合の感温バルブ4の状態は、図9に示すように、回転数を2400rpmに設定した場合と略同等である。
回転数が3000rpmとなることにより、回転数2400rpmのときよりも吐出部14からの吐出量及び圧力がさらに増加し、分岐路J5に存在するオイルの圧力が増加する。これによって、圧力調整バルブ5のスプール弁体52はさらに移動をし、圧力調整バルブ5は第2流入口512と第2排出口514とが連通し、全開状態となり、第2制御油室S2のオイルの排出が行われる〔図9(C)参照〕。これにより回転数が上昇しても第2制御油室S2の油圧上昇はほとんど抑えられる。回転数が上昇するに従い、内部ハウジング3は第2制御油室S2側〔図9(A)のポンプハウジング1の左側〕に移動する。これによって、吐出部14からのオイル吐出量は、減少方向となる。
以上述べたように、油温を一定とし、回転数を増加させるにしたがい、圧力調整バルブ5によって、第2制御油室S2のオイルを適宜排出及び排出停止が行われ、内部ハウジング3が第2制御油室S2側及び第1制御油室S1側に移動させるものである。このように回転数が増加しても、吐出部14からのオイルの吐出圧は略一定に保持できるものである。
なお、本実施形態では、感温バルブ4は第3制御油路J3に配置され、圧力調整バルブ5は分岐路J5に配置される。第3制御油路J3の感温バルブ4より上流の長さ、分岐路J5の圧力調整バルブ5より上流の長さは、それぞれ任意であり、ゼロも含むものとする。これは、第3制御油路J3,分岐路J5の一部が吐出主流路Jと重なることを意味し、本発明の思想に含まれる。
1…ポンプハウジング、11…ハウジング本体部、12…収納室、13…吸入部、
14…吐出部、15…オリフィス、16…ドレンオリフィス、2…ベーンロータ、
21…ロータ部、21a…ベーン溝部、22…ベーン、3…内部ハウジング、
31…可動本体部、32…ロータ室、4…感温バルブ、5…圧力調整バルブ、
51…シリンダ、510…シリンダ流入部、511…第1流入口、512…第2流入口、
513…第1排出口、514…第2排出口、516…第3排出口、52…スプール弁体、
521…第1連通部、522…第2連通部、523…共通連通部、524…弁内室部、
525…弁内流入孔、526…弁内流出孔、7…弾性部材、S1…第1制御油室、
S2…第2制御油室、S3…第3制御油室、J…吐出主流路、J1…第1制御油路、
J2…第2制御油路、J3…第3制御油路、J5…分岐路、J6…排出油路、
K1…第1分岐オイル、K2…第2分岐オイル、K3…第3分岐オイル。

Claims (10)

  1. 複数のベーンが出没可能に挿入されたロータ部とからなるベーンロータと、該ベーンロータが収められるロータ室を有する内部ハウジングと、前記ベーンロータは回転中心を不動とすると共に前記内部ハウジングは移動自在とした収納室を有するポンプハウジングと、該ポンプハウジングの前記収納室内の前記内部ハウジングを吐出量が減少する方向に移動させる第1制御油室と、前記ポンプハウジングの前記収納室内の前記内部ハウジングを吐出量が増加する方向に移動させる第2制御油室と、前記ポンプハウジングの前記第2制御油室内のオイルを排出する圧力調整バルブと、吐出オイルの一部が流入する感温バルブと、前記ポンプハウジングに設けられ前記内部ハウジングを前記ベーンロータによる吐出量を増加させる方向に弾性付勢する弾性部材とを備え、前記感温バルブは油温が変化するに従い次第に流路面積が変化するものとし、前記圧力調整バルブは、吐出オイルの圧力の増加にて排出量が変化してなることを特徴とする可変容量ベーンポンプ。
  2. 請求項1において、前記感温バルブは吐出オイルの一部をリリーフする役目を有してなることを特徴とする可変容量ベーンポンプ。
  3. 請求項1において、前記ポンプハウジングの前記収納室内の前記内部ハウジングを吐出量が減少する方向に移動させる第3制御油室が設けられ、該第3制御油室は前記感温バルブと連通し吐出オイルの一部を流入可能としてなることを特徴とする可変容量ベーンポンプ。
  4. 請求項1,2又は3の何れか1項の記載において、前記圧力調整バルブは、シリンダとスプール弁体とを備え、前記シリンダには吐出オイルの一部が流入するシリンダ流入部が設けられ、該シリンダ流入部側を基点として軸方向に沿って第1流入口,第1排出口,第2流入口と第2排出口とが形成され、前記スプール弁体には、軸方向に沿って、第1連通部と第2連通部とを有し、前記第1連通部は前記第1流入口と第1排出口とを連通し、前記第2連通部は前記第2流入部と前記第2排出口とを連通してなることを特徴とする可変容量ベーンポンプ。
  5. 請求項1,2又は3の何れか1項の記載において、前記圧力調整バルブは、シリンダとスプール弁体とを備え、前記シリンダには吐出オイルの一部が流入するシリンダ流入部が設けられ、該シリンダ流入部側を基点として前記シリンダには第1排出口,第2排出口,第3排出口の順に形成され且つ前記第1排出口,前記第2排出口,前記第3排出口と連通可能な共通流入口が形成され、前記スプール弁体には共通連通部が形成され、該共通連通部は前記共通流入口,前記第1排出口,前記第2排出口,前記第3排出口と連通可能としてなることを特徴とする可変容量ベーンポンプ。
  6. 請求項1,2又は3の何れか1項の記載において、前記圧力調整バルブは、シリンダとスプール弁体とを備え、前記シリンダには吐出オイルの一部が流入するシリンダ流入部が設けられ、該シリンダ流入部側を基点として前記シリンダには軸方向に沿って第1流入口,第2流入口,第1排出口と第2排出口とが形成され、前記スプール弁体は弁内室部と、該弁内室部と前記スプール弁体の外部とを連通する弁内流入孔と弁内流出孔とを有し、前記弁内流入孔と前記弁内流出孔との間隔は前記第1流入口と前記第1排出口及び前記第2流入口と前記第2排出口との間隔と等しくしてなることを特徴とする可変容量ベーンポンプ。
  7. 請求項1,2,3,4,5又は6の何れか1項の記載において、前記第2制御油室の流入部にはオリフィスが設けられてなることを特徴とする可変容量ベーンポンプ。
  8. 請求項1,2,3,4,5,6又は7の何れか1項の記載において、前記第3制御油室の下流にはオリフィス及びドレンが設けられてなることを特徴とする可変容量ベーンポンプ。
  9. 請求項1,2,3,4,5,6,7又は8の何れか1項の記載において、前記内部ハウジングは方形状の板状部とし、該板状部の中間箇所に円形状とした前記ロータ室が形成されてなることを特徴とする可変容量ベーンポンプ。
  10. 請求項1,2,3,4,5,6,7又は8の何れか1項の記載において、前記内部ハウジングは、環状部と操作突出部とからなり、前記ポンプハウジングの収納室の一部に凹状操作領域が形成され、該凹状操作領域内に前記操作突出部が配置される構成としてなることを特徴とする可変容量ベーンポンプ。
JP2016244536A 2016-01-29 2016-12-16 可変容量ベーンポンプ Pending JP2017137854A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710057040.3A CN107023478A (zh) 2016-01-29 2017-01-26 可变容量叶片泵
US15/416,795 US20170218953A1 (en) 2016-01-29 2017-01-26 Variable-capacity vane pump
DE102017201246.3A DE102017201246A1 (de) 2016-01-29 2017-01-26 Flügelpumpe mit variablem Durchsatz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016524 2016-01-29
JP2016016524 2016-01-29

Publications (1)

Publication Number Publication Date
JP2017137854A true JP2017137854A (ja) 2017-08-10

Family

ID=59566639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244536A Pending JP2017137854A (ja) 2016-01-29 2016-12-16 可変容量ベーンポンプ

Country Status (1)

Country Link
JP (1) JP2017137854A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537086A (ja) * 2017-12-13 2020-12-17 ピエルブルグ ポンプ テクノロジー ゲーエムベーハーPierburg Pump Technology Gmbh 可変潤滑油ベーンポンプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020537086A (ja) * 2017-12-13 2020-12-17 ピエルブルグ ポンプ テクノロジー ゲーエムベーハーPierburg Pump Technology Gmbh 可変潤滑油ベーンポンプ
JP7026786B2 (ja) 2017-12-13 2022-02-28 ピエルブルグ ポンプ テクノロジー ゲーエムベーハー 可変潤滑油ベーンポンプ

Similar Documents

Publication Publication Date Title
JP5679958B2 (ja) 可変容量形ポンプ
KR101177595B1 (ko) 이중 제어 챔버를 갖는 가변 용량 베인 펌프
US7862306B2 (en) Pressure regulating variable displacement vane pump
JP5116546B2 (ja) 可変容量型ベーンポンプ
JP6574311B2 (ja) 自動車用冷却媒体ポンプ
JPH08200239A (ja) 可変容量形ポンプ
EP2971779B1 (en) Vane pump with multiple control chambers
JP6006047B2 (ja) エンジン潤滑制御システム
US10267310B2 (en) Variable pressure pump with hydraulic passage
JP2005042674A (ja) 可変容量形ポンプ
JP2017137854A (ja) 可変容量ベーンポンプ
US20150377097A1 (en) Relief device for oil circuit of engine
JP6039831B2 (ja) 可変容量形ポンプ
JP3746386B2 (ja) 可変容量型ベーンポンプ
JP5993251B2 (ja) エンジン潤滑制御システム
JP5438554B2 (ja) 可変容量型ベーンポンプ
JP2017133487A (ja) 可変容量ベーンポンプ
US20170218953A1 (en) Variable-capacity vane pump
JP3866449B2 (ja) 可変容量形ポンプ
KR20000006394A (ko) 오일펌프
JP3746388B2 (ja) 可変容量型ベーンポンプ
JP2017020562A (ja) リリーフバルブ
JP2010127214A (ja) ベーンポンプ
JP6610598B2 (ja) 自動変速機の油圧供給装置
JP3753547B2 (ja) 可変容量型ベーンポンプ

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20161227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170428