JP2017123160A - 非線形偏微分方程式および線形ソルバの収束推定 - Google Patents

非線形偏微分方程式および線形ソルバの収束推定 Download PDF

Info

Publication number
JP2017123160A
JP2017123160A JP2016245732A JP2016245732A JP2017123160A JP 2017123160 A JP2017123160 A JP 2017123160A JP 2016245732 A JP2016245732 A JP 2016245732A JP 2016245732 A JP2016245732 A JP 2016245732A JP 2017123160 A JP2017123160 A JP 2017123160A
Authority
JP
Japan
Prior art keywords
equations
solution
computer
equation
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016245732A
Other languages
English (en)
Other versions
JP6837328B2 (ja
JP2017123160A5 (ja
Inventor
ラオ カウストゥバー
Rao Kaustubh
ラオ カウストゥバー
ペロー ブレア
Perot Blair
ペロー ブレア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dassault Systemes Simulia Corp
Original Assignee
Dassault Systemes Simulia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dassault Systemes Simulia Corp filed Critical Dassault Systemes Simulia Corp
Publication of JP2017123160A publication Critical patent/JP2017123160A/ja
Publication of JP2017123160A5 publication Critical patent/JP2017123160A5/ja
Application granted granted Critical
Publication of JP6837328B2 publication Critical patent/JP6837328B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Data Mining & Analysis (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】実施形態によれば、方法は、シミュレートされる現実世界のシステムの離散的表現を含む、方程式系を最初に作成することによって物理的現実世界のシステムのシミュレーションを提供する。
【解決手段】現実世界のシステムがシミュレートされる。システムのシミュレーティングにおいて、方程式系の解のユーザ指定の許容範囲が取得される。その後、方程式系は、所与の反復についての方程式系の解が、近似的無限反復についての方程式系の解のユーザ指定の許容範囲内であるまで反復的に解かれる。このような実施形態において、所与の反復の方程式系の解は、実験的に決定される定数、所与の反復の方程式系の最小固有値の推定値、および所与の反復の方程式系の残差を使用してユーザ指定の許容範囲内であることが決定される。
【選択図】図1

Description

発明の実施形態は、一般的にはコンピュータプログラムおよびシステムの分野に関し、より詳細にはコンピュータ支援設計(CAD)、コンピュータ支援エンジニアリング(CAE)、モデリング、およびシミュレーションの分野に関する。
部品または部品のアセンブリの設計用のいくつかのシステムおよびプログラムが市場に提供されている。このようないわゆるCADシステムにより、ユーザは、オブジェクトまたはオブジェクトのアセンブリの複雑な三次元モデルを構築して操作することが可能になる。CADシステムは従って、エッジまたはラインを使用して、ある場合には面を用いて現実世界のオブジェクトなど、モデル化されたオブジェクトの表現を提供する。ライン、エッジ、面、またはポリゴンをさまざまな方法、例えば、非一様有理Bスプライン(NURBS)で表現することができる。
これらのCADシステムは、主としてジオメトリの仕様である、モデル化オブジェクトの部品または部品のアセンブリを管理する。特に、CADファイルは、ジオメトリが作成される仕様を含む。ジオメトリから表現が作成される。仕様、ジオメトリ、および表現は、単一のCADファイルまたは複数のCADファイルに格納され得る。CADシステムは、設計者に対してモデル化オブジェクトを表現するためのグラフィックツールを含み、これらのツールは、複雑なオブジェクトの表示に特化している。例えば、アセンブリは、数千もの部品を含むことがある。
CADおよびCAEシステムの出現によってオブジェクトの表現の可能性を広範囲にすることができる。このような1つの表現は、有限要素解析モデルである。有限要素解析モデル、有限要素モデル、有限要素メッシュ、およびメッシュという用語は、本明細書では同じ意味で使用される。有限要素モデルは典型的には、CADモデルを表現し、従って1もしくは複数の部品または完全なアセンブリの部品を表現することができる。有限要素モデルは、メッシュと呼ばれるグリッドを作るために相互接続される、ノードと呼ばれるポイントの系である。
モデル、たとえばCADモデル、有限要素モデル、および計算流体力学モデルなどは、基本的なオブジェクトまたはモデルが表現するオブジェクトのプロパティをモデルが有するような方法でプログラムされ得る。例えば、有限要素モデルがそのような方法でプログラムされる場合、有限要素モデルが使用されてそのモデルが表現するオブジェクトのシミュレーションを遂行する。例えば、有限要素モデルが使用されて車の室内キャビティ、構造体の周囲の音響流体、および例えば、ステントなどの医療機器を含む、任意の数の現実世界のオブジェクトを表現することがある。モデルがオブジェクトを表現してそれに従ってプログラムされると、現実世界のオブジェクト自体をシミュレートするためにそれが使用される。例えば、ステントを表現する有限要素モデルは、実際の医療機関のステントの使用をシミュレートするために使用されることがある。
さらに、これらのシミュレーションは、シミュレートされている実際のオブジェクトの設計を改善するために使用することができる。例えば、動的システムのモデルは、システムの障害のポイントを特定するためにシミュレーションで使用することができる。次に、シミュレーションで使用されるモデルによって表現されて最終的に現実世界のオブジェクト自体を表現する三次元CADモデルは、シミュレーションからのフィードバックを使用して改善することができる。モデルのシミュレーションを遂行するおよび基本的なCADモデルを改善するための方法論が存在するが、これらの既存の方法論は、効率を改善する機能性から利益を得ることができる。
本発明の実施形態は、シミュレーションに関連し、シミュレーションソルバの方法論に実装することができる。実施形態は、計算流体力学(CFD)、構造動力学の収束を推定すること、およびシミュレーションを遂行する反復技術を利用する他の物理シミュレーションの方法論を含むさまざまな適用に有益である。
本発明の実施形態は、物理的現実世界のシステムのシミュレーションを提供するコンピュータ実装された方法を提供する。このような実施形態は、コンピュータメモリ内で方程式系を作成することにより開始し、方程式系は、シミュレートされる現実世界のシステムの離散的表現を含む。次に、現実世界のシステムは、コンピュータメモリに動作可能に結合されるプロセッサによってシミュレートされる。システムをシミュレートする際、プロセッサは、最初に方程式系の解のユーザ指定の許容範囲を取得する。次に、プロセッサは、収束に達するまで方程式系を反復的に解く。実施形態によれば、所与の反復についての方程式系の解が、近似的無限反復についての方程式系の解のユーザ指定の許容範囲内である場合に収束に達する。このような実施形態において、所与の反復についての方程式系の解は、実験的に決定される定数、所与の反復についての方程式系の最小固有値の推定値、および所与の反復についての方程式系の残差の使用に基づいてユーザ指定の許容範囲内であることが決定される。実施形態によれば、方程式系を解くことにより、現実世界のシステムの構造力学、物理学、または計算流体力学の問題を解く。
方法のさらに別の実施形態において、方程式系は、第1の方程式系であり、方法は、第1の複数の反復についての第2の方程式系を反復的に解いて第2の方程式系の最終的な解を決定することをさらに含む。さらに、この実施形態は、第2の複数の反復についての第2の方程式系を反復的に解いて、誤差場が第2の方程式系の最終的な解と、第2の複数の反復のそれぞれの第2の方程式系のそれぞれの解との間の差を備える、第2の方程式系の誤差場を決定する。このような実施形態は、定数を誤差場、第2の方程式系の残差、および第2の方程式系の最小固有値の推定値に応じて決定することをさらに備えることができる。
方法の実施形態によれば、実験的に決定される定数は、現実世界のシステムの物理的特性とは無関係である。さらに別の実施形態において、方程式系の残差は、残差ベクトルのノルムである。さらに、実施形態において、残差ベクトルは、体積重み付けノルムである。さらに別の代替実施形態において、最小固有値の推定値は、レイリー商を使用して決定される。
本発明の実施形態は、物理的現実世界のシステムのシミュレーションを提供するコンピュータシステムに向けられている。このようなコンピュータシステムは、プロセッサとコンピュータコード命令が格納されたメモリとを備える。プロセッサとコンピュータコード命令を有するメモリは、システムに、方程式系が現実世界のシステムの離散的表現を含む、方程式系をメモリ内で作成させるように構成される。さらに、プロセッサとコンピュータコード命令を有するメモリは、コンピュータシステムに現実世界のシステムをシミュレートさせる。コンピュータシステムは、このような実施形態に従って、プロセッサに、方程式系の解のユーザ指定の許容範囲を取得させて収束に到達するまで方程式系を反復的に解かせることによって現実世界のシステムをシミュレートする。コンピュータシステムの実施形態によれば、所与の反復の方程式系の解が、近似的無限反復の方程式系の解のユーザ指定の許容範囲内である時に収束に到達する。コンピュータシステムの実施形態において、所与の反復の方程式系の解は、実験的に決定される定数、所与の反復の方程式系の最小固有値の推定値、および所与の反復の方程式系の残差を使用してユーザ指定の許容範囲内であることが決定される。
コンピュータシステムの代替的実施形態において、方程式系は、第1の方程式系であり、コンピュータコード命令を有するプロセッサおよびメモリは、システムに第1の複数の反復の第2の方程式系を反復的に解いて第2の方程式系の最終的な解を決定させるようにさらに構成される。さらに、このような実施形態において、コンピュータシステムは、誤差場が、第2の複数の反復の第2の方程式系を反復的に解いて、第2の方程式系の最終的な解と、第2の複数の反復のそれぞれの第2の方程式系のそれぞれの解との間の差を備える、第2の方程式系の誤差場を決定するようにさらに構成される。コンピュータシステムのさらなる実施形態において、定数は、誤差場の関数、第2の方程式系の残差、および第2の方程式系の最小として決定される。実施形態において、実験的に決定される定数は、現実世界のシステムの物理的特性とは無関係である。
代替的実施形態において、方程式系の残差は、残差ベクトルのノルムである。実施形態によれば、残差ベクトルのノルムは、体積重み付けノルムである。さらなるコンピュータシステムの実施形態において、コンピュータコード命令を有するプロセッサおよびメモリは、システムに、レイリー商を使用して最小固有値の推定値を決定させるようにさらに構成される。コンピュータシステムの実施形態によれば、方程式系を解くことにより、現実世界のシステムの構造力学、物理学、または計算流体力学の問題を解く。
本発明のさらに別の実施形態は、物理的現実世界のシステムのシミュレーションを提供するためのクラウドコンピューティング実装に向けられている。このような実施形態は、サーバが1または複数のクライアントを有するネットワークを通じて通信することによって実行されるコンピュータプログラム製品に向けられている。このような実施形態において、コンピュータプログラム製品は、プロセッサによって実行されると、そのプロセッサに、方程式系が現実世界のシステムの離散的表現を含む、方程式系をメモリ内で作成させるプログラム命令を備える、コンピュータ可読媒体を備える。このような実施形態において、プロセッサは、方程式系の解のユーザ指定の許容範囲を取得することによって現実世界のシステムをシミュレートし、そして所与の反復の方程式系の解が、近似的無限反復の方程式系の解のユーザ指定の許容範囲内である時に収束に到達する、収束に到達するまで方程式系を反復的に解く。コンピュータプログラム製品の実施形態によれば、所与の反復は、実験的に決定される定数、所与の反復の方程式系の最小固有値の推定値、および所与の反復の方程式系の残差の使用に基づいてユーザ指定の許容範囲内であることが決定される。
上記は、同様の参照符号が異なる図全体を通して同じ部分を指す添付図面に例示されているように、発明の例示的な実施形態のより詳細な説明から明白である。図面は、必ずしも寸法どおりではなく、その代わりに本発明の実施形態を例示することに重点を置いている。
少なくとも一つの例示的な実施形態による物理的現実世界のシステムのシミュレーションを提供するコンピュータ実装方法を示す図である。 実施形態に利用することができる定数を決定する方法のフローチャートである。 実施形態を利用してシミュレーションを遂行するフローチャートである。 発明の実施形態の原理を使用してシミュレーションを実装する方法を示すフローチャートである。 実施形態の原理を利用して物理的現実世界のシステムのシミュレーションを提供するためのコンピュータシステムの簡易化されたブロック図である。 本発明の実施形態が実装され得る簡易化されたコンピュータネットワーク環境の図である。
発明の例示的な実施形態の説明は次のとおりである。
本明細書に記載されたすべての特許、公開された出願、および参照の教示は、それらのすべてが参照により組み込まれる。
本明細書で述べるように、本発明の実施形態は、現実世界の力学系などの系をシミュレートするための方法およびシステムを提供する。さまざまなシミュレーション技術は、反復方法論を使用してシミュレーションを実装する。反復解法は、主に2つ理由により使用される。第一に、線形系が適用される場合に、反復手法は、直接行列解法が利用された場合に要求されることになる膨大な記憶量を削減する。反復方法論は、記憶量と計算効率をトレードオフすることに留意されたい。従って、反復技術の非効率を最小限にすることが重要である。反復線形ソルバの例は、オープンソースのPETSc(Portable, Extensible Toolkit for Scientific computation)である。
第二に、反復技術はまた、暗黙的な(implicit)方法を使用する非線形微分方程式の解が反復手法を要求するために使用される。支配方程式は、時間で離散化されて線形化される。線形化は近似されることが多いので、反復は、初期推定およびそれに続く解への改善から最終的な解を取得するために要求される。非線形微分方程式の解は、主変数(例えば、速度場、温度場)に関連する。各反復により、ソルバは、解を漸進的に精緻化する。これは、「基準の停止」、即ち、反復をいつ停止するかについての重要な疑問が生じる。
定常状態のソルバは、ネストされた(nested)反復ループの2つのレベルを有し、第1のレベルは、非線形反復ループであり、第2のレベルは、非線形ループによって展開されるいくつかの線形ソルバ反復ループである。同様に、今度は非定常(transient)ソルバが、線形ソルバ反復ループを展開するいくつかの固定小数点反復ループを使用する。定常状態の解は、単一の固定小数点を有する非定常ソルバと見なしてよい。反対に、非定常解は、疑似定常問題の連続と見なすことがあり、各解が前の解の摂動を含む。
良設定問題のシミュレーションの場合、解は、各反復を有するある値に近づく。これが数値解であれば、解は、数値解答(即ち、前述したある値)に収束していくと言うことができる。理想的には、現在計算されている解の誤差がどのようであるか、言い換えれば、現在の反復解がどれくらい収束と離れているか(収束の度合い)を反復毎に決定することは有利であろう。ここでの誤差は、離散化された問題の解(数値解)と現在の反復において計算される解との間の誤差である。数値問題は、解析的または実験的な解とは異なる。数値解は、有限の計算状態と有限のメモリコンピュータ上で起こり、従って、数値解は、対象の系についての有限の情報を常に提供することしかできない。理論的には、解析的および実験的な解は、物理系の任意の位置における情報を提供し、これは、潜在的には無限の情報量である。誤差推定は従って、それらがあるレベルにおいて常に本質的に不正確であるので、数値シミュレーションに内在する。しかしながら、収束の度合いを知ることが理想的であろうが、数値解答が予め知られていないので、収束の度合いを数値化してそのような誤差を決定することは極めて困難である。
収束の度合いを決定するよりはむしろ、既存の商業上のソフトウェアソリューションは、収束の測定を試みる代替を使用する。既存の技術は、残差などの誤差のプロキシについての経験則またはアドホックヒューリスティック(ad-hoc heuristics)を使用して収束を推論することに大きく依存している。今日使用されているほとんどの技術は、商業上の計算流体力学(CFD)の初期に導入された実践に基づく。学者たちは、そのようなテーマが「解決済みの問題」で研究費をつぎ込むのに値しないと(恐らく誤って)見なしているので再検討する意欲がない。
「収束推定」に対する既存のさまざまな技術は、ANSYS−fluent、およびCD−adapco、およびABAQUS(登録商標)Structuralなどのさまざまなシミュレーションソフトウェアパッケージによって使用されている。多くの既存のソフトウェアスイートは、シミュレーションを遂行しているユーザが残差を監視することを推奨しており、残差は、現在の解が数値解に置き換わる場合に、解かれる偏微分方程式の誤差になる。例えば、ANSYS−fluentは、残差を監視して、残差の大きさが3次数減少した場合に解が収束されたと推論することを推奨している。
CD−adapcoは、固定小数点反復を停止する基準がユーザの判断によって決定される固定数の反復である、非定常ソルバの方法論を利用する。この数は、各シミュレーションに固有であり、恐らく各シミュレーションのわずかな変数のみを修正する。従って、この事前設定された数は、ユーザの試行錯誤によって決定される。非定常解が再収束されなければならない度合いが時間ステップと時間増分による解の摂動の両方に依存することが正当化される。小さい時間増分は、典型的には結果としてより小さい摂動が生じ、従って、より少ない反復を要求する。「試行錯誤」手法はまた、解が基本的な計算メッシュとは無関係であるかどうかを決定するために使用されるので、CFD専門家の経験と異質ではない。
CD−adapcoは、導かれるエンジニアリングの関心の量を監視することによって収束を推論する別の代替を詳述している。例えば、オプションは、抗力または揚力の監視を含む。関心の量を監視する一部の既存の方法論により、ユーザは、標準偏差、他の量と組み合わされた論理ルール、および漸近的に閾値に達することに基づいて、収束を推論する一連のルールを定義することが可能となる。例えば、揚力が1反復当たり1%未満で変わる場合に反復が停止するか、または出口の質量流量が入口の質量流量の0.1%に等しい場合に反復が停止する。
さらに別の技術は、1つの反復から次の反復への解の変化(修正)を監視し、修正が解自体と比較して小さければ、収束が推定される。再度、これは正規化スケールの設定時にユーザの判断を要求し、反復の進行が無いことは、実際に反復が最終目標を実現したことを意味しないために、停止を誤る傾向がある。
構造領域において、収束を推論することは、複雑で高性能のヒューリスティックを用いて行われる。これらのヒューリスティックは、残差、および線形ソルバ反復の修正に対する解の推定の増分変化の比率と併せて適切な正規化スケールを発見することに基づく。これはまた、構造対流体または自由空間である領域の範囲を追跡する能力も要求する。
既存の収束決定技術に関するさらなる詳細は、Ansys User Guideにおいて示され、https://www.sharcnet.ca/Software/Fluent6/html/ug/node1067.htm,CD Adapco user guide6.02.007 Setting up Stopping Criteria,およびABAQUS Users Guide6.14 Section7.2.3 Convergence Criteria for Nonlinear Problemsで入手可能であり、これらは、参照によりそれらのすべてにおいて組み込まれる。
本明細書で述べるように、現在の技術は、誤差収束の度合いを決定せず、その代わりに、解の残差、修正の振る舞いを介して間接的に、またはユーザの判断によって決定された、導かれた量に基づいて、停止基準の設定をユーザに任せることによって推論しようと試みる。停止基準を決定する既存の技術に対する根本的な問題は、誤差収束が全く対処されないことである。これにより、結果として、低品質の解を取得するまたは不要な反復の遂行から計算リソースを浪費するのいずれかが生じる。
収束を推論するために使用される現在の技術からさまざまな問題が起きる。例えば、残差の値を見ることができず、わずかな残差が同等にわずかな誤差を伴う引数が拡大する。これは、共通の正規化スケールがわからないからである。従って、他の唯一のオプションは、残差が減少するのを見張ることである。他の技術の中でとりわけANSYSは、残差を監視して、大きさが3次数減少する残差を待つ方法を詳述している。方程式系を解くための初期条件が提供される場合、2つの可能なシナリオがある。1つは、問題が、収束される解に非常に近くなるように初期化される。即ち、良い初期推定である。これが起きると、残差は最初から少なく、残差が減少するのにかなり長い時間がかかり、恐らく有限精度のコンピュータでは永久であるか、または残差は、これ以上減少しない。2つ目は、初期推定が非常に悪ければ、残差は、即時に大きさが3次数減少し、解が収束を実現したことを保証しない。
「収束を推定する」ための修正監視方法は、反復毎に解の変化を観察して、変化が非常に小さい場合に反復が停止する。直ちに起きる問題は、どれくらい小さいのが小さいのかという問いに答えることである。使用されるスケールは、ユーザの判断に応じて異なる。さらに、シミュレーションの経過中、例えば、解が収束されていないとしても、劣化した収束により、修正が小さい状況が生じ得る。
偏差、動向、および揚力、抗力またはモーメント力などの間接的量の任意のパターンの監視を含むことができる、監視によって導かれる量は、解かれる解の変数の収束との相関が弱い。観察される導かれた量と関連しない別の場または量を監視することによって収束を結論付けることは誤りである。さらに、この方法は、ユーザ経験に依存し、解答として何が期待されるかについての事前知識を要求する。
現在の技術に対する主な欠点は、ユーザがこれらの技術を一式の問題としてキャリブレートすることができ、それが他のタイプの問題およびユースケース(use cases)に役立つことを保証しないことである。収束を決定する共通の手法が存在しない。既存の方法を使用して、ユーザは、解が収束されるかどうかを推論することしかできない。多くの場合、ユーザは、完全な収束のシミュレーションを解く必要がなく、代わりにある収束率に到達さえすればよい。これは、現在の方法を使用して実現できない。
前述した定常状態のソルバの収束を推論する問題が起きる。このような同じ問題は、非定常ソルバと線形ソルバの両方にも起きる。さらに、後者の二つに付加的な結果が起きる。
非定常ソルバの場合、サブ反復が各時間増分の間に行われている時に収束が始まる。これらのサブ反復を遂行する時に最も広く使用される技術は、サブ反復の所定の数を設定することである。この所定の数は、試行錯誤およびユーザの判断によるキャリブレーションを要求する。さらに、所定の数は、異なるタイプの問題に役立たないことがある。従って、ユーザは、慎重にならなければならず、時間ステップのサイズを制限するまたは反復に要求される数よりも多い数を指定しなければならない。非定常シミュレーション、特に初期条件が悪い非定常シミュレーションは、流体構造が流体領域を通じて展開し、この数は、シミュレーションが進行するにつれて減少するので、多数の初期の不動点反復を要求する。しかしながら、所定の数の反復が遂行される技術が使用されると、シミュレーションが進行するにつれて、より少ないサブ反復が要求されるという事実を利用することが困難である。これは、計算コストと計算時間の両方の損失である。
線形ソルバは、定常状態で実行されて、非定常ソルバは、各ソルバの反復の間に実行される。これらの線形ソルバによる余分な反復は、性能を大きく下げる。上述したような同じ落とし穴がこれらのソルバにも当てはまる。従って、線形ソルバの反復を正確にかつ一貫してイグジット(exit)できることは、性能利得を大きく受ける可能性がある。
収束を推論する別の代替を提供するよりはむしろ、本発明の実施形態は、「誤差」についての定義を導入することにより、収束を数値化することによって問題に直接的に対処する。上記で論じたように、ここでの誤差は、現在の解の推定と離散化系の解との間の差である。言い換えれば、誤差は、現在の反復における解と収束された解、即ち、近似的無限反復から取得された解との間の誤差である。この誤差を成功裡に推定する能力は、シミュレーションの遂行から推定作業を取り出して、前述した現在の技術の問題を改善する。
本発明の実施形態において、誤差は、周知の量(残差および修正)、数学的構成(行列固有値)、数学的簡略化(固有値の近似)、および数値キャリブレーションを介したキャリブレーション手法に応じて表される。
定常状態のソルバの場合、本発明の実施形態は、収束された解の誤差に対する現在の数値解における誤差を決定する誤差推定を算出する。このような実施形態において、ユーザは、相対誤差の閾値に関して、所望の収束の度合いを指定さえすればよい。その後、相対誤差推定がこのユーザ指定の収束の度合いに到達するときに定常状態の反復ループがイグジットする。
同様に、非定常ソルバの場合、シミュレーションは、所望の誤差場に基づいて、各時間増分間の不動点反復の適切な数を遂行する。この手法の付加された利点として、不合理に大きい時間ステップが選択されると、その影響により各時間ステップ間のサブ反復が増え、これによって、ソルバが合理的な解に達するようにさせる。付加された影響はまた、解が定常状態で非定常でないことが期待される場合にも見られ、同様に、最適数の不動点反復が行われる。反復は、修正された誤差レベルにおいて終了する。反復は、停止が早すぎた結果、所望の反復よりも誤差が大きくなることも、停止が遅すぎた結果、要求されるものと比較して計算労力が非常に大きくなることもない。
同様な利得は、線形ソルバにおいて実現される。本明細書で説明する収束決定技術を用いることによって、本発明の実施形態に従う線形ソルバは、大いに性能が上がる。各不動点反復または定常状態の反復は、正しい数の線形ソルバ反復を遂行し、従って、既存の技術と比較して性能が上がる。
線形ソルバおよび非定常ソルバにおいて本発明の実施形態を使用する主な利点は、実現することができる向上した性能である。さらに、非定常ソルバの場合、要求されるものより大きい時間ステップが選択されると、これによって、アルゴリズムは、サブ反復をより多くすることになり、これにより、シミュレーションは、できるだけ合理的である解に到達することを可能にする。本発明の実施形態のさらに別の利点は、遂行される反復数を減少できることである。かなり多くは、収束までずっと反復することが要求されない。それどころか、ユーザは、真の収束のある許容範囲内であることに関心があり得る。本発明の実施形態の使用により、解が収束される解のある率の範囲内であるときに反復ループを停止することがこれより可能である。別の利点は、各々の設計変数についての基準を停止するキャリブレーションを決定することなく、ユーザが設計実験を設定することが可能となる能力である。
図1は、物理的現実世界のシステムのシミュレーションを提供するための方法110のフローチャートである。方法110は、コンピュータメモリ内で方程式系を作成するステップ111から開始する。このような方法110の実施形態において、方程式系は、現実世界の物理系を表現してコンピュータメモリに常駐する。実施形態において、方程式系は、現実世界のシステムの離散的表現である。この現実世界の物理系の離散的表現は、連続体を空間内の点の有限集合として表現する。このような例において、現実世界の物理系は、偏微分方程式で支配され、これらの方程式の離散バージョンは、空間内のこれらの点のそれぞれを支配することができる。この現実世界のシステムは、流体力学、固体力学、熱伝達、電磁、および量子物理学の適用に基づくことができるが、これらの例に限定されない。方法110の実施形態は、さまざまなシステムをシミュレートすることができる。そうすることで、方法110の実施形態は、現実世界のシステムの力学、物理学、または計算流体力学の問題を解くことができる。実施形態によれば、方程式系は、物理系のプロパティを示す偏微分方程式の系にすることがある。例えば、方程式系は、現実世界のシステムの質量、剛性、サイズなどを反映するデータ/プロパティを包含することがある。さらに、方法110は、ユーザインタラクションに応答してステップ111において方程式系を作成することがある。例えば、ユーザは、当該技術で知られている任意の通信インタフェースを介して現実世界のシステム/方程式系のデータ/プロパティを提供することがあり、今度はステップ111が、提供された情報に応答して実行されることがある。
次に、方法110が継続して、ステップ112において現実世界のシステムをシミュレートする。実施形態によれば、ステップ112におけるシステムをシミュレートすることは、最初にステップ112aで方程式系の解のユーザ指定の許容範囲を取得することを含む。ステップ112aにおいて提供される許容範囲は。ユーザの望む解がどれくらい正確かを示す。ステップ112でシミュレーションは、方程式系を反復的に解くことによって遂行されるので、各反復において解が決定される。しかしながら、方程式系の最終的な解、即ち、収束された解は、無限反復が遂行された場合に、近似された方程式系に対する解である。従って、ステップ112aにおいて提供される許容範囲は、所与の反復についての解が、現在の反復を停止する最終的な解からどれくらい離れる必要があるかを示す。ユーザは、ステップ112aにおいて当該技術で知られている任意の手段を介して許容範囲を指定することがある。例えば、ユーザは、方法110に実装する計算デバイスによるプロンプトに応答して許容範囲を指定することがある。このような実施形態において、ユーザは、計算デバイスの任意のさまざまな入力デバイスの使用を介して許容範囲を提供することがある。
ステップ112aにおいて提供される許容範囲を所与として、方法110が継続して、収束に達するまで方程式系を反復的に解き、ここでは、所与の反復についての方程式系の解が、近似的無限反復についての方程式系の解のユーザ指定の許容範囲内である場合に、収束に達する。実施形態によれば、方程式系の解は、実験的に決定される定数、所与の反復についての方程式系の最小固有値の推定値、および所与の反復についての方程式系の残差の使用に基づいて、ユーザ指定の許容範囲内であることが決定される。定数、固有値および残差を算出することについてのさらなる詳細を以下提供する。実施形態によれば、ステップ112bにおける方程式系を解くことによって、現実世界のシステムのシミュレーションが提供される。実施形態において、ステップ112bで方程式系を解いた後に、シミュレーションは、決定された方程式系に対する解を使用して当該分野で知られている方法に従って提供される。
換言すれば、各反復について、ステップ112bにおける方法110は、定数、所与の反復についての方程式系の最小固有値の推定値、および所与の反復についての方程式系の残差を使用して、所与の反復についての解が方程式系の最終的な解からどれくらい離れているかを決定する。方法110の実施形態は、当該分野において知られている任意のさまざまな反復技術を使用することがある。例えば、実施形態は、固定小数点反復、ニュートン法、割線法、クリロフ(Krlov)部分空間法、マルチグリッド法、および投影法を利用することができる。システム110の実施形態によれば、方程式系の固有値は、レイリー商(Rayleigh quotient)を使用して推定される。さらに別の実施形態において、方程式系の残差は、残差ベクトルのノルム(norm)である。本発明の実施形態は、任意のさまざまな技術を使用してノルムを決定し得る。一例示的実施形態において、残差ベクトルのノルムは、体積の重み付けられたノルムである。
方法110の代替的実施形態は、第1の複数の反復についての第2の方程式系を反復的に解いて第2の方程式系の最終的な解を決定することをさらに備える。換言すれば、このような代替的実施形態は、第2の方程式系の収束された解を決定する。収束された解という用語は、用語「近似的無限反復の解」と同義にすることができる。第2の方程式系に対する収束された解を決定することは、当該分野において知られている原理に従って行うことができる。このような代替的実施形態は、第2の複数の反復についての第2の方程式系を反復的に解いて、第2の方程式系の誤差場を決定することをさらに備え、ここでは、誤差場が第2の方程式系に対する最終的な解と、第2の複数の反復のそれぞれについての第2の方程式系に対するそれぞれの解との間の差である。
このような実施形態をより簡単に言えば、最初に、この第2の方程式系に対する収束された解が決定され、次に複数の反復が遂行されて、誤差場が算出され、ここでは、収束された解と反復解との間の差である。この実施形態は、任意の数の反復を遂行して誤差場を決定することがある。実施形態において、誤差場を決定するための反復は、誤差場が誤差場を計算するコンピュータのデジタル機械の精度に正確であることを確実にするのに十分であるように遂行される。
実施形態において、前述の誤差場は、ステップ112において現実世界のシステムをシミュレートする際に使用される実験定数を決定するために使用される。このような実施形態において、定数は、誤差場の関数、第2の方程式系の残差、および第2の方程式系の最小固有値の推定値として決定される。
実施形態によれば、ステップ112bにおいて使用される定数は、ステップ112bにおいて第1の方程式系を反復的に解く前に決定される。例えば、定数を前もって決定することができ、今度は、方法110を使用して複数の現実世界のシステムをシミュレートするために使用される。実施形態において、定数は、現実世界のシステムの物理的特性とは無関係であり、従って、任意のシステムをシミュレートするために使用することができる。実施形態において、1つの反復技術を使用して定数が決定されると、その定数は、他の反復技術を使用して別の方程式系をシミュレートするために使用される。
方法110などの、本発明の実施形態を実装する記述された方法論のさらに詳細について以下説明する。以下の式(1)として書かれた線形系の例を挙げる。
Figure 2017123160
式(1)中のAは、演算子であり、u*は、厳密解であり、bは、周知の値、例えば、シミュレートされるシステムのプロパティの右辺である。Au*=bを反復的に解く間に近似解uが計算される。従って、uに置き換えた結果として、本明細書で残差rと呼ばれる付加的な用語が生じる。この関係は、式(2)によって与えられる。
Figure 2017123160
2つの関係、(式1と式2)を減算することによって以下となる。
Figure 2017123160
ここに誤差eは、以下となる。
Figure 2017123160
式(4)で表される誤差は、式(1)によって表現される物理系が解かれる解の領域を表現するメッシュのすべての計算グリッドの点の値を有するコンピュータメモリのリストである。誤差は、コンピュータがそのコンピュータ表現で作成した解から、そのコンピュータが無限数の反復を行う場合に取得する解を引いたものであり、従って、式(1)の厳密解に達する。説明のため、現実世界の物理系が点の有限集合(計算グリッドの点)で説明される例を考える。各点は、偏微分方程式の離散バージョンで支配される。このような例において、各点の解、例えば、各点の速度が判定され、所与の反復に対して、各点の推定が存在し、従って、配列eで表現される、各点の誤差が存在する。誤差は、ノルムを使用して単数に圧縮される。実施形態の機能性を上げるために、誤差は、メッシュ依存性を持たない形で表現される。言い換えれば、ノルムは、シミュレートされるシステムの物理的特性に依存せずに誤差を表現する。任意のさまざまなノルムの判定技術は、本発明の実施形態によって使用され得る。例えば、実施形態は、重み付けノルムを使用することができる。さらに、実施形態は、現実世界のシステムを離散化するために使用される手法に基づいてノルム決定方法を変えることができる。実施形態による誤差のノルムは、以下の式(6)によって与えられる。
Figure 2017123160
ここに||は、場のノルムを示し、総和は、その場の総グリッド値である。Viは、対応するメッシュポイント値の周囲の領域の小範囲の体積になるが、この値を使用しなくてもよく、例えば、すべてのメッシュポイントの統合に等しい場合もあり、eiは、メッシュポイントのロケーションiにおける誤差である。
所与の関係(7)は、以下の通りである。
Figure 2017123160
本発明の実施形態は、以下のようにCを決定する。
Figure 2017123160
ここで、λminは、体積重み付け行列Aの最小固有値であり、残差ノルム|r|は、式(6)と同様に定義される。さらに、Cは、解かれる問題の物理的特性とは無関係であり、メッシュとは無関係であり、使用される反復ソルバの方法論とは無関係である。本発明の実施形態は、このような定数Cを見つけて検証する数値実験を使用する。ユーザ指定および無次元の相対誤差は、以下のように定義される。
Figure 2017123160
ここで、解のノルム|u|は、式(6)と同様に定義される。
図2は、実施形態による定数Cを決定するプロセスに使用することができる方法220のフローチャートである。方法220は、ステップ221において問題を離散化することから開始する。次に、離散化された問題は、ステップ222において、近似的無限反復について、即ち、デジタル機械の精度で収束される解に到達するまで反復的に解かれる。次に、ステップ223において、離散化された問題は、もう一度反復的に解かれ、各反復において、ステップ222において決定された収束された解と、所与の反復の解との間の差が誤差場の形になる。
方法220を要約すると、所与の問題は、解が収束されたと無事に結論を出すために非常に多くの数の反復によって実行される。従って、式(1)から最終的な解場u*が取得されて格納される。同じ問題はその後、再実行されて、式(4)によって与えられる誤差がすべての反復において計算される。ここで、u*は、ステップ222からの最終的な解であり、uは、各反復の解である。体積が重み付けノルムなどの、誤差場のノルムが計算されて、この誤差場の体積が重み付けノルムを使用して、実施形態で使用される定数を決定することができる。例えば、実施形態において、式(8)を使用して実験定数を決定することができる。このプロセスは、さまざまなタイプのメッシュを有するさまざまな物理的問題に対してさらに反復されて、1次数の大きさの範囲内で誤差を大まかに限界する(bound)定数が決定される。
本発明の実施形態はまた、本明細書で説明する実施形態に従うシミュレーションの遂行、例えば、方法110のステップ112bにおいて使用される、固有値を推定する計算効率のよい方法も利用する。定常状態または非定常の固定ループの固有値は、何らかの形で、シミュレートされるシステムの物理的特性を表現する。さらに、線形ソルバで使用されるように、推定された固有値は、線形系の演算子の最小固有値になる。実施形態において、固有値は、レイリー商を使用して推定される。このような実施形態によれば、固有値は、定常状態のループおよび非定常の固定点反復ループの式(10)を使用して推定される。
Figure 2017123160
式(10)のδUは、解の1つの反復から次の反復への変化である。これは、各線形ソルバループの最後で取得される。さらに、
Figure 2017123160
の式を所与として、Aは、緩和条件を含まず、V-1は、対角線とする逆セル体積の対角線行列である。これは、セル体積によって演算子[A]の条件をスケールする。実施形態によれば、線形ソルバに対して、体積スケールされた[A]を使用して最小固有値が推定されるが、緩和パラメータはそのままにする。
本発明の実施形態を定常状態ソルバおよび非定常ソルバに組み込み、さらにこれらのソルバの内部反復ループに組み込んで真の収束測定および解法オプションをユーザに提供することができる。図3は、本発明の方法を組み込む定常状態のシミュレーションを遂行する方法330を示している。方法330は、定常状態のループ331から開始して、ステップ332におけるi番目の解を継続することによって、解の初期推定を開始する。i番目の解を用いて、線形ソルバループ333は、線形反復解法の遂行を開始する。線形ソルバループ333の反復毎に、ステップ334において本明細書で説明する本発明の原理を使用して誤差が推定され、今度は、ステップ334において計算された誤差は、ステップ335においてユーザ指定の相対誤差の閾値と比較される。線形ソルバループ333を行う間、線形算出の誤差が決定されること、即ち、334における誤差は、δUの誤差であることに留意されたい。誤差が閾値以上である場合、線形ソルバループが継続し、ステップ333に戻る。誤差が閾値未満である場合、ステップ336においてi番目+1解が特定された。i番目+1の解の誤差はその後、ステップ337において推定される。しかしながら、これは、推定される定常状態のループの誤差である。計算された定常状態のループの誤差はその後、ステップ338において閾値と比較されて、誤差が閾値未満である場合、方法330は、ステップ340において終了する。δU、un+1は、
Figure 2017123160
の式を使用して取得される。ステップ337における誤差は、un+1の誤差と見なされる。誤差が閾値以上である場合、ステップ339において方法330が継続して次の反復へと続く。
図4は、本発明の方法を組み込む非定常シミュレーションを遂行する方法440を示している。方法440は、非定常ループ441から開始して、ステップ442の時間tに開始する。時間tを用いて、固定点反復ループは、ステップ443から開始し、線形ソルバループ444を含む。線形ソルバループは、ステップ444において線形反復解法を遂行する。線形ソルバループ444の反復毎に、ステップ445において本明細書で説明する本発明の原理を使用して誤差が推定され、今度は、ステップ445において計算された誤差は、ステップ446においてユーザ指定の相対誤差の閾値と比較される。線形ソルバループ333を行う間、線形算出の誤差が決定されることに留意されたい。誤差が閾値以上である場合、線形ソルバループが継続し、ステップ444に戻る。線形ソルバループ444の誤差が閾値未満である場合、固定点反復ループの解はその後、ステップ447において推定される。ステップ447において推定された誤差は、ステップ445において推定された内部線形化されたシステムの線形ソルバの誤差と比較して、外部の非線形固定点反復ループの誤差である。言い換えれば、ステップ445における誤差は、δUの誤差である一方、ステップ447における誤差は、un+1の誤差である。計算された固定点反復ループの誤差はその後、ステップ448における閾値と比較される。誤差が閾値以上である場合、ステップ443において方法440が継続して、固定点反復ループが継続する。誤差が閾値未満である場合、ステップ449において時間tが所望の点に到達したかどうかが決定される。所望の時間に到達した場合、方法は、ステップ450において終了する。所望の時間に到達しなかった場合、ステップ451において時間が増分されて、ステップ452において方法440は、次の反復に移動する。
単一の閾値は、図3の方法330と図4の方法440にそれぞれ関連して説明されているが、本発明の実施形態は、それに限定されないことに留意されたい。実施形態は、ユーザに内部ループと外部ループの両方の収束の閾値を提供するように頼むことができ、これらの提供された閾値はその後、それに応じて使用され得る。さらに、実施形態は、ユーザが遂行される最大数の反復を指定することをさらに要求できる。これは、解答に収束されない問題に対するセーフガードにすることができる。
図5は、本発明の実施形態によるシステムのシミュレーションを提供するために使用できるコンピュータベースのシステム550の簡易化されたブロック図である。システム550は、バス553を備える。バス553は、システム550のさまざまなコンポーネント間の相互接続として機能する。バス553に接続されているのは、キーボード、マウス、ディスプレイ、スピーカなどのさまざまな入力/出力デバイスをシステム550に接続するための入力/出力デバイスインタフェース556である。中央処理装置(CPU)552は、バス553に接続されて、コンピュータ命令の実行を提供する。メモリ555は、コンピュータ命令を実行するために使用されるデータの揮発性記憶域を提供する。ストレージ554は、オペレーティングシステム(図示せず)などのソフトウェア命令の不揮発性記憶域を提供する。システム550はまた、ワイドエリアネットワーク(WAN)およびローカルネットワーク(LAN)を含む、当業者には周知である任意のさまざまなネットワークに接続するためのネットワークインタフェース551も備える。
本明細書で説明する例示的な実施形態は、多くの異なるやり方で実装され得ることを理解されたい。ある場合には、本明細書で説明するさまざまな方法および機械はそれぞれ、コンピュータシステム550などの物理的、仮想の、またはハイブリッドな汎用コンピュータか、または本明細書で説明する以下の図6に関連するコンピュータ環境600などのコンピュータネットワーク環境によって実装され得る。コンピュータシステム550を、本明細書で説明する方法(例えば、110、330、および440)、例えば、ソフトウェア命令をCPU552によって実行されるメモリ555または不揮発性ストレージ554のいずれかに読み出させることによって実行する機械に移すことができる。システム550およびそのさまざまなコンポーネントは、本明細書で説明する本発明の任意の実施形態を実行するように構成され得ることを当業者はさらに理解しなければならない。さらに、システム550は、システム550に動作可能に結合された、内部的または外部的に結合されたハードウェア、ソフトウェア、およびファームウェアモジュールの任意の組み合わせを利用して本明細書で説明するさまざまな実施形態を実装することができる。
図6は、本発明の実施形態が実装され得るコンピュータネットワーク環境660を示している。コンピュータネットワーク環境660において、サーバ661は、通信ネットワーク662を介してクライアント663a−nにリンクされる。環境660を使用してクライアント663a−nが単独でまたはサーバ661との組み合わせにおいて上記で説明した方法(例えば、110、330、および440)のいずれかを実行できるようにさせることができる。
それらの実施形態または態様は、ハードウェア、ファームウェア、またはソフトウェアの形態で実装され得る。ソフトウェアに実装されると、ソフトウェアは、プロセッサがそのソフトウェアまたは命令のサブセットを読み出すことを可能にするように構成される非定常でない任意のコンピュータ可読媒体に格納される。プロセッサはその後、命令を実行して、本明細書で説明する方法でオペレートするまたは装置にオペレートさせるように構成される。
さらに、ファームウェア、ソフトウェア、ルーチン、または命令は、データプロセッサのあるアクションおよび/または関数を遂行するように本明細書で説明され得る。しかしながら、本明細書に包含されるこのような説明は、単に便宜のためであり、実際このようなアクションは、コンピューティングデバイス、プロセッサ、コントローラ、またはファームウェア、ソフトウェア、ルーチン、命令などを実行する他のデバイスから生じることを認識されたい。
フロー図、ブロック図、およびネットワーク図は、より多いまたはより少ない要素を含むことができ、異なって配置されるか、または異なって表現され得ることを理解されたい。しかし、ある実装は、ブロック図およびネットワーク図およびブロック図およびネットワーク図の数を決定して、実施形態の実行を特定のやり方で実装することを示すことができることをさらに理解されたい。
従って、さらなる実施形態はまた、さまざまなコンピュータアーキテクチャ、物理的コンピュータ、仮想コンピュータ、クラウドコンピュータ、および/またはそれらのある組み合わせにおいても実装されてよく、従って、本明細書で説明するデータプロセッサは、説明のみを目的とすることを意図し、実施形態を制限することを意図しない。
本発明は、特にそれらの例示的な実施形態を参照して説明されているが、形態および詳細のさまざまな変更は、添付の特許請求の範囲によって網羅される発明の範囲から逸脱しない範囲で行われ得ることが当業者には理解されよう。

Claims (20)

  1. 物理的現実世界のシステムのシミュレーションを提供するコンピュータ実装方法であって、
    コンピュータメモリにおいて方程式系を作成するステップであって、前記方程式系は、前記現実世界のシステムの離散的表現を含む、ステップと、
    前記コンピュータメモリに動作可能に結合されたプロセッサによって前記現実世界のシステムをシミュレートするステップであって、前記プロセッサが、
    前記方程式系の解のユーザ指定の許容範囲を取得し、
    収束に達するまで前記方程式系を反復的に解き、所与の反復についての前記方程式系の解が、実験的に決定される定数、所与の反復についての前記方程式系の最小固有値の推定値、および前記所与の反復についての前記方程式系の残差の使用に基づいてユーザ指定の許容範囲内であることが決定されるように、前記収束は、近似的に無限反復についての前記方程式系の前記解の前記ユーザ指定の許容範囲内である場合に達する、、ステップと
    を備えることを特徴とする方法。
  2. 前記方程式系は、第1の方程式系であり、前記方法は、
    第1の複数の反復についての第2の方程式系を反復的に解いて前記第2の方程式系の最終的な解を決定し、
    第2の複数の反復についての前記第2の方程式系を反復的に解いて前記第2の方程式系の誤差場を決定し、前記誤差場が、前記第2の方程式系の前記最終的な解と、前記第2の複数の反復のそれぞれについての前記第2の方程式系へのそれぞれの解との間の差を備える前記プロセッサをさらに備えることを特徴とする請求項1に記載のコンピュータ実装方法。
  3. 前記誤差場、前記第2の方程式系の残差、および前記第2の方程式系の最小固有値の推定に応じて、前記定数を決定するステップをさらに備えることを特徴とする請求項2に記載のコンピュータ実装方法。
  4. 前記実験的に決定される定数は、前記現実世界のシステムの物理的特性とは無関係であることを特徴とする請求項1に記載の方法。
  5. 前記方程式系の前記残差は、残差ベクトルのノルムであることを特徴とする請求項1に記載の方法。
  6. 前記残差ベクトルの前記ノルムは、体積の重み付けられたノルムであることを特徴とする請求項5に記載の方法。
  7. レイリー(Rayleigh)の商を使用して前記最小固有値の前記推定値を決定するステップをさらに備えることを特徴とする請求項1に記載の方法。
  8. 前記方程式系を解くことは、前記現実世界のシステムの構造力学、物理学、または計算流体力学の問題を解くことを特徴とする請求項1に記載の方法。
  9. 物理的現実世界のシステムのシミュレーションを提供するためのコンピュータシステムであって、
    プロセッサと、
    コンピュータコード命令が格納されたメモリであって、前記コンピュータコード命令を有する、前記プロセッサおよび前記メモリは、前記システムに
    前記メモリにおいて方程式系を作成し、前記方程式系は、前記現実世界のシステムの離散的表現を含み、
    前記プロセッサに
    前記方程式系の解のユーザ指定の許容範囲を取得させ、
    収束に達するまで前記方程式系を反復的に解かせ、所与の反復についての前記方程式系の解が、実験的に決定される定数、所与の反復についての前記方程式系の最小固有値の推定値、および前記所与の反復についての前記方程式系の残差の使用に基づいてユーザ指定の許容範囲内であることが決定されるように、前記収束は、近似的に無限反復についての前記方程式系の前記解の前記ユーザ指定の許容範囲内である場合に達するように構成される、メモリと
    を備えることを特徴とするコンピュータシステム。
  10. 前記方程式系は、第1の方程式系であり、前記コンピュータコード命令を有する、前記プロセッサおよび前記メモリは、前記システムに、
    前記プロセッサによって第1の複数の反復の第2の方程式系を反復的に解いて前記第2の方程式系の最終的な解を決定させ、
    前記プロセッサによって第2の複数の反復の前記第2の方程式系を反復的に解いて前記第2の方程式系の誤差場を決定させ、前記誤差場が、前記第2の方程式系の前記最終的な解と、前記第2の複数の反復のそれぞれについての前記第2の方程式系へのそれぞれの解との間の差を備えるようにさせるようにさらに構成されることを特徴とする請求項9に記載のコンピュータシステム。
  11. 前記コンピュータコード命令を有する、前記プロセッサおよび前記メモリは、前記システムに、
    前記誤差場、前記第2の方程式系の残差、および前記第2の方程式系の前記最小固有値の推定値に応じて、前記定数を決定させるようにさらに構成されることを特徴とする請求項10に記載のコンピュータシステム。
  12. 前記実験的に決定される定数は、前記現実世界のシステムの物理的特性とは無関係であることを特徴とする請求項9に記載のコンピュータシステム。
  13. 前記方程式系の前記残差は、残差ベクトルのノルムであることを特徴とする請求項9に記載のコンピュータシステム。
  14. 前記残差ベクトルの前記ノルムは、体積が重み付けノルムであることを特徴とする請求項13に記載のコンピュータシステム。
  15. 前記コンピュータコード命令を有する、前記プロセッサおよび前記メモリは、前記システムに、
    レイリー商を使用して前記最小固有値の前記推定値を決定させるようにさらに構成されることを特徴とする請求項9に記載のコンピュータシステム。
  16. 前記方程式系を解くことは、前記現実世界のシステムの構造力学、物理学、または計算流体力学の問題を解くことを特徴とする請求項9に記載のコンピュータシステム。
  17. 物理的現実世界のシステムのシミュレーションを提供するためのコンピュータプログラム製品であって、1または複数のクライアントを有するネットワークを通じて通信するサーバによって実行され、
    コンピュータ可読媒体であって、前記コンピュータ可読媒体は、プロセッサによって実行される場合に、前記プロセッサに、
    方程式系をメモリ内で作成させ、前記方程式系は、前記現実世界のシステムの離散的表現を含み、
    前記プロセッサに
    前記方程式系の解のユーザ指定の許容範囲を取得させ、
    収束に達するまで前記方程式系を反復的に解かせ、所与の反復についての前記方程式系の解が、実験的に決定される定数、所与の反復についての前記方程式系の最小固有値の推定値、および前記所与の反復についての前記方程式系の残差の使用に基づいてユーザ指定の許容範囲内であることが決定されるように、前記収束は、近似的に無限反復についての前記方程式系の前記解の前記ユーザ指定の許容範囲内である場合に達する
    ことによって前記現実世界のシステムをシミュレートさせるプログラム命令を備えるコンピュータ可読媒体を備えることを特徴とするコンピュータプログラム製品。
  18. 前記方程式系は、第1の方程式系であり、前記コンピュータ可読媒体は、前記プロセッサによって実行される場合に、前記プロセッサにさらに、
    第1の複数の反復の第2の方程式系を反復的に解かせて前記第2の方程式系の最終的な解を決定させ、
    第2の複数の反復についての前記第2の方程式系を反復的に解かせて前記第2の方程式系の誤差場を決定させ、前記誤差場が前記第2の方程式系の前記最終的な解と、前記第2の複数の反復のそれぞれについての前記第2の方程式系へのそれぞれの解との間の差を備えるようにさせるプログラム命令を備えることを特徴とする請求項17に記載のコンピュータプログラム製品。
  19. 前記コンピュータ可読媒体は、前記プロセッサによって実行される場合に、前記プロセッサにさらに、
    前記誤差場、前記第2の方程式系の残差、および前記第2の方程式系の前記最小固有値の推定値に応じて、前記定数を決定させるプログラム命令を備えることを特徴とする請求項18に記載のコンピュータプログラム製品。
  20. 前記方程式系の前記残差は、残差ベクトルのノルムであることを特徴とする請求項17に記載のコンピュータプログラム製品。
JP2016245732A 2015-12-28 2016-12-19 非線形偏微分方程式および線形ソルバの収束推定 Active JP6837328B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/981,263 US10303825B2 (en) 2015-12-28 2015-12-28 Convergence estimation of non-linear PDE and linear solvers
US14/981,263 2015-12-28

Publications (3)

Publication Number Publication Date
JP2017123160A true JP2017123160A (ja) 2017-07-13
JP2017123160A5 JP2017123160A5 (ja) 2020-01-16
JP6837328B2 JP6837328B2 (ja) 2021-03-03

Family

ID=57614256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016245732A Active JP6837328B2 (ja) 2015-12-28 2016-12-19 非線形偏微分方程式および線形ソルバの収束推定

Country Status (4)

Country Link
US (1) US10303825B2 (ja)
EP (1) EP3188054A1 (ja)
JP (1) JP6837328B2 (ja)
CN (1) CN107016155B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179299A1 (ja) * 2019-03-01 2020-09-10 株式会社Preferred Networks 情報処理装置及び情報処理方法
EP3779735A1 (en) 2019-07-22 2021-02-17 Fujitsu Limited Information processing program, information processing method, and information processing apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109255171B (zh) * 2018-08-29 2023-09-05 深圳十沣科技有限公司 一种自动判定数值模拟计算收敛的方法
US11200356B2 (en) 2019-04-09 2021-12-14 Nvidia Corporation Using a computer to model the reactions of objects to simulated physical interactions
US11875091B2 (en) 2019-09-05 2024-01-16 Toyota Motor Engineering & Manufacturing North America, Inc. Method for data-driven comparison of aerodynamic simulations
CN110569479A (zh) * 2019-10-09 2019-12-13 上海脉拓信息科技有限公司 一种用于非线性流体的数据信息处理方法
US11615218B2 (en) * 2020-05-15 2023-03-28 Dassault Systemes Simulia Corp. Mesh void space identification and auto seeding detection in computer added design defined geometries
US20220114309A1 (en) * 2020-10-08 2022-04-14 Dassault Systèmes Americas Corp. Modeling and Simulating Material Microstructures
US20220309208A1 (en) 2021-03-24 2022-09-29 Dassault Systemes Simulia Corp. In-situ formulation of calibrated models in multi component physics simulation
US20220309199A1 (en) 2021-03-24 2022-09-29 Dassault Systemes Simulia Corp. Integrating calibrated models with computational physics simulations
CN114580227B (zh) * 2021-12-03 2024-10-01 电子科技大学(深圳)高等研究院 固体材料非线性力学仿真预测方法、系统及介质
CN114357904B (zh) * 2021-12-29 2024-08-16 中国航天空气动力技术研究院 一种基于金属流体流场的电磁主动控制方法及设备
CN118410261B (zh) * 2024-07-04 2024-08-23 中国空气动力研究与发展中心计算空气动力研究所 通量雅可比矩阵更新频率调整方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970140A (ja) * 1995-08-29 1997-03-11 Tokyo Electric Power Co Inc:The 電力系統シミュレータ
JPH09294333A (ja) * 1996-04-25 1997-11-11 Mitsubishi Electric Corp 電力系統シミュレータ
JP2003162517A (ja) * 2001-11-27 2003-06-06 Semiconductor Leading Edge Technologies Inc 非線形方程式の解析方法、非線形方程式の解析装置、プログラム及び記録媒体
US20050197808A1 (en) * 2004-03-08 2005-09-08 An-Yu Kuo Method for determining electrical and magnetic field effects
US20140036815A1 (en) * 2012-08-03 2014-02-06 Agency For Science, Technology And Research Method for determining precoding matrixes for communication and a system therefrom
US8924186B1 (en) * 2010-09-09 2014-12-30 Sas Ip, Inc. Simulations of physical systems for multiple excitations

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10275545B2 (en) * 2013-03-15 2019-04-30 Ventana Systems, Inc. Modeling and simulation
CN103218493B (zh) * 2013-04-22 2016-03-02 中国科学技术大学 一种基于多重网格的快速等几何分析数值模拟方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970140A (ja) * 1995-08-29 1997-03-11 Tokyo Electric Power Co Inc:The 電力系統シミュレータ
JPH09294333A (ja) * 1996-04-25 1997-11-11 Mitsubishi Electric Corp 電力系統シミュレータ
JP2003162517A (ja) * 2001-11-27 2003-06-06 Semiconductor Leading Edge Technologies Inc 非線形方程式の解析方法、非線形方程式の解析装置、プログラム及び記録媒体
US20050197808A1 (en) * 2004-03-08 2005-09-08 An-Yu Kuo Method for determining electrical and magnetic field effects
US8924186B1 (en) * 2010-09-09 2014-12-30 Sas Ip, Inc. Simulations of physical systems for multiple excitations
US20140036815A1 (en) * 2012-08-03 2014-02-06 Agency For Science, Technology And Research Method for determining precoding matrixes for communication and a system therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179299A1 (ja) * 2019-03-01 2020-09-10 株式会社Preferred Networks 情報処理装置及び情報処理方法
EP3779735A1 (en) 2019-07-22 2021-02-17 Fujitsu Limited Information processing program, information processing method, and information processing apparatus
US11625517B2 (en) 2019-07-22 2023-04-11 Fujitsu Limited Information processing method, and information processing apparatus

Also Published As

Publication number Publication date
US20170185707A1 (en) 2017-06-29
EP3188054A1 (en) 2017-07-05
US10303825B2 (en) 2019-05-28
JP6837328B2 (ja) 2021-03-03
CN107016155A (zh) 2017-08-04
CN107016155B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
JP6837328B2 (ja) 非線形偏微分方程式および線形ソルバの収束推定
JP6854636B2 (ja) 物理座標におけるモーダル減衰を用いた構造動力学問題を効果的に解くこと
Wu et al. Robust topology optimization for structures under interval uncertainty
Pisaroni et al. A Continuation Multi Level Monte Carlo (C-MLMC) method for uncertainty quantification in compressible inviscid aerodynamics
Bijl et al. Implicit time integration schemes for the unsteady compressible Navier–Stokes equations: laminar flow
US10311180B2 (en) System and method of recovering Lagrange multipliers in modal dynamic analysis
US10685154B2 (en) Analytical consistent sensitivities for nonlinear equilibriums, where the only source of nonlinearities is small sliding contact constraints
US20170032068A1 (en) Techniques for warm starting finite element analyses with deep neural networks
Nigro et al. Up to sixth-order accurate A-stable implicit schemes applied to the discontinuous Galerkin discretized Navier–Stokes equations
KR20150073859A (ko) Cad 기반 초기 표면 기하형상 정정
US20180181691A1 (en) Analytical consistent sensitivities for external intervening between two sequential equilibriums
US10740513B2 (en) Intra-increment adjustments of implicit finite element simulation
US7962317B1 (en) Analytic linearization for system design
Hojjat et al. Fluid-structure interaction in the context of shape optimization and computational wind engineering
Eyi Convergence error and higher-order sensitivity estimations
Maia et al. Evaluation of an effective and robust implicit time-integration numerical scheme for Navier-Stokes equations in a CFD solver for compressible flows
Brethes et al. A mesh‐adaptative metric‐based full multigrid for the Poisson problem
Frisani et al. On the immersed boundary method: Finite element versus finite volume approach
Xue et al. Implementation of boundary conditions and global mass conservation in pressure-based finite volume method on unstructured grids for fluid flow and heat transfer simulations
Ullmann et al. Optimization-based parametric model order reduction for the application to the frequency-domain analysis of complex systems
Forster Analytic Sensitivities of Stochastic and Statistical Moments for Uncertainty Quantification
Porziani et al. CAEUp-Update of CAE models on actual manufactured shapes
Costea et al. A Nash–Hörmander iteration and boundary elements for the Molodensky problem
WO2023004593A1 (zh) 用于对电路进行仿真的方法、介质、程序产品以及电子设备
US20210141980A1 (en) Method and system for real-time simulations using convergence stopping criterion

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210209

R150 Certificate of patent or registration of utility model

Ref document number: 6837328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350