JP2015052148A - Method for controlling blast furnace by determining operational situation thereof - Google Patents

Method for controlling blast furnace by determining operational situation thereof Download PDF

Info

Publication number
JP2015052148A
JP2015052148A JP2013185699A JP2013185699A JP2015052148A JP 2015052148 A JP2015052148 A JP 2015052148A JP 2013185699 A JP2013185699 A JP 2013185699A JP 2013185699 A JP2013185699 A JP 2013185699A JP 2015052148 A JP2015052148 A JP 2015052148A
Authority
JP
Japan
Prior art keywords
situation
furnace
blast furnace
tuyere
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013185699A
Other languages
Japanese (ja)
Inventor
晴雄 上瀧
Haruo Uetaki
晴雄 上瀧
紘行 道園
Hiroyuki Doen
紘行 道園
杉浦 雅人
Masahito Sugiura
雅人 杉浦
大 伊地知
Dai Ijichi
大 伊地知
正具 門脇
Masatomo Kadowaki
正具 門脇
波多野 利和
Toshikazu Hatano
利和 波多野
今野 雄介
Yusuke Konno
雄介 今野
昇平 橋口
Shohei Hashiguchi
昇平 橋口
真臣 村松
Masaomi Muramatsu
真臣 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013185699A priority Critical patent/JP2015052148A/en
Publication of JP2015052148A publication Critical patent/JP2015052148A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling a blast furnace by determining the operational situation of the blast furnace, in which method each of tuyeres of the blast furnace and a furnace interior situation or a facility situation in the furnace circumferential direction are detected/determined accurately and quickly in order to change operational conditions accurately and quickly.SOLUTION: An operation determination method comprises the steps of: imaging combustion states in a raceway with time by using an image pickup device disposed at an observation hole of the tuyere of the blast furnace; and determining the furnace interior situation or the facility situation according to the picked-up images. The method for controlling the blast furnace by determining the operational situation of the blast furnace comprises: a step (i) of expressing the furnace interior situation or the facility situation by an exponential function according to the luminance of the picked-up image and determining the furnace interior situation or the facility situation according to an index of the exponential function or a temporal change of the index; a step (ii) of expressing the furnace interior situation or the facility situation by the exponential function according to the luminance of the picked-up image, calculating an exponential distribution in the furnace circumferential direction and determining the furnace interior situation or the facility situation according to the calculated exponential distribution or the temporal change of the distribution; and a step (iii) of changing the operational conditions according to the determined result.

Description

本発明は、羽口の観察孔に設置した撮像装置で撮像した画像の輝度に基づいて、炉内状況又は設備状況を指数化し、該指数に基づいて該羽口や炉周方向の操業状況を判定し、判定結果に基づいて高炉操業を制御する方法に関する。   The present invention indexes the situation inside the furnace or the equipment situation based on the brightness of the image taken by the imaging device installed in the observation hole of the tuyere, and the operation situation in the tuyere and the furnace circumferential direction based on the index. The present invention relates to a method for determining and controlling blast furnace operation based on a determination result.

高炉操業においては、炉下部に炉周方向に等間隔で配置した羽口から、熱風、酸素、微粉炭(燃料)等を吹き込んで溶銑を製造する。羽口の奥部には、送風圧によってレースウエイが形成され、ここで、高炉原料(主に、焼結鉱)が還元される。   In blast furnace operation, hot metal, oxygen, pulverized coal (fuel), etc. are blown from a tuyere arranged at equal intervals in the furnace circumferential direction in the lower part of the furnace to produce hot metal. At the back of the tuyere, a raceway is formed by the blowing pressure, and the blast furnace raw material (mainly sintered ore) is reduced here.

高炉の生産性を上げるため、通常、羽口から微粉炭を吹き込むが、レースウエイ奥部での微粉炭の燃焼状態が炉内状況(炉況)に大きく影響する。微粉炭の燃焼状態が悪化すると、高炉原料の還元に必要な熱量が充分に得られず、炉内状況が悪化する。   In order to increase the productivity of the blast furnace, pulverized coal is usually blown from the tuyere, but the combustion state of the pulverized coal at the back of the raceway greatly affects the in-furnace condition (furnace condition). When the combustion state of pulverized coal deteriorates, the amount of heat necessary for the reduction of the blast furnace raw material cannot be obtained sufficiently, and the situation inside the furnace deteriorates.

そこで、炉内状況を判定するため、羽口の観察孔に撮像装置を設け、レースウエイ奥部における微粉炭の燃焼状態を監視する技術、及び、レースウエイ内の温度を測定する技術が種々提案されている。   Therefore, in order to determine the in-furnace situation, various technologies have been proposed to provide an imaging device in the observation hole of the tuyere and monitor the combustion state of pulverized coal at the back of the raceway and to measure the temperature in the raceway Has been.

特許文献1には、羽口に放射温度カメラを設置し、放射温度カメラで得た羽口内の温度分布を画像処理で連続的に記憶し、羽口内の温度分布を評価する方法が提案されている。   Patent Document 1 proposes a method in which a radiation temperature camera is installed in the tuyere, the temperature distribution in the tuyere obtained by the radiation temperature camera is continuously stored by image processing, and the temperature distribution in the tuyere is evaluated. Yes.

特許文献2には、羽口覗孔部に放射温度カメラを設置し、羽口内視野の設定点の輝度を非接触で測定し、輝度を画像解析装置により温度に変換し、温度の設定期間の平均値の時系列データのスペクトル解析に基づいて、レースウェイの崩壊周期を算定してレースウェイの状態を評価する方法が提案されている。   In Patent Document 2, a radiation temperature camera is installed in the tuyere peephole, the brightness of the set point of the tuyere's visual field is measured in a non-contact manner, the brightness is converted into temperature by an image analyzer, and the temperature setting period is set. A method of calculating the raceway decay period and evaluating the raceway state based on the spectrum analysis of the average time series data has been proposed.

特許文献3には、レースウエイ内のコークス温度を、羽口後方に設けた観察孔を介して光学的に測定する際、観察孔から得られる放射光を、高速シャッタを有するテレビカメラと放射温度計に導き、テレビカメラの画像信号と放射温度計の温度信号に基づいてコークス温度を算出するレースウエイ内のコークス温度を測定する方法が提案されている。   In Patent Document 3, when the coke temperature in a raceway is optically measured through an observation hole provided behind a tuyere, radiation light obtained from the observation hole is converted into a television camera having a high-speed shutter and a radiation temperature. A method for measuring the coke temperature in the raceway is proposed in which the coke temperature is calculated based on the image signal of the television camera and the temperature signal of the radiation thermometer.

しかし、いずれの方法においても、画像の精度が不十分で、1つの画像で、炉内状況、例えば、微粉炭の膨張や生鉱落ちを区別して判別することは困難である。炉内状況を正確に検知するためには、連続した画像の処理が必要である。   However, in any of the methods, the accuracy of the image is insufficient, and it is difficult to distinguish and discriminate the in-furnace situation, for example, the expansion of pulverized coal or the loss of raw mines, with one image. In order to accurately detect the in-furnace situation, continuous image processing is required.

このことを踏まえ、特許文献4で、羽口の観察孔を通して、レースウエイ内の燃焼場の熱画像を、異なる2波長で撮像する撮像装置と、撮像装置が出力する各々の波長の画像信号をデジタル画像に変換するデジタル変換装置と、各々の波長のデジタル画像の輝度比に基づき温度分布を演算する小型計算機を備える高炉羽口レースウエイ温度分布測定装置を提案した。   Based on this, in Patent Document 4, through the observation hole of the tuyere, an imaging device that captures a thermal image of the combustion field in the raceway at two different wavelengths, and an image signal of each wavelength that is output by the imaging device. We proposed a blast furnace tuyere raceway temperature distribution measuring device equipped with a digital conversion device that converts to a digital image and a small computer that calculates the temperature distribution based on the luminance ratio of the digital image of each wavelength.

特許文献4に開示の装置によれば、画像輝度が適切な明るさになるように撮像装置の電子シャッタ露光時間を自動制御するため、ガラスの汚れや曇りなどによる観察孔の透過率の低下の影響を受け難いので、正確な温度分布を算出でき、炉況の変化を迅速かつ正確に検知できるが、撮像装置ごとに電子シャッタ露光時間を自動制御することは撮像装置の設定が異なるため、画像処理する場合、円周方向の画像処理結果の定量的な評価が困難になる。   According to the apparatus disclosed in Patent Document 4, since the electronic shutter exposure time of the imaging apparatus is automatically controlled so that the image brightness becomes appropriate brightness, the transmittance of the observation hole is reduced due to dirt or fogging of the glass. Because it is difficult to be affected, it is possible to calculate an accurate temperature distribution and detect changes in furnace conditions quickly and accurately, but the automatic control of the electronic shutter exposure time for each imaging device is different because the setting of the imaging device is different. In the case of processing, it becomes difficult to quantitatively evaluate the result of image processing in the circumferential direction.

そこで、本出願人は、特許文献5で、高炉羽口に設けた撮像装置で、撮像装置の電子シャッタ露光時間を適切な設定に固定して撮像した熱放射輝度画像に、熱放射輝度画像おける羽口の輪郭形状が正規化円となるように幾何学変換を実施して正規化画像を生成し、正規化画像を極座標変換した後、二値化して二値化画像を生成し、二値化画像に存在する明部の正規化円の径方向での分布を利用して、炉内状態を観察する方法と装置を提案した。   In view of this, the present applicant can place a thermal radiance image in a thermal radiance image obtained by fixing the electronic shutter exposure time of the imaging device to an appropriate setting with an imaging device provided in the blast furnace tuyere in Patent Document 5. Generate a normalized image by performing geometric transformation so that the outline shape of the tuyere becomes a normalized circle, convert the normalized image to polar coordinates, then binarize to generate a binarized image, and binary We proposed a method and apparatus for observing the in-furnace state using the radial distribution of the normalization circle of the bright part existing in the normalized image.

特許文献5で提案の観察方法と装置は、未溶融の鉱石が落下する生鉱落ちと、未燃焼微粉炭の像が急拡大する微粉炭膨張に着目したもので、生鉱落ちと微粉炭膨張の観察に有効に機能するものである。   The observation method and apparatus proposed in Patent Document 5 pay attention to raw ore falling where unmelted ore falls and pulverized coal expansion where the image of unburned pulverized coal expands rapidly. It functions effectively for observation.

特開平05−256705号公報JP 05-256705 A 特開平07−305105号公報JP 07-305105 A 特開平09−256010号公報JP 09-256010 A 特開2001−318002号公報JP 2001-318002 A 特願2012−053012号Japanese Patent Application No. 2012-053012

特許文献5で提案の観察方法と装置は、生鉱落ちと微粉炭膨張の観察に有効に機能するが、高炉操業を阻害する状態は、生鉱落ちと微粉炭膨張(微粉炭吹込み形状)に限られない。   Although the observation method and apparatus proposed in Patent Document 5 function effectively for observation of raw mine dropping and pulverized coal expansion, the state that hinders blast furnace operation is raw mine dropping and pulverized coal expansion (pulverized coal injection shape). Not limited to.

この他、微粉炭吹込みランスの状態(ランスの詰まりや振動、ランス先端への異物付着の状態)や羽口からコークスや微粉炭が逆流した状態(羽口逆流)、この逆流状態が高じて羽口が閉塞した状態(羽口閉塞)、及び、炉内に溜まった銑鉄やスラグが羽口レベルまで上昇して、羽口を溶損する可能性がある状態(ノロ湧き)等がある。   In addition, pulverized coal blowing lances (clogging and vibration of the lance, foreign matter adhering to the tip of the lance), coke and pulverized coal flowing back from the tuyere (feather backflow), There are a state in which the tuyere is closed (tuyere closed), a state in which pig iron and slag accumulated in the furnace rises to the tuyere level, and the tuyere may be melted (noro spring).

本発明は、上記状態の発生を正確かつ迅速に検知して、高炉の羽口個別及び炉周方向における炉内状況又は設備状況を正確かつ迅速に判定し、判定結果に基づいて、上記状態の発生に伴う操業条件の変更を正確かつ迅速に行い、高炉操業を適確に制御することを課題とし、該課題を解決する制御方法を提供することを目的とする。   The present invention accurately and quickly detects the occurrence of the above-mentioned state, accurately and quickly determines the state of the furnace or the state of equipment in the blast furnace individual tuyere and the circumferential direction of the furnace, and based on the determination result, It is an object of the present invention to provide a control method that solves the problem by changing the operation conditions accompanying the generation accurately and promptly and controlling the blast furnace operation appropriately.

本発明者らは、上記課題を解決する制御方法について鋭意検討した。生鉱落ちと微粉炭膨張については、本出願人が特許文献5で提案した観察方法で正確に検知することができる。本発明者らは、微粉炭吹込みランスの状態、羽口逆流、羽口閉塞、ノロ湧きの発生を正確かつ迅速に検知する方法について検討した。   The present inventors diligently studied a control method for solving the above-described problems. About the omission of mine and expansion of pulverized coal, the observation method proposed by the present applicant in Patent Document 5 can be accurately detected. The present inventors examined a method for accurately and quickly detecting the state of the pulverized coal blowing lance, the tuyere backflow, the tuyere blockage, and the occurrence of the noro spring.

その結果、レースウェイ内の燃焼状態を撮像した画像を指数化して、羽口逆流、羽口閉塞、ノロ湧き、ランス異常の発生を正確かつ迅速に検知できることを見いだした。この検知方法については後述する。   As a result, it was found that the images of the combustion state in the raceway were indexed, and the occurrence of tuyere backflow, tuyere occlusion, noro-spring, and lance abnormality could be detected accurately and quickly. This detection method will be described later.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)高炉の羽口の観察孔に配置した撮像装置で、レースウエイ内の燃焼状態を経時的に撮像し、撮像画像に基づいて炉内状況又は設備状況を判定し、判定結果に基づいて高炉操業を制御する方法において、
(i)撮像画像の輝度に基づいて炉内状況又は設備状況を指数化して、その指数又はその指数の経時変化に基づいて、炉内状況又は設備状況を判定し、また、
(ii)撮像映像の輝度に基づいて炉内状況又は設備状況を指数化して、炉周方向の指数分布を求め、その分布又はその分布の経時変化に基づいて、炉内状況又は設備状況を判定し、
(iii)判定結果に基づいて操業条件を変更する
ことを特徴とする高炉の操業状況判定に基づく制御方法。
(1) With an imaging device arranged in the observation hole of the tuyere of the blast furnace, the combustion state in the raceway is imaged over time, the in-furnace situation or equipment situation is determined based on the captured image, and based on the determination result In a method for controlling blast furnace operation,
(I) Indexing the in-furnace situation or equipment situation based on the brightness of the captured image, and determining the in-furnace situation or equipment situation based on the index or the change over time of the index;
(Ii) By indexing the in-furnace situation or equipment situation based on the brightness of the captured image, obtaining the exponential distribution in the furnace circumferential direction, and determining the in-furnace situation or equipment situation based on the distribution or the change over time of the distribution And
(Iii) A control method based on operation status determination of a blast furnace, wherein the operation conditions are changed based on a determination result.

(2)前記炉内状況が、生鉱落ちであることを特徴とする前記(1)に記載の高炉の操業状況判定に基づく制御方法。   (2) The control method based on the operation status determination of the blast furnace according to (1), wherein the in-furnace situation is a raw ore dropping.

(3)前記炉内状況が、微粉炭吹込み形状であることを特徴とする前記(1)に記載の高炉の操業状況判定に基づく制御方法。   (3) The control method based on the operation status determination of the blast furnace according to (1), wherein the in-furnace situation is a pulverized coal injection shape.

(4)前記設備状況が、微粉炭吹込みランスの状況であることを特徴とする前記(1)に記載の高炉の操業状況判定に基づく制御方法。   (4) The control method based on the operation status determination of the blast furnace according to (1), wherein the facility status is a status of a pulverized coal injection lance.

(5)前記設備状況が、羽口からコークスや微粉炭が逆流した状況、又は、羽口が閉塞した状況であることを特徴とする前記(1)に記載の高炉の操業状況判定に基づく制御方法。   (5) The control based on the operation status determination of the blast furnace according to (1), wherein the facility status is a status in which coke or pulverized coal flows backward from the tuyere or a status in which the tuyere is blocked. Method.

(6)前記設備状況が、ノロ湧きであることを特徴とする前記(1)に記載の高炉の操業状況判定に基づく制御方法。   (6) The control method based on the operation status determination of the blast furnace as described in (1) above, wherein the facility status is a noro spring.

(7)前記操業条件が、微粉炭吹込み量及び熱風送風量の一方又は両方であることを特徴とする前記(1)〜(6)のいずれかに記載の高炉の操業状況判定に基づく制御方法。   (7) The control based on the operation status determination of the blast furnace according to any one of (1) to (6), wherein the operation condition is one or both of a pulverized coal injection amount and a hot air blowing amount. Method.

本発明によれば、高炉の炉周方向における炉内状況又は設備状況の変化を正確かつ迅速に検知して判定し、判定結果に基づいて、上記変化に伴う操業条件の変更を正確かつ迅速に行うことができるので、高炉操業を適確に制御することができる。   According to the present invention, a change in the in-furnace situation or facility situation in the furnace circumferential direction of the blast furnace is accurately and quickly detected and determined, and based on the determination result, the change in the operation condition associated with the change is accurately and promptly determined. Since it can be performed, blast furnace operation can be controlled accurately.

高炉操業における炉内状況の変化とそれに対する操業条件の変更を示す図である。It is a figure which shows the change of the in-furnace condition in a blast furnace operation, and the change of the operation condition with respect to it. 本発明の一実施態様を示す図である。It is a figure which shows one embodiment of this invention. 撮像した静止画像(RGB画像)から輝度のR成分を抽出して作成したR成分画像を示す図である。It is a figure which shows the R component image produced by extracting the R component of a brightness | luminance from the captured still image (RGB image). R成分画像の輝度を指数化し、羽口逆流又は羽口閉塞を検知する画像処理手順を示す図である。It is a figure which shows the image processing procedure which indexizes the brightness | luminance of R component image and detects a tuyere backflow or tuyere obstruction | occlusion. レースウェイ内の燃焼状態を0.5秒間隔で撮像した静止画像(RGB画像)からR成分を抽出して作成したR成分画像を示す図である。It is a figure which shows the R component image produced by extracting R component from the still image (RGB image) which imaged the combustion state in a raceway at intervals of 0.5 second.

以下、図面に基づいて本発明について説明する。   The present invention will be described below with reference to the drawings.

図1に、高炉操業における炉内状況の変化とそれに対する操業条件の変更を示す。例えば、生鉱落ちが発生し、羽口の観察孔を通して撮像したレースウエイの画像の輝度が低下した場合、炉熱が低下したのであり、その影響は、当然に、融着帯の形状の変化に顕れる(図1、参照)。一方、羽口の観察孔を通して撮像したレースウエイの画像の輝度が上昇した場合、炉熱が上昇したのであり、その影響は、当然に、融着帯の形状の変化に顕れる(図1、参照)。   In FIG. 1, the change of the in-furnace condition in a blast furnace operation and the change of the operation condition with respect to it are shown. For example, if a raw ore drop occurs and the brightness of the raceway image taken through the observation hole in the tuyere decreases, the furnace heat decreases, and the effect is naturally a change in the shape of the cohesive zone. (See FIG. 1). On the other hand, when the brightness of the image of the raceway taken through the observation hole of the tuyere increases, the furnace heat has risen, and the influence is naturally manifested in a change in the shape of the cohesive zone (see FIG. 1). ).

融着帯の形状の変化は、ガス流れの乱れ、通気性の変動、及び、炉内の熱負荷の変動を誘引し、さらに、これらの乱れ・変動は、融着帯の形状の変化を誘引するので、高炉操業は安定しない。   Changes in the shape of the cohesive zone induce turbulence in gas flow, fluctuations in air permeability, and fluctuations in the heat load in the furnace, and these disturbances and fluctuations induce changes in the shape of the cohesive zone. Therefore, blast furnace operation is not stable.

従来は、図1のXに示すように、例えば、出銑時の溶銑温度など従来より取得可能な還元指標の変化を確認してから、操業条件(微粉炭吹込み量、熱風送風量等)を変更していた。しかし、溶銑温度などの操業指標が確認できるのは、操業条件を変更してから数時間後であり、操業条件を変更してから確認までに時間を要した。   Conventionally, as shown by X in FIG. 1, for example, after confirming a change in a reduction index that can be obtained conventionally, such as hot metal temperature at the time of tapping, the operation conditions (the amount of pulverized coal injection, the amount of hot air blowing, etc.) Had changed. However, it was several hours after changing the operating conditions that the operation index such as the hot metal temperature could be confirmed, and it took time until the confirmation after changing the operating conditions.

この間に、融着帯の形状はガス流れの乱れ、通気性の変動、及び、炉内の熱負荷の変動を受けて変化するので、上記確認後の操業条件の変更が、融着帯の形状の安定化に有効に機能しない場合がある。時には、炉内のガスの流れや通気性、融着帯の形状の安定化を図るための操業条件の変更が遅れたために、融着帯の形状の不安定化を誘引し、高炉の炉内状況が悪循環に陥ることがある。   During this time, the shape of the cohesive zone changes in response to disturbances in gas flow, fluctuations in air permeability, and fluctuations in the heat load in the furnace. It may not function effectively for stabilization. Occasionally, changes in operating conditions to stabilize the gas flow and breathability in the furnace and the shape of the cohesive zone were delayed, leading to instability of the shape of the cohesive zone. The situation can fall into a vicious circle.

それ故、高炉操業を適確に制御するためには、炉内状況の変化、さらに、設備状況の変化を適確に検知し、この変化に基づく操業条件の変更を正確かつ迅速に行う必要がある。   Therefore, in order to properly control blast furnace operation, it is necessary to accurately detect changes in the furnace conditions and changes in equipment conditions, and to change operating conditions based on these changes accurately and quickly. is there.

そこで、本発明の高炉の操業状況判定に基づく制御方法(以下「本発明制御方法」ということがある。)は、レースウエイの燃焼状態を撮像した画像に基づいて、炉周方向の炉内状況又は設備状況を正確かつ迅速に判定し、判定結果に基づいて炉内状況又は設備状況の変化に基づく操業条件の変更を正確かつ迅速に行うことを基本思想とする。   Therefore, the control method based on the operation status determination of the blast furnace according to the present invention (hereinafter also referred to as “the present control method”) is based on an image obtained by imaging the combustion state of the raceway, Alternatively, the basic idea is to accurately and promptly determine the equipment status and to change the operating conditions based on the result of the determination based on the change in the furnace status or the equipment status accurately and promptly.

具体的には、本発明制御方法は、高炉の羽口の観察孔に配置した撮像装置で、レースウエイ内の燃焼状態を経時的に撮像し、撮像画像に基づいて炉内状況又は設備状況を判定し、判定結果に基づいて高炉操業を制御する方法において、
(i)撮像画像の輝度に基づいて炉内状況又は設備状況を指数化して、その指数又はその指数の経時変化に基づいて、炉内状況又は設備状況を判定し、また、
(ii)撮像映像の輝度に基づいて炉内状況又は設備状況を指数化して、炉周方向の指数分布を求め、その分布又はその分布の経時変化に基づいて、炉内状況又は設備状況を判定し、
(iii)判定結果に基づいて操業条件を変更する
ことを特徴とする。
Specifically, the control method of the present invention is an imaging device arranged in the observation hole of the tuyere of the blast furnace, which captures the combustion state in the raceway over time, and based on the captured image, the in-furnace situation or the equipment situation In a method for determining and controlling blast furnace operation based on the determination result,
(I) Indexing the in-furnace situation or equipment situation based on the brightness of the captured image, and determining the in-furnace situation or equipment situation based on the index or the change over time of the index;
(Ii) By indexing the in-furnace situation or equipment situation based on the brightness of the captured image, obtaining the exponential distribution in the furnace circumferential direction, and determining the in-furnace situation or equipment situation based on the distribution or the change over time of the distribution And
(Iii) The operation condition is changed based on the determination result.

図2に、本発明制御方法の一実施態様を示す。   FIG. 2 shows an embodiment of the control method of the present invention.

高炉炉体3に設けた羽口4に挿入した熱風供給管6から熱風9が炉内に高圧で吹き込まれ、レースウエイ1が形成されている。熱風供給管6には、レースウエイ1に微粉炭8を吹き込む微粉炭吹込み管5が配置されている。図2では、二本の微粉炭吹込み管が配置されているが、一本の配置でもよい。   A hot air 9 is blown into the furnace at a high pressure from a hot air supply pipe 6 inserted into a tuyere 4 provided in the blast furnace furnace body 3 to form a raceway 1. The hot air supply pipe 6 is provided with a pulverized coal blowing pipe 5 for blowing pulverized coal 8 into the raceway 1. In FIG. 2, two pulverized coal blowing pipes are arranged, but one arrangement may be used.

レースウエイ1ではコークスや微粉炭が燃焼して、一酸化炭素が発生する高温燃焼反応が生じている。熱風供給管6の観察孔7には、レースウエイ1内の燃焼状態を撮像する撮像装置10が配置されている。   In the raceway 1, coke and pulverized coal are combusted, and a high temperature combustion reaction is generated in which carbon monoxide is generated. An imaging device 10 that images the combustion state in the raceway 1 is disposed in the observation hole 7 of the hot air supply pipe 6.

撮像装置10は、撮像制御装置11で制御されて、直径約20mmの観察孔を通し、撮像装置から3〜4m先のレースウエイ1内の燃焼状態を撮像する。撮像画像は、画像表示装置12で表示されるとともに、画像処理装置13で、所要の指数化処理が施され、指数化された画像情報は、炉内状況又は設備状況を判定するための基礎情報として、操業状況判定装置14へ送信される。   The imaging device 10 is controlled by the imaging control device 11 and images the combustion state in the raceway 1 3 to 4 m away from the imaging device through an observation hole having a diameter of about 20 mm. The captured image is displayed on the image display device 12, and a required indexing process is performed on the image processing device 13, and the indexed image information is basic information for determining the in-furnace situation or the equipment situation. Is transmitted to the operation status determination device 14.

操業状況判定装置14で、上記基礎情報に基づいて炉内状況又は設備状況が判定され、判定結果が操業制御装置15へ送信され、操業条件の変更が迅速に行われて、高炉操業が適確に制御される。   The operation status determination device 14 determines the in-furnace status or facility status based on the basic information, and the determination result is transmitted to the operation control device 15 so that the change of the operation conditions is performed quickly and the blast furnace operation is properly performed. Controlled.

ここで、図3に、カラーCCDカメラで、レースウェイ内の燃焼状態を撮像した静止画像(RGB画像)から、画像処理装置で輝度のR(赤)成分を抽出して作成したR成分画像を示す。カラーCCDカメラのRGB信号のうち、R成分の輝度やG(緑)成分の輝度は、温度との相関があることを予め確認しており、ここではR成分画像を示す。なお、画像は、2本の微粉炭吹込みランスが熱風供給管に挿入されている場合の画像である。   Here, FIG. 3 shows an R component image created by extracting an R (red) component of luminance with an image processing device from a still image (RGB image) obtained by imaging a combustion state in a raceway with a color CCD camera. Show. Among the RGB signals of the color CCD camera, it has been confirmed in advance that the luminance of the R component and the luminance of the G (green) component have a correlation with temperature, and here, an R component image is shown. The image is an image when two pulverized coal blowing lances are inserted into the hot air supply pipe.

次に、操業条件の変更を正確かつ迅速に行うために、R成分画像の輝度を指数化して炉内状況又は設備状況の変化を正確かつ迅速に検知する画像処理手順について説明する。   Next, in order to change the operating conditions accurately and quickly, an image processing procedure for indexing the luminance of the R component image and detecting changes in the furnace condition or the facility condition accurately and quickly will be described.

生鉱落ちと微粉炭膨張(微粉炭吹込み形状)については、本出願人が特許文献5で提案した観察方法で正確に検知することができる。   Ore dropping and pulverized coal expansion (pulverized coal injection shape) can be accurately detected by the observation method proposed by the present applicant in Patent Document 5.

例えば、微粉炭膨張(微粉炭吹込み形状)の場合、炉況が良いと、微粉炭が炉内に吸い込まれていくような形状となるが、通気性が低下し炉況が悪化している場合、微粉炭が撮像画像を埋め尽くすような膨張した形状となる。   For example, in the case of pulverized coal expansion (pulverized coal injection shape), if the furnace condition is good, the shape is such that pulverized coal is sucked into the furnace, but the air permeability decreases and the furnace condition deteriorates. In this case, the pulverized coal has an expanded shape that fills the captured image.

そして、経時的に撮像した画像(R成分画像又はG成分画像)の輝度に基づいて、生鉱落ち、又は、微粉炭吹込み形状を指数化して、炉周方向の指数分布を求め、該指数分布の経時変化に基づいて、炉周方向の炉内状況を3次元的に判定することができる。   Then, based on the luminance of the image (R component image or G component image) picked up over time, the raw mineral drop or the pulverized coal injection shape is indexed to obtain the index distribution in the furnace circumferential direction, and the index Based on the temporal change of the distribution, the in-furnace situation in the furnace circumferential direction can be determined three-dimensionally.

図4に、撮像画像の輝度を指数化し、羽口逆流又は羽口閉塞を検知する画像処理手順を示す。   FIG. 4 shows an image processing procedure for indexing the luminance of the captured image and detecting tuyere backflow or tuyere blockage.

R成分画像において、処理領域の最高輝度と最低輝度を取得し、次に、画像の輝度を判定する。撮像画像の輝度がある一定以上ない場合(図中「NO(1)」の場合)、操業条件の迅速な変更のために警報を出力する。   In the R component image, the maximum luminance and the minimum luminance of the processing region are acquired, and then the luminance of the image is determined. When the brightness of the captured image does not exceed a certain level (in the case of “NO (1)” in the figure), an alarm is output for quick change of the operating conditions.

一方、撮像画像の輝度がある一定以上ある場合(図中の「YES(1)」)、その画像を二値化するための閾値を演算し、この閾値に基づいて二値化を行い、画像における明部の面積比を演算する。   On the other hand, if the brightness of the captured image is above a certain level (“YES (1)” in the figure), a threshold value for binarizing the image is calculated, and binarization is performed based on this threshold value. The area ratio of the bright part at is calculated.

この面積比が基準値未満であれば(図中「NO(2)」の場合)、基準値未満が継続する時間を判定し、継続時間が基準値未満であれば(図中「NO(3)」の場合)、その後の処理をせず、継続時間が基準値以上であれば(図中「YES(3)」の場合)、操業条件の迅速な変更のために警報を出力する。   If this area ratio is less than the reference value (in the case of “NO (2)” in the figure), the time for which the less than the reference value continues is determined, and if the duration is less than the reference value (“NO (3 in the figure) In the case of “)”), if the duration is not less than the reference value (“YES (3)” in the figure), an alarm is output for quick change of the operating conditions.

図4に示す画像処理手順を所定の時間間隔を置いて行えば、羽口逆流及び羽口閉塞の経時変化を3次元的に判定することができる。また、微粉炭吹込みランスの状態やノロ湧きとの炉内状況及び設備状況については、図4に示す画像処理手順と同様に撮像画像の輝度を用いた画像処理手順で経時的に検知することができる。   If the image processing procedure shown in FIG. 4 is performed at predetermined time intervals, it is possible to three-dimensionally determine temporal changes in tuyere backflow and tuyere occlusion. In addition, the state of the pulverized coal injection lance, the state of the furnace and the equipment state with the noro spring should be detected over time by the image processing procedure using the brightness of the captured image as in the image processing procedure shown in FIG. Can do.

以上説明したように、高炉の羽口の観察孔に配置した撮像装置で、レースウエイ内の燃焼状態を経時的に撮像した撮像画像の輝度に基づいて、高炉操業を阻害する、生鉱落ち、微粉炭膨張(微粉炭吹込み形状)、羽口逆流、羽口閉塞、ノロ湧き等の炉内状況、及び、微粉炭吹込みランス異常(設備状況)を指数化して検知することができる。そして、炉周方向の指数分布の経時変化に基づいて、炉周方向の炉内状況又は設備状況を判定することができ、さらに、判定結果に基づいて操業条件を変更して高炉操業を制御することができる。   As described above, with the imaging device arranged in the observation hole of the tuyeres of the blast furnace, based on the brightness of the captured image obtained by imaging the combustion state in the raceway over time, the blast furnace operation is inhibited, In-furnace conditions such as pulverized coal expansion (pulverized coal injection shape), tuyere backflow, tuyere clogging, noro springs, and pulverized coal injection lance abnormality (equipment status) can be indexed and detected. And based on the time-dependent change of the exponential distribution in the furnace circumferential direction, it is possible to determine the in-furnace situation or the equipment situation in the furnace circumferential direction, and further control the blast furnace operation by changing the operation condition based on the determination result. be able to.

変更し得る操業条件としては、微粉炭吹込み量及び熱風送風量の一方又は両方が好ましい。いずれも、直ちに変更することができ、炉周方向の炉内状況又は設備状況を直ちに改善できる操業条件である。   As the operating conditions that can be changed, one or both of the pulverized coal blowing amount and the hot air blowing amount are preferable. Both are operational conditions that can be changed immediately and can immediately improve the in-furnace situation or equipment situation in the furnace circumferential direction.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
図2に示す撮像装置で、レースウエイ内の燃焼状態を0.5秒間隔で撮像したRGB画像を得た。RGB画像からR成分を抽出してR成分画像を作成した。図5に、作成したR成分画像の一例を示す。R成分画像の輝度を指数化し、炉周方向の指数分布を経時的に観察した。
Example 1
With the imaging device shown in FIG. 2, an RGB image obtained by imaging the combustion state in the raceway at intervals of 0.5 seconds was obtained. An R component image was created by extracting the R component from the RGB image. FIG. 5 shows an example of the created R component image. The luminance of the R component image was indexed, and the index distribution in the furnace circumferential direction was observed over time.

その結果、3.0秒後の画像から、生鉱落ちが発生していることが判明したので、直ちに、操業状況判定装置で異常判定を行い、操業制御装置にて操業条件の変更(増熱アクション)を実施した。   As a result, it was found from the image after 3.0 seconds that a drop in raw mineral had occurred. Immediately, an abnormality was determined by the operation status determination device, and the operation control device changed the operation condition (heat increase). Action).

前述したように、本発明によれば、高炉の炉周方向における炉内状況又は設備状況の変化を正確かつ迅速に検知して判定し、判定結果に基づいて、上記変化に伴う操業条件の変更を正確かつ迅速に行うことができるので、高炉操業を適確に制御することができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。   As described above, according to the present invention, it is possible to accurately and promptly detect and determine a change in the in-furnace situation or equipment situation in the circumferential direction of the blast furnace, and based on the determination result, change in operating conditions accompanying the change. Can be performed accurately and quickly, so that blast furnace operation can be controlled accurately. Therefore, the present invention has high applicability in the steel industry.

1 レースウエイ
2 炉内充填物
3 高炉炉体
4 羽口
5 微粉炭吹込み管
6 熱風供給管
7 観察孔
8 微粉炭
9 熱風
10 撮像装置
11 撮像制御装置
12 画像表示装置
13 画像処理装置
14 操業状況判定装置
15 操業制御装置
DESCRIPTION OF SYMBOLS 1 Raceway 2 Filling in a furnace 3 Blast furnace furnace body 4 Tuyere 5 Pulverized coal injection pipe 6 Hot air supply pipe 7 Observation hole 8 Pulverized coal 9 Hot air 10 Imaging device 11 Imaging control device 12 Image display device 13 Image processing device 14 Operation Situation judgment device 15 Operation control device

Claims (7)

高炉の羽口の観察孔に配置した撮像装置で、レースウエイ内の燃焼状態を経時的に撮像し、撮像画像に基づいて炉内状況又は設備状況を判定し、判定結果に基づいて高炉操業を制御する方法において、
(i)撮像画像の輝度に基づいて炉内状況又は設備状況を指数化して、その指数又はその指数の経時変化に基づいて、炉内状況又は設備状況を判定し、また、
(ii)撮像映像の輝度に基づいて炉内状況又は設備状況を指数化して、炉周方向の指数分布を求め、その分布又はその分布の経時変化に基づいて、炉内状況又は設備状況を判定し、
(iii)判定結果に基づいて操業条件を変更する
ことを特徴とする高炉の操業状況判定に基づく制御方法。
With the imaging device placed in the observation hole of the tuyere of the blast furnace, the combustion state in the raceway is imaged over time, the in-furnace situation or equipment situation is judged based on the captured image, and the blast furnace operation is performed based on the judgment result In the method of controlling
(I) Indexing the in-furnace situation or equipment situation based on the brightness of the captured image, and determining the in-furnace situation or equipment situation based on the index or the change over time of the index;
(Ii) By indexing the in-furnace situation or equipment situation based on the brightness of the captured image, obtaining the exponential distribution in the furnace circumferential direction, and determining the in-furnace situation or equipment situation based on the distribution or the change over time of the distribution And
(Iii) A control method based on operation status determination of a blast furnace, wherein the operation conditions are changed based on a determination result.
前記炉内状況が、生鉱落ちであることを特徴とする請求項1に記載の高炉の操業状況判定に基づく制御方法。   The control method based on operation status determination of a blast furnace according to claim 1, wherein the in-furnace situation is a drop of raw ore. 前記炉内状況が、微粉炭吹込み形状であることを特徴とする請求項1に記載の高炉の操業状況判定に基づく制御方法。   The control method based on operation status determination of a blast furnace according to claim 1, wherein the in-furnace situation is a pulverized coal injection shape. 前記設備状況が、微粉炭吹込みランスの状況であることを特徴とする請求項1に記載の高炉の操業状況判定に基づく制御方法。   The control method based on operation status determination of a blast furnace according to claim 1, wherein the facility status is a status of a pulverized coal injection lance. 前記設備状況が、羽口からコークスや微粉炭が逆流した状況、又は、羽口が閉塞した状況であることを特徴とする請求項1に記載の高炉の操業状況判定に基づく制御方法。   2. The control method based on the operation status determination of the blast furnace according to claim 1, wherein the equipment status is a status in which coke or pulverized coal flows backward from the tuyere, or a status in which the tuyere is closed. 前記設備状況が、ノロ湧きであることを特徴とする請求項1に記載の高炉の操業状況判定に基づく制御方法。   The control method based on the operation status determination of the blast furnace according to claim 1, wherein the facility status is normal spring. 前記操業条件が、微粉炭吹込み量及び熱風送風量の一方又は両方であることを特徴とする請求項1〜6のいずれか1項に記載の高炉の操業状況判定に基づく制御方法。   The control method based on the operation status determination of the blast furnace according to any one of claims 1 to 6, wherein the operation condition is one or both of a pulverized coal injection amount and a hot air blowing amount.
JP2013185699A 2013-09-06 2013-09-06 Method for controlling blast furnace by determining operational situation thereof Pending JP2015052148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013185699A JP2015052148A (en) 2013-09-06 2013-09-06 Method for controlling blast furnace by determining operational situation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013185699A JP2015052148A (en) 2013-09-06 2013-09-06 Method for controlling blast furnace by determining operational situation thereof

Publications (1)

Publication Number Publication Date
JP2015052148A true JP2015052148A (en) 2015-03-19

Family

ID=52701368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013185699A Pending JP2015052148A (en) 2013-09-06 2013-09-06 Method for controlling blast furnace by determining operational situation thereof

Country Status (1)

Country Link
JP (1) JP2015052148A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132476A1 (en) 2017-12-26 2019-07-04 주식회사 포스코 System and method for evaluating operational conditions of blast furnace
JP2019183183A (en) * 2018-04-02 2019-10-24 株式会社神戸製鋼所 Raw-down determination apparatus, and method
JP2019183182A (en) * 2018-04-02 2019-10-24 株式会社神戸製鋼所 Raw-down determination apparatus, and method
CN110544261A (en) * 2019-09-04 2019-12-06 东北大学 Blast furnace tuyere coal injection state detection method based on image processing
JP2020015934A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Image determination learning device, image determination learning program, image determination learning method, and blast furnace monitoring device
CN112347154A (en) * 2020-10-23 2021-02-09 中冶南方工程技术有限公司 Slag crust shedding index calculation method, terminal equipment and storage medium
CN115125340A (en) * 2022-06-23 2022-09-30 抚顺新钢铁有限责任公司 Iron frequency information acquisition system
WO2023188880A1 (en) * 2022-03-28 2023-10-05 Jfeスチール株式会社 Method for determining slag level of blast furnace, method for operating blast furnace, and control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855512A (en) * 1981-09-29 1983-04-01 Kawasaki Steel Corp Method for judging condition of blast furnace
JPS6148508A (en) * 1984-08-14 1986-03-10 Kawasaki Steel Corp Method for discriminating blast furnace condition by quantification of information on raceway
JPH0120202B2 (en) * 1981-09-04 1989-04-14 Sumitomo Metal Ind
JPH05186811A (en) * 1991-02-26 1993-07-27 Nippon Steel Corp Method for operating blast furnace
WO2014203509A1 (en) * 2013-06-19 2014-12-24 Jfeスチール株式会社 Method for detecting abnormality in blast furnace, and method for operating blast furnace
JP2015025188A (en) * 2013-07-29 2015-02-05 Jfeスチール株式会社 Abnormality detection method and blast furnace operation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0120202B2 (en) * 1981-09-04 1989-04-14 Sumitomo Metal Ind
JPS5855512A (en) * 1981-09-29 1983-04-01 Kawasaki Steel Corp Method for judging condition of blast furnace
JPS6148508A (en) * 1984-08-14 1986-03-10 Kawasaki Steel Corp Method for discriminating blast furnace condition by quantification of information on raceway
JPH05186811A (en) * 1991-02-26 1993-07-27 Nippon Steel Corp Method for operating blast furnace
WO2014203509A1 (en) * 2013-06-19 2014-12-24 Jfeスチール株式会社 Method for detecting abnormality in blast furnace, and method for operating blast furnace
JP2015025188A (en) * 2013-07-29 2015-02-05 Jfeスチール株式会社 Abnormality detection method and blast furnace operation method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509440A (en) * 2017-12-26 2021-03-25 ポスコPosco Blast furnace operation status evaluation system and method
KR20190078319A (en) 2017-12-26 2019-07-04 주식회사 포스코 System and method of evaluating furnace operation state
WO2019132476A1 (en) 2017-12-26 2019-07-04 주식회사 포스코 System and method for evaluating operational conditions of blast furnace
KR102075223B1 (en) * 2017-12-26 2020-02-07 주식회사 포스코 System and method of evaluating furnace operation state
CN111527217A (en) * 2017-12-26 2020-08-11 株式会社Posco System and method for evaluating operating state of blast furnace
CN111527217B (en) * 2017-12-26 2022-08-16 株式会社Posco System and method for evaluating operating state of blast furnace
JP7064598B2 (en) 2017-12-26 2022-05-10 ポスコ Blast furnace operation status evaluation system and method
JP2019183183A (en) * 2018-04-02 2019-10-24 株式会社神戸製鋼所 Raw-down determination apparatus, and method
JP2019183182A (en) * 2018-04-02 2019-10-24 株式会社神戸製鋼所 Raw-down determination apparatus, and method
JP7017972B2 (en) 2018-04-02 2022-02-09 株式会社神戸製鋼所 Haesagari determination device and method
JP7017973B2 (en) 2018-04-02 2022-02-09 株式会社神戸製鋼所 Haesagari determination device and method
JP2020015934A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Image determination learning device, image determination learning program, image determination learning method, and blast furnace monitoring device
JP7343748B2 (en) 2018-07-24 2023-09-13 日本製鉄株式会社 Image judgment learning device, image judgment learning program, image judgment learning method, and blast furnace monitoring device
CN110544261A (en) * 2019-09-04 2019-12-06 东北大学 Blast furnace tuyere coal injection state detection method based on image processing
CN110544261B (en) * 2019-09-04 2023-08-29 东北大学 Method for detecting coal injection state of blast furnace tuyere based on image processing
CN112347154A (en) * 2020-10-23 2021-02-09 中冶南方工程技术有限公司 Slag crust shedding index calculation method, terminal equipment and storage medium
WO2023188880A1 (en) * 2022-03-28 2023-10-05 Jfeスチール株式会社 Method for determining slag level of blast furnace, method for operating blast furnace, and control device
JP7359336B1 (en) 2022-03-28 2023-10-11 Jfeスチール株式会社 Blast furnace slag level determination method, blast furnace operating method and control device
CN115125340A (en) * 2022-06-23 2022-09-30 抚顺新钢铁有限责任公司 Iron frequency information acquisition system

Similar Documents

Publication Publication Date Title
JP6179286B2 (en) Blast furnace operating status judgment method
JP2015052148A (en) Method for controlling blast furnace by determining operational situation thereof
CN105308191B (en) Blast furnace method for detecting abnormality and method for operating blast furnace
CN105392904B (en) Method for detecting abnormality and method for operating blast furnace
JP4580466B2 (en) Hot metal temperature detection method and blast furnace operation method using the same
JP5444692B2 (en) Slag outflow detection method
CN106795573B (en) Method and device for determining the ignition time point in an oxygen converting process
JP5644910B1 (en) Abnormality detection method and blast furnace operation method
JP5999155B2 (en) Blast furnace abnormality detection device and blast furnace abnormality detection method
JP6515342B2 (en) Blast furnace tuyere closure removal device and blast furnace tuyere closure removal method
KR20120000773A (en) Bellow inspecting device and method thereof
Viale et al. Application of on-line infrared thermography in steel making industry
KR101277901B1 (en) Inspection device of bellows in furnace
JP7017973B2 (en) Haesagari determination device and method
JP6421938B2 (en) Combustion status measurement method and combustion status measurement system
JP7017972B2 (en) Haesagari determination device and method
JP2022144010A (en) Method, device and program for evaluating tuyere landscape of blast furnace
TWI697561B (en) Method for evaluating melting loss of bottom blowing hole of converter
JP2018154887A (en) Method and device for monitoring pulverized coal blowing condition
JP2005290562A (en) Method for measuring raceway depth in coke-filling type shaft furnace and instrument for measuring depth
JP5862612B2 (en) Unmelted ore detection method and blast furnace operation method
JP5920267B2 (en) Mushroom detection method for converter bottom tuyeres and anomaly detection method for bottom tuyeres using it
KR101540248B1 (en) Signs of blast furnace sensors and detection methods for channeling
KR101269166B1 (en) Drop detecting and acting method of inner adherents of blast furnace
JPS59232203A (en) Detection of combustion condition at tuyere tip of reducing furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171024