JP2017119918A - Steel sheet for can and method for producing thereof - Google Patents

Steel sheet for can and method for producing thereof Download PDF

Info

Publication number
JP2017119918A
JP2017119918A JP2017030621A JP2017030621A JP2017119918A JP 2017119918 A JP2017119918 A JP 2017119918A JP 2017030621 A JP2017030621 A JP 2017030621A JP 2017030621 A JP2017030621 A JP 2017030621A JP 2017119918 A JP2017119918 A JP 2017119918A
Authority
JP
Japan
Prior art keywords
less
rolling
steel
young
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017030621A
Other languages
Japanese (ja)
Other versions
JP6288331B2 (en
Inventor
幹人 須藤
Mikihito Sudo
幹人 須藤
克己 小島
Katsumi Kojima
克己 小島
祐介 中川
Yusuke Nakagawa
祐介 中川
多田 雅毅
Masaki Tada
雅毅 多田
飛山 洋一
Yoichi Tobiyama
洋一 飛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2017119918A publication Critical patent/JP2017119918A/en
Application granted granted Critical
Publication of JP6288331B2 publication Critical patent/JP6288331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet for a can excellent in buckling strength of the can body part to an external pressure, and a method for producing thereof.SOLUTION: The steel sheet for a can comprises, in mass%, C: 0.0050% or more and 0.0100% or less, Si: 0.050% or less, Mn: 0.10% or more and 1.00% or less, P: 0.010% or less, S: 0.010% or less, Al: 0.010% or more and 0.100% or less, N: 0.0010% or more and 0.0050% or less, and Nb: 0.020% or more and 0.120% or less, wherein C and Nb contents satisfy 2.1≤(Nb/C)×(12/93)≤2.5...(1)(Nb and C represent each content (mass%)), with the balance composed of Fe and inevitable impurities, and has Young's moduli in a rolling direction and in a 90° direction from the rolling direction of 220 GPa or more, and a tempering degree of T3-T4.SELECTED DRAWING: None

Description

本発明は、食品や飲料品の容器材料として用いられる缶用鋼板およびその製造方法に関するもので、特に、缶に用いた場合の外圧に対する缶胴部の座屈強度に優れた缶用鋼板およびその製造方法に関するものである。   The present invention relates to a steel plate for cans used as a container material for foods and beverages and a method for producing the same, and in particular, a steel plate for cans excellent in buckling strength of a can body against an external pressure when used in cans and the same. It relates to a manufacturing method.

近年の環境負荷低減およびコスト削減の観点から、食品や飲料缶に用いられる鋼板に対しては使用量の削減が求められており、2ピース、3ピース缶に関わらず鋼板の薄肉化が進行している。これに伴い、製缶、搬送工程および市場におけるハンドリング時に作用する外力による缶体の変形、内容物の加熱殺菌処理等における缶内部の圧力の増減による缶胴部の変形(座屈)が問題視されている。   From the viewpoint of reducing environmental impact and cost in recent years, there is a need to reduce the amount of steel sheets used in food and beverage cans, and thinning of steel sheets is progressing regardless of 2-piece or 3-piece cans. ing. Along with this, deformation of the can body due to external forces acting during can manufacturing, transportation processes and handling in the market, deformation of the can body due to increase or decrease in pressure inside the can during processing of heat sterilization of the contents (buckling) is regarded as a problem Has been.

従来、この耐変形性を向上させるために鋼板の高強度化が行われてきた。しかし、鋼板の高強度化によって強度(YP)が上昇するとスプリングバックの影響が大きくなるためロールフォーム性が低下し、製缶工程において問題となる。また、鋼板の高強度化は缶胴部成形後に行われるネック加工、次いで行われるフランジ成形において、ネックしわ及びフランジ割れの発生率を増加させてしまう。このように、鋼板の高強度化は必ずしも鋼板の薄肉化に伴う耐変形性の劣化を補う方法としては適切ではない。   Conventionally, the strength of steel sheets has been increased in order to improve the deformation resistance. However, when the strength (YP) is increased by increasing the strength of the steel sheet, the effect of springback is increased, so that the roll foam property is lowered, which causes a problem in the can manufacturing process. In addition, increasing the strength of the steel sheet increases the incidence of neck wrinkles and flange cracks in necking performed after can body part forming and then flange forming performed. Thus, increasing the strength of a steel sheet is not necessarily an appropriate method for compensating for the deterioration of deformation resistance associated with the thinning of the steel sheet.

一方、缶胴部の座屈現象は、缶胴部板厚が薄肉化されたことによる缶体の剛性の劣化によって生じている。従って、耐座屈性(パネリング強度)を向上させるためには、缶体のサイズやデザインを最適化し、缶体の剛性を高める方法が考えられる。そして、剛性を向上させる方法としては、鋼板のヤング率そのものを高める方法が考えられる。   On the other hand, the buckling phenomenon of the can body portion is caused by the deterioration of the rigidity of the can body due to the thinning of the plate thickness of the can body portion. Therefore, in order to improve the buckling resistance (paneling strength), a method of optimizing the size and design of the can body and increasing the rigidity of the can body can be considered. As a method for improving the rigidity, a method for increasing the Young's modulus of the steel sheet itself can be considered.

鉄のヤング率と結晶方位とは強い相関があり、<110>方向が圧延方向に平行な結晶方位群(αファイバー)は圧延方向に対して90°となる幅方向のヤング率を高め、特に{112}<110>方位の集積を高めることで、理想的には約280GPaのヤング率を有する鋼板を得ることができる。また、<111>方向が板面法線方向に平行な結晶方位群(γファイバー)は圧延方向および圧延方向から90°方向のヤング率を約230GPaまで高めることができる。一方、鋼板の結晶方位が特定の方位への配向を示さない場合、即ち集合組織がランダムである鋼板のヤング率は、約205GPaである。   There is a strong correlation between the Young's modulus of iron and the crystal orientation, and the crystal orientation group (α fiber) whose <110> direction is parallel to the rolling direction increases the Young's modulus in the width direction, which is 90 ° with respect to the rolling direction. By increasing the accumulation of {112} <110> orientation, a steel sheet having a Young's modulus of about 280 GPa can be obtained. In addition, the crystal orientation group (γ fiber) in which the <111> direction is parallel to the normal direction of the plate surface can increase the Young's modulus in the 90 ° direction from the rolling direction and the rolling direction to about 230 GPa. On the other hand, when the crystal orientation of the steel sheet does not show an orientation in a specific orientation, that is, the Young's modulus of the steel sheet with a random texture is about 205 GPa.

高ヤング率を志向した缶用鋼板の例としては、例えば、特許文献1が挙げられる。特許文献1には、極低炭素鋼を冷延焼鈍後、50%以上の二次冷延を行い強い圧延集合組織(αファイバー)を形成させ、圧延方向から90°方向のヤング率を高めることにより鋼板の剛性を上げる方法が開示されている。   As an example of a steel plate for cans oriented to a high Young's modulus, for example, Patent Document 1 can be mentioned. In Patent Document 1, after cold rolling annealing of ultra-low carbon steel, secondary cold rolling of 50% or more is performed to form a strong rolling texture (α fiber), and the Young's modulus in the 90 ° direction from the rolling direction is increased. Discloses a method for increasing the rigidity of a steel sheet.

特許文献2には、極低炭素鋼の熱延板を60%以上の圧延率で冷延し、強い圧延集合組織を形成させ、圧延方向から90°方向のヤング率を高めることにより鋼板の剛性を上げ、容器用原板の薄手化を可能にするとともに焼鈍を行わない鋼板の製造方法が開示されている。   In Patent Document 2, a steel sheet is stiffened by cold rolling a hot rolled sheet of ultra-low carbon steel at a rolling rate of 60% or more, forming a strong rolling texture, and increasing the Young's modulus in the 90 ° direction from the rolling direction. The manufacturing method of the steel plate which does not perform annealing while enabling thinning of the container original plate is disclosed.

特許文献3には、極低炭素鋼をAr変態点以下の温度で少なくとも50%以上の熱間圧延を施し、酸洗後、50%以上の冷間圧延をした後、400℃以上再結晶温度以下で焼鈍を行うことで圧延方向から90°方向のヤング率を高め鋼板の剛性を上げる方法が開示されている。なお、前記再結晶温度とは再結晶率が10%になる温度のことを指している。 Patent Document 3 describes that ultra-low carbon steel is hot-rolled at least 50% at a temperature below the Ar 3 transformation point, pickled, cold-rolled at 50% or more, and then recrystallized at 400 ° C or more. A method for increasing the Young's modulus in the 90 ° direction from the rolling direction and increasing the rigidity of the steel sheet by annealing at a temperature lower than the temperature is disclosed. The recrystallization temperature refers to a temperature at which the recrystallization rate becomes 10%.

特開平6−212353号公報JP-A-6-212353 特開平6−248332号公報JP-A-6-248332 特開平6−248339号公報JP-A-6-248339

しかしながら、上記従来技術は、いずれも問題点を抱えている。   However, all of the above conventional techniques have problems.

例えば、特許文献1は、付加的な工程である二次冷間圧延を行うため、工程が増えて製造コスト高となるという問題がある。さらに、二次冷間圧延率が50%以上という高圧延率は実操業において現実的ではない。   For example, since Patent Document 1 performs secondary cold rolling, which is an additional process, there is a problem that the number of processes increases and the manufacturing cost increases. Furthermore, a high rolling reduction rate of 50% or more of the secondary cold rolling reduction rate is not realistic in actual operation.

特許文献2は、冷間圧延後、全く焼鈍をしないことで、圧延集合組織への集積を強めて圧延方向から90°方向のヤング率を高める方法である。しかし、冷間圧延まま素材では強度が高すぎて延性も低いことから、ロールフォーム性、ネック加工性およびフランジ成形性を低下させてしまう。   Patent Document 2 is a method of enhancing the Young's modulus in the 90 ° direction from the rolling direction by strengthening the accumulation in the rolling texture by not annealing at all after cold rolling. However, since the strength is too high and the ductility is low in the raw material as it is cold-rolled, roll formability, neck workability and flange formability are deteriorated.

特許文献3は、Ar3変態点以下での温度で少なくとも50%以上の熱間圧延を行うため、中央部より冷却速度の速いエッジ部は仕上げ圧延時の温度が低くなる傾向があり、仕上げ圧延時に導入された歪が再結晶や回復で解放されずにエッジ部の強度を高くする傾向がある。そのため、中央部とエッジ部の強度差が大きくなり、幅方向に均一な熱延板が得られにくいことから、現状の操業で均一なものを得ることは困難である。また、冷間圧延後、400℃以上再結晶温度以下で焼鈍することで、圧延集合組織への集積を強めて圧延方向から90°方向のヤング率を高める方法が開示されているが、再結晶温度以下で焼鈍を行った場合、冷間圧延組織、回復組織および再結晶組織が混在し、強度および延性等の機械特性値が鋼板内で不均一になるという問題がある。   Patent Document 3 performs hot rolling at least 50% or more at a temperature below the Ar3 transformation point. Therefore, the edge portion having a higher cooling rate than the center portion tends to have a lower temperature during finish rolling, and during finish rolling. There is a tendency that the introduced strain is not released by recrystallization or recovery and the strength of the edge portion is increased. For this reason, the difference in strength between the center portion and the edge portion becomes large, and it is difficult to obtain a uniform hot-rolled sheet in the width direction, so it is difficult to obtain a uniform one in the current operation. Further, after cold rolling, a method of increasing the Young's modulus in the 90 ° direction from the rolling direction by annealing at 400 ° C. or higher and below the recrystallization temperature to enhance the accumulation in the rolling texture is disclosed. When annealing is performed at a temperature lower than that, there is a problem that a cold-rolled structure, a recovery structure, and a recrystallized structure are mixed, and mechanical property values such as strength and ductility become uneven in the steel sheet.

すなわち、缶体剛性の向上を目的に鋼板のヤング率を高める製造方法としてコスト高となる二次冷間圧延工程の付加や、材質不均一となる再結晶温度以下の焼鈍工程を行うことなく、現状の缶用鋼板の製造方法で得られる高ヤング率鋼板およびその製造方法を志向した技術は存在しなかった。   That is, without adding a secondary cold rolling process that increases the cost as a manufacturing method to increase the Young's modulus of the steel sheet for the purpose of improving the can body rigidity, or without performing an annealing process at a recrystallization temperature or less that makes the material non-uniform, There has been no high Young's modulus steel plate obtained by the current method for manufacturing steel plates for cans and no technology aimed at the manufacturing method.

本発明は、かかる事情に鑑みなされたもので、缶に用いた場合の外圧に対する缶胴部の座屈強度に優れた缶用鋼板およびその製造方法を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the steel plate for cans excellent in the buckling strength of the can trunk | drum with respect to the external pressure at the time of using for a can, and its manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。
セミ極低炭素鋼をベースに化学成分、冷間圧延条件および焼鈍条件を最適化することで、圧延方向および/または圧延方向から90°方向のヤング率が220GPa以上で、かつ調質度がT3〜T4である缶用鋼板の製造が実現可能であることを見出した。
The inventors of the present invention have intensively studied to solve the above problems. As a result, the following knowledge was obtained.
By optimizing chemical composition, cold rolling conditions and annealing conditions based on semi- extra low carbon steel, Young's modulus in the rolling direction and / or 90 ° direction from the rolling direction is 220 GPa or more, and the tempering degree is T3 It has been found that it is feasible to produce a steel plate for cans of ~ T4.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.0050%以上0.0100%以下、Si:0.050%以下、Mn:0.10%以上1.00%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N:0.0010%以上0.0050%以下、Nb:0.020%以上0.120%以下を含有し、CおよびNbの含有量が下記式(1)を満足し、残部はFeおよび不可避的不純物からなり、圧延方向および/または圧延方向から90°方向のヤング率が220GPa以上であり、調質度がT3〜T4であることを特徴とする缶用鋼板。
0.4≦(Nb/C)×(12/93)≦2.5・・・(1)
ただし、Nb、Cは含有量(質量%)を示す。
[2]質量%で、C:0.0050%以上0.0100%以下、Si:0.050%以下、Mn:0.10%以上1.00%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N:0.0010%以上0.0030%以下を含有し、さらにNb:0.020%以上0.120%以下、B:0.0005%以上0.0070%以下のうちから選ばれる少なくとも1種を含有し、CおよびNbの含有量が下記式(1)を満足し、NおよびBの含有量が下記式(2)を満足し、残部はFeおよび不可避的不純物からなり、圧延方向および/または圧延方向から90°方向のヤング率が220GPa以上であり、
調質度がT3〜T4であることを特徴とする缶用鋼板。
0.4≦(Nb/C)×(12/93)≦2.5・・・(1)
1.0≦(B/N)×(14/11)≦3.5・・・(2)
ただし、Nb、C、B、Nは含有量(質量%)を示す。
[3]前記[1]または[2]に記載の化学成分を有する鋼スラブを、熱間圧延し、酸洗後、85%以上の圧延率で冷間圧延を行い、引き続き、再結晶温度以上780℃以下の温度で焼鈍を行い、次いで、調質圧延を行うことを特徴とする缶用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.0050% or more and 0.0100% or less, Si: 0.050% or less, Mn: 0.10% or more and 1.00% or less, P: 0.030% or less, S: 0.020% or less, Al: 0.010% or more, 0.100% Below, N: 0.0010% or more and 0.0050% or less, Nb: 0.020% or more and 0.120% or less, the content of C and Nb satisfies the following formula (1), the balance consists of Fe and inevitable impurities, rolling A steel plate for cans, wherein the Young's modulus in the 90 ° direction from the direction and / or the rolling direction is 220 GPa or more, and the tempering degree is T3 to T4.
0.4 ≦ (Nb / C) × (12/93) ≦ 2.5 (1)
However, Nb and C show content (mass%).
[2] By mass%, C: 0.0050% or more and 0.0100% or less, Si: 0.050% or less, Mn: 0.10% or more and 1.00% or less, P: 0.030% or less, S: 0.020% or less, Al: 0.010% or more, 0.100% N: 0.0010% or more and 0.0030% or less, Nb: 0.020% or more and 0.120% or less, B: At least one selected from 0.0005% or more and 0.0070% or less, and the contents of C and Nb Satisfies the following formula (1), the contents of N and B satisfy the following formula (2), the balance consists of Fe and inevitable impurities, and the Young's modulus in the rolling direction and / or 90 ° direction from the rolling direction Is over 220GPa,
A steel sheet for cans characterized by a tempering degree of T3 to T4.
0.4 ≦ (Nb / C) × (12/93) ≦ 2.5 (1)
1.0 ≦ (B / N) × (14/11) ≦ 3.5 (2)
However, Nb, C, B, N shows content (mass%).
[3] A steel slab having the chemical composition described in [1] or [2] above is hot-rolled, pickled, and then cold-rolled at a rolling rate of 85% or higher, and subsequently at a recrystallization temperature or higher. A method for producing a steel plate for cans, comprising annealing at a temperature of 780 ° C or lower and then performing temper rolling.
In addition, in this specification,% which shows the component of steel is mass% altogether.

本発明によれば、缶に用いた場合の外圧に対する缶胴部の座屈強度に優れた缶用鋼板が得られる。すなわち、外圧に対する缶胴部の座屈強度が、製缶および飲料メーカーが設けている基準値(約1.5kgf/cm2)より高い缶用鋼板が得られる。
したがって、本発明の缶用鋼板を用いることで食缶や飲料缶等に使用される缶体の剛性が向上し、鋼板の更なる薄肉化が可能になり、省資源化および低コスト化を達成することができる。
また、本発明の鋼板は、3ピース缶用鋼板として好適に用いることができる。また、本発明の鋼板の適用範囲は、各種金属缶のみならず、缶電池内装缶、各種家電・電気部品、自動車用部品等の幅広い範囲への適用も期待できる。
ADVANTAGE OF THE INVENTION According to this invention, the steel plate for cans excellent in the buckling strength of the can trunk | drum with respect to the external pressure at the time of using for a can is obtained. In other words, a steel plate for cans is obtained in which the buckling strength of the can body with respect to external pressure is higher than a reference value (about 1.5 kgf / cm 2 ) provided by the can and beverage manufacturers.
Therefore, by using the steel plate for cans of the present invention, the rigidity of the can used for food cans, beverage cans, etc. is improved, the steel plate can be made thinner, and resource saving and cost reduction are achieved. can do.
Moreover, the steel plate of this invention can be used suitably as a steel plate for 3 piece cans. Moreover, the application range of the steel plate of the present invention can be expected to be applied not only to various metal cans but also to a wide range of can battery interior cans, various home appliances / electrical parts, automotive parts and the like.

以下、本発明を詳細に説明する。
本発明の缶用鋼板は、成分組成が質量%で、C:0.0050%以上0.0100%以下、Si:0.050%以下、Mn:0.10%以上1.00%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N:0.0010%以上0.0050%以下、Nb:0.020%以上0.120%以下を含有し、CおよびNbの含有量が下記式(1)を満足し、残部がFeおよび不可避的不純物からなり、圧延方向および/または圧延方向から90°方向のヤング率が220GPa以上であり、調質度がT3〜T4である。または、質量%で、C:0.0050%以上0.0100%以下、Si:0.050%以下、Mn:0.10%以上1.00%以下、P:0.030%以下、S:0.020%以下、Al:0.010%以上0.100%以下、N:0.0010%以上0.0030%以下を含有し、さらにNb:0.020%以上0.120%以下、B:0.0005%以上0.0070%以下のうちから選ばれる少なくとも1種を含有し、CおよびNbの含有量が下記式(1)を満足し、NおよびBの含有量が下記式(2)を満足し、残部はFeおよび不可避的不純物からなり、圧延方向および/または圧延方向から90°方向のヤング率が220GPa以上であり、調質度がT3〜T4である。
そして、このような缶用鋼板は、上記成分組成を有する鋼スラブに、熱間圧延し、酸洗後、圧延率85%以上の冷間圧延を行い、次いで、再結晶温度以上780℃以下の温度で焼鈍を行い、調質圧延を行うことで製造可能となる。これらは、本発明の最も重要な要件である。
0.4≦(Nb/C)×(12/93)≦2.5・・・(1)
1.0≦(B/N)×(14/11)≦3.5・・・(2)
ただし、Nb、C、B、Nは含有量(質量%)を示す。
Hereinafter, the present invention will be described in detail.
The steel plate for cans of the present invention has a component composition of mass%, C: 0.0050% or more and 0.0100% or less, Si: 0.050% or less, Mn: 0.10% or more and 1.00% or less, P: 0.030% or less, S: 0.020% or less , Al: 0.010% or more and 0.100% or less, N: 0.0010% or more and 0.0050% or less, Nb: 0.020% or more and 0.120% or less, the content of C and Nb satisfies the following formula (1), and the balance is Fe And the inevitable impurities, the Young's modulus in the rolling direction and / or 90 ° direction from the rolling direction is 220 GPa or more, and the tempering degree is T3 to T4. Or, in mass%, C: 0.0050% or more and 0.0100% or less, Si: 0.050% or less, Mn: 0.10% or more and 1.00% or less, P: 0.030% or less, S: 0.020% or less, Al: 0.010% or more and 0.100% or less , N: 0.0010% or more and 0.0030% or less, Nb: 0.020% or more and 0.120% or less, B: 0.0005% or more and 0.0070% or less, at least one selected from C, Nb content The following formula (1) is satisfied, the contents of N and B satisfy the following formula (2), the balance is composed of Fe and inevitable impurities, and the Young's modulus in the rolling direction and / or 90 ° direction from the rolling direction is It is 220 GPa or more, and the tempering degree is T3 to T4.
And such a steel plate for cans is hot-rolled to a steel slab having the above component composition, pickled, then cold-rolled at a rolling rate of 85% or higher, and then at a recrystallization temperature of 780 ° C. or higher. It can be manufactured by annealing at a temperature and temper rolling. These are the most important requirements of the present invention.
0.4 ≦ (Nb / C) × (12/93) ≦ 2.5 (1)
1.0 ≦ (B / N) × (14/11) ≦ 3.5 (2)
However, Nb, C, B, N shows content (mass%).

本発明の缶用鋼板の成分組成について説明する。
C:0.0050%以上0.0100%以下、Nb:0.020%以上0.120%以下
CおよびNbは、本発明において最も重要な役割を有する元素である。熱間圧延時に固溶Nbによるγ粒の再結晶抑制効果により熱延板の結晶粒が細粒化し、再結晶焼鈍時のγファイバー再結晶粒の核生成サイトとなる熱延板の結晶粒界面積が増大する。その結果、γファイバーが発達し、圧延方向、圧延方向から45°、圧延方向から90°のそれぞれのヤング率を高めることができる。
また、NbCの析出物増量による鋼板組織の微細化および析出強化を利用することで鋼板を硬質化することができる。
そして、Cは0.0050%以上0.0100%以下、Nbは0.020%以上0.120%以下とすることで圧延方向および/または圧延方向から90°のヤング率を220GPa以上かつ調質度がT3〜T4の缶用鋼板を得ることができる。
Cが0.0050%未満では、NbCの析出量が減少し、鋼板組織の微細化および析出強化効果を充分に得ることができず、目的の調質度を得ることができない。Cが0.0100%超えでは、フェライト中にCが固溶しマトリックスが過度に硬質化して成形性が悪化する。また、Nbが0.020%未満では熱延板結晶粒を充分に細粒化させることができない。Nbが0.120%を超えると、再結晶完了温度を過度に上昇させ、特に薄物材が多い缶用鋼板では連続焼鈍工程などで工業的に生産することが困難となる。
さらに、本発明においては、CおよびNbの含有量が下記式(1)を満足するものとする。
0.4≦(Nb/C)×(12/93)≦2.5・・・(1)
ただし、Nb、Cは含有量(質量%)を示す。
(Nb/C)×(12/93)が0.4未満では、NbCによる細粒化および析出強化効果が不充分であり、かつ、目的の調質度を得ることができない。(Nb/C)×(12/93)が2.5超えでは、固溶Nbのsolute drag効果による再結晶遅延が過度になり、製造が困難であることやNbCの粗大化によるピン止め効果の減少でフェライト粒径が粗大化し、結晶粒細粒化効果が得られない。
The component composition of the steel plate for cans of this invention is demonstrated.
C: 0.0050% to 0.0100%, Nb: 0.020% to 0.120%
C and Nb are elements having the most important role in the present invention. Grain boundaries of hot-rolled sheets become the nucleation sites of γ-fiber recrystallized grains during recrystallization annealing because of the effect of suppressing recrystallization of γ grains by solute Nb during hot rolling The area increases. As a result, γ fibers develop, and the Young's modulus can be increased in the rolling direction, 45 ° from the rolling direction, and 90 ° from the rolling direction.
Further, the steel sheet can be hardened by utilizing the refinement of the steel sheet structure and precipitation strengthening by increasing the amount of precipitates of NbC.
And C is 0.0050% or more and 0.0100% or less, Nb is 0.020% or more and 0.120% or less, so that the Young's modulus of 90 ° from the rolling direction and / or rolling direction is 220 GPa or more and the tempering degree is T3 to T4. A steel plate can be obtained.
If C is less than 0.0050%, the precipitation amount of NbC decreases, and the effect of refinement of the steel sheet structure and precipitation strengthening cannot be obtained sufficiently, and the desired tempering degree cannot be obtained. If C exceeds 0.0100%, C dissolves in the ferrite, the matrix becomes excessively hard, and formability deteriorates. Further, if Nb is less than 0.020%, the hot rolled plate crystal grains cannot be sufficiently refined. If Nb exceeds 0.120%, the recrystallization completion temperature is excessively raised, and it becomes difficult to industrially produce steel plates for cans, especially those with many thin materials, in a continuous annealing process or the like.
Furthermore, in this invention, content of C and Nb shall satisfy following formula (1).
0.4 ≦ (Nb / C) × (12/93) ≦ 2.5 (1)
However, Nb and C show content (mass%).
If (Nb / C) × (12/93) is less than 0.4, the effect of fine graining and precipitation strengthening by NbC is insufficient, and the desired tempering degree cannot be obtained. If (Nb / C) x (12/93) exceeds 2.5, the recrystallization delay due to the solute drag effect of solute Nb becomes excessive, making it difficult to manufacture and reducing the pinning effect due to the coarsening of NbC. The ferrite grain size becomes coarse and the effect of grain refinement cannot be obtained.

Si:0.050%以下
Siは多量に添加すると、鋼板の表面処理性の劣化および耐食性の低下の問題が発生するため、0.050%以下、好ましくは0.020%以下とする。
Si: 0.050% or less
When Si is added in a large amount, problems such as deterioration of the surface treatment property of the steel sheet and a decrease in corrosion resistance occur, so 0.050% or less, preferably 0.020% or less.

Mn:0.10%以上1.00%以下
Mnは、鋼中に含まれる不純物のSに起因する熱間延性の低下を防止するため、0.10%以上の添加が必要である。また、MnはAr3変態点を低下させる元素の一つであり、熱間圧延仕上げ圧延温度を低下させることができため、熱間圧延時にγ粒の再結晶粒成長を抑制し、さらに変態後のα粒を微細化できる。一方で、Mnは固溶Cと相互作用して再結晶集合組織形成に影響を及ぼし、Mn添加量の増加に伴い、γファイバーへの集積を低下させる作用もある。従って、これらを考慮し1.00%以下とする。Mnが1.00%超えでは、圧延方向から90°方向のヤング率が220GPa未満となり、さらに鋼板が過度に硬質化し、ロールフォーム性などの製缶特性が低下する。以上より、Mnは0.10%以上1.00%以下とする。
Mn: 0.10% to 1.00%
Mn needs to be added in an amount of 0.10% or more in order to prevent a decrease in hot ductility due to the impurity S contained in the steel. In addition, Mn is one of the elements that lowers the Ar 3 transformation point, and can reduce the hot rolling finish rolling temperature, thereby suppressing the recrystallized grain growth of γ grains during hot rolling, and further after transformation Α grains can be refined. On the other hand, Mn interacts with solute C to affect the formation of recrystallized texture, and has the effect of reducing accumulation in γ-fiber as the amount of Mn added increases. Therefore, considering these, the content is made 1.00% or less. If Mn exceeds 1.00%, the Young's modulus in the 90 ° direction from the rolling direction is less than 220 GPa, and the steel sheet is excessively hardened, resulting in deterioration in can-making characteristics such as roll formability. Therefore, Mn is set to 0.10% or more and 1.00% or less.

P:0.030%以下
Pは、多量に添加すると、鋼の硬質化、耐食性の低下を引き起こす。よって、Pの上限は0.030%とする。
P: 0.030% or less
When P is added in a large amount, it causes hardening of the steel and deterioration of corrosion resistance. Therefore, the upper limit of P is 0.030%.

S:0.020%以下
Sは、鋼中でMnと結合してMnSを形成し多量に析出することで鋼の熱間延性を低下させる。よって、Sは0.020%以下とする。
S: 0.020% or less
S combines with Mn in steel to form MnS and precipitate a large amount, thereby reducing the hot ductility of the steel. Therefore, S is set to 0.020% or less.

Al:0.010%以上0.100%以下
Alは、脱酸剤として添加される元素である。また、NとAlNを形成することにより、鋼中の固溶Nを減少させる効果を有する。しかし、Alの含有量が0.010%未満では、十分な脱酸効果や固溶N低減効果が得られない。一方、0.100%を超えると、上記効果が飽和するだけでなく、アルミナなどの介在物が増加するため好ましくない。よって、Alは0.010%以上0.100%以下とする。
Al: 0.010% or more and 0.100% or less
Al is an element added as a deoxidizer. Moreover, by forming N and AlN, it has the effect of reducing the solute N in the steel. However, when the Al content is less than 0.010%, a sufficient deoxidizing effect or a solid solution N reducing effect cannot be obtained. On the other hand, if it exceeds 0.100%, not only is the above effect saturated, but also inclusions such as alumina increase, which is not preferable. Therefore, Al is made 0.010% or more and 0.100% or less.

N:0.0010%以上0.0050%以下、B:0.0005%以上0.0070%以下
NはAlやNb等と結合して窒化物や炭窒化物を形成し、熱間延性を害するため少ないほど好ましい。また、Nは固溶強化元素の一つであり、多量に添加すると鋼板の硬質化につながり伸びが著しく低下して成形性を悪化させる。一方で、操業上安定して0.0010%未満とすることは困難であり、製造コストも上昇する。以上より、Nは0.0010%以上0.0050%以下とする。さらに、Bを添加する場合のNの上限は、下記のようにBNとして析出させた上で固溶Bの効果を効率よく得るため、0.0030%とする。
NおよびBは、CおよびNbと同様に本発明において重要な役割を有する元素である。BはBNが析出するために必要な量以上に添加された場合、熱間圧延時に過剰に添加されたBが結晶粒界に固溶Bとして偏析し、結晶粒の粒成長を抑制するためγ粒の再結晶抑制効果により熱延板の結晶粒が細粒化し、再結晶焼鈍時のγファイバー再結晶粒の核生成サイトとなる熱延板の結晶粒界面積が増大する。その結果、γファイバーが発達し、圧延方向、圧延方向から45°、圧延方向から90°のそれぞれのヤング率を高めることができる。このような結晶粒の微細化効果を発揮させるためには、BNを析出させた上でさらに固溶BとしてBを存在させることが必要であり、本発明者らが行った種々の試験の結果から、Bは0.0005%以上必要であるとの知見を得た。以上より、本発明では0.0005%をBの下限とする。一方、固溶Bの増加は連続焼鈍工程における再結晶完了温度を過度に上昇させ、炉内破断やバックリングの発生の危険が大きくなる。このため、0.0070%をBの上限とする。Nは不可逆的に混入する不純物である。N量が高くなるほどこれを固定するためのBの添加量をふやさなければならない。B添加量の大幅な増加はコストアップにつながるので、Nの上限は0.0030%とする。
さらに、本発明においては、NおよびBの含有量が下記式(2)を満足するものとする。
1.0≦(B/N)×(14/11)≦3.5・・・(2)
ただし、B、Nは含有量(質量%)を示す
(B/N)×(14/11)が1.0未満では、固溶Bによる熱延板の細粒化効果が不充分であり、(B/N)×(14/11)が3.5超えでは、固溶Bによる再結晶遅延が過度になり、製造が困難となる。
N: 0.0010% to 0.0050%, B: 0.0005% to 0.0070%
N is preferably as small as possible because it combines with Al, Nb, or the like to form nitrides or carbonitrides and impairs hot ductility. N is one of the solid solution strengthening elements, and when added in a large amount, it leads to hardening of the steel sheet, and the elongation is remarkably lowered to deteriorate the formability. On the other hand, it is difficult to stabilize the operation to less than 0.0010%, and the manufacturing cost increases. Therefore, N is set to be 0.0010% or more and 0.0050% or less. Further, the upper limit of N in the case of adding B is set to 0.0030% in order to efficiently obtain the effect of solid solution B after being precipitated as BN as described below.
N and B are elements having an important role in the present invention, like C and Nb. When B is added in an amount more than necessary for the precipitation of BN, excessively added B during hot rolling segregates as a solid solution B at the grain boundary and suppresses grain growth of the crystal grain. Due to the effect of suppressing the recrystallization of the grains, the crystal grains of the hot-rolled sheet become finer, and the crystal grain interface area of the hot-rolled sheet that becomes the nucleation site of the γ-fiber recrystallized grains during the recrystallization annealing increases. As a result, γ fibers develop, and the Young's modulus can be increased in the rolling direction, 45 ° from the rolling direction, and 90 ° from the rolling direction. In order to exert such a refinement effect of crystal grains, it is necessary to precipitate BN and further to have B as a solid solution B. Results of various tests conducted by the present inventors From this, it was found that B is required to be 0.0005% or more. From the above, in the present invention, 0.0005% is set as the lower limit of B. On the other hand, the increase in solid solution B excessively raises the recrystallization completion temperature in the continuous annealing process, and the risk of occurrence of in-furnace breakage and buckling increases. For this reason, 0.0070% is made the upper limit of B. N is an irreversible impurity. The higher the amount of N, the more B should be added to fix it. Since a significant increase in the amount of B added leads to an increase in cost, the upper limit of N is set to 0.0030%.
Furthermore, in this invention, content of N and B shall satisfy following formula (2).
1.0 ≦ (B / N) × (14/11) ≦ 3.5 (2)
However, if B and N indicate the content (mass%) (B / N) × (14/11) is less than 1.0, the effect of refining hot-rolled sheet by solid solution B is insufficient, (B If / N) × (14/11) exceeds 3.5, the recrystallization delay due to the solid solution B becomes excessive, and the production becomes difficult.

残部はFeおよび不可避的不純物とする。   The balance is Fe and inevitable impurities.

次に、本発明の缶用鋼板の機械的性質について説明する。
圧延方向および/または圧延方向から90°方向のヤング率が220GPa以上
圧延方向または圧延方向から90°方向が缶胴部の周方向になるようにロールフォームが施される容器において、缶胴部の剛性を高める観点から、圧延方向および/または圧延方向から90°方向のヤング率を220GPa以上とする。220GPa以上とすることで、パネリング強度が顕著に向上し、鋼板の薄肉化に伴う、内容物の加熱殺菌処理等における缶外部の圧力の増減による缶胴部の座屈変形を防ぐことができる。圧延方向のみ、圧延方向から90°方向のみ、圧延方向と圧延方向から90°方向の両方、のいずれかが220GPa以上であってもかまわないが、ヤング率が最も高い方向が缶胴部の周方向になるようにロールフォームを施すのが好ましい。
なお、圧延方向および/または圧延方向から90°方向のヤング率は、横振動型の共振周波数測定装置により測定することができる。
Next, the mechanical properties of the steel plate for cans of the present invention will be described.
In the container in which the roll foam is applied so that the Young's modulus in the rolling direction and / or the 90 ° direction from the rolling direction is 220 GPa or more and the 90 ° direction from the rolling direction is the circumferential direction of the can body portion, From the viewpoint of increasing rigidity, the Young's modulus in the rolling direction and / or 90 ° direction from the rolling direction is set to 220 GPa or more. By setting it to 220 GPa or more, the paneling strength is remarkably improved, and buckling deformation of the can body due to increase / decrease of pressure outside the can in the heat sterilization treatment of the contents accompanying thinning of the steel plate can be prevented. Either the rolling direction only, the 90 ° direction from the rolling direction, or both the rolling direction and the 90 ° direction from the rolling direction may be 220 GPa or more, but the direction with the highest Young's modulus is the circumference of the can body part. It is preferable to apply the roll form so that it is in the direction.
The Young's modulus in the rolling direction and / or 90 ° direction from the rolling direction can be measured by a transverse vibration type resonance frequency measuring device.

調質度がT3〜T4
内容物の加熱殺菌処理等の処理時に缶外部の圧力の増減による缶胴部の座屈変形は、鋼板のヤング率を高めることによって防ぐことができる。しかし、缶の落下、自動販売機内の搬送装置との接触および缶の積み重ね等による塑性変形を防止するためには鋼板を硬質化させることが必要である。一方、過度な硬質化は、ロールフォーム性などの製缶特性を著しく低下させる。以上から、調質度はT3〜T4とする。なお、本発明において、調質度がT3〜T4とは、缶用鋼板として用いられるブリキやティンフリー鋼の硬さを示す指標であり、JIS G3303およびJIS G3315では、ロックウェル硬度(HR30T)でT3が57±3、T4が61±3と規定されている。
Tempering degree is T3 ~ T4
Buckling deformation of the can body due to increase or decrease in pressure outside the can during processing such as heat sterilization of the contents can be prevented by increasing the Young's modulus of the steel sheet. However, it is necessary to harden the steel plate in order to prevent plastic deformation due to dropping of the can, contact with the conveying device in the vending machine, and stacking of the cans. On the other hand, excessive hardening significantly reduces can-making characteristics such as roll foam properties. From the above, the refining degree is T3 to T4. In the present invention, the tempering degree T3 to T4 is an index indicating the hardness of tin or tin-free steel used as a steel plate for cans. In JIS G3303 and JIS G3315, Rockwell hardness (HR30T) is used. T3 is defined as 57 ± 3 and T4 is defined as 61 ± 3.

次に、本発明の缶用鋼板の製造方法について説明する。
本発明の缶用鋼板は、上記組成からなる鋼スラブを、熱間圧延し、酸洗後、85%以上の圧延率で冷間圧延を行い、引き続き、再結晶温度以上780℃以下の温度で焼鈍を行い、調質圧延を行うことで製造される。
Next, the manufacturing method of the steel plate for cans of this invention is demonstrated.
The steel plate for cans of the present invention is a steel slab having the above composition, hot-rolled, pickled, cold-rolled at a rolling rate of 85% or higher, and subsequently at a recrystallization temperature of 780 ° C. or lower. Manufactured by annealing and temper rolling.

転炉等を用いた通常公知の溶製方法により溶製することができる。また、連続鋳造法等の通常用いられる鋳造方法で圧延素材とすることができる。この時、スラブ再加熱温度:1050〜1300℃が好ましい。加熱温度が高すぎると製品表面の欠陥や、エネルギーコストが上昇するなどの問題が発生する場合がある。一方、低すぎると、最終仕上圧延温度の確保が難しくなる。   It can be melted by a generally known melting method using a converter or the like. Moreover, it can be set as a rolling raw material with the casting methods used normally, such as a continuous casting method. At this time, the slab reheating temperature is preferably 1050 to 1300 ° C. If the heating temperature is too high, problems such as defects on the product surface and increased energy costs may occur. On the other hand, if it is too low, it will be difficult to ensure the final finish rolling temperature.

熱間仕上圧延温度:860〜950℃、巻取温度500〜640℃(好適条件)
熱延鋼板の結晶粒微細化や析出物分布の均一性の観点から、最終仕上圧延温度は860〜950℃、巻取温度は500〜640℃の範囲が好ましい。最終仕上圧延温度が、950℃よりも高くなると、圧延後のγ粒粒成長がより激しく起こり、それに伴う粗大γ粒により変態後のα粒の粗大化を招く場合がある。また、860℃より低い場合は、Ar3変態点以下の圧延となり、α粒の粗大化を招く場合がある。巻取温度が640℃よりも高くなると、Nb系析出物の析出量は多くなるが、析出物粒径が粗大化し、析出物のピン止め効果を減少させてα粒径が粗大化する場合がある。また、500℃より低い温度域ではNb系析出物の析出量が減るため、ピン止め効果でα相を微細化できない場合がある。
より好ましくは、最終仕上圧延温度は860〜930℃、巻取温度は500〜600℃の範囲である。
続く酸洗工程は、表層スケールが除去できればよく、特に条件は規定しない。通常行われる方法により、酸洗することができる。
Hot finish rolling temperature: 860-950 ° C, winding temperature 500-640 ° C (preferred conditions)
From the viewpoint of grain refinement of the hot-rolled steel sheet and uniformity of precipitate distribution, the final finishing rolling temperature is preferably in the range of 860 to 950 ° C and the winding temperature is in the range of 500 to 640 ° C. When the final finish rolling temperature is higher than 950 ° C., γ grain growth after rolling occurs more violently, and the accompanying coarse γ grains may cause coarsening of the α grains after transformation. On the other hand, when the temperature is lower than 860 ° C., the rolling becomes below the Ar3 transformation point, which may lead to coarsening of α grains. When the coiling temperature is higher than 640 ° C, the amount of precipitation of Nb-based precipitates increases, but the precipitate particle size becomes coarse, and the pinning effect of the precipitate is reduced and the α particle size becomes coarse. is there. In addition, in the temperature range lower than 500 ° C., the amount of Nb-based precipitates decreases, so that the α phase may not be refined due to the pinning effect.
More preferably, the final finishing rolling temperature is in the range of 860 to 930 ° C, and the winding temperature is in the range of 500 to 600 ° C.
The subsequent pickling process is not particularly limited as long as the surface scale can be removed. Pickling can be performed by a commonly performed method.

次いで、冷間圧延、焼鈍、調質圧延を行う。
圧延率:85%以上
冷間圧延の圧延率は、本発明が規定する調質度を達成するために85%以上とする。85%未満では、結晶粒が粗大化して材質が軟化する。圧延率を85%以上としてひずみエネルギーを鋼板に多く蓄えることで、熱間圧延時に析出せずに固溶して残存しているNbを析出サイトとし、次工程の焼鈍時に多数のサイトに微細なNb系析出物を析出させてピン止め効果による結晶粒微細化を実現することができる。
焼鈍温度:再結晶温度以上780℃以下
焼鈍方法は、材質の均一性と高い生産性の観点から連続焼鈍法が好ましい。連続焼鈍における焼鈍温度は、再結晶温度以上であることが必須であるが、焼鈍温度が高すぎると結晶粒が粗大化し、材質が軟質化するほか、缶用鋼板などの薄物材では、炉内破断やバックリングの発生の危険が大きくなる。このため、焼鈍温度の上限は780℃とする。
調質圧延伸張率:0.5〜5%(好適条件)
調質圧延の伸張率は、鋼板の調質度により適宜決定されるが、ストレッチャーストレインの発生を抑えるために、0.5%以上の伸張率で圧延するのが好ましい。一方、伸張率5%以上を超える伸張率で圧延すると、鋼板が硬質化することによる加工性の低下と伸びの低下を引き起こす。よって、上限は5%とするのが好ましい。
Next, cold rolling, annealing, and temper rolling are performed.
Rolling ratio: 85% or more The rolling ratio of cold rolling is 85% or more in order to achieve the tempering degree defined by the present invention. If it is less than 85%, the crystal grains become coarse and the material softens. By storing a large amount of strain energy in the steel sheet at a rolling rate of 85% or more, Nb remaining in solid solution without precipitation during hot rolling is used as the precipitation site, and fine at many sites during annealing in the next process. Nb-based precipitates can be deposited to achieve crystal grain refinement by the pinning effect.
Annealing temperature: Recrystallization temperature or higher and 780 ° C. or lower An annealing method is preferably a continuous annealing method from the viewpoint of material uniformity and high productivity. The annealing temperature in continuous annealing must be higher than the recrystallization temperature, but if the annealing temperature is too high, the crystal grains become coarse and the material becomes soft, and in the case of thin materials such as steel plates for cans, The risk of breakage and buckling increases. For this reason, the upper limit of annealing temperature shall be 780 degreeC.
Temper rolling elongation: 0.5 to 5% (preferred conditions)
The elongation ratio of temper rolling is appropriately determined depending on the tempering degree of the steel sheet, but it is preferable to perform rolling at an elongation ratio of 0.5% or more in order to suppress the occurrence of stretcher strain. On the other hand, if rolling is performed at an elongation rate exceeding 5%, the workability and elongation decrease due to the steel plate becoming hard. Therefore, the upper limit is preferably 5%.

以上により、本発明の缶用鋼板が得られる。   By the above, the steel plate for cans of this invention is obtained.

表1に示す成分組成A〜Pを含有し、残部がFeおよび不可避的不純物からなる鋼を溶製し、鋼スラブを得た。得られた鋼スラブを1250℃で再加熱した後、熱間仕上圧延温度を900〜920℃の範囲で、巻取温度を580℃で熱間圧延を行った。次いで、酸洗後、84〜92.5%の圧延率で冷間圧延して、0.18mmの薄鋼板を製造した。得られた薄鋼板を、連続焼鈍炉にて焼鈍温度740〜790℃、焼鈍時間30秒で焼鈍を行い、伸張率1.5%で調質圧延を行った。なお、詳細な製造条件を表2に示す。
以上より得られた鋼板に対して、以下の方法で特性評価を行った。
A steel slab was obtained by melting steel containing the component compositions A to P shown in Table 1 and the balance being Fe and inevitable impurities. The obtained steel slab was reheated at 1250 ° C., and then hot rolled at a hot finish rolling temperature of 900 to 920 ° C. and a winding temperature of 580 ° C. Next, after pickling, cold rolling was performed at a rolling rate of 84 to 92.5% to produce a 0.18 mm thin steel plate. The obtained thin steel sheet was annealed at an annealing temperature of 740 to 790 ° C. and an annealing time of 30 seconds in a continuous annealing furnace, and temper rolled at an elongation of 1.5%. Detailed production conditions are shown in Table 2.
Characteristic evaluation was performed by the following method with respect to the steel plate obtained from the above.

ヤング率の評価は圧延方向および圧延方向から90°方向を、それぞれ長手方向として10×35mmの試験片を切り出し、横振動型の共振周波数測定装置を用いて、American Society for Testing Materialsの基準(C1259)に従い、ヤング率(GPa)を測定した。   The Young's modulus was evaluated by cutting out a 10 x 35 mm test piece in the rolling direction and 90 ° direction from the rolling direction, and using a transverse vibration type resonance frequency measuring device. ), Young's modulus (GPa) was measured.

ロックウェル硬度(HR30T)は、JIS Z2245のロックウェル硬さ試験方法に準拠して、JIS G3315に規定された位置におけるロックウェル30T硬さ(HR30T)を測定した。調質度T3が57±3、調質度T4が61±3である。   As for Rockwell hardness (HR30T), Rockwell 30T hardness (HR30T) at a position specified in JIS G3315 was measured according to the Rockwell hardness test method of JIS Z2245. The tempering degree T3 is 57 ± 3, and the tempering degree T4 is 61 ± 3.

さらに、製缶後の缶体特性を評価するために、鋼板に対して、3ピース缶成形を行った。成形方法は、成形後の形状が直径:52mm、缶胴長さ:96mmとなるように、圧延方向および圧延方向から90°方向のうち、ヤング率が高い方向が缶胴部周方向となるような長方形板を丸めて端部を溶接で接合する方法とした。
外圧強度の測定方法は以下のとおりである。缶体を加圧チャンバーの内部に設置し、加圧チャンバー内部の加圧を、空気導入バルブを介してチャンバーに0.016MPa/sで加圧空気を導入することで行った。チャンバー内部の圧力の確認は、圧力ゲージ、圧力センサ、その検出信号を増幅するアンプ、検出信号の表示、データ処理などを行う信号処理装置を介して行った。限界座屈圧力、つまり外圧強度は座屈に伴う圧力変化点の圧力とした。一般的に、加熱殺菌処理による圧力変化に対して、外圧強度は1.5kgf/cm2以上を有すればよいとされている。これより、外圧強度が1.5kgf/cm2以上(0.147MPa以上)のものを一重丸(○)、外圧強度が1.5kgf/cm2(0.147MPa)未満のものをバツ(×)としてそれぞれ表示した。
Furthermore, in order to evaluate the can body characteristics after can manufacturing, 3 piece can molding was performed with respect to the steel plate. The molding method is such that the direction with the higher Young's modulus is the circumferential direction of the can body part among the rolling direction and the 90 ° direction from the rolling direction so that the shape after molding is 52 mm in diameter and the length of the can body is 96 mm. A rectangular plate was rolled and the ends were joined by welding.
The measuring method of the external pressure strength is as follows. The can body was placed inside the pressurizing chamber, and pressurization inside the pressurizing chamber was performed by introducing pressurized air into the chamber at 0.016 MPa / s via an air introduction valve. The pressure inside the chamber was confirmed through a pressure gauge, a pressure sensor, an amplifier that amplifies the detection signal, a signal processing device that performs display of the detection signal, data processing, and the like. The critical buckling pressure, that is, the external pressure strength, was the pressure at the pressure change point accompanying buckling. Generally, it is said that the external pressure strength should be 1.5 kgf / cm 2 or more with respect to the pressure change caused by the heat sterilization treatment. From this, a single circle (○) indicates that the external pressure strength is 1.5 kgf / cm 2 or more (0.147 MPa or more), and a cross indicates that the external pressure strength is less than 1.5 kgf / cm 2 (0.147 MPa). .

以上により得られた結果を製造条と併せて表2に示す。   The results obtained as described above are shown in Table 2 together with the production conditions.

Figure 2017119918
Figure 2017119918

Figure 2017119918
Figure 2017119918

本発明例では、調質度がT3〜T4であり、圧延方向、圧延方向から90°方向のいずれにおいてヤング率が220GPa以上となっており外圧強度に優れる。
一方、比較例では、上記特性のいずれか一つ以上が劣っている。また、表2において、実験No.7、18、28は、未再結晶となったため、鋼板の特性評価および缶体特性調査は行わなかった。
In the example of the present invention, the refining degree is T3 to T4, and the Young's modulus is 220 GPa or more in both the rolling direction and the 90 ° direction from the rolling direction, and the external pressure strength is excellent.
On the other hand, in the comparative example, any one or more of the above characteristics are inferior. In Table 2, since Experiments Nos. 7, 18, and 28 were not recrystallized, the steel sheet characteristics evaluation and the can body characteristics survey were not performed.

Claims (2)

質量%で、C:0.0050%以上0.0100%以下、
Si:0.050%以下、
Mn:0.10%以上1.00%以下、
P:0.010%以下、
S:0.010%以下、
Al:0.010%以上0.100%以下、
N:0.0010%以上0.0050%以下、
Nb:0.020%以上0.120%以下を含有し、
CおよびNbの含有量が下記式(1)を満足し、残部はFeおよび不可避的不純物からなり、
圧延方向および圧延方向から90°方向のヤング率が220GPa以上であり、
調質度がT3〜T4であることを特徴とする缶用鋼板。
2.1≦(Nb/C)×(12/93)≦2.5・・・(1)
ただし、Nb、Cは含有量(質量%)を示す。
% By mass, C: 0.0050% or more and 0.0100% or less,
Si: 0.050% or less,
Mn: 0.10% to 1.00%,
P: 0.010% or less,
S: 0.010% or less,
Al: 0.010% or more and 0.100% or less,
N: 0.0010% or more and 0.0050% or less,
Nb: 0.020% or more and 0.120% or less,
The content of C and Nb satisfies the following formula (1), and the balance consists of Fe and inevitable impurities,
Young's modulus in the rolling direction and 90 ° direction from the rolling direction is 220 GPa or more,
A steel sheet for cans characterized by a tempering degree of T3 to T4.
2.1 ≦ (Nb / C) × (12/93) ≦ 2.5 (1)
However, Nb and C show content (mass%).
請求項1に記載の缶用鋼板の製造方法であって、鋼スラブを、熱間圧延し、酸洗後、85%以上の圧延率で冷間圧延を行い、引き続き、再結晶温度以上780℃以下の温度で焼鈍を行い、次いで、調質圧延を行うことを特徴とする缶用鋼板の製造方法。   The method for producing a steel plate for can according to claim 1, wherein the steel slab is hot-rolled, pickled, and then cold-rolled at a rolling rate of 85% or more, and subsequently at a recrystallization temperature of 780 ° C or higher. The manufacturing method of the steel plate for cans characterized by performing annealing at the following temperatures and then performing temper rolling.
JP2017030621A 2011-12-09 2017-02-22 Steel plate for can and manufacturing method thereof Active JP6288331B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011269941 2011-12-09
JP2011269941 2011-12-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012246989A Division JP6145994B2 (en) 2011-12-09 2012-11-09 Steel plate for can and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017119918A true JP2017119918A (en) 2017-07-06
JP6288331B2 JP6288331B2 (en) 2018-03-07

Family

ID=49037345

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012246989A Active JP6145994B2 (en) 2011-12-09 2012-11-09 Steel plate for can and manufacturing method thereof
JP2017030621A Active JP6288331B2 (en) 2011-12-09 2017-02-22 Steel plate for can and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2012246989A Active JP6145994B2 (en) 2011-12-09 2012-11-09 Steel plate for can and manufacturing method thereof

Country Status (1)

Country Link
JP (2) JP6145994B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900711B2 (en) * 2014-03-28 2016-04-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP6164273B2 (en) * 2015-01-09 2017-07-19 Jfeスチール株式会社 Steel plate for cans and method for producing steel plate for cans
JP6503578B2 (en) * 2015-02-26 2019-04-24 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287444A (en) * 1992-04-13 1993-11-02 Nippon Steel Corp Non-aging steel sheet for vessel excellent in neck-in workability
JPH06192744A (en) * 1992-08-27 1994-07-12 Nippon Steel Corp Production of soft surface treated original sheet excellent in fluting property and roll coater warping property by continuous annealing
JP2009091640A (en) * 2007-10-11 2009-04-30 Jfe Steel Kk Method for manufacturing steel raw sheet for can
JP2009149946A (en) * 2007-12-21 2009-07-09 Jfe Steel Corp Hot-rolled base plate for steel sheet for can
JP2010229486A (en) * 2009-03-27 2010-10-14 Jfe Steel Corp Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
JP2011094178A (en) * 2009-10-29 2011-05-12 Jfe Steel Corp Steel sheet for can having excellent roughening resistance and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287444A (en) * 1992-04-13 1993-11-02 Nippon Steel Corp Non-aging steel sheet for vessel excellent in neck-in workability
JPH06192744A (en) * 1992-08-27 1994-07-12 Nippon Steel Corp Production of soft surface treated original sheet excellent in fluting property and roll coater warping property by continuous annealing
JP2009091640A (en) * 2007-10-11 2009-04-30 Jfe Steel Kk Method for manufacturing steel raw sheet for can
JP2009149946A (en) * 2007-12-21 2009-07-09 Jfe Steel Corp Hot-rolled base plate for steel sheet for can
JP2010229486A (en) * 2009-03-27 2010-10-14 Jfe Steel Corp Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
JP2011094178A (en) * 2009-10-29 2011-05-12 Jfe Steel Corp Steel sheet for can having excellent roughening resistance and method for producing the same

Also Published As

Publication number Publication date
JP2013139626A (en) 2013-07-18
JP6288331B2 (en) 2018-03-07
JP6145994B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5958038B2 (en) Steel plate for cans with high buckling strength of can body against external pressure, excellent formability and surface properties after forming, and method for producing the same
TWI643964B (en) Two-piece can steel plate and manufacturing method thereof
TWI515308B (en) Steel plate for cans and method for manufacturing the same
JP6288331B2 (en) Steel plate for can and manufacturing method thereof
WO2008102899A1 (en) Processes for production of steel sheets for cans
JP5811686B2 (en) Steel plate for high-strength can and manufacturing method thereof
CN109440004B (en) Steel sheet for can and method for producing same
TWI440725B (en) Manufacturing method of steel sheet for cans
TWI537398B (en) Steel plate for cans and method for manufacturing the same
JP4677914B2 (en) Steel plate for soft can and method for producing the same
WO2014073205A1 (en) Steel sheet for three-piece can and manufacturing process therefor
JP6164273B2 (en) Steel plate for cans and method for producing steel plate for cans
JP5900712B2 (en) Steel plate for can and manufacturing method thereof
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
WO2007080992A1 (en) Cold-rolled steel sheet and method for manufacture thereof
JP6307602B2 (en) Hot-rolled steel sheet with excellent workability and aging resistance and method for producing the same
JPH08176673A (en) Production of steel sheet for can
JPH09184018A (en) Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty
TW201837201A (en) Steel sheet, method for producing same, crown cap, and drawn and redrawn (drd) can
KR20150060211A (en) Steel sheet for outer panel and method of manufacturing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6288331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250