JP2017110259A - Combustion state measuring method, and combustion state measuring system - Google Patents

Combustion state measuring method, and combustion state measuring system Download PDF

Info

Publication number
JP2017110259A
JP2017110259A JP2015245055A JP2015245055A JP2017110259A JP 2017110259 A JP2017110259 A JP 2017110259A JP 2015245055 A JP2015245055 A JP 2015245055A JP 2015245055 A JP2015245055 A JP 2015245055A JP 2017110259 A JP2017110259 A JP 2017110259A
Authority
JP
Japan
Prior art keywords
tuyere
pulverized coal
combustion state
temperature
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015245055A
Other languages
Japanese (ja)
Other versions
JP6421938B2 (en
Inventor
尚貴 山本
Naoki Yamamoto
尚貴 山本
明紀 村尾
Akinori Murao
明紀 村尾
大山 伸幸
Nobuyuki Oyama
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015245055A priority Critical patent/JP6421938B2/en
Publication of JP2017110259A publication Critical patent/JP2017110259A/en
Application granted granted Critical
Publication of JP6421938B2 publication Critical patent/JP6421938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustion state measuring method and a combustion state measuring system capable of confirming a combustion state in a tuyere in fine coal combustion.SOLUTION: A combustion state measuring method includes: installing a combustion state measuring apparatus 4 in a position of a distance L(0 mm<L<D) from the tip of a lance 3, between a distance D of 0-500 mm from the tip of the lance 3 to the tip of a tuyere 1; and continuously measuring a fine coal combustion state in the tuyere with the combustion state measuring apparatus. A combustion state measuring system includes: a tuyere installed in the wall surface of a blast furnace; a blow pipe mounted on the tuyere; a lance mounted on the wall surface of the blow pipe; and a combustion state measuring apparatus between the tip of the lance and the tip of the tuyere, mounted on the wall surface of the tuyere or the blow pipe.SELECTED DRAWING: Figure 1

Description

本発明は、高炉羽口において微粉炭などの固体燃料やLNG(Liquefied Natural Gas:液化天然ガス)などの易燃焼ガスの燃焼状況を測定する燃焼状況測定方法に関するものである。   The present invention relates to a combustion state measuring method for measuring a combustion state of a solid fuel such as pulverized coal or an easily combustible gas such as LNG (Liquefied Natural Gas) at a blast furnace tuyere.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出COの抑制は重要な課題である。これを受け、最近の高炉操業では、低還元材比(低RAR:Reduction Agent Ratioの略で、銑鉄1t製造当りの、羽口からの吹き込み還元材と炉頂から装入されるコークスの合計量)操業が強力に推進されている。高炉は、主にコークス及び羽口から吹き込む微粉炭を還元材として使用しており、低還元材比、ひいては炭酸ガス排出抑制を達成するためにはコークスなどを廃プラ、LNG、重油等の水素含有率の高い還元材で置換する方策が有効である。 In recent years, global warming due to an increase in carbon dioxide emission has become a problem, and the suppression of exhausted CO 2 is an important issue even in the steel industry. As a result, in recent blast furnace operations, the ratio of low reducing agent ratio (low RAR: Abbreviation for Reduction Agent Ratio, the total amount of reducing material blown from the tuyere and coke charged from the top of the furnace per 1 ton of pig iron production. ) Operation is strongly promoted. Blast furnaces mainly use coke and pulverized coal blown from the tuyere as a reducing material. In order to achieve a low reducing material ratio, and in turn, to suppress carbon dioxide emission, coke is used as waste plastic, LNG, heavy oil and other hydrogen. A method of replacing with a reducing material having a high content is effective.

下記特許文献1では、従来から高炉の炉況を判定するために、羽口先の輝度を人間が直接観察していたが、より正確に判定するためレースウェイを観察する装置をブローパイプ後端に設置し、観察すると記載されている。装置によりレースウェイで発生する光情報から、炉内のコークスや溶融スラグの観察、微粉炭の燃焼状況の観察を可能としている。   In Patent Document 1 below, humans have conventionally observed the brightness of the tuyere directly to determine the furnace condition of the blast furnace, but in order to determine more accurately, an apparatus for observing the raceway is installed at the rear end of the blow pipe. It is stated that it is installed and observed. It is possible to observe the coke and molten slag in the furnace and the combustion status of pulverized coal from the optical information generated on the raceway by the device.

また、下記特許文献2では特許文献1同様、レースウェイを観察する装置をブローパイプ後端に設置し、羽口状況を観察すると記載されている。羽口の撮影画像においてランスからの未燃焼微粉炭の像が急拡大する微粉炭膨張現象の発生から、レースウェイの形状が正常な状態から変化しているといった情報を得ている。   Further, in Patent Document 2 below, as in Patent Document 1, it is described that a device for observing the raceway is installed at the rear end of the blow pipe and the tuyere situation is observed. From the occurrence of the pulverized coal expansion phenomenon in which the image of unburned pulverized coal from the lance rapidly expands in the photographed image of the tuyere, information is obtained that the shape of the raceway has changed from the normal state.

さらに、下記特許文献3では高炉羽口部にゾンデを設置し、微粉炭による火炎中の光を検出および分光測定して適正な燃焼を維持することにより、高炉操業の安定を試みている。   Further, Patent Document 3 below attempts to stabilize blast furnace operation by installing a sonde at the blast furnace tuyere and detecting and spectroscopically measuring light in the flame of pulverized coal to maintain proper combustion.

特開平2−182817号公報JP-A-2-182817 特開2013−185234号公報JP 2013-185234 A 特開平10−30105号公報Japanese Patent Laid-Open No. 10-30105

前記特許文献1においては、ブローパイプ後端の覗き窓において高炉のレースウェイ部を測定する装置を設置し、レースウェイ部で発生する光情報から微粉炭の燃焼状況を観察する形態であるが、ランスからどの位置において微粉炭の燃焼が開始しているかなど詳細な情報がわからず、また録画した画像を別途解析する必要があるなどリアルタイムで高炉操業に情報をフィードバックする事が不可能である。   In Patent Document 1, a device for measuring the raceway portion of the blast furnace is installed in the observation window at the rear end of the blow pipe, and the combustion state of pulverized coal is observed from optical information generated in the raceway portion. Detailed information such as where pulverized coal combustion starts from the lance is not known, and it is impossible to feed back the information to the blast furnace operation in real time because it is necessary to analyze the recorded image separately.

また、前記特許文献2においては、ブローパイプ後端の覗き窓においてレースウェイ部を測定する装置を設置し、微粉炭膨張の測定結果からレースウェイの状況を判断しているが、微粉炭自身の燃焼性の良否を判断する装置および形態とはなっていない。   Moreover, in the said patent document 2, although the apparatus which measures a raceway part is installed in the observation window of the rear end of a blow pipe, the situation of a raceway is judged from the measurement result of pulverized coal expansion, It is not an apparatus and a form for judging the quality of combustibility.

さらに、前記特許文献3においては高炉羽口部にゾンデを設置し、ゾンデで微粉炭による燃焼フレーム中の光を検出して、分光測定して微粉炭の燃焼性を制御するものであるが、羽口断面に関する測定であるためランス先端からの距離における燃焼状況の情報は得られない。また、ゾンデの設置位置に関しては記載されていないため、位置によっては微粉炭燃焼による発光かコークス燃焼による発光かが判別できない可能性がある。したがって、微粉炭の燃焼性評価が困難な場合があると考えられる。   Further, in Patent Document 3, a sonde is installed at the blast furnace tuyere, and the light in the combustion flame by the pulverized coal is detected by the sonde, and the combustibility of the pulverized coal is controlled by spectroscopic measurement. Since it is a measurement related to the tuyere cross section, information on the combustion state at a distance from the tip of the lance cannot be obtained. In addition, since there is no description regarding the installation position of the sonde, there is a possibility that light emission due to pulverized coal combustion or light emission due to coke combustion cannot be determined depending on the position. Therefore, it may be difficult to evaluate the flammability of pulverized coal.

本発明は、上記のような問題点に着目してなされたものであり、微粉炭燃焼時の羽口における燃焼状況の確認を可能とする燃焼状況測定方法を提供することを目的とするものである。   The present invention has been made paying attention to the above-described problems, and an object of the present invention is to provide a combustion state measuring method that enables confirmation of the combustion state at the tuyere during pulverized coal combustion. is there.

即ち、本発明は、ランス先端から羽口先端までの距離Dが0〜500mmの間において、ランス先端から距離L(0mm<L<D)の位置に燃焼状況測定装置を設置し、該燃焼状況測定装置により羽口における微粉炭燃焼状態を連続測定することを特徴とする燃焼状況測定方法である。   That is, according to the present invention, when the distance D from the tip of the lance to the tip of the tuyere is between 0 and 500 mm, the combustion condition measuring device is installed at a position of a distance L (0 mm <L <D) from the tip of the lance. It is a combustion state measuring method characterized by continuously measuring the pulverized coal combustion state at the tuyere with a measuring device.

なお、本発明に係る前記燃焼状況測定方法においては、
(1)前記燃焼状況測定装置が圧力計であり、前記微粉炭燃焼状態が圧力計を用いて測定した圧力であること、
(2)前記燃焼状況測定装置が温度測定装置であり、前記微粉炭燃焼状態が温度測定装置を用いて測定した温度であること、
(3)前記温度測定装置が、輝度から粒子表面温度を測定する2色温度計または火炎温度を測定する熱電対であること、
(4)前記燃焼状況測定装置が面積比分布測定装置であり、前記微粉炭燃焼状態が面積比分布測定装置を用いて測定した微粉炭の面積比であること、
(5)前記燃焼状況測定装置が画像解析装置であり、前記微粉炭燃焼状態が画像解析装置を用いて測定した微粉炭の火炎部面積であること、
が、より好ましい解決手段になり得るものと考えられる。
In the combustion state measuring method according to the present invention,
(1) The combustion state measuring device is a pressure gauge, and the pulverized coal combustion state is a pressure measured using a pressure gauge,
(2) The combustion state measuring device is a temperature measuring device, and the pulverized coal combustion state is a temperature measured using a temperature measuring device,
(3) The temperature measuring device is a two-color thermometer that measures particle surface temperature from luminance or a thermocouple that measures flame temperature,
(4) The combustion state measuring device is an area ratio distribution measuring device, and the pulverized coal combustion state is an area ratio of pulverized coal measured using an area ratio distribution measuring device,
(5) The combustion state measuring device is an image analysis device, and the pulverized coal combustion state is a flame part area of pulverized coal measured using an image analysis device,
However, it can be considered as a more preferable solution.

本発明によれば、ランス先端から羽口先端までの距離Dが0〜500mmの間において、ランス先端から距離L(0mm<L<D)の位置に燃焼状況測定装置を設置し、該燃焼状況測定装置により羽口における微粉炭燃焼状態を連続測定することで、微粉炭燃焼時の羽口における燃焼状況の確認を可能とすることができる。   According to the present invention, when the distance D from the tip of the lance to the tip of the tuyere is between 0 and 500 mm, the combustion state measuring device is installed at the position of the distance L (0 mm <L <D) from the tip of the lance. By continuously measuring the pulverized coal combustion state in the tuyere with the measuring device, it is possible to confirm the combustion state in the tuyere during pulverized coal combustion.

本発明の燃焼状況測定方法を実施するシステムの一例を説明するための図である。It is a figure for demonstrating an example of the system which implements the combustion condition measuring method of this invention. (a)、(b)はそれぞれ燃焼状況測定装置として圧力測定装置を用いた測定結果の一例を示すグラフである。(A), (b) is a graph which shows an example of the measurement result using a pressure measuring device as a combustion condition measuring device, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として圧力測定装置を用いた測定結果の他の例を示すグラフである。(A), (b) is a graph which shows the other example of the measurement result using a pressure measuring device as a combustion condition measuring device, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として圧力測定装置を用いた測定結果のさらに他の例を示すグラフである。(A), (b) is a graph which shows the further another example of the measurement result using a pressure measuring device as a combustion condition measuring device, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として2色温度計からなる温度測定装置を用いた測定結果の一例を示すグラフである。(A), (b) is a graph which shows an example of the measurement result using the temperature measuring apparatus which consists of a two-color thermometer as a combustion condition measuring apparatus, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として2色温度計からなる温度測定装置を用いた測定結果の他の例を示すグラフである。(A), (b) is a graph which shows the other example of the measurement result using the temperature measuring apparatus which consists of a two-color thermometer as a combustion condition measuring apparatus, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として2色温度計からなる温度測定装置を用いた測定結果のさらに他の例を示すグラフである。(A), (b) is a graph which shows the further another example of the measurement result using the temperature measuring apparatus which consists of a 2 color thermometer as a combustion condition measuring apparatus, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として熱電対温度計からなる温度測定装置を用いた測定結果の一例を示すグラフである。(A), (b) is a graph which shows an example of the measurement result using the temperature measuring apparatus which consists of a thermocouple thermometer as a combustion condition measuring apparatus, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として熱電対温度計からなる温度測定装置を用いた測定結果の他の例を示すグラフである。(A), (b) is a graph which shows the other example of the measurement result using the temperature measuring apparatus which consists of a thermocouple thermometer as a combustion condition measuring apparatus, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として熱電対温度計からなる温度測定装置を用いた測定結果のさらに他の例を示すグラフである。(A), (b) is a graph which shows the further another example of the measurement result using the temperature measuring apparatus which consists of a thermocouple thermometer as a combustion condition measuring apparatus, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として面積比測定装置を用いた測定結果の一例を示すグラフである。(A), (b) is a graph which shows an example of the measurement result using an area ratio measuring device as a combustion condition measuring device, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として面積比測定装置を用いた測定結果の他の例を示すグラフである。(A), (b) is a graph which shows the other example of the measurement result using an area ratio measuring apparatus as a combustion condition measuring apparatus, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として面積比測定装置を用いた測定結果のさらに他の例を示すグラフである。(A), (b) is a graph which shows the further another example of the measurement result using an area ratio measuring apparatus as a combustion condition measuring apparatus, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として画像解析装置を用いた測定結果の一例を示すグラフである。(A), (b) is a graph which shows an example of the measurement result using an image analyzer as a combustion condition measuring device, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として画像解析装置を用いた測定結果の他の例を示すグラフである。(A), (b) is a graph which shows the other example of the measurement result which used the image-analysis apparatus as a combustion condition measuring apparatus, respectively. (a)、(b)はそれぞれ燃焼状況測定装置として画像解析装置を用いた測定結果のさらに他の例を示すグラフである。(A), (b) is a graph which shows the further another example of the measurement result which used the image-analysis apparatus as a combustion condition measuring apparatus, respectively.

図1は本発明の燃焼状況測定方法を実施するシステムの一例を説明するための図である。図1において、1は図示しない高炉の壁面に設置される羽口、2は羽口1に装着されたブローパイプ、3はブローパイプ2に装着されたランス、4はランス3の所定位置に設置された燃焼状況測定装置である。また、D(mm)はランス3の先端から羽口1の先端までの距離であり、L(mm)はランス3の先端から燃焼状況測定装置4までの距離である。   FIG. 1 is a diagram for explaining an example of a system that implements the combustion state measuring method of the present invention. In FIG. 1, 1 is a tuyere installed on the wall of a blast furnace (not shown), 2 is a blow pipe attached to the tuyere 1, 3 is a lance attached to the blow pipe 2, and 4 is installed at a predetermined position of the lance 3. This is a combustion state measuring device. D (mm) is the distance from the tip of the lance 3 to the tip of the tuyere 1, and L (mm) is the distance from the tip of the lance 3 to the combustion state measuring device 4.

本発明の燃焼状況測定方法の特徴は、ランス3の先端から羽口1の先端までの距離D(mm)を0〜500mmと設定したシステムにおいて、燃焼状況測定装置4を羽口1に設置するに当たり、燃焼状況測定装置4をランス3の先端から距離L(0mm<L<D)の位置に設置し、燃焼状況測定装置4により羽口1における微粉炭燃焼状態を連続測定する点にある。   The combustion state measuring method of the present invention is characterized in that the combustion state measuring device 4 is installed in the tuyere 1 in a system in which the distance D (mm) from the tip of the lance 3 to the tip of the tuyere 1 is set to 0 to 500 mm. In this case, the combustion state measuring device 4 is installed at a distance L (0 mm <L <D) from the tip of the lance 3, and the combustion state measuring device 4 continuously measures the pulverized coal combustion state in the tuyere 1.

なお、ここでランス3の先端から羽口1の先端までの距離D(mm)を0〜500mmと設定したのは、以下の理由による。すなわち、距離Dが0mm未満ではランスから微粉炭が吹き込まれてないので微粉炭の燃焼状況の測定が不可であり、一方、距離Dが500mm超えでは測定した微粉炭の燃焼状況と燃焼条件の相関が見られないため500mmを上限とした。   Here, the reason why the distance D (mm) from the tip of the lance 3 to the tip of the tuyere 1 is set to 0 to 500 mm is as follows. That is, if the distance D is less than 0 mm, the pulverized coal is not blown from the lance, so that it is impossible to measure the combustion state of the pulverized coal. On the other hand, if the distance D exceeds 500 mm, the correlation between the measured combustion state of the pulverized coal and the combustion condition is not possible. Therefore, 500 mm was set as the upper limit.

本発明の燃焼状況測定方法に用いる燃焼状況測定装置4としては、例えば高炉内で発生する種々の物理現象を測定する種々の装置を用いることができるが、その中でも、圧力測定装置、温度測定装置、面積比分布測定装置、画像解析装置を用いることが好ましい。以下、燃焼状況測定装置4として、圧力測定装置、温度測定装置、面積比分布測定装置、画像解析装置を用いた場合の実施例を順に説明する。   As the combustion state measuring device 4 used in the combustion state measuring method of the present invention, for example, various devices that measure various physical phenomena occurring in a blast furnace can be used. Among them, a pressure measuring device and a temperature measuring device can be used. It is preferable to use an area ratio distribution measuring device and an image analyzing device. Hereinafter, embodiments in the case where a pressure measuring device, a temperature measuring device, an area ratio distribution measuring device, and an image analyzing device are used as the combustion state measuring device 4 will be described in order.

実施例1:圧力測定の実施例
燃焼状況測定装置4として圧力測定装置を設置した羽口1を高炉に設置し、羽口1における圧力の連続測定を実施した。具体的には、羽口において微粉炭の燃焼状況を確認するため、内容積5000m、羽口38本の高炉において、羽口1本に圧力測定装置4を図1のようにL=50mmまたはL=150mmの位置(D=500mmでいずれも羽口内)に設置した。測定条件として、11500t/dayの溶銑生産量、150kg/t−溶銑の微粉炭比でランスから微粉炭を吹込んだ。また、ブローパイプ2からは送風温度1200℃、流量7000Nm/min、酸素濃度27%の空気を送風した。圧力の測定については1日間連続で実施した。なお、圧力測定装置4としては、市販の圧力計を使用した。
Example 1: Example of pressure measurement A tuyere 1 equipped with a pressure measuring device as a combustion state measuring device 4 was installed in a blast furnace, and continuous pressure measurement at the tuyere 1 was performed. Specifically, in order to confirm the combustion status of pulverized coal at the tuyere, in a blast furnace with an inner volume of 5000 m 3 and 38 tuyere, a pressure measuring device 4 is installed in one tuyere as shown in FIG. It installed in the position of L = 150mm (D = 500mm and all are in a tuyere). As measurement conditions, pulverized coal was blown from the lance at a hot metal production amount of 11500 t / day and a pulverized coal ratio of 150 kg / t-hot metal. Further, air having a blowing temperature of 1200 ° C., a flow rate of 7000 Nm 3 / min, and an oxygen concentration of 27% was blown from the blow pipe 2. The pressure was measured continuously for 1 day. A commercially available pressure gauge was used as the pressure measuring device 4.

測定結果を図2に示す。図2に示す例において、図2(a)はL=50mmでの圧力と時間との関係を示すグラフであり、図2(b)はL=150mmでの圧力と時間との関係を示すグラフである。図2に示す結果から、圧力の時間に対するばらつきが小さい状態で、微粉炭燃焼時の羽口における圧力を連続測定可能な事を確認できることから、さらに燃焼性評価の精度が上がることがわかった。   The measurement results are shown in FIG. In the example shown in FIG. 2, FIG. 2A is a graph showing the relationship between pressure and time at L = 50 mm, and FIG. 2B is a graph showing the relationship between pressure and time at L = 150 mm. It is. From the results shown in FIG. 2, it can be confirmed that the pressure at the tuyere during pulverized coal combustion can be continuously measured in a state where the variation of the pressure with respect to time is small.

また、11500t/dayの溶銑生産量、150kg/t−溶銑の微粉炭比、ブローパイプからの送風温度1200℃、送風流量7000Nm/minの条件下で、送風中の酸素濃度を21%または23%で各1日ずつ操業した場合の羽口における圧力をL=50mm、150mmの位置で測定した。結果を図3および図4に示す。図3に示す例において、図3(a)はL=50mmおよび酸素濃度21%での圧力と時間との関係を示すグラフであり、図3(b)はL=150mmおよび酸素濃度21%での圧力と時間との関係を示すグラフである。図4に示す例において、図4(a)はL=50mmおよび酸素濃度23%での圧力と時間との関係を示すグラフであり、図4(b)はL=150mmおよび酸素濃度23%での圧力と時間との関係を示すグラフである。図3および図4の結果から、図3に示す酸素濃度を21%にして操業した場合の方が図4に示す酸素濃度を23%にして操業した場合と比べて、羽口における圧力は平均的に低くなることがわかった。これは微粉炭の燃焼性が低下すると燃焼温度の低下及び微粉炭の燃焼により発生する還元ガス量が低下するため、羽口における圧力が低下したからだと考えられる。 Also, the oxygen concentration during blowing is 21% or 23 under conditions of 11500 t / day hot metal production, 150 kg / t-pulverized coal ratio, blowing air temperature 1200 ° C. and blowing air flow rate 7000 Nm 3 / min. %, The pressure at the tuyere when operated for 1 day each was measured at a position of L = 50 mm and 150 mm. The results are shown in FIG. 3 and FIG. In the example shown in FIG. 3, FIG. 3 (a) is a graph showing the relationship between pressure and time at L = 50 mm and an oxygen concentration of 21%, and FIG. 3 (b) is a graph showing L = 150 mm and an oxygen concentration of 21%. It is a graph which shows the relationship between the pressure of this and time. In the example shown in FIG. 4, FIG. 4 (a) is a graph showing the relationship between pressure and time at L = 50 mm and an oxygen concentration of 23%, and FIG. 4 (b) is a graph showing L = 150 mm and an oxygen concentration of 23%. It is a graph which shows the relationship between the pressure of this and time. From the results of FIG. 3 and FIG. 4, the pressure at the tuyere is the average when the operation is performed with the oxygen concentration shown in FIG. 3 being 21%, compared with the case where the operation is performed with the oxygen concentration shown in FIG. It turned out to be low. This is thought to be because the pressure at the tuyere decreased because the combustion temperature decreased and the amount of reducing gas generated by the combustion of pulverized coal decreased when the combustibility of pulverized coal decreased.

次に、羽口における圧力測定により微粉炭の燃焼性を維持する操業をした場合と羽口における圧力測定を実施せずに操業した場合の2通りの操業において、1日間の平均コークス比を記録して羽口における圧力測定を実施した効果を確認した。   Next, the average coke ratio for one day is recorded in two operations: when maintaining the flammability of pulverized coal by measuring pressure at the tuyere and when operating without performing pressure measurement at the tuyere. Thus, the effect of pressure measurement at the tuyere was confirmed.

操業条件は11500t/dayの溶銑生産量、150kg/t−溶銑の微粉炭比、流量7000Nm/minは一定とし、送風温度、送風中の酸素濃度、微粉炭揮発分のいずれか一つを変更して、羽口におけるL=50mmの位置の圧力を測定した。それぞれの条件において羽口における圧力はなるべく一定となるよう−74μmの微粉炭の重量割合を調整した。結果を以下の表1に示す。表1において、試験条件の水準4、6、8が羽口における圧力測定により微粉炭の燃焼性を維持する操業をした場合の例であり、試験条件の水準1、3、5、7が羽口における圧力測定を実施せずに操業した場合の例である。なお、水準2では水準1と同じ条件で平均圧力のみを測定し圧力調整を行わなかった。 The operating conditions are 11500 t / day hot metal production, 150 kg / t-hot metal pulverized coal ratio, flow rate 7000 Nm 3 / min is constant, and any one of air temperature, oxygen concentration during air blowing, and pulverized coal volatiles is changed Then, the pressure at the position of L = 50 mm in the tuyere was measured. Under each condition, the weight ratio of -74 μm pulverized coal was adjusted so that the pressure at the tuyere was as constant as possible. The results are shown in Table 1 below. In Table 1, test conditions levels 4, 6, and 8 are examples in which operation is performed to maintain flammability of pulverized coal by pressure measurement at the tuyere, and test conditions levels 1, 3, 5, and 7 are It is an example at the time of operating, without implementing the pressure measurement in a mouth. In Level 2, only the average pressure was measured under the same conditions as Level 1, and no pressure adjustment was performed.

Figure 2017110259
Figure 2017110259

水準2と水準4の結果から、送風温度を1150℃から1200℃に上昇することで羽口における圧力が360kPaから370kPaへと上昇することを確認した。したがって、送風温度の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。また、水準4において微粉炭の粒度調整を実施し、羽口における圧力を一定とすることにより、同じ送風温度の水準3と比較して2kg/t−溶銑コークス比が減少し、圧力測定による微粉炭の燃焼性の制御も可能となった。   From the results of level 2 and level 4, it was confirmed that the pressure at the tuyere increased from 360 kPa to 370 kPa by increasing the blowing temperature from 1150 ° C. to 1200 ° C. Therefore, it can be seen that the temperature rise of the pulverized coal particles was improved and the combustibility was improved by the increase in the blowing temperature. Also, by adjusting the particle size of pulverized coal at level 4 and keeping the pressure at the tuyere constant, the 2 kg / t-hot metal coke ratio is reduced compared to level 3 at the same blowing temperature, and pulverized by pressure measurement. It became possible to control the combustibility of charcoal.

また、水準2と水準6の結果から、送風中の酸素濃度を21%から25%に上昇することで羽口における圧力が360kPaから366kPaへと上昇することを確認した。したがって、酸素濃度の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。さらに、微粉炭の粒度調整を実施し、羽口における圧力を一定とすることにより、同じ酸素濃度の水準5と比較して2kg/t−溶銑コークス比が減少し、圧力測定による微粉炭の燃焼性の制御も可能となった。   Further, from the results of level 2 and level 6, it was confirmed that the pressure at the tuyere increased from 360 kPa to 366 kPa by increasing the oxygen concentration during blowing from 21% to 25%. Therefore, it can be seen that the increase in the oxygen concentration improved the temperature rise of the pulverized coal particles and improved the combustibility. Furthermore, by adjusting the particle size of the pulverized coal and making the pressure at the tuyere constant, the 2 kg / t-molten coke ratio is reduced compared to level 5 of the same oxygen concentration, and the combustion of pulverized coal by pressure measurement Sex control is also possible.

さらにまた、水準2と水準8の結果から微粉炭中の揮発分を15%から25%に上昇することで羽口における圧力が360kPaから367kPaへと上昇することを確認した。したがって、揮発分の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。また、微粉炭の粒度調整を実施し、羽口における圧力を一定とすることにより、同じ揮発分の石炭を使用した水準7と比較して1kg/t−溶銑コークス比が減少し、圧力測定による微粉炭の燃焼性の制御も可能となった。   Furthermore, from the results of level 2 and level 8, it was confirmed that the pressure at the tuyere increased from 360 kPa to 367 kPa by increasing the volatile content in the pulverized coal from 15% to 25%. Therefore, it can be seen that the temperature rise of the pulverized coal particles is improved and the combustibility is also improved by the increase of the volatile matter. In addition, by adjusting the particle size of pulverized coal and keeping the pressure at the tuyere constant, the 1 kg / t-molten coke ratio is reduced compared to level 7 using the same volatile coal, and pressure measurement It became possible to control the flammability of pulverized coal.

実施例2:温度測定実施例
実施例2−1:2色温度計実施例
燃焼状況測定装置4として温度測定装置を設置した羽口1を高炉に設置し、羽口1における粒子表面温度の連続測定を実施した。具体的には、羽口において微粉炭の燃焼状況を確認するため、内容積5000m、羽口38本の高炉において羽口1本に温度測定装置としての2色温度計4を図1のようにL=50mmまたはL=150mmの位置(D=500mmでいずれも羽口内)に設置した。測定条件として、11500t/dayの溶銑生産量、[150kg/t−溶銑]の微粉炭比でランスから微粉炭を吹込んだ。また、ブローパイプ2からは送風温度1200℃、流量7000Nm/min、酸素濃度27%の空気を送風した。温度の測定については1日間連続で実施した。
Example 2: Example of temperature measurement
Example 2-1: Two-color Thermometer Example A tuyere 1 equipped with a temperature measuring device as a combustion state measuring device 4 was placed in a blast furnace, and continuous measurement of the particle surface temperature in the tuyere 1 was performed. Specifically, in order to confirm the combustion state of pulverized coal at the tuyere, a two-color thermometer 4 as a temperature measuring device is installed in one tuyere in an inner volume of 5000 m 3 and 38 tuyere as shown in FIG. At L = 50 mm or L = 150 mm (D = 500 mm, both in the tuyere). As measurement conditions, pulverized coal was blown from the lance at a hot metal production amount of 11500 t / day and a pulverized coal ratio of [150 kg / t-hot metal]. Further, air having a blowing temperature of 1200 ° C., a flow rate of 7000 Nm 3 / min, and an oxygen concentration of 27% was blown from the blow pipe 2. The temperature was measured continuously for 1 day.

2色温度計4は、周知のように、熱放射(高温物体から低温物体への電磁波の移動)を利用して温度計測を行う放射温度計であり、温度が高くなると波長分布が短波長側にずれていくことに着目して、波長分布の温度の変化を計測することで温度を求める波長分布形の一つであり、中でも波長分布を捉えるため、2つの波長における放射エネルギーを計測し、比率から温度を測定するものである。2色温度計4としては、測定範囲1000〜3000℃の2色温度計を使用した。   As is well known, the two-color thermometer 4 is a radiation thermometer that measures temperature using thermal radiation (movement of electromagnetic waves from a high-temperature object to a low-temperature object). It is one of the wavelength distribution types to obtain the temperature by measuring the temperature change of the wavelength distribution, focusing on the shift to the wavelength distribution, and in order to capture the wavelength distribution, measure the radiant energy at two wavelengths, The temperature is measured from the ratio. As the two-color thermometer 4, a two-color thermometer having a measurement range of 1000 to 3000 ° C was used.

測定結果を図5に示す。図5に示す例において、図5(a)はL=50mmでの粒子表面温度と時間との関係を示すグラフであり、図5(b)はL=150mmでの粒子表面温度と時間との関係を示すグラフである。図5に示す結果から、粒子表面温度の時間に対するばらつきが小さい状態で、微粉炭燃焼時の羽口における粒子表面温度を連続測定可能な事を確認できることから、さらに燃焼性評価の精度が上がることがわかった。   The measurement results are shown in FIG. In the example shown in FIG. 5, FIG. 5A is a graph showing the relationship between the particle surface temperature and time at L = 50 mm, and FIG. 5B is the graph showing the relationship between the particle surface temperature and time at L = 150 mm. It is a graph which shows a relationship. From the results shown in FIG. 5, it can be confirmed that the particle surface temperature at the tuyere during pulverized coal combustion can be continuously measured in a state in which the variation of the particle surface temperature with respect to time is small. I understood.

また、11500t/dayの溶銑生産量、[150kg/t−溶銑]の微粉炭比、ブローパイプからの送風温度1200℃、送風流量7000Nm/minの条件下で、送風中の酸素濃度を21%または23%で各1日ずつ操業した場合の羽口における粒子表面温度をL=50mm、150mmの位置で測定した。結果を図6および図7に示す。図6に示す例において、図6(a)はL=50mmおよび酸素濃度21%での粒子表面温度と時間との関係を示すグラフであり、図6(b)はL=150mmおよび酸素濃度21%での粒子表面温度と時間との関係を示すグラフである。図7に示す例において、図7(a)はL=50mmおよび酸素濃度23%での粒子表面温度と時間との関係を示すグラフであり、図7(b)はL=150mmおよび酸素濃度23%での粒子表面温度と時間との関係を示すグラフである。図6および図7の結果から、図6に示す酸素濃度を21%にして操業した場合の方が図7に示す酸素濃度を23%にして操業した場合と比べて、羽口における粒子表面温度は平均的に低くなることがわかった。これは微粉炭の燃焼性が低下したためであると考えられる。 Moreover, the hot metal production amount of 11500 t / day, the pulverized coal ratio of [150 kg / t-hot metal], the air temperature from the blow pipe of 1200 ° C., the air flow rate of 7000 Nm 3 / min, the oxygen concentration in the air blowing is 21% Alternatively, the particle surface temperature at the tuyere when operated at 23% for 1 day each was measured at a position of L = 50 mm and 150 mm. The results are shown in FIG. 6 and FIG. In the example shown in FIG. 6, FIG. 6 (a) is a graph showing the relationship between the particle surface temperature and time at L = 50 mm and an oxygen concentration of 21%, and FIG. 6 (b) shows L = 150 mm and the oxygen concentration of 21. It is a graph which shows the relationship between the particle | grain surface temperature in% and time. In the example shown in FIG. 7, FIG. 7A is a graph showing the relationship between the particle surface temperature and time at L = 50 mm and an oxygen concentration of 23%, and FIG. 7B is L = 150 mm and the oxygen concentration of 23. It is a graph which shows the relationship between the particle | grain surface temperature in% and time. From the results shown in FIG. 6 and FIG. 7, the particle surface temperature at the tuyere is higher when the oxygen concentration shown in FIG. 6 is operated at 21% than when the oxygen concentration shown in FIG. 7 is operated at 23%. Was found to be low on average. This is considered to be because the combustibility of pulverized coal decreased.

次に、羽口における粒子表面温度測定により微粉炭の燃焼性を維持する操業をした場合と羽口における粒子表面温度測定を実施せずに操業した場合の2通りの操業において、1日間の平均コークス比を記録して羽口における粒子表面温度測定を実施した効果を確認した。   Next, the average of one day in two operations, when the operation is performed to maintain the flammability of the pulverized coal by measuring the particle surface temperature at the tuyere and when the operation is carried out without measuring the particle surface temperature at the tuyere The coke ratio was recorded to confirm the effect of measuring the particle surface temperature at the tuyere.

操業条件は11500t/dayの溶銑生産量、150kg/t−溶銑の微粉炭比、流量7000Nm/minは一定とし、送風温度、送風中の酸素濃度、微粉炭揮発分のいずれか一つを変更して、羽口におけるL=50mmの位置の粒子表面温度を測定した。それぞれの条件において羽口における粒子表面温度はなるべく一定となるよう−74μmの微粉炭の重量割合を調整した。結果を以下の表2に示す。表2において、試験条件の水準4、6、8が羽口における温度測定により微粉炭の燃焼性を維持する操業をした場合の例であり、試験条件の水準1、3、5、7が羽口における温度測定を実施せずに操業した場合の例である。なお、水準2では水準1と同じ条件で平均温度のみを測定し温度調整を行わなかった。 The operating conditions are 11500 t / day hot metal production, 150 kg / t-hot metal pulverized coal ratio, flow rate 7000 Nm 3 / min is constant, and any one of air temperature, oxygen concentration during air blowing, and pulverized coal volatiles is changed Then, the particle surface temperature at the position of L = 50 mm in the tuyere was measured. The weight ratio of -74 μm pulverized coal was adjusted so that the particle surface temperature at the tuyere was as constant as possible under each condition. The results are shown in Table 2 below. In Table 2, test conditions levels 4, 6, and 8 are examples in which operation is performed to maintain flammability of pulverized coal by temperature measurement at the tuyere, and test conditions levels 1, 3, 5, and 7 are It is an example at the time of operating, without implementing the temperature measurement in a mouth. In Level 2, only the average temperature was measured under the same conditions as Level 1, and no temperature adjustment was performed.

Figure 2017110259
Figure 2017110259

水準2と水準4の結果から、送風温度を1150℃から1200℃に上昇することで羽口における粒子表面温度が900℃から980℃へと上昇することを確認した。したがって、送風温度の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。また、水準4において微粉炭の粒度調整を実施し、羽口における粒子表面温度を一定とすることにより、同じ送風温度の水準3と比較して3kg/t−溶銑コークス比が減少し、粒子表面温度測定による微粉炭の燃焼性の制御も可能となった。   From the results of Level 2 and Level 4, it was confirmed that the particle surface temperature at the tuyere increased from 900 ° C. to 980 ° C. by increasing the blowing temperature from 1150 ° C. to 1200 ° C. Therefore, it can be seen that the temperature rise of the pulverized coal particles was improved and the combustibility was improved by the increase in the blowing temperature. Also, by adjusting the particle size of pulverized coal at level 4 and making the particle surface temperature at the tuyere constant, the 3 kg / t-hot metal coke ratio is reduced compared to level 3 at the same blowing temperature, and the particle surface The flammability of pulverized coal can also be controlled by temperature measurement.

また、水準2と水準6の結果から、送風中の酸素濃度を21%から25%に上昇することで羽口における粒子表面温度が900℃から1000℃へと上昇することを確認した。したがって、酸素濃度の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。さらに、微粉炭の粒度調整を実施し、羽口における粒子表面温度を一定とすることにより、同じ酸素濃度の水準5と比較して5kg/t−溶銑コークス比が減少し、粒子表面温度測定による微粉炭の燃焼性の制御も可能となった。   In addition, from the results of Level 2 and Level 6, it was confirmed that the particle surface temperature at the tuyere increased from 900 ° C. to 1000 ° C. by increasing the oxygen concentration during blowing from 21% to 25%. Therefore, it can be seen that the increase in the oxygen concentration improved the temperature rise of the pulverized coal particles and improved the combustibility. Furthermore, by adjusting the particle size of the pulverized coal and making the particle surface temperature constant at the tuyere, the 5 kg / t-molten coke ratio is reduced compared to level 5 of the same oxygen concentration, and the particle surface temperature is measured. It became possible to control the flammability of pulverized coal.

また、水準2と水準8の結果から微粉炭中の揮発分を15%から25%に上昇することで羽口における粒子表面温度が900℃から1010℃へと上昇することを確認した。したがって、揮発分の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。また、微粉炭の粒度調整を実施し、羽口における粒子表面温度を一定とすることにより、同じ揮発分の石炭を使用した水準7と比較して2kg/t−溶銑コークス比が減少し、粒子表面温度測定による微粉炭の燃焼性の制御も可能となった。   Moreover, it confirmed that the particle | grain surface temperature in a tuyere rose from 900 degreeC to 1010 degreeC by raising the volatile matter in pulverized coal from 15% to 25% from the result of level 2 and level 8. Therefore, it can be seen that the temperature rise of the pulverized coal particles is improved and the combustibility is also improved by the increase of the volatile matter. In addition, by adjusting the particle size of pulverized coal and keeping the particle surface temperature at the tuyere constant, the 2 kg / t-molten coke ratio is reduced compared to level 7 using coal with the same volatile content. The flammability of pulverized coal can be controlled by measuring the surface temperature.

実施例2−2:熱電対温度計実施例
燃焼状況測定装置4として熱電対温度計を設置した羽口1を高炉に設置し、羽口1における火炎温度の連続測定を実施した。具体的には、羽口において微粉炭の燃焼状況を確認するため、内容積5000m、羽口38本の高炉において羽口1本に熱電対温度計4を図1のようにL=50mmまたはL=150mmの位置(D=500mmでいずれも羽口内)に設置した。測定条件として、11500t/dayの溶銑生産量、[150kg/t−溶銑]の微粉炭比でランスから微粉炭を吹込んだ。また、ブローパイプ2からは送風温度1200℃、流量7000Nm/min、酸素濃度27%の空気を送風した。火炎温度の測定については1日間連続で実施した。
Example 2-2: Thermocouple Thermometer Example The tuyere 1 provided with a thermocouple thermometer as the combustion state measuring device 4 was installed in a blast furnace, and the flame temperature in the tuyere 1 was continuously measured. Specifically, in order to confirm the combustion state of pulverized coal at the tuyere, in a blast furnace with an inner volume of 5000 m 3 and 38 tuyere, a thermocouple thermometer 4 is placed at one tuyere at L = 50 mm as shown in FIG. It installed in the position of L = 150mm (D = 500mm and all are in a tuyere). As measurement conditions, pulverized coal was blown from the lance at a hot metal production amount of 11500 t / day and a pulverized coal ratio of [150 kg / t-hot metal]. Further, air having a blowing temperature of 1200 ° C., a flow rate of 7000 Nm 3 / min, and an oxygen concentration of 27% was blown from the blow pipe 2. The flame temperature was measured continuously for 1 day.

熱電対温度計4(タングステン・レニウム熱電対)は、タングステン・レニウム合金(レニウム:5%)とタングステン・レニウム合金(レニウム:26%)の異なる金属線において、金属線で閉回路を作り、両端の接点の温度を異なるようにすると温度差に対応した電流が流れ、一方の接点を外すと温度差に対応した熱起電力を生じることを利用した温度計である。熱電対温度計4としては、測定範囲0〜2400℃の熱電対温度計(タングステン・レニウム熱電対)を使用した。   Thermocouple thermometer 4 (tungsten / rhenium thermocouple) is a metal wire made of tungsten / rhenium alloy (rhenium: 5%) and tungsten / rhenium alloy (rhenium: 26%). This is a thermometer utilizing the fact that current corresponding to the temperature difference flows when the temperature of the contact is made different, and that a thermoelectromotive force corresponding to the temperature difference is generated when one of the contacts is removed. As the thermocouple thermometer 4, a thermocouple thermometer (tungsten / rhenium thermocouple) having a measurement range of 0 to 2400 ° C. was used.

測定結果を図8に示す。図8に示す例において、図8(a)はL=50mmでの火炎温度と時間との関係を示すグラフであり、図8(b)はL=150mmでの火炎温度と時間との関係を示すグラフである。図8に示す結果から、火炎温度の時間に対するばらつきが小さい状態で、微粉炭燃焼時の羽口における火炎温度を連続測定可能な事を確認できることから、さらに燃焼性評価の精度が上がることがわかった。   The measurement results are shown in FIG. In the example shown in FIG. 8, FIG. 8 (a) is a graph showing the relationship between flame temperature and time at L = 50 mm, and FIG. 8 (b) shows the relationship between flame temperature and time at L = 150 mm. It is a graph to show. From the results shown in FIG. 8, it can be confirmed that the flame temperature at the tuyere during pulverized coal combustion can be continuously measured in a state where the variation of the flame temperature with respect to time is small. It was.

また、11500t/dayの溶銑生産量、[150kg/t−溶銑]の微粉炭比、ブローパイプからの送風温度1200℃、送風流量7000Nm/minの条件下で、送風中の酸素濃度を21%または23%で各1日ずつ操業した場合の羽口における火炎温度をL=50mm、150mmの位置で測定した。結果を図9および図10に示す。図9に示す例において、図9(a)はL=50mmおよび酸素濃度21%での火炎温度と時間との関係を示すグラフであり、図9(b)はL=150mmおよび酸素濃度21%での火炎温度と時間との関係を示すグラフである。図10に示す例において、図10(a)はL=50mmおよび酸素濃度23%での火炎温度と時間との関係を示すグラフであり、図10(b)はL=150mmおよび酸素濃度23%での火炎温度と時間との関係を示すグラフである。図9および図10の結果から、図9に示す酸素濃度を21%にして操業した場合の方が図10に示す酸素濃度を23%にして操業した場合と比べて、羽口における火炎温度は平均的に低くなることがわかった。これは微粉炭の燃焼性が低下すると未燃の微粉炭が増加し、燃焼温度が低下するからである。 Moreover, the hot metal production amount of 11500 t / day, the pulverized coal ratio of [150 kg / t-hot metal], the air temperature from the blow pipe of 1200 ° C., the air flow rate of 7000 Nm 3 / min, the oxygen concentration in the air blowing is 21% Alternatively, the flame temperature at the tuyere when operated at 23% for 1 day each was measured at a position of L = 50 mm and 150 mm. The results are shown in FIG. 9 and FIG. In the example shown in FIG. 9, FIG. 9 (a) is a graph showing the relationship between flame temperature and time at L = 50 mm and oxygen concentration 21%, and FIG. 9 (b) is L = 150 mm and oxygen concentration 21%. It is a graph which shows the relationship between the flame temperature and time in. In the example shown in FIG. 10, FIG. 10 (a) is a graph showing the relationship between flame temperature and time at L = 50 mm and an oxygen concentration of 23%, and FIG. 10 (b) shows L = 150 mm and an oxygen concentration of 23%. It is a graph which shows the relationship between the flame temperature and time in. From the results of FIGS. 9 and 10, the flame temperature at the tuyere is higher when the operation is performed with the oxygen concentration shown in FIG. 9 being 21% than when the operation is performed with the oxygen concentration shown in FIG. 10 being 23%. It turned out to be low on average. This is because when the combustibility of pulverized coal decreases, unburned pulverized coal increases and the combustion temperature decreases.

次に、羽口における火炎温度測定により微粉炭の燃焼性を維持する操業をした場合と羽口における火炎温度測定を実施せずに操業した場合の2通りの操業において、1日間の平均コークス比を記録して羽口における火炎温度測定を実施した効果を確認した。   Next, the average coke ratio for one day in two operations, when the operation is performed to maintain the flammability of pulverized coal by measuring the flame temperature at the tuyere and when the operation is performed without performing the flame temperature measurement at the tuyere Was recorded to confirm the effect of flame temperature measurement at the tuyere.

操業条件は11500t/dayの溶銑生産量、150kg/t−溶銑の微粉炭比、流量7000Nm/minは一定とし、送風温度、送風中の酸素濃度、微粉炭揮発分のいずれか一つを変更して、羽口におけるL=50mmの位置の火炎温度を測定した。それぞれの条件において羽口における火炎温度はなるべく一定となるよう−74μmの微粉炭の重量割合を調整した。結果を以下の表3に示す。表3において、試験条件の水準4、6、8が羽口における火炎温度測定により微粉炭の燃焼性を維持する操業をした場合の例であり、試験条件の水準1、3、5、7が羽口における火炎温度測定を実施せずに操業した場合の例である。なお、水準2では水準1と同じ条件で平均火炎温度のみを測定し火炎温度の調整を行わなかった。 The operating conditions are 11500 t / day hot metal production, 150 kg / t-hot metal pulverized coal ratio, flow rate 7000 Nm 3 / min is constant, and any one of air temperature, oxygen concentration during air blowing, and pulverized coal volatiles is changed Then, the flame temperature at the position of L = 50 mm in the tuyere was measured. The weight ratio of -74 μm pulverized coal was adjusted so that the flame temperature at the tuyere was as constant as possible under each condition. The results are shown in Table 3 below. In Table 3, the test condition levels 4, 6, and 8 are examples in the case where operation is performed to maintain the flammability of pulverized coal by measuring the flame temperature at the tuyere, and the test condition levels 1, 3, 5, and 7 are It is an example at the time of operating, without implementing flame temperature measurement in a tuyere. In Level 2, only the average flame temperature was measured under the same conditions as Level 1, and the flame temperature was not adjusted.

Figure 2017110259
Figure 2017110259

水準2と水準4の結果から、送風温度を1150℃から1200℃に上昇することで羽口における火炎温度が950℃から1000℃へと上昇することを確認した。したがって、送風温度の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。また、水準4において微粉炭の粒度調整を実施し、羽口における火炎温度を一定とすることにより、同じ送風温度の水準3と比較して2kg/t−溶銑コークス比が減少し、火炎温度測定による微粉炭の燃焼性の制御も可能となった。   From the results of Level 2 and Level 4, it was confirmed that the flame temperature at the tuyere increased from 950 ° C. to 1000 ° C. by increasing the blowing temperature from 1150 ° C. to 1200 ° C. Therefore, it can be seen that the temperature rise of the pulverized coal particles was improved and the combustibility was improved by the increase in the blowing temperature. Also, by adjusting the particle size of pulverized coal at level 4 and making the flame temperature at the tuyere constant, the 2 kg / t-hot metal coke ratio is reduced compared to level 3 at the same blowing temperature, and flame temperature measurement It became possible to control the combustibility of pulverized coal.

また、水準2と水準6の結果から、送風中の酸素濃度を21%から25%に上昇することで羽口における火炎温度が950℃から970℃へと上昇することを確認した。したがって、酸素濃度の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。さらに、微粉炭の粒度調整を実施し、羽口における火炎温度を一定とすることにより、同じ酸素濃度の水準5と比較して4kg/t−溶銑コークス比が減少し、火炎温度測定による微粉炭の燃焼性の制御も可能となった。   Further, from the results of level 2 and level 6, it was confirmed that the flame temperature at the tuyere increased from 950 ° C. to 970 ° C. by increasing the oxygen concentration during blowing from 21% to 25%. Therefore, it can be seen that the increase in the oxygen concentration improved the temperature rise of the pulverized coal particles and improved the combustibility. Furthermore, by adjusting the particle size of the pulverized coal and making the flame temperature at the tuyere constant, the 4 kg / t-hot metal coke ratio is reduced compared to level 5 of the same oxygen concentration, and pulverized coal is measured by flame temperature measurement. It became possible to control the flammability.

さらにまた、水準2と水準8の結果から微粉炭中の揮発分を15%から25%に上昇することで羽口における火炎温度が950℃から1010℃へと上昇することを確認した。したがって、揮発分の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。また、微粉炭の粒度調整を実施し、羽口における火炎温度を一定とすることにより、同じ揮発分の石炭を使用した水準7と比較して3kg/t−溶銑コークス比が減少し、火炎温度測定による微粉炭の燃焼性の制御も可能となった。   Furthermore, it was confirmed from the results of level 2 and level 8 that the flame temperature at the tuyere increased from 950 ° C. to 1010 ° C. by increasing the volatile content in the pulverized coal from 15% to 25%. Therefore, it can be seen that the temperature rise of the pulverized coal particles is improved and the combustibility is also improved by the increase of the volatile matter. In addition, by adjusting the particle size of pulverized coal and making the flame temperature constant at the tuyere, the 3 kg / t-hot metal coke ratio is reduced compared to level 7 using the same volatile coal, and the flame temperature It became possible to control the flammability of pulverized coal by measurement.

実施例3:面積比分布測定実施例
燃焼状況測定装置4としてカメラ型の面積比測定装置を設置した羽口1を高炉に設置し、羽口1における微粉炭の面積比分布の連続測定を実施した。具体的には、羽口において微粉炭の燃焼状況を確認するため、内容積5000m、羽口38本の高炉において羽口1本に面積比分布測定装置4を図1のようにL=50mmまたはL=150mmの位置(D=500mmでいずれも羽口内)に設置した。測定条件として、11500t/dayの溶銑生産量、[150kg/t−溶銑]の微粉炭比でランスから微粉炭を吹込んだ。また、ブローパイプ2からは送風温度1200℃、流量7000Nm/min、酸素濃度27%の空気を送風した。燃焼状況の測定については1日間連続で実施した。
また、面積比分布の把握については微粉炭流全体において1000℃以上の火炎部面積の面積比で実施した。なお、面積比測定装置4としては、測定範囲800〜3000℃の赤外線サーモグラフィーにより測定し、1000℃以上の面積を抽出し、面積比を算出した。
Example 3: Area ratio distribution measurement Example A tuyere 1 equipped with a camera-type area ratio measuring device as a combustion state measuring device 4 is installed in a blast furnace, and continuous measurement of the area ratio distribution of pulverized coal in the tuyere 1 is performed. did. Specifically, in order to confirm the combustion state of the pulverized coal at the tuyere, the area ratio distribution measuring device 4 is arranged at L = 50 mm as shown in FIG. 1 in one tuyere in a blast furnace with an inner volume of 5000 m 3 and 38 tuyere. Or it installed in the position of L = 150mm (D = 500mm and all are in a tuyere). As measurement conditions, pulverized coal was blown from the lance at a hot metal production amount of 11500 t / day and a pulverized coal ratio of [150 kg / t-hot metal]. Further, air having a blowing temperature of 1200 ° C., a flow rate of 7000 Nm 3 / min, and an oxygen concentration of 27% was blown from the blow pipe 2. About the measurement of a combustion condition, it implemented for 1 day continuously.
Moreover, about grasping | ascertaining of area ratio distribution, it implemented by the area ratio of the flame part area of 1000 degreeC or more in the whole pulverized coal flow. In addition, as the area ratio measuring apparatus 4, it measured by the infrared thermography of the measurement range 800-3000 degreeC, the area of 1000 degreeC or more was extracted, and the area ratio was computed.

測定結果を図11に示す。図11に示す例において、図11(a)はL=50mmでの面積比と時間との関係を示すグラフであり、図11(b)はL=150mmでの面積比と時間との関係を示すグラフである。図11に示す結果から、面積比の時間に対するばらつきが小さい状態で、微粉炭燃焼時の羽口における面積比を連続測定可能な事を確認できることから、さらに燃焼性評価の精度が上がることがわかった。   The measurement results are shown in FIG. In the example shown in FIG. 11, FIG. 11A is a graph showing the relationship between the area ratio at L = 50 mm and time, and FIG. 11B shows the relationship between the area ratio at L = 150 mm and time. It is a graph to show. From the results shown in FIG. 11, it can be confirmed that the area ratio at the tuyere at the time of pulverized coal combustion can be continuously measured in a state in which the variation of the area ratio with respect to time is small, so that the accuracy of the combustibility evaluation is further improved. It was.

また、11500t/dayの溶銑生産量、[150kg/t−溶銑]の微粉炭比、ブローパイプからの送風温度1200℃、送風流量7000Nm/minの条件下で、送風中の酸素濃度を21%または23%で各1日ずつ操業した場合の羽口における微粉炭流全体において1000℃以上の火炎部面積の面積比をL=50mm、150mmの位置で測定した。結果を図12および図13に示す。図12に示す例において、図12(a)はL=50mmおよび酸素濃度21%での面積比と時間との関係を示すグラフであり、図12(b)はL=150mmおよび酸素濃度21%での面積比と時間との関係を示すグラフである。図13に示す例において、図13(a)はL=50mmおよび酸素濃度23%での面積比と時間との関係を示すグラフであり、図13(b)はL=150mmおよび酸素濃度23%での面積比と時間との関係を示すグラフである。図12および図13の結果から、図12に示す酸素濃度を21%にして操業した場合の方が図13に示す酸素濃度を23%にして操業した場合と比べて、羽口における面積比は平均的に低くなることがわかった。これは微粉炭の燃焼性が低下したためであると考えられる。 Moreover, the hot metal production amount of 11500 t / day, the pulverized coal ratio of [150 kg / t-hot metal], the air temperature from the blow pipe of 1200 ° C., the air flow rate of 7000 Nm 3 / min, the oxygen concentration in the air blowing is 21% Alternatively, the area ratio of the flame area of 1000 ° C. or higher was measured at the positions of L = 50 mm and 150 mm in the entire pulverized coal flow at the tuyere when operated at 23% for 1 day each. The results are shown in FIGS. In the example shown in FIG. 12, FIG. 12 (a) is a graph showing the relationship between the area ratio and time at L = 50 mm and an oxygen concentration of 21%, and FIG. 12 (b) shows L = 150 mm and the oxygen concentration of 21%. It is a graph which shows the relationship between the area ratio in and time. In the example shown in FIG. 13, FIG. 13 (a) is a graph showing the relationship between the area ratio and time at L = 50 mm and an oxygen concentration of 23%, and FIG. 13 (b) shows L = 150 mm and the oxygen concentration of 23%. It is a graph which shows the relationship between the area ratio in and time. From the results of FIG. 12 and FIG. 13, the area ratio at the tuyere in the case of operation with the oxygen concentration shown in FIG. 12 being 21% is lower than that in the case of operation with the oxygen concentration shown in FIG. 13 being 23%. It turned out to be low on average. This is considered to be because the combustibility of pulverized coal decreased.

次に、羽口における面積比測定により微粉炭の燃焼性を維持する操業をした場合と羽口における面積比測定を実施せずに操業した場合の2通りの操業において、1日間の平均コークス比を記録して羽口における面積比測定を実施した効果を確認した。   Next, the average coke ratio for one day in two types of operation, when operating without maintaining the area ratio measurement at the tuyere and when operating to maintain the combustibility of pulverized coal by area ratio measurement at the tuyere Was recorded to confirm the effect of measuring the area ratio at the tuyere.

操業条件は11500t/dayの溶銑生産量、150kg/t−溶銑の微粉炭比、流量7000Nm/minは一定とし、送風温度、送風中の酸素濃度、微粉炭揮発分のいずれか一つを変更して、羽口におけるL=50mmの位置の面積比を測定した。それぞれの条件において羽口における面積比はなるべく一定となるよう−74μmの微粉炭の重量割合を調整した。結果を以下の表4に示す。表4において、試験条件の水準4、6、8が羽口における面積比測定により微粉炭の燃焼性を維持する操業をした場合の例であり、試験条件の水準1、3、5、7が羽口における面積比測定を実施せずに操業した場合の例である。なお、水準2では水準1と同じ条件で平均面積比のみを測定し面積比の調整を行わなかった。 The operating conditions are 11500 t / day hot metal production, 150 kg / t-hot metal pulverized coal ratio, flow rate 7000 Nm 3 / min is constant, and any one of air temperature, oxygen concentration during air blowing, and pulverized coal volatiles is changed Then, the area ratio at the position of L = 50 mm in the tuyere was measured. The weight ratio of −74 μm pulverized coal was adjusted so that the area ratio at the tuyere was as constant as possible under each condition. The results are shown in Table 4 below. In Table 4, test conditions levels 4, 6, and 8 are examples in which operation is performed to maintain flammability of pulverized coal by area ratio measurement at the tuyere, and test condition levels 1, 3, 5, and 7 are It is an example at the time of operating, without implementing the area ratio measurement in a tuyere. In Level 2, only the average area ratio was measured under the same conditions as Level 1, and the area ratio was not adjusted.

Figure 2017110259
Figure 2017110259

水準2と水準4の結果から、送風温度を1150℃から1200℃に上昇することで羽口における面積比が0.08から0.12へと上昇することを確認した。したがって、送風温度の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。また、水準4において微粉炭の粒度調整を実施し、羽口における面積比を一定とすることにより、同じ送風温度の水準3と比較して2kg/t−溶銑コークス比が減少し、面積比測定による微粉炭の燃焼性の制御も可能となった。   From the results of Level 2 and Level 4, it was confirmed that the area ratio at the tuyere increased from 0.08 to 0.12 by increasing the blowing temperature from 1150 ° C to 1200 ° C. Therefore, it can be seen that the temperature rise of the pulverized coal particles was improved and the combustibility was improved by the increase in the blowing temperature. Moreover, by adjusting the particle size of pulverized coal at level 4 and making the area ratio at the tuyere constant, the 2 kg / t-hot metal coke ratio is reduced compared to level 3 at the same blowing temperature, and the area ratio measurement It became possible to control the combustibility of pulverized coal.

また、水準2と水準6の結果から、送風中の酸素濃度を21%から25%に上昇することで羽口における面積比が0.08から0.14へと上昇することを確認した。したがって、酸素濃度の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。さらに、微粉炭の粒度調整を実施し、羽口における面積比を一定とすることにより、同じ酸素濃度の水準5と比較して3kg/t−溶銑コークス比が減少し、面積比測定による微粉炭の燃焼性の制御も可能となった。   Further, from the results of level 2 and level 6, it was confirmed that the area ratio at the tuyere increased from 0.08 to 0.14 by increasing the oxygen concentration during blowing from 21% to 25%. Therefore, it can be seen that the increase in the oxygen concentration improved the temperature rise of the pulverized coal particles and improved the combustibility. Furthermore, by adjusting the particle size of the pulverized coal and keeping the area ratio at the tuyere constant, the 3 kg / t-hot metal coke ratio is reduced as compared with level 5 of the same oxygen concentration, and pulverized coal by area ratio measurement. It became possible to control the flammability.

また、水準2と水準8の結果から微粉炭中の揮発分を15%から25%に上昇することで羽口における面積比が0.08から0.15へと上昇することを確認した。したがって、揮発分の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。また、微粉炭の粒度調整を実施し、羽口における面積比を一定とすることにより、同じ揮発分の石炭を使用した水準7と比較して3kg/t−溶銑コークス比が減少し、面積比測定による微粉炭の燃焼性の制御も可能となった。   Further, from the results of Level 2 and Level 8, it was confirmed that the area ratio at the tuyere increased from 0.08 to 0.15 by increasing the volatile content in the pulverized coal from 15% to 25%. Therefore, it can be seen that the temperature rise of the pulverized coal particles is improved and the combustibility is also improved by the increase of the volatile matter. In addition, by adjusting the particle size of pulverized coal and keeping the area ratio at the tuyere constant, the 3 kg / t-hot metal coke ratio is reduced compared to level 7 using the same volatile coal, and the area ratio It became possible to control the flammability of pulverized coal by measurement.

実施例4:画像解析実施例
燃焼状況測定装置4として画像解析装置を設置した羽口1を高炉に設置し、羽口1における微粉炭の火炎部面積の連続測定を実施した。具体的には、羽口において微粉炭の燃焼状況を確認するため、内容積5000m、羽口38本の高炉において羽口1本に画像解析装置4を図1のようにL=50mmまたはL=150mmの位置(D=500mmでいずれも羽口内)に設置した。測定条件として、11500t/dayの溶銑生産量、[150kg/t−溶銑]の微粉炭比でランスから微粉炭を吹込んだ。また、ブローパイプ2からは送風温度1200℃、流量7000Nm/min、酸素濃度27%の空気を送風した。燃焼状況の測定については1日間連続で実施した。
Example 4: Image Analysis Example A tuyere 1 equipped with an image analysis device as a combustion state measuring device 4 was placed in a blast furnace, and continuous measurement of the area of the flaky coal in the tuyere 1 was performed. Specifically, in order to confirm the combustion state of the pulverized coal at the tuyere, the image analysis apparatus 4 is arranged at L = 50 mm or L as shown in FIG. 1 in one tuyere in a blast furnace with an inner volume of 5000 m 3 and 38 tuyere. = 150 mm (D = 500 mm, both in the tuyere). As measurement conditions, pulverized coal was blown from the lance at a hot metal production amount of 11500 t / day and a pulverized coal ratio of [150 kg / t-hot metal]. Further, air having a blowing temperature of 1200 ° C., a flow rate of 7000 Nm 3 / min, and an oxygen concentration of 27% was blown from the blow pipe 2. About the measurement of a combustion condition, it implemented for 1 day continuously.

また、燃焼状況の把握については画像において、未燃焼微粉炭の面積をA、微粉炭が燃焼して発生した火炎部の面積をBとし、火炎部面積Bの微粉炭主流全体の面積(A+B)に対する面積比(B/(A+B))で実施した。なお、画像解析装置4による面積比の測定は、高速度カメラにより微粉炭主流と火炎部を撮影し、画像解析ソフトにより面積比を算出して行った。   As for grasping the combustion state, in the image, the area of the unburned pulverized coal is A, the area of the flame part generated by the combustion of the pulverized coal is B, and the area of the entire pulverized coal main body of the flame part area B (A + B) Was carried out at an area ratio (B / (A + B)). The area ratio measurement by the image analysis device 4 was performed by photographing the pulverized coal mainstream and the flame part with a high-speed camera and calculating the area ratio with image analysis software.

測定結果を図14に示す。図14に示す例において、図14(a)はL=50mmでの面積比と時間との関係を示すグラフであり、図14(b)はL=150mmでの面積比と時間との関係を示すグラフである。図14に示す結果から、面積比の時間に対するばらつきが小さい状態で、微粉炭燃焼時の羽口における面積比を連続測定可能な事を確認できることから、さらに燃焼性評価の精度が上がることがわかった。   The measurement results are shown in FIG. In the example shown in FIG. 14, FIG. 14A is a graph showing the relationship between the area ratio at L = 50 mm and time, and FIG. 14B is the graph showing the relationship between the area ratio at L = 150 mm and time. It is a graph to show. From the results shown in FIG. 14, it can be confirmed that the area ratio at the tuyere at the time of pulverized coal combustion can be continuously measured in a state where the variation of the area ratio with respect to time is small. It was.

また、11500t/dayの溶銑生産量、[150kg/t−溶銑]の微粉炭比、ブローパイプからの送風温度1200℃、送風流量7000Nm/minの条件下で、送風中の酸素濃度を21%または23%で各1日ずつ操業した場合の羽口における微粉炭主流全体の面積における火炎部面積の面積比をL=50mm、150mmの位置で測定した。結果を図15および図16に示す。図15に示す例において、図15(a)はL=50mmおよび酸素濃度21%での面積比と時間との関係を示すグラフであり、図15(b)はL=150mmおよび酸素濃度21%での面積比と時間との関係を示すグラフである。図16に示す例において、図16(a)はL=50mmおよび酸素濃度23%での面積比と時間との関係を示すグラフであり、図16(b)はL=150mmおよび酸素濃度23%での面積比と時間との関係を示すグラフである。図15および図16の結果から、図15に示す酸素濃度を21%にして操業した場合の方が図16に示す酸素濃度を23%にして操業した場合と比べて、羽口における面積比は平均的に低くなることがわかった。これは微粉炭の燃焼性が低下したためであると考えられる。 Moreover, the hot metal production amount of 11500 t / day, the pulverized coal ratio of [150 kg / t-hot metal], the air temperature from the blow pipe of 1200 ° C., the air flow rate of 7000 Nm 3 / min, the oxygen concentration in the air blowing is 21% Alternatively, the area ratio of the flame area in the area of the entire mainstream of pulverized coal at the tuyere when operated at 23% for 1 day each was measured at a position of L = 50 mm and 150 mm. The results are shown in FIG. 15 and FIG. In the example shown in FIG. 15, FIG. 15A is a graph showing the relationship between the area ratio and time at L = 50 mm and an oxygen concentration of 21%, and FIG. 15B is a graph showing L = 150 mm and the oxygen concentration of 21%. It is a graph which shows the relationship between the area ratio in and time. In the example shown in FIG. 16, FIG. 16 (a) is a graph showing the relationship between the area ratio and time at L = 50 mm and an oxygen concentration of 23%, and FIG. 16 (b) is L = 150 mm and the oxygen concentration of 23%. It is a graph which shows the relationship between the area ratio in and time. From the results of FIGS. 15 and 16, the area ratio at the tuyere is greater when the operation is performed with the oxygen concentration shown in FIG. 15 being 21% than when the operation is performed with the oxygen concentration being 23% shown in FIG. 16. It turned out to be low on average. This is considered to be because the combustibility of pulverized coal decreased.

次に、羽口における面積比測定により微粉炭の燃焼性を維持する操業をした場合と羽口における面積比測定を実施せずに操業した場合の2通りの操業において、1日間の平均コークス比を記録して羽口における面積比測定を実施した効果を確認した。   Next, the average coke ratio for one day in two types of operation, when operating without maintaining the area ratio measurement at the tuyere and when operating to maintain the combustibility of pulverized coal by area ratio measurement at the tuyere Was recorded to confirm the effect of measuring the area ratio at the tuyere.

操業条件は11500t/dayの溶銑生産量、150kg/t−溶銑の微粉炭比、流量7000Nm/minは一定とし、送風温度、送風中の酸素濃度、微粉炭揮発分のいずれか一つを変更して、羽口におけるL=50mmの位置の面積比を測定した。それぞれの条件において羽口における面積比はなるべく一定となるよう−74μmの微粉炭の重量割合を調整した。結果を以下の表5に示す。表5において、試験条件の水準4、6、8が羽口における面積比測定により微粉炭の燃焼性を維持する操業をした場合の例であり、試験条件の水準1、3、5、7が羽口における面積比測定を実施せずに操業した場合の例である。なお、水準2では水準1と同じ条件で平均面積比のみを測定し面積比の調整を行わなかった。 The operating conditions are 11500 t / day hot metal production, 150 kg / t-hot metal pulverized coal ratio, flow rate 7000 Nm 3 / min is constant, and any one of air temperature, oxygen concentration during air blowing, and pulverized coal volatiles is changed Then, the area ratio at the position of L = 50 mm in the tuyere was measured. The weight ratio of −74 μm pulverized coal was adjusted so that the area ratio at the tuyere was as constant as possible under each condition. The results are shown in Table 5 below. In Table 5, test conditions levels 4, 6, and 8 are examples when the operation is performed to maintain flammability of pulverized coal by area ratio measurement at the tuyere, and test condition levels 1, 3, 5, and 7 are It is an example at the time of operating, without implementing the area ratio measurement in a tuyere. In Level 2, only the average area ratio was measured under the same conditions as Level 1, and the area ratio was not adjusted.

Figure 2017110259
Figure 2017110259

水準2と水準4の結果から、送風温度を1150℃から1200℃に上昇することで羽口における面積比が0.25から0.31へと上昇することを確認した。したがって、送風温度の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。また、水準4において微粉炭の粒度調整を実施し、羽口における面積比を一定とすることにより、同じ送風温度の水準3と比較して2kg/t−溶銑コークス比が減少し、面積比測定による微粉炭の燃焼性の制御も可能となった。   From the results of Level 2 and Level 4, it was confirmed that the area ratio at the tuyere increased from 0.25 to 0.31 by increasing the blowing temperature from 1150 ° C to 1200 ° C. Therefore, it can be seen that the temperature rise of the pulverized coal particles was improved and the combustibility was improved by the increase in the blowing temperature. Moreover, by adjusting the particle size of pulverized coal at level 4 and making the area ratio at the tuyere constant, the 2 kg / t-hot metal coke ratio is reduced compared to level 3 at the same blowing temperature, and the area ratio measurement It became possible to control the combustibility of pulverized coal.

また、水準2と水準6の結果から、送風中の酸素濃度を21%から25%に上昇することで羽口における面積比が0.25から0.32へと上昇することを確認した。したがって、酸素濃度の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。さらに、微粉炭の粒度調整を実施し、羽口における面積比を一定とすることにより、同じ酸素濃度の水準5と比較して3kg/t−溶銑コークス比が減少し、面積比測定による微粉炭の燃焼性の制御も可能となった。   Further, from the results of Level 2 and Level 6, it was confirmed that the area ratio at the tuyere increased from 0.25 to 0.32 by increasing the oxygen concentration in the blowing from 21% to 25%. Therefore, it can be seen that the increase in the oxygen concentration improved the temperature rise of the pulverized coal particles and improved the combustibility. Furthermore, by adjusting the particle size of the pulverized coal and keeping the area ratio at the tuyere constant, the 3 kg / t-hot metal coke ratio is reduced as compared with level 5 of the same oxygen concentration, and pulverized coal by area ratio measurement. It became possible to control the flammability.

さらにまた、水準2と水準8の結果から微粉炭中の揮発分を15%から25%に上昇することで羽口における面積比が0.25から0.31へと上昇することを確認した。したがって、揮発分の上昇により、微粉炭粒子の昇温が改善され燃焼性も改善されたことがわかる。また、微粉炭の粒度調整を実施し、羽口における面積比を一定とすることにより、同じ揮発分の石炭を使用した水準7と比較して3kg/t−溶銑コークス比が減少し、面積比測定による微粉炭の燃焼性の制御も可能となった。   Furthermore, from the results of Level 2 and Level 8, it was confirmed that the area ratio at the tuyere increased from 0.25 to 0.31 by increasing the volatile content in the pulverized coal from 15% to 25%. Therefore, it can be seen that the temperature rise of the pulverized coal particles is improved and the combustibility is also improved by the increase of the volatile matter. In addition, by adjusting the particle size of pulverized coal and keeping the area ratio at the tuyere constant, the 3 kg / t-hot metal coke ratio is reduced compared to level 7 using the same volatile coal, and the area ratio It became possible to control the flammability of pulverized coal by measurement.

本発明の燃焼状況測定方法によれば、微粉炭などの固体燃料の燃焼状況を羽口において正確に確認可能となる。そのため、確認した燃焼状況に基づき微粉炭などの固体燃料の燃焼性の正確な制御が可能となり、燃焼性の制御を必要とする高炉などの種々の分野において、本発明の燃焼状況測定方法を好適に用いることができる。   According to the combustion status measurement method of the present invention, the combustion status of solid fuel such as pulverized coal can be accurately confirmed at the tuyere. Therefore, it becomes possible to accurately control the combustibility of solid fuel such as pulverized coal based on the confirmed combustion condition, and the combustion condition measuring method of the present invention is suitable for various fields such as a blast furnace that requires combustibility control. Can be used.

1 羽口
2 ブローパイプ
3 ランス
4 燃焼状況測定装置(圧力測定装置、温度測定装置、面積比分布測定装置、画像解析装置)
1 tuyere 2 blow pipe 3 lance 4 combustion state measuring device (pressure measuring device, temperature measuring device, area ratio distribution measuring device, image analysis device)

本発明は、高炉羽口において微粉炭などの固体燃料やLNG(Liquefied Natural Gas:液化天然ガス)などの易燃焼ガスの燃焼状況を測定する燃焼状況測定方法および燃焼状況測定システムに関するものである。 The present invention relates to a combustion state measuring method and a combustion state measuring system for measuring a combustion state of a solid fuel such as pulverized coal or a flammable gas such as LNG (Liquefied Natural Gas) at a blast furnace tuyere.

本発明は、上記のような問題点に着目してなされたものであり、微粉炭燃焼時の羽口における燃焼状況の確認を可能とする燃焼状況測定方法および燃焼状況測定システムを提供することを目的とするものである。 The present invention has been made paying attention to the above-described problems, and provides a combustion state measuring method and a combustion state measuring system that enable confirmation of the combustion state at the tuyere during pulverized coal combustion. It is the purpose.

即ち、本発明は、ランス先端から羽口先端までの距離Dが0〜500mmの間において、ランス先端から距離L(0mm<L<D)の位置に燃焼状況測定装置を設置し、該燃焼状況測定装置により羽口における微粉炭燃焼状態を連続測定することを特徴とする燃焼状況測定方法である。
また、本発明は、高炉の壁面に設置された羽口と、羽口に装着されたブローパイプと、ブローパイプの壁面に装着されたランスと、ランスの先端と羽口の先端との間であって、ブローパイプまたは羽口の壁面に装着された燃焼状況測定装置と、からなることを特徴とする燃焼状況測定システムである。
That is, according to the present invention, when the distance D from the tip of the lance to the tip of the tuyere is between 0 and 500 mm, the combustion condition measuring device is installed at a position of a distance L (0 mm <L <D) from the tip of the lance. It is a combustion state measuring method characterized by continuously measuring the pulverized coal combustion state at the tuyere with a measuring device.
The present invention also provides a tuyere installed on the wall of the blast furnace, a blow pipe attached to the tuyere, a lance attached to the wall of the blow pipe, and a tip between the tip of the lance and the tip of the tuyere. A combustion state measuring system comprising a combustion state measuring device mounted on a blow pipe or tuyere wall.

なお、本発明に係る前記燃焼状況測定方法においては、
(1)前記燃焼状況測定装置が圧力計であり、前記微粉炭燃焼状態が圧力計を用いて測定した圧力であること、
(2)前記燃焼状況測定装置が温度測定装置であり、前記微粉炭燃焼状態が温度測定装置を用いて測定した温度であること、
(3)前記温度測定装置が、輝度から粒子表面温度を測定する2色温度計または火炎温度を測定する熱電対であること、
(4)前記燃焼状況測定装置が面積比分布測定装置であり、前記微粉炭燃焼状態が面積比分布測定装置を用いて測定した微粉炭の面積比であること、
(5)前記燃焼状況測定装置が画像解析装置であり、前記微粉炭燃焼状態が画像解析装置を用いて測定した微粉炭の火炎部面積であること、
が、より好ましい解決手段になり得るものと考えられる。
また、本発明に係る前記燃焼状況測定システムにおいては、
(6)ランス先端から羽口先端までの距離Dが0〜500mmの間において、ランス先端から距離L(0mm<L<D)の位置に燃焼状況測定装置を設置し、該燃焼状況測定装置により羽口における微粉炭燃焼状態を連続測定すること、
が、より好ましい解決手段になる得るものと考えられる。
In the combustion state measuring method according to the present invention,
(1) The combustion state measuring device is a pressure gauge, and the pulverized coal combustion state is a pressure measured using a pressure gauge,
(2) The combustion state measuring device is a temperature measuring device, and the pulverized coal combustion state is a temperature measured using a temperature measuring device,
(3) The temperature measuring device is a two-color thermometer that measures particle surface temperature from luminance or a thermocouple that measures flame temperature,
(4) The combustion state measuring device is an area ratio distribution measuring device, and the pulverized coal combustion state is an area ratio of pulverized coal measured using an area ratio distribution measuring device,
(5) The combustion state measuring device is an image analysis device, and the pulverized coal combustion state is a flame part area of pulverized coal measured using an image analysis device,
However, it can be considered as a more preferable solution.
In the combustion status measurement system according to the present invention,
(6) When the distance D from the tip of the lance to the tip of the tuyere is between 0 and 500 mm, a combustion state measuring device is installed at a position of distance L (0 mm <L <D) from the tip of the lance. Continuously measuring the pulverized coal combustion state at the tuyere,
However, it can be considered as a more preferable solution.

本発明の燃焼状況測定方法および燃焼状況測定システムによれば、微粉炭などの固体燃料の燃焼状況を羽口において正確に確認可能となる。そのため、確認した燃焼状況に基づき微粉炭などの固体燃料の燃焼性の正確な制御が可能となり、燃焼性の制御を必要とする高炉などの種々の分野において、本発明の燃焼状況測定方法および燃焼状況測定システムを好適に用いることができる。 According to the combustion state measurement method and the combustion state measurement system of the present invention, the combustion state of solid fuel such as pulverized coal can be accurately confirmed at the tuyere. Therefore, it is possible to accurately control the combustibility of solid fuel such as pulverized coal based on the confirmed combustion state, and in various fields such as a blast furnace that requires control of combustibility, the combustion state measuring method and combustion of the present invention A situation measurement system can be suitably used.

Claims (6)

ランス先端から羽口先端までの距離Dが0〜500mmの間において、ランス先端から距離L(0mm<L<D)の位置に燃焼状況測定装置を設置し、該燃焼状況測定装置により羽口における微粉炭燃焼状態を連続測定することを特徴とする燃焼状況測定方法。   When the distance D from the tip of the lance to the tip of the tuyere is between 0 and 500 mm, a combustion condition measuring device is installed at a distance L (0 mm <L <D) from the tip of the lance. A combustion state measuring method characterized by continuously measuring a pulverized coal combustion state. 前記燃焼状況測定装置が圧力計であり、前記微粉炭燃焼状態が圧力計を用いて測定した圧力であることを特徴とする請求項1に記載の燃焼状況測定方法。   The combustion state measuring method according to claim 1, wherein the combustion state measuring device is a pressure gauge, and the pulverized coal combustion state is a pressure measured using a pressure gauge. 前記燃焼状況測定装置が温度測定装置であり、前記微粉炭燃焼状態が温度測定装置を用いて測定した温度であることを特徴とする請求項1に記載の燃焼状況測定方法。   The combustion state measuring method according to claim 1, wherein the combustion state measuring device is a temperature measuring device, and the pulverized coal combustion state is a temperature measured using a temperature measuring device. 前記温度測定装置が、輝度から粒子表面温度を測定する2色温度計または火炎温度を測定する熱電対であることを特徴とする請求項3に記載の燃焼状況測定方法。   4. The combustion state measuring method according to claim 3, wherein the temperature measuring device is a two-color thermometer for measuring particle surface temperature from luminance or a thermocouple for measuring flame temperature. 前記燃焼状況測定装置が面積比分布測定装置であり、前記微粉炭燃焼状態が面積比分布測定装置を用いて測定した微粉炭の面積比であることを特徴とする請求項1に記載の燃焼状況測定方法。   The combustion state according to claim 1, wherein the combustion state measuring device is an area ratio distribution measuring device, and the pulverized coal combustion state is an area ratio of pulverized coal measured using an area ratio distribution measuring device. Measuring method. 前記燃焼状況測定装置が画像解析装置であり、前記微粉炭燃焼状態が画像解析装置を用いて測定した微粉炭の火炎部面積であることを特徴とする請求項1に記載の燃焼状況測定方法。   The combustion state measuring method according to claim 1, wherein the combustion state measuring device is an image analysis device, and the pulverized coal combustion state is a flame area of pulverized coal measured using the image analysis device.
JP2015245055A 2015-12-16 2015-12-16 Combustion status measurement method and combustion status measurement system Active JP6421938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015245055A JP6421938B2 (en) 2015-12-16 2015-12-16 Combustion status measurement method and combustion status measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015245055A JP6421938B2 (en) 2015-12-16 2015-12-16 Combustion status measurement method and combustion status measurement system

Publications (2)

Publication Number Publication Date
JP2017110259A true JP2017110259A (en) 2017-06-22
JP6421938B2 JP6421938B2 (en) 2018-11-14

Family

ID=59079364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015245055A Active JP6421938B2 (en) 2015-12-16 2015-12-16 Combustion status measurement method and combustion status measurement system

Country Status (1)

Country Link
JP (1) JP6421938B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123896A (en) * 2018-01-12 2019-07-25 Jfeスチール株式会社 Method of estimating combustion position of reducing agent injected into blast furnace, method of operating blast furnace, and blast tuyere

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428808A (en) * 1990-05-23 1992-01-31 Sumitomo Metal Ind Ltd Method for blowing powdered material from tuyere in blast furnace
JPH0517808A (en) * 1991-07-12 1993-01-26 Nippon Steel Corp Method for evaluating combustibility of pulverized coal in blast furnace
JPH07179917A (en) * 1993-11-15 1995-07-18 Nkk Corp Method for measuring combustion temperature of blowing fuel in blast furnace and method for diagnosing combustion of fuel
JPH111707A (en) * 1997-04-11 1999-01-06 Nippon Steel Corp Burner for injecting powdery fuel into blast furnace
JP2006183114A (en) * 2004-12-28 2006-07-13 Nippon Steel Corp Operation method for blast furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0428808A (en) * 1990-05-23 1992-01-31 Sumitomo Metal Ind Ltd Method for blowing powdered material from tuyere in blast furnace
JPH0517808A (en) * 1991-07-12 1993-01-26 Nippon Steel Corp Method for evaluating combustibility of pulverized coal in blast furnace
JPH07179917A (en) * 1993-11-15 1995-07-18 Nkk Corp Method for measuring combustion temperature of blowing fuel in blast furnace and method for diagnosing combustion of fuel
JPH111707A (en) * 1997-04-11 1999-01-06 Nippon Steel Corp Burner for injecting powdery fuel into blast furnace
JP2006183114A (en) * 2004-12-28 2006-07-13 Nippon Steel Corp Operation method for blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123896A (en) * 2018-01-12 2019-07-25 Jfeスチール株式会社 Method of estimating combustion position of reducing agent injected into blast furnace, method of operating blast furnace, and blast tuyere

Also Published As

Publication number Publication date
JP6421938B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
Smart et al. Characterisation of an oxy-coal flame through digital imaging
JP5824810B2 (en) Blast furnace operation method
JP5699833B2 (en) Blast furnace operation method
JP6179286B2 (en) Blast furnace operating status judgment method
JP5699832B2 (en) Blast furnace operation method
JP2015052148A (en) Method for controlling blast furnace by determining operational situation thereof
AU2013284587B2 (en) Method for operating blast furnace
JP5971165B2 (en) Blast furnace operation method
JP6421938B2 (en) Combustion status measurement method and combustion status measurement system
KR102080705B1 (en) Method for injecting pulverized coal into oxygen blast furnace
JP5652575B1 (en) Blast furnace operating method and lance
Agrawal et al. Technological advancements in evaluating the performance of the pulverized coal injection through tuyeres in blast furnace
JP6604658B2 (en) Blast furnace injection reducing material combustion rate estimation method, blast furnace operation method and blower tuyere
JP2011168886A (en) Blast furnace operation method
JP6870426B2 (en) How to operate the blast furnace
Kong et al. Moderate micro-explosion during the combustion of iron wire in atmospheric air
JP6942641B2 (en) Blast furnace blown reducing agent combustion position estimation method, blast furnace operation method and blower tuyere
ES2545133T3 (en) Method for determining an operating parameter and / or a material parameter in an electric arc furnace, and electric arc furnace
Stokreef Measuring the effect of concentrate mineralogy on flash furnace smelting using drop tower testing and a novel optical probe
JP4770316B2 (en) Blast furnace tuyere and blast furnace bottom situation evaluation method
JP5014555B2 (en) In-furnace observation method of molten iron refining furnace
JP2011168885A (en) Blast furnace operation method
US20240125470A1 (en) Monitoring combustible matter in a gaseous stream
JP2550270B2 (en) Continuous measurement method of pulverized coal combustibility at tuyere of blast furnace and operation method by it
Shiau et al. Results of tuyere coke sampling with regard to application of appropriate coke strength after reaction (CSR) for a blast furnace

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R150 Certificate of patent or registration of utility model

Ref document number: 6421938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250