JP2017107896A - Non-contact power supply system - Google Patents

Non-contact power supply system Download PDF

Info

Publication number
JP2017107896A
JP2017107896A JP2015238313A JP2015238313A JP2017107896A JP 2017107896 A JP2017107896 A JP 2017107896A JP 2015238313 A JP2015238313 A JP 2015238313A JP 2015238313 A JP2015238313 A JP 2015238313A JP 2017107896 A JP2017107896 A JP 2017107896A
Authority
JP
Japan
Prior art keywords
coil
power transmission
flange
transmission coil
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015238313A
Other languages
Japanese (ja)
Other versions
JP6684579B2 (en
Inventor
健次 勝代
Kenji Katsushiro
健次 勝代
耕一 山野上
Kouichi Yamanoue
耕一 山野上
人士 川口
Hitoshi Kawaguchi
人士 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Imasen Electric Industrial Co Ltd
Original Assignee
Hiroshima University NUC
Imasen Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Imasen Electric Industrial Co Ltd filed Critical Hiroshima University NUC
Priority to JP2015238313A priority Critical patent/JP6684579B2/en
Publication of JP2017107896A publication Critical patent/JP2017107896A/en
Application granted granted Critical
Publication of JP6684579B2 publication Critical patent/JP6684579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce leakage magnetic field to the outside of a vehicle, while maintaining a good power transmission efficiency in a non-contact power supply system for vehicle.SOLUTION: In a non-contact power supply system performing non-contact power supply between a first coil (61) installed on the ground and a second coil (11) installed on the lower surface of the car body oppositely thereto, both first coil (61) and second coil (11) are spiral coils. In the power transmission coil for transmitting power, out of the first coil (61) and second coil (11), flanges (15, 65) are stood on the opposite sides in the vehicle width direction for the power transmission coil so that the whole power transmission coil is hidden, and non-conductive magnetic thin films (16, 66) are formed on the power transmission coil side surfaces of the flanges (15, 65).SELECTED DRAWING: Figure 2

Description

本発明は、非接触給電システムに関し、特に、地上側の1次コイルと車上側の2次コイルとの間で非接触給電を行うプラグインハイブリッド車や電気自動車用の非接触給電システムに好適な技術に関する。   The present invention relates to a contactless power supply system, and is particularly suitable for a contactless power supply system for a plug-in hybrid vehicle or an electric vehicle that performs contactless power supply between a primary coil on the ground side and a secondary coil on the vehicle upper side. Regarding technology.

外部電力でバッテリ充電されるプラグインハイブリッド車(PHEV)や電気自動車(EV)では、充電ケーブルの接続作業の煩わしさ、衣服の汚れ、雨天時の不安などから、ワイヤレスでの給電(非接触給電)のニーズが高くなっている。   In plug-in hybrid vehicles (PHEV) and electric vehicles (EV) that are charged by external power, wireless charging (non-contact charging) due to the troublesome work of connecting the charging cable, dirt on clothes, anxiety during rainy weather, etc. ) Needs are increasing.

非接触給電には、地上側の1次コイルと車上側の2次コイルとの間の電磁誘導を利用する電磁誘導式と、磁界共鳴を利用する磁界共鳴式とがある。いずれの方式でも送電コイルから大きな交番磁界が発生し、磁界が人体に与える影響が懸念される。自動車用の非接触給電システムの国際標準化において、車外での交番磁界が国際非電離放射線防護委員会(ICNIRP)の一般ガイドライン基準の27μT以下であることが求められる見込みである。   Non-contact power feeding includes an electromagnetic induction type that uses electromagnetic induction between a primary coil on the ground side and a secondary coil on the vehicle upper side, and a magnetic field resonance type that uses magnetic field resonance. In any system, a large alternating magnetic field is generated from the power transmission coil, and there is a concern about the influence of the magnetic field on the human body. In the international standardization of a contactless power supply system for automobiles, it is expected that the alternating magnetic field outside the vehicle is 27 μT or less, which is the standard guideline standard of the International Commission on Non-Ionizing Radiation Protection (ICNIRP).

従来、自動車の非接触給電システムにおいて、送電コイルの外周を磁性材で囲んで送電コイルからの漏洩磁界の発生を低減している(例えば、特許文献1参照)   2. Description of the Related Art Conventionally, in a non-contact power feeding system for an automobile, the generation of a leakage magnetic field from a power transmission coil is reduced by surrounding the outer periphery of the power transmission coil with a magnetic material (for example, see Patent Document 1).

特開2014−166070号公報JP 2014-166070 A

非接触給電システムで使用されるコイルのタイプとしてヘリカルコイルとスパイラルコイルがあるが、自動車用の非接触給電システムの国際標準化において、1次コイルおよび2次コイルとしてスパイラルコイルを採用することが決定した。スパイラルコイルは、ヘリカルコイルに比べて漏洩磁界が少ないため、上記基準を満たしやすくなる。しかし、急速充電などで送電パワーを上げると漏洩磁界が大きくなり、上記基準を満たさなくなるおそれがある。また、非接触給電時には地上側の送電コイルは車体で隠されるため、普通車のように車体がある程度大きければ人を送電コイルから一定距離以上遠ざけることができるが、コミューターなどの小型車の場合には車体が小さいため、人を送電コイルから一定距離以上遠ざけることができずに上記基準を満たさなくなるおそれがある。   There are helical coils and spiral coils as the types of coils used in non-contact power supply systems, but it was decided to adopt spiral coils as primary and secondary coils in international standardization of non-contact power supply systems for automobiles. . Since the spiral coil has a smaller leakage magnetic field than the helical coil, it easily satisfies the above criteria. However, when the power transmission power is increased by rapid charging or the like, the leakage magnetic field becomes large, and there is a possibility that the above criteria may not be satisfied. In addition, since the ground-side power transmission coil is hidden by the vehicle body during non-contact power supply, people can be kept away from the power transmission coil by more than a certain distance as long as the vehicle body is large to a certain extent, but in the case of small vehicles such as commuters Since the vehicle body is small, there is a possibility that a person cannot be separated from the power transmission coil by a certain distance or more and the above-mentioned standard is not satisfied.

上記問題に鑑み、本発明は、自動車向けの非接触給電システムにおいて電力伝送効率を良好に保ちつつ車外への漏洩磁界を低減することを課題とする。   In view of the above problems, an object of the present invention is to reduce a leakage magnetic field to the outside of a vehicle while maintaining good power transmission efficiency in a contactless power supply system for automobiles.

本発明の一局面に従った非接触給電システムは、地上に設置された第1のコイルと車体下面に設置された第2のコイルとが対向して第1のコイルと第2のコイルとの間で非接触給電を行う非接触給電システムであって、第1のコイルおよび第2のコイルがいずれもスパイラルコイルであり、第1のコイルおよび第2のコイルのうち電力を送電する送電コイルについて、車幅方向からの側面視で送電コイルの全体が隠れるように、送電コイルに対して車幅方向の両側にフランジが立設されており、フランジにおいて送電コイル側の面に非導電性磁性薄膜が形成されている、というものである。   In the non-contact power feeding system according to one aspect of the present invention, the first coil installed on the ground and the second coil installed on the lower surface of the vehicle body are opposed to each other. A non-contact power feeding system that performs non-contact power feeding between the first coil and the second coil, both of which are spiral coils, and a power transmission coil that transmits power among the first coil and the second coil The flange is erected on both sides in the vehicle width direction with respect to the power transmission coil so that the entire power transmission coil is hidden in a side view from the vehicle width direction. Is formed.

これによると、送電コイルの周りにフランジを設けることで送電コイルからの漏洩磁界を低減し、さらにフランジにおいて送電コイル側の面(内周面)に非導電性磁性薄膜が形成されていることで、第1のコイルと第2のコイルとの間の電力伝送効率を良好に保つことができる。   According to this, the leakage magnetic field from the power transmission coil is reduced by providing a flange around the power transmission coil, and the non-conductive magnetic thin film is formed on the surface (inner peripheral surface) on the power transmission coil side of the flange. The power transmission efficiency between the first coil and the second coil can be kept good.

好ましくは、フランジを送電コイルの外周から75mm程度離れた位置に立設する。また、非導電性磁性薄膜の比透磁率を50程度にする。また、フランジの突出高さを送電コイルの表面の高さと等しくする。   Preferably, the flange is erected at a position about 75 mm away from the outer periphery of the power transmission coil. Further, the relative permeability of the non-conductive magnetic thin film is set to about 50. Further, the protruding height of the flange is made equal to the height of the surface of the power transmission coil.

これらによると、漏洩磁界の低減および電力伝送効率の向上の両者をバランスよく実現することができる。   According to these, both reduction of the leakage magnetic field and improvement of power transmission efficiency can be realized in a balanced manner.

フランジが送電コイルの外周を囲む環状のフランジであってもよい。   The flange may be an annular flange that surrounds the outer periphery of the power transmission coil.

これによると、送電コイルの側面全方向への漏洩磁界を低減することができる。   According to this, the leakage magnetic field to all the side directions of a power transmission coil can be reduced.

非導電性磁性薄膜が磁性塗料を塗布して形成された塗膜であってもよい。   The non-conductive magnetic thin film may be a coating film formed by applying a magnetic paint.

これによると、フランジの内周面に磁性塗料を塗布するといった簡易な方法で非導電性磁性薄膜を形成することができる。   According to this, the nonconductive magnetic thin film can be formed by a simple method such as applying a magnetic paint to the inner peripheral surface of the flange.

本発明によると、自動車向けの非接触給電システムにおいて電力伝送効率を良好に保ちつつ車外への漏洩磁界を低減することができる。   According to the present invention, it is possible to reduce the leakage magnetic field to the outside of the vehicle while maintaining good power transmission efficiency in the non-contact power supply system for automobiles.

本発明の一実施形態に係る非接触給電システムの概略図Schematic of the non-contact electric power feeding system which concerns on one Embodiment of this invention 一例に係る送電コイルの平面図および断面図Plan view and sectional view of power transmission coil according to an example 一例に係る受電コイルの平面図および断面図Plan view and sectional view of power receiving coil according to an example フランジに使用される素材別の磁束密度がガイドライン基準以下となるコイル中心から距離のグラフGraph of distance from coil center where magnetic flux density by material used for flange is below guideline standard フランジに使用される素材別の電力伝送効率のグラフGraph of power transmission efficiency by material used for flange 送電コイル側のフランジの一例を示す図The figure which shows an example of the flange by the side of a power transmission coil 送電コイル側のフランジの別例を示す図The figure which shows another example of the flange by the side of a power transmission coil 送電コイル側のフランジのさらに別例を示す図The figure which shows another example of the flange by the side of a power transmission coil フランジの磁性塗料の比透磁率と磁束密度がガイドライン基準以下となるコイル中心から距離との関係を示すグラフA graph showing the relationship between the relative magnetic permeability of the magnetic paint on the flange and the distance from the coil center where the magnetic flux density is below the guideline standard フランジの磁性塗料の比透磁率と電力伝送効率との関係を示すグラフGraph showing the relationship between the relative permeability of magnetic paint on the flange and the power transmission efficiency フランジの直径と磁束密度がガイドライン基準以下となるコイル中心から距離との関係を示すグラフGraph showing the relationship between the distance from the coil center where the flange diameter and magnetic flux density are below the guideline standard フランジの直径と電力伝送効率との関係を示すグラフGraph showing the relationship between flange diameter and power transfer efficiency

以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。   Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.

なお、発明者らは、当業者が本発明を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。また、図面に描かれた各部材の寸法、厚み、細部の詳細形状などは実際のものとは異なることがある。   In addition, the inventors provide the accompanying drawings and the following description in order for those skilled in the art to fully understand the present invention, and these are intended to limit the subject matter described in the claims. is not. In addition, the dimensions, thicknesses, detailed shapes of details, and the like of each member depicted in the drawings may be different from actual ones.

図1は、本発明の一実施形態に係る非接触給電システムの概略を示す。例えば、本実施形態に係る非接触給電システムは、プラグインハイブリッド車や電気自動車などの自動車100のバッテリ30をワイヤレスで充電する磁界共鳴式の非接触給電システムである。   FIG. 1 shows an outline of a non-contact power feeding system according to an embodiment of the present invention. For example, the non-contact power feeding system according to the present embodiment is a magnetic resonance type non-contact power feeding system that wirelessly charges a battery 30 of a vehicle 100 such as a plug-in hybrid vehicle or an electric vehicle.

本実施形態に係る非接触給電システムにおいて、地上に地上装置200および送電ユニット60が設置されている。自動車100と地上装置200とは無線300により通信できるようになっている。自動車100は、バッテリ30の充電量を判断し、地上装置200に対して無線300を通じて適宜給電の開始/停止を要求する。地上装置200は、自動車100からの要求に従って自動車100への電気エネルギーの供給/停止をコントロールする。   In the non-contact power feeding system according to the present embodiment, the ground device 200 and the power transmission unit 60 are installed on the ground. The automobile 100 and the ground device 200 can communicate with each other by the radio 300. The automobile 100 determines the amount of charge of the battery 30 and requests the ground device 200 to start / stop power supply appropriately through the radio 300. The ground device 200 controls supply / stop of electric energy to the vehicle 100 according to a request from the vehicle 100.

自動車100へ電気エネルギーを供給する場合、地上装置200は、商用電力(AC電源)から85kHz帯(81.38k〜90kHz)の3kWクラスの高周波電流を生成する。地上装置200が生成した高周波電流はケーブル201を通じて送電ユニット60に通電される。送電ユニット60には図略の送電コイル(1次コイル)が収容されており、当該送電コイルに高周波電流が通電されることで送電ユニット60に強力な磁界が発生する。   When supplying electric energy to the automobile 100, the ground device 200 generates a 3 kW class high-frequency current in the 85 kHz band (81.38 k to 90 kHz) from commercial power (AC power supply). The high-frequency current generated by the ground device 200 is supplied to the power transmission unit 60 through the cable 201. A power transmission coil (primary coil) (not shown) is accommodated in the power transmission unit 60, and a strong magnetic field is generated in the power transmission unit 60 when a high-frequency current is passed through the power transmission coil.

一方、自動車100において、車体下面に受電ユニット10が設置されている。バッテリ30を充電する場合、受電ユニット10が送電ユニット60と上下に対向する位置に来るように自動車100を移動させる。受電ユニット10と送電ユニット60とのギャップは100〜160mmである。   On the other hand, in the automobile 100, the power receiving unit 10 is installed on the lower surface of the vehicle body. When charging the battery 30, the automobile 100 is moved so that the power receiving unit 10 comes to a position facing the power transmission unit 60 in the vertical direction. The gap between the power reception unit 10 and the power transmission unit 60 is 100 to 160 mm.

受電ユニット10には図略の受電コイル(2次コイル)およびコンデンサからなる共振回路が収容されており、当該受電コイルが送電ユニット60で発生した磁界に晒されることで当該共振回路が共鳴して受電ユニット10に高周波電流が発生する。受電ユニット10に発生した高周波電流は整流器20により直流電流に変換されてバッテリ30に充電される。このように、本実施形態に係るシステムでは、地上装置200から自動車100へ磁界共鳴によりワイヤレスで電気エネルギーが供給される。   The power reception unit 10 accommodates a resonance circuit including a power reception coil (secondary coil) and a capacitor (not shown). The resonance circuit is resonated when the power reception coil is exposed to a magnetic field generated by the power transmission unit 60. A high frequency current is generated in the power receiving unit 10. The high frequency current generated in the power receiving unit 10 is converted into a direct current by the rectifier 20 and charged to the battery 30. Thus, in the system according to the present embodiment, electric energy is supplied wirelessly from the ground device 200 to the automobile 100 by magnetic field resonance.

バッテリ30にはインバータ40が接続されている。自動車100を走行させる場合、インバータ40がバッテリ30に蓄電された直流電流を交流電流に変換して自動車100の動力源である電動モータ50を駆動する。   An inverter 40 is connected to the battery 30. When driving the automobile 100, the inverter 40 converts the direct current stored in the battery 30 into an alternating current and drives the electric motor 50 that is a power source of the automobile 100.

図2は、一例に係る送電コイルの平面図および断面図である。送電ユニット60には送電コイル61が収容されている。送電コイル61は、直径5.4mmの絶縁被覆電線62を円形の渦巻き状に2段8回巻きしたスパイラルコイルであり、外径は350mm、内径は260mmである。送電コイル61は、フェライトなどの磁性体で形成された円盤状のコイルコア63上に取り付けられている。コイルコア63の直径は400mmである。コイルコア63は鉄板64に取り付けられている。   FIG. 2 is a plan view and a cross-sectional view of a power transmission coil according to an example. A power transmission coil 61 is accommodated in the power transmission unit 60. The power transmission coil 61 is a spiral coil in which an insulating coated electric wire 62 having a diameter of 5.4 mm is wound in two rounds and eight times in a circular spiral shape, and has an outer diameter of 350 mm and an inner diameter of 260 mm. The power transmission coil 61 is mounted on a disk-shaped coil core 63 made of a magnetic material such as ferrite. The diameter of the coil core 63 is 400 mm. The coil core 63 is attached to the iron plate 64.

送電コイル61の側面方向への漏洩磁界を低減するために、送電コイル61の外周から75mm程度離れた位置において送電コイル61の外周を取り囲むように、厚さ数mmの鉄板でできた環状のフランジ65が設けられている。フランジ65の直径は500mmである。なお、フランジ65は、鉄板64と一体成形されてもよいし、あるいは、溶接やネジ止めなどで鉄板64に取り付けられてもよい。   In order to reduce the leakage magnetic field in the lateral direction of the power transmission coil 61, an annular flange made of an iron plate having a thickness of several mm so as to surround the outer periphery of the power transmission coil 61 at a position about 75 mm away from the outer periphery of the power transmission coil 61 65 is provided. The diameter of the flange 65 is 500 mm. The flange 65 may be integrally formed with the iron plate 64, or may be attached to the iron plate 64 by welding or screwing.

送電コイル61の側面方向への漏洩磁界の低減という観点から、フランジ65の突出高は、側面視で送電コイル61の全体が隠れるような高さとする。ここで、送受電コイル間距離をできるだけ短くした方が電力伝送効率を高くすることができ、また、漏洩磁界を抑制することもできるため、送電ユニット60において送電コイル61の表面よりも突出する部材を設けないことが望ましい。したがって、フランジ65の突出高は最大限高くしても送電コイル61の表面の高さ程度にすることが適当である。   From the viewpoint of reducing the leakage magnetic field in the side surface direction of the power transmission coil 61, the protrusion height of the flange 65 is set such that the entire power transmission coil 61 is hidden in a side view. Here, a member that protrudes from the surface of the power transmission coil 61 in the power transmission unit 60 because the power transmission efficiency can be increased and the leakage magnetic field can be suppressed by shortening the distance between the power transmission and reception coils as much as possible. It is desirable not to provide. Therefore, it is appropriate to set the protrusion height of the flange 65 to the height of the surface of the power transmission coil 61 even if it is maximized.

フランジ65の内周面に磁性塗膜66が形成されている。磁性塗膜66は、フェライトなどの磁性体を微小な粒もしくは磁性体片にしたものを含む塗料(磁性塗料)を厚さ数mmに塗布して形成することができる。磁性塗膜66は、高透磁率および高電気抵抗という特徴を有し、磁束を吸収するとともに渦電流による損失を抑制することができる。すなわち、フランジ65の内周面に磁性塗膜66を形成することにより、フランジ65に渦電流が発生するのを抑制して電力伝送効率を良好に保つことができる。   A magnetic coating film 66 is formed on the inner peripheral surface of the flange 65. The magnetic coating film 66 can be formed by applying a coating material (magnetic coating material) containing a magnetic material such as ferrite into fine particles or magnetic material pieces to a thickness of several millimeters. The magnetic coating film 66 has the characteristics of high magnetic permeability and high electrical resistance, and can absorb magnetic flux and suppress loss due to eddy current. That is, by forming the magnetic coating film 66 on the inner peripheral surface of the flange 65, it is possible to suppress the generation of eddy current in the flange 65 and to maintain good power transmission efficiency.

なお、コイルコア63で覆われていない鉄板64の表面にも磁性塗膜66を形成してもよい。これにより、鉄板64に渦電流が発生するのを抑制して電力伝送効率を向上させることができる。   The magnetic coating film 66 may also be formed on the surface of the iron plate 64 that is not covered with the coil core 63. Thereby, generation | occurrence | production of an eddy current can be suppressed in the iron plate 64, and electric power transmission efficiency can be improved.

図3は、一例に係る受電コイルの平面図および断面図である。受電ユニット10には受電コイル11が収容されている。受電コイル11は、直径5.4mmの絶縁被覆電線12を円形の渦巻き状に1段8回巻きしたスパイラルコイルであり、外径は350mm、内径は260mmである。受電コイル11は、フェライトなどの磁性体で形成された円盤状のコイルコア13上に取り付けられている。コイルコア13の直径は400mmである。コイルコア13は自動車100の下面のアンダーカバーを構成する鉄板14に取り付けられている。   FIG. 3 is a plan view and a cross-sectional view of a power receiving coil according to an example. A power receiving coil 11 is accommodated in the power receiving unit 10. The power receiving coil 11 is a spiral coil in which an insulation coated electric wire 12 having a diameter of 5.4 mm is wound in a circular spiral shape in eight steps, and has an outer diameter of 350 mm and an inner diameter of 260 mm. The receiving coil 11 is mounted on a disk-shaped coil core 13 made of a magnetic material such as ferrite. The diameter of the coil core 13 is 400 mm. The coil core 13 is attached to an iron plate 14 constituting an under cover on the lower surface of the automobile 100.

基本的に非接触給電システムでは地上装置200から自動車100へワイヤレスで電気エネルギーが供給されるが、逆に、自動車100で生成した電力を地上装置200へワイヤレスに伝送することもある。この場合、受電コイル11および送電コイル61の役割が入れ替わり、受電コイル11が送電コイルとして機能し、送電コイル61が受電コイルとして機能する。したがって、受電コイル11についても側面方向への漏洩磁界を低減する必要がある。   Basically, in the contactless power supply system, electric energy is wirelessly supplied from the ground device 200 to the automobile 100, but conversely, the electric power generated by the automobile 100 may be transmitted to the ground device 200 wirelessly. In this case, the roles of the power reception coil 11 and the power transmission coil 61 are switched, the power reception coil 11 functions as a power transmission coil, and the power transmission coil 61 functions as a power reception coil. Therefore, it is necessary to reduce the leakage magnetic field in the lateral direction also for the power receiving coil 11.

受電コイル11の側面方向への漏洩磁界を低減するために、受電コイル11の外周から75mm程度離れた位置において受電コイル11の外周を取り囲むように、厚さ数mmの鉄板でできた環状のフランジ15が設けられている。フランジ15の直径は500mmである。なお、フランジ15は、鉄板14と一体成形されてもよいし、あるいは、溶接やネジ止めなどで鉄板14に取り付けられてもよい。   In order to reduce the leakage magnetic field in the lateral direction of the power receiving coil 11, an annular flange made of an iron plate having a thickness of several mm so as to surround the outer periphery of the power receiving coil 11 at a position about 75 mm away from the outer periphery of the power receiving coil 11. 15 is provided. The diameter of the flange 15 is 500 mm. The flange 15 may be integrally formed with the iron plate 14 or may be attached to the iron plate 14 by welding or screwing.

受電コイル11の側面方向への漏洩磁界を低減するという観点から、フランジ15の突出高は、側面視で受電コイル11の全体が隠れるような高さとする。ここで、送受電コイル間距離をできるだけ短くした方が電力伝送効率を高くすることができ、また、漏洩磁界を抑制することもできるため、受電ユニット10において受電コイル11の表面よりも突出する部材を設けないことが望ましい。したがって、フランジ15の突出高は最大限高くしても受電コイル11の表面の高さ程度にすることが適当である。   From the viewpoint of reducing the leakage magnetic field in the side surface direction of the power receiving coil 11, the protruding height of the flange 15 is set such that the entire power receiving coil 11 is hidden in a side view. Here, when the distance between the power receiving and receiving coils is made as short as possible, the power transmission efficiency can be increased and the leakage magnetic field can be suppressed. Therefore, the member that protrudes from the surface of the power receiving coil 11 in the power receiving unit 10. It is desirable not to provide. Therefore, even if the protrusion height of the flange 15 is maximized, it is appropriate to make it approximately the height of the surface of the power receiving coil 11.

フランジ15の内周面に磁性塗膜66(図2)と同様の磁性塗膜16が形成されている。これにより、フランジ15に渦電流が発生するのを抑制して電力伝送効率を良好に保つことができる。コイルコア13で覆われていない鉄板14の表面にも磁性塗膜16を形成してもよい。これにより、鉄板14に渦電流が発生するのを抑制して電力伝送効率を向上させることができる。   A magnetic coating film 16 similar to the magnetic coating film 66 (FIG. 2) is formed on the inner peripheral surface of the flange 15. Thereby, generation | occurrence | production of an eddy current in the flange 15 can be suppressed and electric power transmission efficiency can be kept favorable. The magnetic coating film 16 may also be formed on the surface of the iron plate 14 not covered with the coil core 13. Thereby, it can suppress that an eddy current generate | occur | produces in the iron plate 14, and can improve electric power transmission efficiency.

磁性塗膜16および上記の磁性塗膜66は、特許請求の範囲に記載の「非導電性磁性薄膜」の一例である。磁性塗料を塗布することに代えて磁性フィルムなどを貼り付けてもよい。あるいは、メッキや蒸着などの方法で磁性薄膜を形成してもよい。   The magnetic coating film 16 and the magnetic coating film 66 are examples of the “non-conductive magnetic thin film” recited in the claims. A magnetic film or the like may be attached instead of applying the magnetic paint. Alternatively, the magnetic thin film may be formed by a method such as plating or vapor deposition.

さらに、磁性塗膜16は外部環境に晒されるため、磁性塗料に防錆処理を施したり、磁性塗料を塗布した後に磁性塗膜16の表面に防錆処理を施したりすることが望ましい。   Furthermore, since the magnetic coating film 16 is exposed to the external environment, it is desirable to subject the magnetic coating material to a rust prevention treatment or to the surface of the magnetic coating film 16 after the magnetic coating material is applied.

受電コイル11の形状は送電コイル61の形状と同じにする必要はない。例えば、受電コイル11の外径および内径を上記よりも100mmずつ小さく(外径250mm、内径160mm)してもよい。このように受電コイル11を小型化することで、受電ユニット10のコストを低減することができ、また、受電ユニット10の取り付け作業が容易になる。   The shape of the power receiving coil 11 need not be the same as the shape of the power transmitting coil 61. For example, the outer diameter and inner diameter of the power receiving coil 11 may be made smaller by 100 mm than the above (outer diameter 250 mm, inner diameter 160 mm). By reducing the size of the power receiving coil 11 in this way, the cost of the power receiving unit 10 can be reduced, and the mounting operation of the power receiving unit 10 is facilitated.

送電コイル61および受電コイル11ともに円形である必要はない。例えば、送電コイル61および/または受電コイル11を車幅方向に長い長円形や楕円形にしてもよい。   Neither the power transmission coil 61 nor the power reception coil 11 need be circular. For example, the power transmission coil 61 and / or the power reception coil 11 may be oval or oval long in the vehicle width direction.

次に、フランジ15およびフランジ65に使用する素材の最適選択について説明する。図2の送電コイル61と図3の受電コイル11とを150mm隔てて対向させて送電コイル61に85kHz帯の3kWの高周波電流を通電するという条件でシミュレーションを行った。図4は、フランジに使用される素材別の磁束密度がガイドライン基準(27μT)以下となるコイル中心から距離のグラフである。ここでいうコイル中心とは送電コイル61の中心である。コイル中心からの距離が短いほど漏洩磁界が低減できていると言える。図5は、フランジに使用される素材別の電力伝送効率のグラフである。なお、いずれのグラフにも比較例としてフランジなしの場合が含まれる。   Next, the optimal selection of the material used for the flange 15 and the flange 65 will be described. The simulation was performed under the condition that the power transmission coil 61 of FIG. 2 and the power reception coil 11 of FIG. 3 are opposed to each other with a distance of 150 mm and a power of 3 kW in the 85 kHz band is applied to the power transmission coil 61. FIG. 4 is a graph of the distance from the coil center where the magnetic flux density for each material used for the flange is less than the guideline standard (27 μT). The coil center here is the center of the power transmission coil 61. It can be said that the shorter the distance from the coil center, the lower the leakage magnetic field. FIG. 5 is a graph of power transmission efficiency for each material used for the flange. Each graph includes a case without a flange as a comparative example.

図4および図5のグラフにおいて、
(1)「フランジなし磁性塗膜なし」は、フランジ15およびフランジ65を設けずに、鉄板14および鉄板64の表面に磁性塗膜も形成しない場合を表す。
(2)「フランジなし磁性塗膜あり」は、フランジ15およびフランジ65を設けずに、鉄板14および鉄板64の表面に磁性塗膜を厚さ1mmで形成した場合を表す。
(3)「鉄(磁性塗膜なし)」は、鉄製のフランジ15およびフランジ65を設け、磁性塗膜は形成しない場合を表す。
(4)「アルミニウム(磁性塗膜なし)」は、アルミニウム製のフランジ15およびフランジ65を設け、磁性塗膜は形成しない場合を表す。
(5)「フェライト(磁性塗膜なし)」は、フェライト製のフランジ15およびフランジ65を設け、磁性塗膜は形成しない場合を表す。
(6)「鉄+磁性塗膜(比透磁率100)」は、鉄製のフランジ15およびフランジ65を設け、その内周面および鉄板14および鉄板64の表面に比透磁率が100の磁性塗膜16および磁性塗膜66を厚さ1mmで形成した場合を表す。
(7)「鉄+磁性塗膜(比透磁率250)」は、鉄製のフランジ15およびフランジ65を設け、その内周面および鉄板14および鉄板64の表面に比透磁率が250の磁性塗膜16および磁性塗膜66を厚さ1mmで形成した場合を表す。
In the graphs of FIG. 4 and FIG.
(1) “No flange-less magnetic coating film” represents a case where no magnetic coating film is formed on the surfaces of the iron plate 14 and the iron plate 64 without providing the flange 15 and the flange 65.
(2) “With magnetic coating without flange” represents a case where the magnetic coating is formed on the surface of the iron plate 14 and the iron plate 64 with a thickness of 1 mm without providing the flange 15 and the flange 65.
(3) “Iron (no magnetic coating film)” represents the case where the iron flange 15 and the flange 65 are provided and the magnetic coating film is not formed.
(4) “Aluminum (no magnetic coating film)” represents the case where the aluminum flange 15 and the flange 65 are provided and no magnetic coating film is formed.
(5) “Ferrite (no magnetic coating film)” represents a case where the flange 15 and the flange 65 made of ferrite are provided and no magnetic coating film is formed.
(6) "Iron + magnetic coating film (relative magnetic permeability 100)" is provided with an iron flange 15 and flange 65, and a magnetic coating film having a relative permeability of 100 on the inner peripheral surface and the surfaces of the iron plate 14 and the iron plate 64. 16 and the magnetic coating film 66 are formed with a thickness of 1 mm.
(7) “Iron + magnetic coating film (relative magnetic permeability 250)” is provided with an iron flange 15 and flange 65, and a magnetic coating film having a relative permeability of 250 on the inner peripheral surface and the surfaces of the iron plate 14 and the iron plate 64. 16 and the magnetic coating film 66 are formed with a thickness of 1 mm.

図4のグラフからわかるように、漏洩磁界の低減に関しては上記(3)(4)(6)(7)が良好であり、コイル中心から400mm以上離れた場所において磁束密度をガイドライン基準以下にすることができる。これにより、車幅の短い小型車であっても車外へ漏洩する磁束密度を一般ガイドライン基準以下にすることができる。また、送電パワーが上がって磁束密度がガイドライン基準以下となるコイル中心からの距離が多少延びたとしても、それを車幅内に収めることができる。一方、図5のグラフ、電力伝送効率に関しては上記(2)(4)(5)(6)(7)が良好である。このことから、漏洩磁界の低減および電力伝送効率の両者を満足するのは上記(4)(6)(7)である。ここで、鉄板14および鉄板64への取り付けの容易性や一体成形性を考慮すると、フランジ15およびフランジ65はアルミニウム製ではなく鉄製であることが好ましく、さらにこの条件を満たすのは上記(6)(7)である。すなわち、上述したように、鉄製のフランジ15およびフランジ65の内周面に磁性塗膜16および磁性塗膜66を形成することが最適と言える。   As can be seen from the graph of FIG. 4, the above-mentioned (3), (4), (6), and (7) are good for reducing the leakage magnetic field, and the magnetic flux density is set below the guideline standard at a location 400 mm or more away from the coil center. be able to. Thereby, even if it is a small vehicle with a short vehicle width, the magnetic flux density which leaks outside the vehicle can be made below the general guideline standard. Moreover, even if the transmission power increases and the distance from the coil center where the magnetic flux density is below the guideline standard is slightly extended, it can be accommodated within the vehicle width. On the other hand, with respect to the graph of FIG. 5 and the power transmission efficiency, the above (2), (4), (5), (6), and (7) are good. Therefore, the above (4), (6) and (7) satisfy both the reduction of the leakage magnetic field and the power transmission efficiency. Here, considering the ease of attachment to the iron plate 14 and the iron plate 64 and the integral formability, it is preferable that the flange 15 and the flange 65 are made of iron instead of aluminum. (7). That is, as described above, it can be said that it is optimal to form the magnetic coating film 16 and the magnetic coating film 66 on the inner peripheral surfaces of the iron flange 15 and the flange 65.

フランジ65およびフランジ15の形状は環状に限定されない。図6Aは、送電コイル61側のフランジ65の一例を示す図である。例えば、受電ユニット10が自動車100の車両後部の左右後輪の間に設置される場合を想定すると、車両前方は車長があるため人を送電コイル61から一定距離以上遠ざけることができるため、図6Aに示すようにフランジ65を平面視でU字形にして車両前方部分にフランジを設けなくても車両前方における車外への漏洩磁界は基準以下にすることができると考えられる。図6Bは、送電コイル61側のフランジ65の別例を示す図である。フランジ65は平面視でコの字型であってもよい。   The shapes of the flange 65 and the flange 15 are not limited to an annular shape. FIG. 6A is a diagram illustrating an example of the flange 65 on the power transmission coil 61 side. For example, assuming that the power receiving unit 10 is installed between the left and right rear wheels of the rear part of the automobile 100, since the vehicle front has a vehicle length, a person can be kept away from the power transmission coil 61 by a certain distance or more. As shown in FIG. 6A, it is considered that the leakage magnetic field to the outside of the vehicle in front of the vehicle can be less than the reference even if the flange 65 is U-shaped in plan view and the flange is not provided in the front portion of the vehicle. FIG. 6B is a diagram illustrating another example of the flange 65 on the power transmission coil 61 side. The flange 65 may be U-shaped in plan view.

図6Cは、送電コイル61側のフランジ65のさらに別例を示す図である。給電中の自動車100の後方部分には地上装置200や壁などがあると車両後方に人が立ち入れないことが想定されるため、車両後方部分のフランジも省略して、図6Cに示すようにフランジ65を車両左右部分のみに設けるようにしてもよい。また、フランジ65は平面視で直線状にする以外に円弧状にしてもよい。   FIG. 6C is a diagram showing still another example of the flange 65 on the power transmission coil 61 side. If there is a ground device 200 or a wall or the like in the rear part of the vehicle 100 being fed, it is assumed that a person cannot enter the rear of the vehicle. Therefore, the flange in the rear part of the vehicle is also omitted, as shown in FIG. 6C. The flange 65 may be provided only on the left and right parts of the vehicle. Further, the flange 65 may be arcuate in addition to being linear in plan view.

なお、図示しないが、受電コイル側のフランジ15についても上記のフランジ65と同様にさまざまな形状にすることができる。   Although not shown, the flange 15 on the power receiving coil side can be formed in various shapes like the flange 65 described above.

次に、磁性塗膜16および磁性塗膜66に使用する磁性塗料の好適な比透磁率について説明する。上記と同じ条件でシミュレーションを行った。図7は、フランジの磁性塗料の比透磁率と磁束密度がガイドライン基準以下となるコイル中心から距離との関係を示すグラフである。ここでいうコイル中心とは送電コイル61の中心である。コイル中心からの距離が短いほど漏洩磁界が低減できていると言える。図8は、フランジの磁性塗料の比透磁率と電力伝送効率との関係を示すグラフである。   Next, the suitable relative magnetic permeability of the magnetic coating material used for the magnetic coating film 16 and the magnetic coating film 66 will be described. The simulation was performed under the same conditions as above. FIG. 7 is a graph showing the relationship between the relative magnetic permeability of the magnetic coating material on the flange and the distance from the coil center where the magnetic flux density is below the guideline standard. The coil center here is the center of the power transmission coil 61. It can be said that the shorter the distance from the coil center, the lower the leakage magnetic field. FIG. 8 is a graph showing the relationship between the relative magnetic permeability of the magnetic paint on the flange and the power transmission efficiency.

これらグラフからわかるように、磁性塗料の比透磁率が0から50程度まで上がるにつれ、漏洩磁界の低減効果は下がるが電力伝送効率は急激に向上する。そして、磁性塗料の比透磁率が50を超えると電力伝送効率の向上はあまり見られず、漏洩磁界の低減効果もあまり悪化しない。このことから、磁性塗膜66に使用する磁性塗料の比透磁率は50程度が好適であると言える。なお、受電コイル側の磁性塗膜16についても同様のことが言える。   As can be seen from these graphs, as the relative permeability of the magnetic coating material increases from 0 to about 50, the effect of reducing the leakage magnetic field is reduced, but the power transmission efficiency is rapidly improved. When the relative permeability of the magnetic paint exceeds 50, the power transmission efficiency is not improved so much and the effect of reducing the leakage magnetic field is not deteriorated so much. From this, it can be said that the relative magnetic permeability of the magnetic coating used for the magnetic coating film 66 is preferably about 50. The same applies to the magnetic coating film 16 on the power receiving coil side.

次に、フランジ15およびフランジ65の好適な直径(内径)について説明する。上記と同じ条件でシミュレーションを行った。図9は、フランジの直径と磁束密度がガイドライン基準以下となるコイル中心から距離との関係を示すグラフである。ここでいうコイル中心とは送電コイル61の中心である。コイル中心からの距離が短いほど漏洩磁界が低減できていると言える。図10は、フランジの直径と電力伝送効率との関係を示すグラフである。   Next, the suitable diameter (inner diameter) of the flange 15 and the flange 65 will be described. The simulation was performed under the same conditions as above. FIG. 9 is a graph showing the relationship between the diameter of the flange and the distance from the coil center where the magnetic flux density is below the guideline standard. The coil center here is the center of the power transmission coil 61. It can be said that the shorter the distance from the coil center, the lower the leakage magnetic field. FIG. 10 is a graph showing the relationship between the diameter of the flange and the power transmission efficiency.

これらグラフからわかるように、電力伝送効率についてはフランジ65の直径が500mm以上であれば十分であり、漏洩磁界の低減についてはフランジ65の直径が500mm以下であればよい。このことから、フランジ65の直径は500mm程度が好適と言える。すなわち、上記のように、フランジ65を送電コイル61の外周から75mm程度離れた位置に設けるのが好適である。なお、受電コイル側のフランジ15についても同様のことが言える。   As can be seen from these graphs, it is sufficient that the diameter of the flange 65 is 500 mm or more for the power transmission efficiency, and the diameter of the flange 65 may be 500 mm or less for reducing the leakage magnetic field. From this, it can be said that the diameter of the flange 65 is preferably about 500 mm. That is, as described above, it is preferable to provide the flange 65 at a position separated from the outer periphery of the power transmission coil 61 by about 75 mm. The same applies to the flange 15 on the power receiving coil side.

以上のように、本発明における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。   As described above, the embodiments have been described as examples of the technology in the present invention. For this purpose, the accompanying drawings and detailed description are provided.

したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。   Accordingly, among the components described in the accompanying drawings and the detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the above technique. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.

また、上述の実施の形態は、本発明における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。   Moreover, since the above-mentioned embodiment is for demonstrating the technique in this invention, a various change, replacement, addition, abbreviation, etc. can be performed in a claim or its equivalent range.

上記では、便宜のため、磁界共鳴式の非接触給電システムを例に本発明における技術を説明したが、本発明は、磁界共鳴式の非接触給電システムに限定されず、電磁誘導式の非接触給電システムにも適用可能である。   In the above, for the sake of convenience, the technology in the present invention has been described by taking a magnetic resonance type non-contact power feeding system as an example. However, the present invention is not limited to the magnetic field resonance type non-contact power feeding system, and is not limited to an electromagnetic induction type non-contact power feeding system. It can also be applied to a power supply system.

11 受電コイル(第2のコイル)
15 フランジ
16 磁性塗膜(非導電性磁性薄膜)
61 送電コイル(第1のコイル)
65 フランジ
66 磁性塗膜(非導電性磁性薄膜)
11 Power receiving coil (second coil)
15 Flange 16 Magnetic coating (non-conductive magnetic thin film)
61 Power transmission coil (first coil)
65 Flange 66 Magnetic coating (non-conductive magnetic thin film)

Claims (6)

地上に設置された第1のコイルと車体下面に設置された第2のコイルとが対向して前記第1のコイルと前記第2のコイルとの間で非接触給電を行う非接触給電システムであって、
前記第1のコイルおよび前記第2のコイルがいずれもスパイラルコイルであり、
前記第1のコイルおよび前記第2のコイルのうち電力を送電する送電コイルについて、車幅方向からの側面視で前記送電コイルの全体が隠れるように、前記送電コイルに対して車幅方向の両側にフランジが立設されており、
前記フランジにおいて前記送電コイル側の面に非導電性磁性薄膜が形成されている
ことを特徴とする非接触給電システム。
A non-contact power feeding system in which a first coil installed on the ground and a second coil installed on a lower surface of a vehicle body face each other and perform non-contact power feeding between the first coil and the second coil. There,
Both the first coil and the second coil are spiral coils,
About the power transmission coil which transmits electric power among the first coil and the second coil, both sides in the vehicle width direction with respect to the power transmission coil so that the entire power transmission coil is hidden in a side view from the vehicle width direction. The flange is erected in
A non-contact power feeding system, wherein a non-conductive magnetic thin film is formed on a surface of the flange on the power transmission coil side.
前記フランジが前記送電コイルの外周から75mm程度離れた位置に立設されている、請求項1に記載の非接触給電システム。   The non-contact power feeding system according to claim 1, wherein the flange is erected at a position about 75 mm away from the outer periphery of the power transmission coil. 前記非導電性磁性薄膜の比透磁率が50程度である、請求項1または請求項2に記載の非接触給電システム。   The non-contact power feeding system according to claim 1 or 2, wherein the non-conductive magnetic thin film has a relative permeability of about 50. 前記フランジの突出高さが前記送電コイルの表面の高さと等しい、請求項1ないし請求項3のいずれかに記載の非接触給電システム。   The contactless power feeding system according to any one of claims 1 to 3, wherein a protruding height of the flange is equal to a height of a surface of the power transmission coil. 前記フランジが前記送電コイルの外周を囲む環状のフランジである、請求項1ないし請求項4のいずれかに記載の非接触給電システム。   The non-contact electric power feeding system in any one of Claims 1 thru | or 4 whose said flange is a cyclic | annular flange surrounding the outer periphery of the said power transmission coil. 前記非導電性磁性薄膜が磁性塗料を塗布して形成された塗膜である、請求項1ないし請求項5のいずれかに記載の非接触給電システム。   The non-contact electric power feeding system according to any one of claims 1 to 5, wherein the non-conductive magnetic thin film is a coating film formed by applying a magnetic paint.
JP2015238313A 2015-12-07 2015-12-07 Contactless power supply system Active JP6684579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015238313A JP6684579B2 (en) 2015-12-07 2015-12-07 Contactless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015238313A JP6684579B2 (en) 2015-12-07 2015-12-07 Contactless power supply system

Publications (2)

Publication Number Publication Date
JP2017107896A true JP2017107896A (en) 2017-06-15
JP6684579B2 JP6684579B2 (en) 2020-04-22

Family

ID=59060053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015238313A Active JP6684579B2 (en) 2015-12-07 2015-12-07 Contactless power supply system

Country Status (1)

Country Link
JP (1) JP6684579B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167753A (en) * 2019-03-28 2020-10-08 株式会社豊田中央研究所 Power transmission device, power reception device and non-contact power supply system
EP4029112A4 (en) * 2019-09-11 2023-11-29 Battelle Energy Alliance, LLC Electromagnetic shield designs for high power wireless charging of electric vehicles and related shields, vehicles, systems, and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134913A1 (en) * 2005-06-14 2006-12-21 Murata Manufacturing Co., Ltd. Coil antenna structure and portable electronic apparatus
JP2010035300A (en) * 2008-07-28 2010-02-12 Showa Aircraft Ind Co Ltd Non-contact power supply apparatus
JPWO2010131349A1 (en) * 2009-05-14 2012-11-01 トヨタ自動車株式会社 Vehicle charging device
JP2014113021A (en) * 2012-11-01 2014-06-19 Yazaki Corp Power feeding section, power receiving section, and power supply system
JP2014135382A (en) * 2013-01-10 2014-07-24 Swcc Showa Device Technology Co Ltd Non-contact power feeding system
JP2015047013A (en) * 2013-08-28 2015-03-12 トヨタ自動車株式会社 Incoming equipment, transmission equipment, and vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134913A1 (en) * 2005-06-14 2006-12-21 Murata Manufacturing Co., Ltd. Coil antenna structure and portable electronic apparatus
JP2010035300A (en) * 2008-07-28 2010-02-12 Showa Aircraft Ind Co Ltd Non-contact power supply apparatus
JPWO2010131349A1 (en) * 2009-05-14 2012-11-01 トヨタ自動車株式会社 Vehicle charging device
JP2014113021A (en) * 2012-11-01 2014-06-19 Yazaki Corp Power feeding section, power receiving section, and power supply system
JP2014135382A (en) * 2013-01-10 2014-07-24 Swcc Showa Device Technology Co Ltd Non-contact power feeding system
JP2015047013A (en) * 2013-08-28 2015-03-12 トヨタ自動車株式会社 Incoming equipment, transmission equipment, and vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167753A (en) * 2019-03-28 2020-10-08 株式会社豊田中央研究所 Power transmission device, power reception device and non-contact power supply system
JP7272051B2 (en) 2019-03-28 2023-05-12 株式会社豊田中央研究所 Power transmitting device, power receiving device and contactless power supply system
EP4029112A4 (en) * 2019-09-11 2023-11-29 Battelle Energy Alliance, LLC Electromagnetic shield designs for high power wireless charging of electric vehicles and related shields, vehicles, systems, and methods

Also Published As

Publication number Publication date
JP6684579B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6213611B2 (en) vehicle
US10202045B2 (en) Vehicle with shielded power receiving coil
US9859718B2 (en) Power supply unit, power receiving unit, and power supply system
JP5810944B2 (en) Vehicle and power transmission system
US10014105B2 (en) Coil unit and wireless power transmission device
JP6126013B2 (en) vehicle
JP6217518B2 (en) Wireless power supply system and wireless power transmission system
WO2015146889A1 (en) Power reception system
EP2927917B1 (en) Power receiving device and power transmission device
JPWO2013168241A1 (en) vehicle
JP2015008547A (en) Non-contact power charger
US20160197492A1 (en) Contactless power transmission device
JP2013132171A (en) Power transmitter, power receiver, and power transmission system
JP2017107896A (en) Non-contact power supply system
JP6232191B2 (en) Power feeding unit, power receiving unit, and power feeding system
WO2014156014A1 (en) Contactless charging device
JP6916917B2 (en) Contactless power supply system
JP6664924B2 (en) Contactless power supply system
JP2014093797A (en) Power transmission system
JP6508272B2 (en) vehicle
JP6587895B2 (en) Contactless power supply system
JP2014147242A (en) Non-contact power transmission device
JP2014093321A (en) Power transmission system
JP6244727B2 (en) Contactless power supply system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6684579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250