JP6942641B2 - Blast furnace blown reducing agent combustion position estimation method, blast furnace operation method and blower tuyere - Google Patents

Blast furnace blown reducing agent combustion position estimation method, blast furnace operation method and blower tuyere Download PDF

Info

Publication number
JP6942641B2
JP6942641B2 JP2018003738A JP2018003738A JP6942641B2 JP 6942641 B2 JP6942641 B2 JP 6942641B2 JP 2018003738 A JP2018003738 A JP 2018003738A JP 2018003738 A JP2018003738 A JP 2018003738A JP 6942641 B2 JP6942641 B2 JP 6942641B2
Authority
JP
Japan
Prior art keywords
blower
tuyere
combustion
blow pipe
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018003738A
Other languages
Japanese (ja)
Other versions
JP2019123896A (en
Inventor
晃太 盛家
晃太 盛家
明紀 村尾
明紀 村尾
功一 ▲高▼橋
功一 ▲高▼橋
尚貴 山本
尚貴 山本
深田 喜代志
喜代志 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical JFE Steel Corp
Priority to JP2018003738A priority Critical patent/JP6942641B2/en
Publication of JP2019123896A publication Critical patent/JP2019123896A/en
Application granted granted Critical
Publication of JP6942641B2 publication Critical patent/JP6942641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、還元材を炉内へ吹き込む高炉操業において、吹き込まれた還元材の燃焼位置を的確に推定することができる高炉吹込み還元材の燃焼位置推定方法に関するものである。また、本発明は、上記した高炉吹込み還元材の燃焼位置推定方法を利用することによって高炉の安定操業を図る高炉操業方法に関するものである。さらに、本発明は、上記した高炉操業方法の実施に用いて好適な送風羽口に関するものである。 The present invention relates to a method for estimating the combustion position of a blast furnace-blown reducing agent, which can accurately estimate the combustion position of the blown reducing agent in a blast furnace operation in which the reducing agent is blown into the furnace. The present invention also relates to a blast furnace operating method for achieving stable operation of the blast furnace by utilizing the above-mentioned method for estimating the combustion position of the blast furnace blown reducing agent. Furthermore, the present invention relates to a blower tuyere suitable for practicing the above-mentioned blast furnace operating method.

現在、高炉操業においては、コークス使用量の削減を目的として、送風羽口から還元材を吹き込むことが実施されている。
かような高炉操業において、送風羽口から吹き込まれる還元材としては、微粉炭、天然ガス、プロパンガス、重油、軽油、タールなどの化石燃料、菜種油をはじめとする植物性油脂、コークス炉ガスおよび廃プラスチックなどが挙げられる。これらの還元材は、ブローパイプと送風羽口本体で構成される送風羽口の内部に挿入される、ランスと呼ばれる吹込み管を通じて該送風羽口の熱風流路内に吹き込まれ、熱風とともに高炉内に供給されている。
Currently, in blast furnace operation, a reducing agent is blown from a blower tuyere for the purpose of reducing the amount of coke used.
In such blast furnace operation, the reducing materials blown from the blower tuyere include pulverized coal, natural gas, propane gas, heavy oil, light oil, fossil fuels such as tar, vegetable oils and fats such as rapeseed oil, coke oven gas, and coke oven gas. Examples include waste plastic. These reducing agents are blown into the hot air flow path of the blower tuyere through a blow pipe called a lance, which is inserted into the blower tuyere composed of the blow pipe and the blower tuyere body, and are blown into the hot air flow path of the blower tuyere together with the hot air in the blast furnace. Is supplied in.

高炉内に供給された還元材は、送風羽口内部および該送風羽口先端に形成されるレースウェイ部で燃焼し、高炉下部の熱の維持および酸化鉄の還元などの観点からコークスの代替となる。コークス使用量をより削減するためには、吹込む還元材の量を増加させる必要がある。
ここで、送風羽口内の送風流速は毎秒200mと非常に速いため、還元材が送風羽口内に吹き込まれてからレースウェイを通り炉内の原料充填層に到達するまでの時間は数ミリ秒と非常に短い。そのため、吹込む還元材の量を増加させていくと、レースウェイ内で完全に燃焼できなかった還元材(以降、未燃チャーと呼ぶ)が炉内充填層に侵入し、炉内に残留することになる。
The reducing agent supplied into the blast furnace burns inside the blower tuyere and at the raceway portion formed at the tip of the blower tuyere, and can be used as a substitute for coke from the viewpoint of maintaining the heat of the lower part of the blast furnace and reducing iron oxide. Become. In order to further reduce the amount of coke used, it is necessary to increase the amount of reducing agent to be blown.
Here, since the air flow velocity in the air blower tuyere is as fast as 200 m / s, the time from when the reducing agent is blown into the air blower tuyere to reach the raw material filling layer in the furnace through the raceway is several milliseconds. Very short. Therefore, as the amount of reducing agent blown in is increased, the reducing agent that could not be completely burned in the raceway (hereinafter referred to as unburned char) invades the filling layer in the furnace and remains in the furnace. It will be.

高炉内に残留した未燃チャーの一部は、ソリューションロス反応で消費されるが、その消費量には限界があるため、消費されない未燃チャーは、一部が炉頂から排出されコークス置換率の低下を招き、それに伴い還元材比の上昇につながる。また、消費されない未燃チャーの一部は、炉芯や滴下帯に蓄積して炉内通気・通液性の悪化の原因ともなる。
以上の理由から、健全な高炉操業を維持するためには還元材の燃焼挙動を把握することが重要である。
A part of the unburned char remaining in the blast furnace is consumed in the solution loss reaction, but since the consumption is limited, a part of the unburned char that is not consumed is discharged from the furnace top and the coke replacement rate. This leads to a decrease in the ratio of reducing materials. In addition, some of the unburned char that is not consumed accumulates in the furnace core and the dropping zone, which causes deterioration of the ventilation and liquid permeability in the furnace.
For the above reasons, it is important to understand the combustion behavior of the reducing agent in order to maintain sound blast furnace operation.

還元材の燃焼挙動を表す指標の1つに還元材の燃焼位置がある。健全な高炉操業のためには適切な還元材の燃焼位置が存在する。すなわち、還元材の燃焼位置が吹込み管側に接近すると、ブローパイプおよび羽口本体内部の雰囲気温度が上昇し、吹込み管や羽口の溶損リスクが高まる。一方、燃焼位置が炉内側に接近すると、還元材の燃焼遅滞により未燃チャーの増加を引き起こし、高炉操業に前述のような悪影響が現れる。 One of the indexes showing the combustion behavior of the reducing agent is the combustion position of the reducing agent. There is a suitable combustion position for the reducing agent for sound blast furnace operation. That is, when the combustion position of the reducing agent approaches the blow pipe side, the atmospheric temperature inside the blow pipe and the tuyere body rises, and the risk of melting of the blow pipe and the tuyere increases. On the other hand, when the combustion position approaches the inside of the furnace, the combustion delay of the reducing agent causes an increase in unburned char, which has an adverse effect as described above on the operation of the blast furnace.

還元材の燃焼位置をはじめとする燃焼挙動を把握する方法として、これまで次のような方法が提案されてきた。
たとえば、特許文献1では、送風羽口覗き窓に設置した放射温度カメラで測定したレースウェイの輝度から温度を計算し、該温度の時系列データのスペクトル解析を行い、パワー密度スペクトルが最大となる周波数の逆数からレースウェイ崩壊周期を算出し、この崩壊周期から微粉炭燃焼率を評価する方法が提案されている。
The following methods have been proposed as a method for grasping the combustion behavior including the combustion position of the reducing agent.
For example, in Patent Document 1, the temperature is calculated from the brightness of the raceway measured by the radiation temperature camera installed in the blower tuyere viewing window, and the spectral analysis of the time-series data of the temperature is performed to maximize the power density spectrum. A method has been proposed in which the raceway decay cycle is calculated from the reciprocal of the frequency and the pulverized coal combustion rate is evaluated from this decay cycle.

また、特許文献2では、高炉の羽口部に設置したゾンデの先端から微粉炭燃焼炎の発光を検出し、該発光を分光分析して、特にアルカリ金属ピークの強度比から微粉炭の燃焼挙動を観測する方法が提案されている。 Further, in Patent Document 2, the light emission of the pulverized coal combustion flame is detected from the tip of the sonde installed at the tuyere of the blast furnace, and the light emission is spectroscopically analyzed. A method of observing is proposed.

さらに、特許文献3では、高炉送風羽口背面の窓からレースウェイ内燃焼場の発光を異なる2波長で撮像し、かかるデータをデジタル化した画像の画素を2色輝度から温度を求めてヒストグラム化し、このヒストグラムの形状から炉況を検知する方法が提案されている。 Further, in Patent Document 3, the light emission of the combustion field in the raceway is imaged from the window on the back of the blast furnace blower tuyere at two different wavelengths, and the pixels of the digitized image are obtained into a histogram by obtaining the temperature from the two-color brightness. , A method of detecting the furnace condition from the shape of this histogram has been proposed.

加えて特許文献4では、圧力計、温度計、面積分布測定装置、画像測定装置といった燃焼状況測定装置をランス先端近傍に配置し、その測定結果から燃焼挙動を観測する方法が提案されている。 In addition, Patent Document 4 proposes a method in which a combustion condition measuring device such as a pressure gauge, a thermometer, an area distribution measuring device, and an image measuring device is arranged near the tip of a lance, and the combustion behavior is observed from the measurement results.

その他、高炉以外の分野では、燃料の燃焼挙動を計測する方法として、次のような方法が提案されている。
例えば、特許文献5では、ガスタービン中トランジションピース(TP)内において、ガス燃焼場を分割し、このガス燃焼場の発光をTP内壁に複数設けられた受光部で検出し、分光分析することでバンドスペクトル強度を求め、かかるガスの燃焼属性に基づいてガス燃焼場各部位の平均ガス温度を計算し、各部位ごとに計算された平均ガス温度と前記バンドスペクトル強度から該ガス燃焼場のガス温度分布を算出する方法が提案されている。
In addition, in fields other than blast furnaces, the following methods have been proposed as methods for measuring the combustion behavior of fuel.
For example, in Patent Document 5, the gas combustion field is divided in the transition piece (TP) in the gas turbine, and the light emission of the gas combustion field is detected by a plurality of light receiving units provided on the inner wall of the TP and spectrally analyzed. The band spectrum intensity is obtained, the average gas temperature of each part of the gas combustion field is calculated based on the combustion attribute of the gas, and the gas temperature of the gas combustion field is calculated from the average gas temperature calculated for each part and the band spectrum intensity. A method for calculating the distribution has been proposed.

特開平7−305105号公報Japanese Unexamined Patent Publication No. 7-305105 特開平10−30105号公報Japanese Unexamined Patent Publication No. 10-30105 特許4873788号公報Japanese Patent No. 4873788 特開2017−110259号公報Japanese Unexamined Patent Publication No. 2017-11259 特開2012−193978号公報Japanese Unexamined Patent Publication No. 2012-193978

しかしながら、特許文献1および特許文献3に記載の方法は、送風羽口の背面覗き窓から輝度あるいは放射温度を測定し微粉炭の燃焼挙動を推定する方法であり、計測する方向とブローパイプ部・羽口内のガス流れが同方向であるため、測定対象である微粉炭の位置の特定が難しく、たとえ微粉炭の燃焼挙動を把握できたとしても、その現象が起こった位置を判別できないという問題点があった。 However, the methods described in Patent Document 1 and Patent Document 3 are methods for estimating the combustion behavior of pulverized coal by measuring the brightness or the radiation temperature from the rear viewing window of the blower tuyere, and the measurement direction and the blow pipe portion. Since the gas flow in the tuyere is in the same direction, it is difficult to identify the position of the pulverized coal to be measured, and even if the combustion behavior of the pulverized coal can be grasped, the position where the phenomenon occurred cannot be determined. was there.

また、特許文献2および4に記載の方法では、微粉炭の発光の測定や、還元材の燃焼状況の測定のためにブローパイプ〜羽口部へゾンデや測定装置を挿入、設置する必要があるが、ブローパイプ〜羽口内にゾンデや装置を挿入すると、羽口内のガス流れが乱れ微粉炭の燃焼挙動が通常の操業から変化してしまうという問題があった。また、羽口部からレースウェイにゾンデを挿入して発光を測定する場合では、溶銑滓やコークスの発光の影響を受け微粉炭の発光を正しく測定できないという問題があった。 Further, in the methods described in Patent Documents 2 and 4, it is necessary to insert and install a sonde or a measuring device from the blow pipe to the tuyere for measuring the light emission of pulverized coal and the combustion state of the reducing material. However, when a sonde or device is inserted into the blow pipe to the tuyere, there is a problem that the gas flow in the tuyere is disturbed and the combustion behavior of the pulverized coal changes from the normal operation. Further, when the sonde is inserted into the raceway from the tuyere to measure the luminescence, there is a problem that the luminescence of pulverized coal cannot be measured correctly due to the influence of the luminescence of hot metal slag and coke.

さらに、特許文献5に記載の方法は、燃料の燃焼温度の制御性を高めるために、燃焼装置内壁に光ファイバーなどの受光部を設置し、検出した光を元に燃焼装置内の特定位置における燃焼ガスの温度分布を算出する方法である。しかし、高炉羽口部では液体や固体還元材の吹込みも実施されるため、その場合前記の方法を適用することは困難である。 Further, in the method described in Patent Document 5, in order to improve the controllability of the combustion temperature of the fuel, a light receiving portion such as an optical fiber is installed on the inner wall of the combustion device, and combustion is performed at a specific position in the combustion device based on the detected light. This is a method for calculating the temperature distribution of gas. However, since the liquid or solid reducing agent is also blown into the tuyere of the blast furnace, it is difficult to apply the above method in that case.

また、ブローパイプ部〜羽口部においては一般的に、前記の通り固体還元材を吹込む場合があるほか、熱風炉から脱落したレンガの破片をはじめとする異物などが燃焼ガスとともに装置内を流れる。このような環境下において炉内壁に受光部を設置すると、飛来した固体の受光部への衝突、吹込み還元材から発生する溶融難燃物の付着により、受光部が破損し、炉内燃焼場の発光の検出が不可能になる場合があった。一旦発光の検出が不可能になると、ブローパイプあるいは羽口の交換作業が必要となるが、そのためには高炉の操業を中断する必要があり、溶銑の生産量が減少するという問題があった。 In addition, in the blow pipe section to the tuyere section, in general, a solid reducing agent may be blown as described above, and foreign substances such as brick fragments that have fallen off from the hot air furnace may enter the device together with the combustion gas. It flows. When the light receiving part is installed on the inner wall of the furnace in such an environment, the light receiving part is damaged due to the collision of the flying solid with the light receiving part and the adhesion of the molten flame retardant generated from the blown reducing agent, and the combustion field in the furnace. In some cases, it became impossible to detect the luminescence of. Once it becomes impossible to detect light emission, it is necessary to replace the blow pipe or tuyere, but for that purpose, it is necessary to suspend the operation of the blast furnace, and there is a problem that the production amount of hot metal decreases.

本発明は、上記の課題を有利に解決するものであり、還元材の吹込みを行う高炉操業において、吹込んだ還元材の燃焼位置を的確に推定することができる、高炉吹込み還元材の燃焼位置推定方法について提案することを目的とする。また、本発明は、上記した高炉吹込み還元材の燃焼位置推定方法を利用して高炉の安定操業を実現する高炉操業方法について提案することを目的とする。さらに、本発明は、上記した高炉操業方法の実施に用いる送風羽口を提供することを目的とする。 The present invention advantageously solves the above-mentioned problems, and can accurately estimate the combustion position of the blown reducing agent in the operation of the blast furnace in which the reducing material is blown. The purpose is to propose a combustion position estimation method. Another object of the present invention is to propose a blast furnace operation method that realizes stable operation of the blast furnace by utilizing the above-mentioned method for estimating the combustion position of the blast furnace blown reducing agent. Furthermore, an object of the present invention is to provide a blower tuyere used for carrying out the above-mentioned blast furnace operating method.

すなわち、本発明の要旨構成は次のとおりである。
1.送風羽口本体と該送風羽口本体の上流側に連続するブローパイプ部とからなる送風羽口の送風流路に、吹込み管の先端部を挿入し、該先端部を通して還元材を高炉内へ吹込むに当たり、
前記羽口本体と該ブローパイプ部のいずれかまたは両方に設けた観察孔を通じて、該還元材の燃焼場における発光強度を、送風流れ方向に少なくとも2箇所測定し、得られた該発光強度から輻射光強度を差し引いた発光強度を前記測定箇所間で比較することにより、該還元材の燃焼位置を推定することを特徴とする高炉吹込み還元材の燃焼位置推定方法。
That is, the gist structure of the present invention is as follows.
1. 1. The tip of the blower pipe is inserted into the blower flow path of the blower tuyere, which consists of the blower tuyere body and the blow pipe portion that is continuous on the upstream side of the blower tuyere body, and the reducing agent is passed through the tip portion in the blast furnace. In blowing into
Through observation holes provided in either or both of the tuyere body and the blow pipe portion, the emission intensity of the reducing agent in the combustion field is measured at at least two points in the air flow direction, and radiation is emitted from the obtained emission intensity. A method for estimating the combustion position of a blast furnace blown reducing agent, which comprises estimating the combustion position of the reducing agent by comparing the emission intensity obtained by subtracting the light intensity between the measurement points.

2.前記観察孔を通じて測定する対象が分光スペクトルであり、該分光スペクトルから差し引くのが輻射光スペクトルである、前記1に記載の高炉吹込み還元材の燃焼位置推定方法。 2. The method for estimating the combustion position of a blast furnace blown reducing material according to 1 above, wherein the object to be measured through the observation hole is a spectral spectrum, and the radiation spectrum is subtracted from the spectral spectrum.

3.前記観察孔を通じて測定する対象がラジカル発光ピーク波長の総発光強度であり、該総発光強度から差し引くのが該波長の輻射光強度である前記1または2に記載の高炉吹込み還元材の燃焼位置推定方法。 3. 3. The combustion position of the blast furnace blown reducing material according to 1 or 2 above, wherein the object to be measured through the observation hole is the total emission intensity of the radical emission peak wavelength, and the radiant light intensity of the wavelength is subtracted from the total emission intensity. Estimating method.

4.前記還元材として、微粉炭、天然ガス、プロパンガス、重油、軽油、化石燃料、植物性油脂、コークス炉ガスおよび廃プラスチックのうちから選んだ少なくとも一種を用いることを特徴とする前記1から3のいずれかに記載の高炉吹込み還元材の燃焼位置推定方法。 4. 3. The method for estimating the combustion position of the blast furnace blown reduction material according to any one.

5.前記1から4に記載の燃焼位置推定方法により、前記送風羽口内における前記還元剤の燃焼位置を推定し、該推定した燃焼位置が前記送風羽口の先端から前記ブローパイプ部側に0mm以上200mm以下の範囲となる、前記吹込み管の先端位置の調整を行う高炉操業方法。 5. The combustion position of the reducing agent in the blower tuyere is estimated by the combustion position estimation method described in 1 to 4, and the estimated combustion position is 0 mm or more and 200 mm from the tip of the blower tuyere to the blow pipe portion side. A blast furnace operation method for adjusting the tip position of the blow pipe within the following range.

6.送風羽口本体と該送風羽口本体の上流側に連続するブローパイプ部とからなる送風羽口であって、該送風羽口の送風流路に先端部が位置する還元材の吹込み管を有し、さらに前記送風羽口本体または前記ブローパイプ部のいずれかまたは両方に、前記送風流路を観察する観察孔を少なくとも2つ有し、該観察孔は、該送風羽口本体または該ブローパイプ部の外側に観察窓を備えると共に、該送風流路内に吹き込んだ還元材の燃焼場における発光強度または発光の分光スペクトルを測定するための測定装置を有する送風羽口。 6. A blower tuyere consisting of a blower tuyere body and a blow pipe portion continuous on the upstream side of the blower tuyere body, and a blower pipe of a reducing material whose tip is located in the blower flow path of the blower tuyere. The blower tuyere body or the blow pipe portion has at least two observation holes for observing the blower flow path, and the observation holes are the blower tuyere body or the blow. A blower tuyere having an observation window on the outside of the pipe portion and a measuring device for measuring the emission intensity or the spectral spectrum of emission in the combustion field of the reducing material blown into the ventilation flow path.

7.送風羽口本体と該送風羽口本体の上流側に連続するブローパイプ部からなる送風羽口であって、該送風羽口の送風流路に先端部が位置する、先端位置を送風流れ方向に移動可能な機構を備える還元材の吹込み管を有し、さらに前記送風羽口本体または前記ブローパイプ部のいずれかまたは両方に、前記送風流路を観察する観察孔を少なくとも1つ有し、該観察孔は、該送風羽口本体または該ブローパイプ部の外側に観察窓を備えると共に、該送風流路内に吹き込んだ還元材の燃焼場における発光強度または発光の分光スペクトルを測定するための測定装置を有する送風羽口。 7. A blower tuyere consisting of a blower tuyere body and a blow pipe portion continuous on the upstream side of the blower tuyere body, the tip portion of which is located in the blower flow path of the blower tuyere, and the tip position is in the air flow direction. It has a reducing material blowing pipe provided with a movable mechanism, and further has at least one observation hole for observing the blowing flow path in either or both of the blowing tuyere body and the blow pipe portion. The observation hole is provided with an observation window on the outside of the blower tuyere body or the blow pipe portion, and is for measuring the emission intensity or the spectral spectrum of emission in the combustion field of the reducing material blown into the blower flow path. Blower tuyere with measuring device.

本発明の燃焼位置推定方法によれば、送風羽口内の燃焼場の発光強度、特にラジカルの発光ピーク強度を測定して、還元材の燃焼位置を非接触で正確に推定することができる。従って、推定した還元材の燃焼位置に基いて高炉の操業を行うことによって、より安定した高炉操業を実現することができる。
また、本発明の送風羽口によれば、観察孔を通じて炉外から還元材燃焼場の発光強度を測定することが可能であり、測定機器の受光部の破損を防ぎ、かつ高炉操業に支障をきたすことなく還元材の燃焼位置を正確に把握するための測定に寄与する。
According to the combustion position estimation method of the present invention, the combustion position of the reducing material can be accurately estimated by measuring the emission intensity of the combustion field in the blower tuyere, particularly the emission peak intensity of radicals. Therefore, more stable blast furnace operation can be realized by operating the blast furnace based on the estimated combustion position of the reducing agent.
Further, according to the blower tuyere of the present invention, it is possible to measure the light emission intensity of the reducing agent combustion field from outside the furnace through the observation hole, prevent damage to the light receiving part of the measuring device, and hinder the operation of the blast furnace. It contributes to the measurement to accurately grasp the combustion position of the reducing agent without causing any trouble.

本発明の実施に用いて好適な送風羽口の模式図である。It is a schematic diagram of a blower tuyere suitable for practicing the present invention. 本発明の実施に用いて好適な送風羽口の他の例の模式図である。It is a schematic diagram of another example of a blower tuyere suitable for practicing the present invention. 本発明の実施に用いて好適な送風羽口のさらに他の例の模式図である。It is a schematic diagram of still another example of a blower tuyere suitable for practicing the present invention. 還元材燃焼場の発光スペクトルの一例,ならびにラジカルの発光ピーク強度の算出方法を示す図である。It is a figure which shows an example of the emission spectrum of the reducing agent combustion field, and the calculation method of the emission peak intensity of radical. ラジカル発光ピーク強度とランス先端からの距離の関係の測定例である。This is a measurement example of the relationship between the radical emission peak intensity and the distance from the tip of the lance. 小型燃焼炉の断面を示す模式図である。It is a schematic diagram which shows the cross section of a small combustion furnace. 小型燃焼炉において測定した、総発光強度とランス先端からの距離との関係を示す図である。It is a figure which shows the relationship between the total light emission intensity and the distance from the tip of a lance measured in a small combustion furnace. 小型燃焼炉において測定した、ラジカル発光ピーク強度とランス先端からの距離との関係を示す図である。It is a figure which shows the relationship between the radical emission peak intensity and the distance from a lance tip measured in a small combustion furnace.

さて、送風羽口本体や送風羽口上流側のブローパイプ部の送風流路に吹き込まれた還元材の燃焼場は、2000℃を超える高温雰囲気にあるため、大気中や常温では存在しないラジカルが生成する。
還元材燃焼場の例として微粉炭燃焼場について述べると、微粉炭中の炭化水素の燃焼に由来するOH,CH,C2のラジカルや、微粉炭中の灰分に含まれるNa,Kに由来するNa,Kのラジカルが存在する。
Since the combustion field of the reducing agent blown into the blower tuyere body and the blower pipe section on the upstream side of the blower tuyere is in a high temperature atmosphere exceeding 2000 ° C, radicals that do not exist in the atmosphere or at room temperature are present. Generate.
As an example of the reducing material combustion field, the pulverized coal combustion field is derived from OH, CH, C 2 radicals derived from the combustion of hydrocarbons in the pulverized coal and Na, K contained in the ash content in the pulverized coal. There are Na and K radicals.

このような燃焼場では、熱や燃焼反応によってラジカルが励起され、このラジカルが励起状態から基底状態に遷移する際にラジカルに固有な波長をもつ光を放出する現象が確認されている(OHラジカル:309nm,CHラジカル:431nm,C2ラジカル:517nm,Naラジカル:589nm,Kラジカル:766,770nm)。 In such a combustion field, it has been confirmed that radicals are excited by heat or a combustion reaction, and when the radicals transition from the excited state to the base state, they emit light having a wavelength peculiar to the radicals (OH radicals). : 309 nm, CH radical: 431 nm, C 2 radical: 517 nm, Na radical: 589 nm, K radical: 766,770 nm).

ここに、ラジカルの発光ピーク強度は、ラジカルが還元材の燃焼により生成するものであるから、還元材の燃焼位置との相関があると考えられる。すなわち、還元材の燃焼位置ではその前後に比較してラジカル生成量が多く、ラジカル発光ピーク強度が増大することが推定される。
本発明は、上記の相関を利用して、燃焼場に存在するラジカルの発光ピーク強度から還元材の燃焼位置を推定するものである。
以下、本発明を具体的に説明する。まず、燃焼場に存在するラジカルの発光ピーク強度から還元材の燃焼位置を推定するのに適した送風羽口について、図1〜3を参照して説明する。
Here, since the radical emission peak intensity is generated by the combustion of the reducing agent, it is considered that there is a correlation with the combustion position of the reducing agent. That is, it is presumed that at the combustion position of the reducing agent, the amount of radicals generated is larger than before and after that, and the radical emission peak intensity increases.
In the present invention, the combustion position of the reducing agent is estimated from the emission peak intensity of radicals existing in the combustion field by utilizing the above correlation.
Hereinafter, the present invention will be specifically described. First, a blower tuyere suitable for estimating the combustion position of the reducing agent from the emission peak intensity of radicals existing in the combustion field will be described with reference to FIGS. 1 to 3.

本発明の実施に用いて好適な送風羽口の第1の形態を図1に示す。
図中、符号1は羽口本体、2は羽口本体に接続しているブローパイプ部、3は還元材rの吹込み管であり、図示例はこの吹込み管3の先端部は送風羽口の送風流路10に挿入されている。また、符号4は高炉のレースウェイ、5−1および5−2はブローパイプ部2の内外に通じる観察孔であり、6−1および6−2は観察孔5−1および5−2の各パイプ部外側に設けた観察窓、7−1および7−2は観察窓6−1および6−2の外側から送風流路10での発光強度を測定する発光強度測定装置である。
FIG. 1 shows a first form of a blower tuyere suitable for carrying out the present invention.
In the figure, reference numeral 1 is a tuyere main body, 2 is a blow pipe portion connected to the tuyere main body, 3 is a blowing pipe of a reducing agent r, and in the illustrated example, the tip of the blowing pipe 3 is a blower blade. It is inserted into the air flow path 10 of the mouth. Reference numeral 4 is a raceway of the blast furnace, 5-1 and 5-2 are observation holes leading to the inside and outside of the blow pipe portion 2, and 6-1 and 6-2 are observation holes 5-1 and 5-2, respectively. The observation windows 7-1 and 7-2 provided on the outside of the pipe portion are light emission intensity measuring devices for measuring the light emission intensity in the air flow path 10 from the outside of the observation windows 6-1 and 6-2.

なお、吹込み管3の先端の位置や挿入角度は、図示例に限らず適宜に変更して吹込み管3を設置することができる。例えば、吹込み管3の先端が送風流路10の送風羽口本体1部分にある、位置および角度にて設置しても問題ない。 The position and insertion angle of the tip of the blow pipe 3 are not limited to the illustrated examples, and the blow pipe 3 can be installed by appropriately changing it. For example, there is no problem even if the tip of the blow pipe 3 is installed at the position and angle of the blower tuyere main body 1 of the blower flow path 10.

また、観察孔は、図示例の設置位置に限らず、熱風の吹込み方向(以下、送風流れ方向という)での位置を特定でき、かつ炉内の還元材燃焼場の発光を計測可能であれば、設置箇所は問わない。観察孔の数に関しても、2つに限らず3つ以上でもよい。但し、図1に示す吹込み管3の挿入位置が固定される場合、観察孔は少なくとも2つの設置が必要になる。このことは、観察孔に付随する、観察窓および発光強度測定装置においても同様であり、各々少なくとも2つが必要になる。 Further, the observation hole is not limited to the installation position in the illustrated example, but the position in the hot air blowing direction (hereinafter referred to as the blowing flow direction) can be specified, and the light emission of the reducing agent combustion field in the furnace can be measured. For example, the installation location does not matter. The number of observation holes is not limited to two, but may be three or more. However, when the insertion position of the blow pipe 3 shown in FIG. 1 is fixed, at least two observation holes need to be installed. This also applies to the observation window and the emission intensity measuring device attached to the observation hole, and at least two of each are required.

さらに、発光強度測定装置7は、ラジカルの発光ピーク強度が計算可能という条件を満たす分光装置であれば、その形式は問わない。ラジカルの発光ピーク強度の計算方法に関しては後述する。 Further, the emission intensity measuring device 7 may be of any type as long as it is a spectroscopic device that satisfies the condition that the emission peak intensity of radicals can be calculated. The method for calculating the emission peak intensity of radicals will be described later.

次に、本発明の実施に用いて好適な送風羽口の第2の形態を図2に示す。この送風羽口は、上記した図1の送風羽口における吹込み管3を固定するのではなく移動可能とし、観察孔を1つにしたところ以外は、図1の送風羽口と同じ構成である。すなわち、吹込み管3は、その先端位置を移動させるための移動機構8を備え、先端位置を送風流れ方向に変化させることが可能である。この移動機構8は、吹込み管3の先端位置を送風流れ方向に変化させることが出来れば特にその形式は問わない。移動機構8としては、例えば、油圧シリンダーのロッドを吹込み管3に接続し、吹込み管3をその軸方向にスライドさせる機構を適用できる。 Next, FIG. 2 shows a second form of a blower tuyere suitable for carrying out the present invention. This blower tuyere has the same configuration as the blower tuyere of FIG. 1 except that the blower pipe 3 in the blower tuyere of FIG. be. That is, the blow pipe 3 is provided with a moving mechanism 8 for moving the tip position thereof, and the tip position can be changed in the air flow direction. The type of the moving mechanism 8 is not particularly limited as long as the tip position of the blowing pipe 3 can be changed in the blowing flow direction. As the moving mechanism 8, for example, a mechanism in which the rod of the hydraulic cylinder is connected to the blow pipe 3 and the blow pipe 3 is slid in the axial direction thereof can be applied.

また、図3に示す送風羽口の第3の形態は、上記した図2の形態と同様に、送風羽口における吹込み管3を移動可能とし、観察孔を1つにしたものである。すなわち、吹込み管3は、その先端位置を移動させるための移動機構9を備え、先端位置を送風流れ方向に変化させることが可能である。この移動機構9は、吹込み管3を固定支持する台座90を、ブローパイプ部2に設けたスロット20にスライド可能に取り付けており、台座90の移動によって吹込み管3の先端位置を変更することができる。 Further, the third form of the blower tuyere shown in FIG. 3 is similar to the form of FIG. 2 described above, in which the blow pipe 3 in the blower tuyere is movable and the observation hole is unified. That is, the blow pipe 3 is provided with a moving mechanism 9 for moving the tip position thereof, and the tip position can be changed in the air flow direction. In this moving mechanism 9, a pedestal 90 that fixedly supports the blow pipe 3 is slidably attached to a slot 20 provided in the blow pipe portion 2, and the tip position of the blow pipe 3 is changed by moving the pedestal 90. be able to.

次に、還元材の燃焼位置を推定する方法について詳しく説明する。
図4は、還元材燃焼場において測定される発光の分光スペクトルの一例を示している。
Next, a method of estimating the combustion position of the reducing agent will be described in detail.
FIG. 4 shows an example of the spectral spectrum of light emission measured in the reducing agent combustion field.

分光スペクトルでは、炉内耐火物や還元材などの輻射光と、ラジカルに起因する化学発光、すなわちラジカル発光と、の和として各波長における総発光強度が測定される。このうち、輻射光強度は主に輻射光を放出する物体の温度と放射率に依存し、放射率は物質によって異なるうえ、一般に未燃チャーの放射率は高いために燃焼の進行により輻射率が下がる場合があるほか、分光測定時に炉内耐火物等の還元材以外の輻射光が検出端に不可避的に入射するため、輻射光は燃焼位置の誤検出の要因となる。一方で、ラジカル発光強度は、一般的に燃焼に伴うラジカル生成量増加により高くなる。そのため、輻射光強度とラジカル発光強度との和である総発光強度では燃焼位置の推定精度が低下する虞れがある。したがって、ラジカル発光ピークの算出は、輻射光の影響を排除する必要がある。 In the spectroscopic spectrum, the total emission intensity at each wavelength is measured as the sum of radiant light from refractories and reducing materials in the furnace and chemiluminescence caused by radicals, that is, radical emission. Of these, the radiant light intensity mainly depends on the temperature and radiation rate of the object that emits radiant light, the radiation rate differs depending on the substance, and the radiation rate of unburned char is generally high, so the radiation rate increases due to the progress of combustion. In addition to the fact that it may decrease, radiant light other than the reducing material such as fireproof material in the furnace inevitably enters the detection end during spectroscopic measurement, so that the radiant light causes erroneous detection of the combustion position. On the other hand, the radical emission intensity generally increases due to an increase in the amount of radicals generated due to combustion. Therefore, the total emission intensity, which is the sum of the radiation intensity and the radical emission intensity, may reduce the estimation accuracy of the combustion position. Therefore, it is necessary to eliminate the influence of radiated light in the calculation of the radical emission peak.

ここで、輻射光の影響を排除するには、輻射光はラジカル発光に比べてスペクトルのピークがブロード(先鋭でない)である事に着目し、図4に示したように、分光スペクトルに現れたラジカル発光の波長以外の部分を直線(図4の点線)で結び、この直線で近似する輻射光領域を総発光強度から差し引くことによってラジカル発光ピーク強度を求める手法を用いることができる。この方法は、上記した還元材の燃焼場におけるいずれの物質のラジカル発光ピークでも適用できる。 Here, in order to eliminate the influence of radiated light, attention was paid to the fact that the peak of the spectrum of radiated light was broader (not sharp) than that of radical emission, and it appeared in the spectral spectrum as shown in FIG. A method of obtaining the radical emission peak intensity can be used by connecting the portions other than the wavelength of the radical emission with a straight line (dotted line in FIG. 4) and subtracting the radiated light region approximated by this straight line from the total emission intensity. This method can be applied to the radical emission peaks of any substance in the combustion field of the reducing agent described above.

なお、輻射光の影響を排除する方法としては上記の手法が簡便であるが、その他にも、適当な関数を用いて輻射光のスペクトルを推定する方法や、適当な関数を用いてピークフィッティングを行ってラジカル発光ピーク強度を推定する方法も適用できる。関数としては、例えば、ガウス関数やローレンツ関数、フォークト関数を用いることができる。 The above method is simple as a method for eliminating the influence of radiant light, but in addition, a method of estimating the spectrum of radiant light using an appropriate function or peak fitting using an appropriate function is performed. A method of estimating the radical emission peak intensity can also be applied. As the function, for example, a Gaussian function, a Lorentz function, or a Voigt function can be used.

上記した図4に示した手法を用いて、燃焼場におけるラジカル発光ピーク強度を、吹込み管の先端からの距離を変えて測定、算出した結果について図5に示す。ここでは、図2に示した送風羽口を用いて、スライド機構によりランス先端位置を変化させることによって測定した分光スペクトルから、図4に示した要領に従ってラジカル発光ピーク強度を求めた。 FIG. 5 shows the results of measuring and calculating the radical emission peak intensity in the combustion field by changing the distance from the tip of the blow pipe using the method shown in FIG. 4 described above. Here, the radical emission peak intensity was obtained from the spectral spectrum measured by changing the position of the tip of the lance by a slide mechanism using the blower tuyere shown in FIG. 2 according to the procedure shown in FIG.

すなわち、図5に、還元材の燃焼場におけるラジカル発光ピーク強度と、還元材吹込み管の先端からのラジカル発光ピーク測定位置との関係を示す通り、ラジカル発光ピーク強度が最大値を持つ位置が存在し、この位置が燃焼位置に最も近い位置であると推定される。 That is, as shown in FIG. 5, the relationship between the radical emission peak intensity in the combustion field of the reducing agent and the radical emission peak measurement position from the tip of the reducing agent blowing tube is shown, and the position where the radical emission peak intensity has the maximum value is It exists and is presumed to be the position closest to the combustion position.

以上説明した通り、図1、2または3のいずれかに示した構成の送風羽口を用いて送風流路に還元材を吹き込む高炉操業を行う場合において、燃焼場における特定のラジカルの発光ピーク強度を求めて、得られた該ラジカル発光ピーク強度と吹込み管の先端からのラジカル発光ピーク強度測定位置との関係から、還元材の燃焼位置を推定することができる。 As described above, when the blast furnace is operated by blowing the reducing agent into the air flow path using the air tuyere having the configuration shown in any one of FIGS. 1, 2 or 3, the emission peak intensity of a specific radical in the combustion field is used. The combustion position of the reducing agent can be estimated from the relationship between the obtained radical emission peak intensity and the radical emission peak intensity measurement position from the tip of the blowing tube.

ここで、発光ピーク強度を測定するラジカル種については、還元材の燃焼場に生成するラジカルであれば何でもよい。本発明では、OH,CH,C2,Na,Kラジカルなどを用いることができるが、特にOH,CH,C2ラジカルは、炭化水素系の還元材であれば必ず燃焼の際に生成するため、これらを用いることが有利である。 Here, the radical species for which the emission peak intensity is measured may be any radical as long as it is a radical generated in the combustion field of the reducing agent. In the present invention, OH, CH, C 2 , Na, K radicals and the like can be used, but in particular, OH, CH, C 2 radicals are always generated during combustion if they are hydrocarbon-based reducing materials. , It is advantageous to use these.

上記のようにして正確に還元材の燃焼位置を推定することができれば、この推定値を高炉操業に活用することにより、高炉操業の一層の安定化を図ることができる。すなわち、推定した還元材の燃焼位置が、羽口からの吹込み還元材比の増減をはじめとした操業条件の変更により、操業条件変更前の安定操業期における燃焼位置から大きく外れた場合は、還元材燃焼の遅滞による未燃チャーの発生、あるいは羽口熱負荷の増大が懸念される。従って、かような場合には、炉内や羽口、ブローパイプ内における還元材燃焼位置を是正する必要がある。 If the combustion position of the reducing agent can be accurately estimated as described above, the blast furnace operation can be further stabilized by utilizing this estimated value for the blast furnace operation. That is, if the estimated combustion position of the reducing agent deviates significantly from the combustion position in the stable operating period before the change of the operating conditions due to the change of the operating conditions such as the increase / decrease of the ratio of the reducing agent blown from the tuyere. There is concern that unburned char will be generated due to the delay in combustion of the reducing agent, or that the tuyere heat load will increase. Therefore, in such a case, it is necessary to correct the combustion position of the reducing agent in the furnace, the tuyere, and the blow pipe.

そこで、本発明では、推定した還元材の燃焼位置が、前記送風羽口の先端から前記ブローパイプ部側に0mm以上200mm以下の範囲となる、前記吹込み管の先端位置の調整を行うこととする。なぜなら、還元材の燃焼位置が送風羽口の先端より炉内側へ移動すると、未燃還元材の炉内への到達量が増加して炉内に未燃還元材が蓄積して通気性が悪化し、還元材比の増加等の操業への悪影響が顕著となる。同様に、還元材の燃焼位置が送風羽口の先端からブローパイプ部側へ200mmを超えて移動すると、ブローパイプあるいは送風羽口内で還元材が過度に燃焼して羽口での熱負荷が増大し、最悪の場合羽口の溶損につながることになる。従って、吹込み管の先端位置を調整し、その後に推定した還元材の燃焼位置を前記送風羽口の先端から前記ブローパイプ部側に0mm以上200mm以下の範囲とすることが重要になる。
なお、吹込み管の先端位置を調整した後の還元材燃焼位置は、可能な限り送風羽口先端からブローパイプ部側へ100mm以上200mm以下の位置とすることが好ましい。なぜなら、羽口熱負荷に問題がなければ、可能な限り吹込み管をブローパイプ部側に引き寄せ、微粉炭の燃焼を進めることで還元材比を低減することが出来るためである。
Therefore, in the present invention, the tip position of the blow pipe is adjusted so that the estimated combustion position of the reducing agent is in the range of 0 mm or more and 200 mm or less from the tip of the blower tuyere to the blow pipe portion side. do. This is because when the combustion position of the reducing agent moves from the tip of the blower tuyere to the inside of the furnace, the amount of the unburned reducing agent reaching the inside of the furnace increases and the unburned reducing agent accumulates in the furnace, resulting in poor air permeability. However, adverse effects on operations such as an increase in the ratio of reducing agents become significant. Similarly, if the combustion position of the reducing agent moves from the tip of the blower tuyere to the blow pipe portion side by more than 200 mm, the reducing agent burns excessively in the blow pipe or the blower tuyere, and the heat load at the tuyere increases. However, in the worst case, it will lead to melting of the tuyere. Therefore, it is important to adjust the tip position of the blow pipe and set the combustion position of the reducing agent estimated thereafter in the range of 0 mm or more and 200 mm or less from the tip of the blower tuyere to the blow pipe portion side.
The position of the reducing agent combustion after adjusting the tip position of the blow pipe is preferably 100 mm or more and 200 mm or less from the tip of the blower tuyere to the blow pipe portion side as much as possible. This is because if there is no problem with the tuyere heat load, the reducing agent ratio can be reduced by pulling the blow pipe toward the blow pipe portion as much as possible and promoting the combustion of the pulverized coal.

還元材の燃焼位置の推定方法について、図6に示す円筒形の小型燃焼炉11を用いて検証を行った。この小型燃焼炉11は、内径100mmの円柱状の流路を有し、その長手方向に沿って200mmずつ隔てて計3つの側面観察窓11−1,11−2,11−3が設置されている。
図6に示した円筒形の小型燃焼炉を用い、その上流側から送風量毎時270Nm3,送風温度1250℃,酸素濃度27vol%の条件で熱風を吹き込んだ。その熱風中に、側面・上流側から送風流れ方向に対して20度の角度で挿入した、1本の吹込み管12を通じて、還元材として微粉炭を毎時35kg吹込み、この還元材の燃焼によって生成されたOHラジカルの発光ピーク強度(OHラジカル:309nm)と、吹込み管先端から測定位置までの距離との関係について調査を行った。
The method of estimating the combustion position of the reducing agent was verified using the small cylindrical combustion furnace 11 shown in FIG. This small combustion furnace 11 has a columnar flow path having an inner diameter of 100 mm, and a total of three side observation windows 11-1, 11-2, and 11-3 are installed at intervals of 200 mm along the longitudinal direction thereof. There is.
Using the small cylindrical combustion furnace shown in FIG. 6 , hot air was blown from the upstream side under the conditions of an air flow rate of 270 Nm 3 / h, an air flow temperature of 1250 ° C., and an oxygen concentration of 27 vol%. 35 kg of pulverized coal as a reducing material is blown into the hot air through one blowing pipe 12 inserted at an angle of 20 degrees with respect to the blowing flow direction from the side surface / upstream side, and by combustion of this reducing material. The relationship between the emission peak intensity of the generated OH radical (OH radical: 309 nm) and the distance from the tip of the blow tube to the measurement position was investigated.

なお、吹込み管先端から測定位置までの距離の変更は、吹込み管の挿入深さを変更することで行った。すなわち、側面観察窓11−1の最上流端から吹込み管先端が見える位置を0mmの位置とし、該位置から吹込み管先端が送風流れ方向に40mm、80mm、120mm後方になるように吹込み管挿入深さを浅くして測定を行った。該変更を行い、吹込み管先端から30mm〜550mmの計12か所における還元材燃焼場の発光の分光スペクトルを測定した。 The distance from the tip of the blow pipe to the measurement position was changed by changing the insertion depth of the blow pipe. That is, the position where the tip of the blow pipe can be seen from the uppermost flow end of the side observation window 11-1 is set to the position of 0 mm, and the blow is blown so that the tip of the blow pipe is 40 mm, 80 mm, and 120 mm behind in the air flow direction from that position. The measurement was performed with a shallow tube insertion depth. The change was made, and the spectral spectra of the light emission of the reducing agent combustion field were measured at a total of 12 locations 30 mm to 550 mm from the tip of the blow tube.

得られた分光スペクトルについて、総発光強度の測定結果を吹込み管先端から測定位置までの距離に対してプロットした散布図を図7に、また図4に示したところに従って総発光強度から輻射光強度を差し引いた、OHラジカルの発光波長(309nm)におけるラジカル発光ピーク強度を吹込み管先端から測定位置までの距離に対してプロットした散布図を図8に、それぞれ示す。図8に示す通り、ラジカル発光ピーク強度に着目した場合、前記距離が270mmの位置で最大値を持ち、燃焼位置が吹込み管先端から270mmの位置であることが分かる。 With respect to the obtained spectral spectrum, a scatter diagram in which the measurement result of the total emission intensity is plotted against the distance from the tip of the blow tube to the measurement position is shown in FIG. FIG. 8 shows a dispersion diagram in which the radical emission peak intensity at the emission wavelength (309 nm) of the OH radical after subtracting the intensity is plotted against the distance from the tip of the blowing tube to the measurement position. As shown in FIG. 8, when focusing on the radical emission peak intensity, it can be seen that the distance has the maximum value at the position of 270 mm and the combustion position is the position of 270 mm from the tip of the blow pipe.

一方、輻射光強度とラジカル発光強度との和である総発光強度に着目してしまうと、図7に示す通り、最大値は270mmであるものの、510mmの位置で強度の近い極大値を持つため、たとえば図6において吹込み管先端から200〜600mmの領域で2か所の測定を実施した場合、測定位置によって推定される燃焼位置が異なる可能性が高い。ラジカル発光ピーク強度に着目した場合、510mmの位置に極大値は持つものの、その強度は周囲の470mm、550mmの位置と比較して大差なく、燃焼位置の推定精度に及ぼす影響ははるかに小さい。このようにして、ラジカル発光ピーク強度に基づくことによって、微粉炭の燃焼位置の推定を正確に行うことが出来た。 On the other hand, focusing on the total emission intensity, which is the sum of the radiation intensity and the radical emission intensity, as shown in FIG. 7, although the maximum value is 270 mm, it has a maximum value close to the intensity at the position of 510 mm. For example, when two measurements are performed in a region of 200 to 600 mm from the tip of the blow pipe in FIG. 6, it is highly possible that the estimated combustion position differs depending on the measurement position. Focusing on the radical emission peak intensity, although it has a maximum value at the position of 510 mm, the intensity is not much different from the surrounding positions of 470 mm and 550 mm, and the influence on the estimation accuracy of the combustion position is much smaller. In this way, the combustion position of the pulverized coal could be accurately estimated based on the radical emission peak intensity.

次に、炉内体積12m3の高炉を模擬した試験炉で、分光測定結果からOHラジカルの発光ピーク強度を算出し、その値から推定した燃焼位置と操業の安定性について検証を行った。高炉の出銑量は30t/日(下記表2中ではt/dと記載)で一定となるように送風量を決定し、操業の安定性の指標として通気抵抗指数を用いた。通気抵抗指数は、炉頂圧と送風圧との圧力差および送風量をパラメータとした炉内の通気性を示す指数であり、具体的には、下記の式に従って求めることができる。この数値が大きいほど炉内の通気性が悪いことを意味する。この検証を行った期間では、送風温度1000℃、送風酸素富化6%、すなわち送風酸素濃度27%の条件下で操業を行い、溶銑温度は1470℃±10℃の範囲に収めた。

(通気抵抗指数)=(PB2 − PT2)/VB1.7
ここで、PB:送風圧[g/cm2]
PT:炉頂圧[g/cm2]
VB:送風量[Nm3/min]
Next, in a test furnace simulating a blast furnace with an internal volume of 12 m 3 , the emission peak intensity of OH radicals was calculated from the spectroscopic measurement results, and the combustion position and operational stability estimated from those values were verified. The amount of air blown to the blast furnace was determined to be constant at 30 t / day (described as t / d in Table 2 below), and the aeration resistance index was used as an index of operational stability. The ventilation resistance index is an index indicating the air permeability in the furnace with the pressure difference between the furnace top pressure and the ventilation pressure and the ventilation amount as parameters, and can be specifically obtained according to the following formula. The larger this value is, the worse the air permeability in the furnace is. During this verification period, the operation was performed under the conditions of a blast temperature of 1000 ° C. and a blast oxygen enrichment of 6%, that is, a blast oxygen concentration of 27%, and the hot metal temperature was kept within the range of 1470 ° C. ± 10 ° C.
Record
(Ventilation resistance index) = (PB 2 -PT 2 ) / VB 1.7
Here, PB: Blast pressure [g / cm 2 ]
PT: Furnace top pressure [g / cm 2 ]
VB: Air volume [Nm 3 / min]

まず、ベース条件として、表1に示すケース1の条件、すなわちコークス比401kg/tおよび微粉炭比136kg/t(還元材比として537kg/t)で操業を行った。本条件下で、図2の送風羽口において、微粉炭燃焼場の発光を測定しOHラジカルの発光ピ−ク強度を求め、微粉炭吹込み管からの距離に対するOHラジカルピーク強度の推移から微粉炭燃焼位置を推定したところ、該微粉炭の燃焼位置は送風羽口の先端から−100mm(ブローパイプ部側へ100mm)であった。 First, as the base conditions, the operation was carried out under the conditions of Case 1 shown in Table 1, that is, the coke ratio of 401 kg / t and the pulverized coal ratio of 136 kg / t (reducing agent ratio of 537 kg / t). Under this condition, the luminescence of the pulverized coal combustion field was measured at the blower tuyere of FIG. When the charcoal combustion position was estimated, the combustion position of the pulverized coal was -100 mm (100 mm toward the blow pipe portion side) from the tip of the blower tuyere.

ここで、kg/tという単位は、特記なき場合、溶銑1tを製造するために必要な微粉炭の重量を表す。また、送風羽口の先端からの位置は、該先端位置を0mmとし、正を炉内側、負をブローパイプ部側として定義した。本条件では、トラブルなく安定した操業を行うことができた。なお、以降はこの条件における通気抵抗指数を1.00とし、相対通気抵抗指数を用いて通気性を記述する。 Here, the unit of kg / t represents the weight of pulverized coal required to produce 1 ton of hot metal unless otherwise specified. The position of the blower tuyere from the tip was defined as 0 mm at the tip, positive as the inside of the furnace, and negative as the blow pipe side. Under these conditions, stable operation was possible without any trouble. Hereinafter, the ventilation resistance index under this condition is set to 1.00, and the ventilation resistance is described using the relative ventilation resistance index.

ついで、表1、2に示すように条件(微粉炭比)を種々に変更して操業を行い、送風羽口の先端からの燃焼位置を測定した。なお、燃焼位置は、図2の送風羽口において、微粉炭燃焼場の発光を測定しOHラジカルの発光ピ−ク強度を求め、吹込み管からの距離に対するOHラジカルピーク強度の推移から推定した。 Then, as shown in Tables 1 and 2, the conditions (pulverized coal ratio) were variously changed to perform the operation, and the combustion position from the tip of the blower tuyere was measured. The combustion position was estimated from the transition of the OH radical peak intensity with respect to the distance from the blow pipe by measuring the luminescence of the pulverized coal combustion field at the blower tuyere of FIG. 2 to obtain the luminescence peak intensity of OH radicals. ..

そして、相対通気抵抗指数を用いて炉内通気性を、羽口温度を用いて羽口熱負荷を評価した。相対通気抵抗指数は、1.05までは安定操業を行う上で問題ない値であった。また、羽口は耐熱温度を200℃として管理した。ここで、微粉炭は全条件で同じ銘柄のものを使用し、微粉炭吹込みランスは全羽口において単管のものを1本ずつ使用した。 Then, the relative ventilation resistance index was used to evaluate the air permeability in the furnace, and the tuyere temperature was used to evaluate the tuyere heat load. The relative aeration resistance index was a value up to 1.05 that was not a problem for stable operation. The tuyere was controlled with a heat resistant temperature of 200 ° C. Here, the pulverized coal used the same brand under all conditions, and the pulverized coal blowing lance used one single tube at all tuyere.

Figure 0006942641
Figure 0006942641

ケース2は、ケース1に対して微粉炭比を3kg/t増加させた条件である。ケース2では、燃焼位置が−50mmの位置となった。燃焼位置が炉内側に接近したことに起因する微粉炭燃焼の遅れにより相対通気抵抗指数が1.02まで増加したが、安定に操業できる範囲内であった。 Case 2 is a condition in which the pulverized coal ratio is increased by 3 kg / t with respect to Case 1. In case 2, the combustion position was -50 mm. The relative aeration resistance index increased to 1.02 due to the delay in pulverized coal combustion due to the combustion position approaching the inside of the furnace, but it was within the range where stable operation was possible.

ケース3は、ケース2からさらに微粉炭比を1kg/t増加させた条件である。ケース3では燃焼位置が0mmの位置となり、相対通気抵抗指数は1.04まで増加した。燃焼位置がケース2よりさらに炉内側に接近したことに起因する、微粉炭燃焼の遅れにより通気抵抗指数が増加したが、安定に操業できる範囲内であった。 Case 3 is a condition in which the pulverized coal ratio is further increased by 1 kg / t from Case 2. In case 3, the combustion position was 0 mm, and the relative aeration resistance index increased to 1.04. The aeration resistance index increased due to the delay in pulverized coal combustion due to the combustion position being closer to the inside of the furnace than Case 2, but it was within the range where stable operation was possible.

ケース4は、ケース3からさらに微粉炭比を1kg/t増加させた条件である。ケース4では燃焼位置が50mmの位置となり、相対通気抵抗指数は1.06まで増加した。この条件では、炉内の通気性が非常に悪く、コークス比を412kg/t(還元材比として553kg/t)まで増加させたものの、安定操業を行うことが非常に難しくなった。この原因としては、微粉炭比の増加により微粉炭の燃焼性が悪化して未燃チャーが増加し、増加した未燃チャーが滴下帯および炉芯に蓄積し、炉内の通気を阻害したことが考えられる。 Case 4 is a condition in which the pulverized coal ratio is further increased by 1 kg / t from Case 3. In case 4, the combustion position was 50 mm, and the relative aeration resistance index increased to 1.06. Under this condition, the air permeability in the furnace was very poor, and although the coke ratio was increased to 412 kg / t (reducing agent ratio of 553 kg / t), stable operation became very difficult. The reason for this is that the combustibility of pulverized coal deteriorated due to the increase in the pulverized coal ratio and the number of unburned chars increased, and the increased unburned chars accumulated in the dropping zone and the furnace core, obstructing the ventilation inside the furnace. Can be considered.

ケース5は、ケース4の条件から還元材吹込み管先端位置を150mmブローパイプ側へ移動することによって、燃焼位置をケース1と同じ−100mmにして、微粉炭燃焼性の担保を試みた条件である。ケース5では、相対通気抵抗指数が1.01まで改善し、コークス比はケース1に比して5kg/t低い396kg/t(還元材比として537kg/t)となった。この条件では、ケース4とは異なり、安定した操業を行うことができた。 In the case 5, the combustion position is set to -100 mm, which is the same as in the case 1, by moving the tip position of the reducing agent blowing pipe to the blow pipe side by 150 mm from the condition of the case 4, and the condition is to try to guarantee the pulverized coal combustibility. be. In Case 5, the relative aeration resistance index improved to 1.01, and the coke ratio was 396 kg / t (537 kg / t as a reducing agent ratio), which was 5 kg / t lower than that of Case 1. Under this condition, unlike Case 4, stable operation was possible.

ケース6は、ケース5の条件から還元材吹込み管先端位置を100mmブローパイプ側へ移動することによって、燃焼位置を−200mmにした条件である。ケース6では、相対通気抵抗指数が1.00、コークス比が394kg/t(還元材比として535kg/t)の条件で操業を維持できた。この条件では、羽口温度が上昇したものの、その温度は管理値以下であり、ケース5同様、安定した操業を行うことができた。 The case 6 is a condition in which the combustion position is set to −200 mm by moving the tip position of the reducing agent blowing pipe to the blow pipe side by 100 mm from the condition of the case 5. In Case 6, the operation could be maintained under the conditions of the relative aeration resistance index of 1.00 and the coke ratio of 394 kg / t (reducing agent ratio of 535 kg / t). Under this condition, although the tuyere temperature rose, the temperature was below the control value, and stable operation could be performed as in Case 5.

ケース7は、ケース6の条件から還元材吹込み管先端位置を50mmブローパイプ側へ移動することによって、燃焼位置を−250mmにした条件である。ケース7では、相対通気抵抗指数が0.99、コークス比が393kg/tとなったものの、羽口温度が管理値の200℃を超過し204℃となった。この条件では、羽口の熱負荷が大きく、羽口の長期的な耐久性を考慮すると安全性に欠ける状態であった。羽口熱負荷増大の原因としては、吹込み管がブローパイプ側に寄ることで微粉炭の燃焼位置が羽口の上流側に移動し、微粉炭がより高温の状態で羽口近傍に飛来したことが考えられる。そこで、吹込み管先端位置をケース5の条件に戻したところ、安定した操業を行うことができた。 Case 7 is a condition in which the combustion position is set to −250 mm by moving the tip position of the reducing agent blowing pipe to the blow pipe side by 50 mm from the condition of case 6. In Case 7, the relative aeration resistance index was 0.99 and the coke ratio was 393 kg / t, but the tuyere temperature exceeded the control value of 200 ° C. and reached 204 ° C. Under this condition, the heat load on the tuyere was large, and the safety was lacking in consideration of the long-term durability of the tuyere. The cause of the increase in the tuyere heat load is that the combustion position of the pulverized coal moved to the upstream side of the tuyere due to the blow pipe moving closer to the blow pipe side, and the pulverized coal flew near the tuyere at a higher temperature. Can be considered. Therefore, when the position of the tip of the blow pipe was returned to the condition of Case 5, stable operation could be performed.

Figure 0006942641
Figure 0006942641

ケース8は、ケース1の条件から微粉炭比を3kg/t低下させた条件である。この条件では燃焼位置が−150mmとなり、羽口温度が179℃まで上昇したが、上限の200℃には達さず、安全に操業を行うことが出来た。 Case 8 is a condition in which the pulverized coal ratio is reduced by 3 kg / t from the condition of Case 1. Under this condition, the combustion position was -150 mm and the tuyere temperature rose to 179 ° C, but the upper limit of 200 ° C was not reached and the operation could be performed safely.

ケース9は、ケース8からさらに微粉炭比を2kg/t低下させた条件である。この条件では燃焼位置が−200mmの位置となり、羽口温度が195℃まで上昇したが、上限の200℃には達さず、安全に操業を行うことが出来た。 Case 9 is a condition in which the pulverized coal ratio is further reduced by 2 kg / t from Case 8. Under this condition, the combustion position was -200 mm and the tuyere temperature rose to 195 ° C, but the upper limit of 200 ° C was not reached and the operation could be performed safely.

ケース10は、ケース9からさらに微粉炭比を1kg/t低下させた条件である。この条件では燃焼位置が−250mmの位置となった。羽口温度は203℃まで上昇し、管理値である200℃を超過した。この条件では、羽口の熱負荷が大きく、羽口の長期的な耐久性を考慮すると安全性に欠ける状態であった。羽口熱負荷増大の原因としては、微粉炭比の低下により微粉炭の燃焼性が向上して燃焼位置が炉内から遠ざかり、羽口近傍における微粉炭の粒子温度が上昇したことが考えられる。 Case 10 is a condition in which the pulverized coal ratio is further reduced by 1 kg / t from Case 9. Under this condition, the combustion position was -250 mm. The tuyere temperature rose to 203 ° C and exceeded the control value of 200 ° C. Under this condition, the heat load on the tuyere was large, and the safety was lacking in consideration of the long-term durability of the tuyere. It is considered that the cause of the increase in the tuyere heat load is that the combustibility of the pulverized coal is improved due to the decrease in the pulverized coal ratio, the combustion position is moved away from the inside of the furnace, and the particle temperature of the pulverized coal in the vicinity of the tuyere is increased.

ケース11は、ケース10の条件から還元材吹込み管先端位置を150mm炉内側へ移動することによって、燃焼位置をケース1と同じ−100mmにして、羽口熱負荷の低減を試みた条件である。この条件では、羽口温度が170℃まで低下し、ケース10とは異なり、安全な羽口温度範囲で操業を行うことができた。 Case 11 is a condition in which the combustion position is set to -100 mm, which is the same as that of case 1, by moving the tip position of the reducing agent blowing pipe to the inside of the furnace by 150 mm from the condition of case 10, and an attempt is made to reduce the tuyere heat load. .. Under this condition, the tuyere temperature dropped to 170 ° C., and unlike Case 10, the operation could be performed in a safe tuyere temperature range.

ケース12は、ケース11の条件から還元材吹込み管先端位置をさらに100mm炉内側へ移動することによって、燃焼位置を0mmにした条件である。この条件では、吹込み管の炉内側への移動に伴う微粉炭燃焼遅れから相対通気抵抗指数が増加したものの、羽口温度は165℃であり、安全な羽口温度範囲で操業を行うことができた。 The case 12 is a condition in which the combustion position is set to 0 mm by further moving the tip position of the reducing agent blowing pipe 100 mm inward from the condition of the case 11. Under this condition, although the relative aeration resistance index increased due to the delay in pulverized coal combustion due to the movement of the blow pipe to the inside of the furnace, the tuyere temperature was 165 ° C, and the operation could be performed within a safe tuyere temperature range. did it.

ケース13は、ケース12の条件から還元材吹込み管先端位置をさらに50mm炉内側へ移動することによって、燃焼位置を50mmにした条件である。この条件では、羽口温度は161℃まで低下したが、相対通気抵抗指数が1.05を超過する1.07になり、コークス比を422kg/t(還元材比として552kg/t)まで増加させたものの、安定操業を行うことが非常に難しくなった。この原因としては、燃焼位置の移動により微粉炭の燃焼が遅れて未燃チャーが増加し、増加した未燃チャーが滴下帯および炉芯に蓄積し、炉内の通気を阻害したことが考えられる。 The case 13 is a condition in which the combustion position is set to 50 mm by further moving the tip position of the reducing agent blowing pipe to the inside of the furnace by 50 mm from the condition of the case 12. Under this condition, the tuyere temperature dropped to 161 ° C., but the relative aeration resistance index became 1.07, which exceeded 1.05, and the coke ratio was increased to 422 kg / t (552 kg / t as the reducing agent ratio). However, it became very difficult to carry out stable operation. It is considered that the cause of this is that the combustion of pulverized coal was delayed due to the movement of the combustion position and the number of unburned chars increased, and the increased unburned chars accumulated in the dropping zone and the core, which hindered the ventilation in the furnace. ..

以上の検証から、燃焼位置が、送風羽口の先端位置からブローパイプ部側に0mm以上200mm以下となる、還元材吹込み管先端位置の調整を行うことにより、安定的かつ安全に高炉を操業し得ることが確認された。 From the above verification, the blast furnace can be operated stably and safely by adjusting the position of the tip of the reducing agent blowing pipe so that the combustion position is 0 mm or more and 200 mm or less on the blow pipe side from the tip position of the blower tuyere. It was confirmed that it could be done.

本発明によって、還元材の吹込みを行う高炉操業において、送風羽口内における還元材の燃焼位置を正確に推定し、その推定結果を用いて安定的かつ安全に高炉操業を実施することが可能となった。 According to the present invention, in the blast furnace operation in which the reducing agent is blown, the combustion position of the reducing agent in the blower tuyere can be accurately estimated, and the estimation result can be used to stably and safely carry out the blast furnace operation. became.

1 送風羽口本体
2 ブローパイプ部
3 吹込み管
4 レースウェイ
5 観察孔
6 観察窓
7 発光強度測定装置
10 送風流路
11 小型燃焼炉
11−1〜3 小型燃焼炉の観察窓
12 小型燃焼炉の吹込み管
1 Blower tuyere body 2 Blow pipe 3 Blow pipe 4 Raceway 5 Observation hole 6 Observation window 7 Emission intensity measuring device 10 Blower flow path 11 Small combustion furnace 11-1 to 3 Small combustion furnace observation window 12 Small combustion furnace Blowing pipe

Claims (5)

送風羽口本体と該送風羽口本体の上流側に連続するブローパイプ部とからなる送風羽口の送風流路に、吹込み管の先端部を挿入し、該先端部を通して還元材を高炉内へ吹込むに当たり、
前記羽口本体と該ブローパイプ部のいずれかまたは両方に設けた観察孔を通じて、該還元材の燃焼場における発光の分光スペクトルを、送風流れ方向に少なくとも2箇所測定し、得られた前記分光スペクトルに現れたラジカル発光の波長以外の部分を差し引いて輻射光強度を差し引く処理をした後のラジカル発光ピーク強度を前記測定箇所間で比較することにより、該還元材の燃焼位置を推定することを特徴とする高炉吹込み還元材の燃焼位置推定方法。
The tip of the blower pipe is inserted into the blower flow path of the blower tuyere, which consists of the blower tuyere body and the blow pipe portion that is continuous on the upstream side of the blower tuyere body, and the reducing agent is passed through the tip portion in the blast furnace. In blowing into
Through the observation holes provided in either or both of the tuyere body and the blow pipe portion, the spectral spectra of the light emission of the reducing material in the combustion field were measured at at least two points in the air flow direction, and the obtained spectral spectra were obtained. It is characterized in that the combustion position of the reducing material is estimated by comparing the radical emission peak intensity after the treatment of subtracting the radiant light intensity by subtracting the portion other than the wavelength of the radical emission appearing in the above measurement points. A method for estimating the combustion position of the blast furnace blown reduction material.
前記還元材として、微粉炭、天然ガス、プロパンガス、重油、軽油、化石燃料、植物性油脂、コークス炉ガスおよび廃プラスチックのうちから選んだ少なくとも一種を用いる請求項1に記載の高炉吹込み還元材の燃焼位置推定方法。 The blast furnace blow-down reduction according to claim 1, wherein at least one selected from pulverized coal, natural gas, propane gas, heavy oil, light oil, fossil fuel, vegetable oil, coke oven gas and waste plastic is used as the reducing material. Method of estimating the combustion position of the material. 請求項1または2に記載の燃焼位置推定方法により、前記送風羽口内における前記還元剤の燃焼位置を推定し、該推定した燃焼位置が前記送風羽口の先端から前記ブローパイプ部側に0mm以上200mm以下の範囲となる、前記吹込み管の先端位置の調整を行う高炉操業方法。 The combustion position of the reducing agent in the blower tuyere is estimated by the combustion position estimation method according to claim 1 or 2 , and the estimated combustion position is 0 mm or more from the tip of the blower tuyere to the blow pipe portion side. A blast furnace operating method for adjusting the tip position of the blow pipe within a range of 200 mm or less. 送風羽口本体と該送風羽口本体の上流側に連続するブローパイプ部とからなる送風羽口であって、該送風羽口の送風流路に先端部が位置する還元材の吹込み管を有し、さらに前記送風羽口本体または前記ブローパイプ部のいずれかまたは両方に、前記送風流路を観察する観察孔を少なくとも2つ有し、該観察孔は、該送風羽口本体または該ブローパイプ部の外側に観察窓を備えると共に、該送風流路内に吹き込んだ還元材の燃焼場におけるラジカルの発光ピーク強度が計算可能の測定装置を有する送風羽口。 A blower tuyere consisting of a blower tuyere body and a blow pipe portion continuous on the upstream side of the blower tuyere body, and a blower pipe of a reducing material whose tip is located in the blower flow path of the blower tuyere. The blower tuyere body or the blow pipe portion has at least two observation holes for observing the blower flow path, and the observation holes are the blower tuyere body or the blow. A blower tuyere having an observation window on the outside of the pipe portion and a measuring device capable of calculating the emission peak intensity of radicals in the combustion field of the reducing material blown into the blower flow path. 送風羽口本体と該送風羽口本体の上流側に連続するブローパイプ部からなる送風羽口であって、該送風羽口の送風流路に先端部が位置する、先端位置を送風流れ方向に移動可能な機構を備える還元材の吹込み管を有し、さらに前記送風羽口本体または前記ブローパイプ部のいずれかまたは両方に、前記送風流路を観察する観察孔を少なくとも1つ有し、該観察孔は、該送風羽口本体または該ブローパイプ部の外側に観察窓を備えると共に、該送風流路内に吹き込んだ還元材の燃焼場におけるラジカルの発光ピーク強度が計算可能の測定装置を有する送風羽口。 A blower tuyere consisting of a blower tuyere body and a blow pipe portion continuous on the upstream side of the blower tuyere body, the tip portion of which is located in the blower flow path of the blower tuyere, and the tip position is in the air flow direction. It has a reducing material blowing pipe provided with a movable mechanism, and further has at least one observation hole for observing the blowing flow path in either or both of the blowing tuyere body and the blow pipe portion. The observation hole is provided with an observation window on the outside of the blower tuyere body or the blow pipe portion, and is a measuring device capable of calculating the emission peak intensity of radicals in the combustion field of the reducing material blown into the blower flow path. Blower tuyere to have.
JP2018003738A 2018-01-12 2018-01-12 Blast furnace blown reducing agent combustion position estimation method, blast furnace operation method and blower tuyere Active JP6942641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003738A JP6942641B2 (en) 2018-01-12 2018-01-12 Blast furnace blown reducing agent combustion position estimation method, blast furnace operation method and blower tuyere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003738A JP6942641B2 (en) 2018-01-12 2018-01-12 Blast furnace blown reducing agent combustion position estimation method, blast furnace operation method and blower tuyere

Publications (2)

Publication Number Publication Date
JP2019123896A JP2019123896A (en) 2019-07-25
JP6942641B2 true JP6942641B2 (en) 2021-09-29

Family

ID=67397987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003738A Active JP6942641B2 (en) 2018-01-12 2018-01-12 Blast furnace blown reducing agent combustion position estimation method, blast furnace operation method and blower tuyere

Country Status (1)

Country Link
JP (1) JP6942641B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1030105A (en) * 1996-04-24 1998-02-03 Nippon Steel Corp Method for recognizing reduction condition in blast furnace and combustion condition of pulverized coal
JP4288230B2 (en) * 2004-12-28 2009-07-01 新日本製鐵株式会社 Blast furnace operation method
JP6421938B2 (en) * 2015-12-16 2018-11-14 Jfeスチール株式会社 Combustion status measurement method and combustion status measurement system
JP6547142B2 (en) * 2016-02-17 2019-07-24 Jfeスチール株式会社 Method of estimating combustion position of particulate reductant at blast tuyere of blast furnace and blower tuyere used for the method

Also Published As

Publication number Publication date
JP2019123896A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
Wu et al. Effects of carbon dioxide addition to fuel on soot evolution in ethylene and propane diffusion flames
Hu et al. An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening
Liu et al. Pulverized coal stream ignition delay under conventional and oxy-fuel combustion conditions
BRPI0613414A2 (en) method for determining at least one variable state of an electric arc furnace, and electric arc furnace
JP5824810B2 (en) Blast furnace operation method
WO2010021065A1 (en) Process for producing sintered ore and sintering machine
Moroń et al. Ignition behaviour and flame stability of different ranks coals in oxy fuel atmosphere
Andersson et al. Thermal radiation in oxy-fuel flames
Zabrodiec et al. Experimental investigation of pulverized coal flames in CO2/O2-and N2/O2-atmospheres: Comparison of solid particle radiative characteristics
BR112013018060B1 (en) METHOD TO OPERATE BLAST FURNACES
BR112013017983B1 (en) METHOD FOR BLAST FURNACE OPERATION
KR101608231B1 (en) Method for operating blast furnace
CN109654519A (en) The operation method of soot blower system and soot blower system
Katzer et al. Quantitative and qualitative relationship between swirl burner operatingconditions and pulverized coal flame length
JP6942641B2 (en) Blast furnace blown reducing agent combustion position estimation method, blast furnace operation method and blower tuyere
US9267686B1 (en) Apparatus and method for monitoring flares and flare pilots
Bonnety et al. Probing the local radiative quenching during the transition from a non-smoking to a smoking laminar coflow ethylene/air non-premixed flame
RU2524293C2 (en) Method and system for control over operation of unit for drying of carbon block
JP6604658B2 (en) Blast furnace injection reducing material combustion rate estimation method, blast furnace operation method and blower tuyere
KR102080705B1 (en) Method for injecting pulverized coal into oxygen blast furnace
JP6421938B2 (en) Combustion status measurement method and combustion status measurement system
KR102144168B1 (en) Method for predicting injection effect of furnace pulverized coal
Gupta Coal research in Newcastle—past, present and future
Jiménez et al. Study of the evolution of particle size distributions and its effects on the oxidation of pulverized coal
JP5014555B2 (en) In-furnace observation method of molten iron refining furnace

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210908

R150 Certificate of patent or registration of utility model

Ref document number: 6942641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350