JP6916917B2 - Contactless power supply system - Google Patents

Contactless power supply system Download PDF

Info

Publication number
JP6916917B2
JP6916917B2 JP2020004956A JP2020004956A JP6916917B2 JP 6916917 B2 JP6916917 B2 JP 6916917B2 JP 2020004956 A JP2020004956 A JP 2020004956A JP 2020004956 A JP2020004956 A JP 2020004956A JP 6916917 B2 JP6916917 B2 JP 6916917B2
Authority
JP
Japan
Prior art keywords
coil
power
power receiving
magnetic
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020004956A
Other languages
Japanese (ja)
Other versions
JP2020080406A (en
Inventor
健次 勝代
健次 勝代
耕一 山野上
耕一 山野上
人士 川口
人士 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Imasen Electric Industrial Co Ltd
Original Assignee
Hiroshima University NUC
Imasen Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015202060A external-priority patent/JP6664924B2/en
Application filed by Hiroshima University NUC, Imasen Electric Industrial Co Ltd filed Critical Hiroshima University NUC
Priority to JP2020004956A priority Critical patent/JP6916917B2/en
Publication of JP2020080406A publication Critical patent/JP2020080406A/en
Application granted granted Critical
Publication of JP6916917B2 publication Critical patent/JP6916917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Description

本発明は、非接触給電システムに関し、特に、地上に設置された送電コイルと車体下面に設置された受電コイルとの間で非接触給電を行うプラグインハイブリッド車や電気自動車用の非接触給電システムに好適な技術に関する。 The present invention relates to a non-contact power supply system, and more particularly, a non-contact power supply system for a plug-in hybrid vehicle or an electric vehicle that performs non-contact power supply between a power transmission coil installed on the ground and a power reception coil installed on the lower surface of a vehicle body. With respect to suitable techniques.

外部電力でバッテリ充電されるプラグインハイブリッド車(PHEV)や電気自動車(EV)では、充電ケーブルの接続作業の煩わしさ、衣服の汚れ、雨天時の不安などから、ワイヤレスでの給電(非接触給電)のニーズが高くなっている。 For plug-in hybrid vehicles (PHEV) and electric vehicles (EV) that are battery-charged with external power, wireless power supply (non-contact power supply) due to the hassle of connecting the charging cable, dirt on clothes, and anxiety in rainy weather. ) Needs are increasing.

非接触給電には、地上側の1次コイルと車上側の2次コイルとの間の電磁誘導を利用する電磁誘導式と、磁界共鳴を利用する磁界共鳴式とがある。このうち電磁誘導式は、電力伝送効率が非常に高いが、1次コイルと2次コイルとを十分に近づけなければならないという特徴がある。一方、磁界共鳴式は、1次コイルと2次コイルとの距離がある程度大きくてもよいが、電磁誘導式に比べて電力伝送効率が低いという特徴がある。従来、給電部(1次コイル)と受電部(2次コイル)との位置ずれがあっても車体外の漏れ磁束の影響を抑制する電磁誘導式の非接触給電装置が提案されている(例えば、特許文献1参照)。 The non-contact power supply includes an electromagnetic induction type that uses electromagnetic induction between the primary coil on the ground side and the secondary coil on the vehicle side, and a magnetic field resonance type that uses magnetic field resonance. Of these, the electromagnetic induction type has a very high power transmission efficiency, but is characterized in that the primary coil and the secondary coil must be sufficiently close to each other. On the other hand, the magnetic field resonance type may have a certain distance between the primary coil and the secondary coil, but is characterized in that the power transmission efficiency is lower than that of the electromagnetic induction type. Conventionally, an electromagnetic induction type non-contact power feeding device that suppresses the influence of leakage flux outside the vehicle body even if there is a misalignment between the power feeding unit (primary coil) and the power receiving unit (secondary coil) has been proposed (for example). , Patent Document 1).

特開2011−49230号公報Japanese Unexamined Patent Publication No. 2011-49230

非接触給電システムで使用されるコイルのタイプとしてヘリカルコイルとスパイラルコイルがあるが、自動車用の非接触給電システムの国際標準化において、1次コイルおよび2次コイルとしてスパイラルコイルを採用することが決定した。スパイラルコイルは、ヘリカルコイルに比べて、コイル裏面の金属の影響を受け易い。例えば、2次コイルの近傍に金属製部材があると、1次コイルで発生した磁束によって当該金属製部材に渦電流が発生して、電力伝送効率が低下するという問題がある。この問題を解決するために、例えば、車体側に広い範囲でコアや磁性体シートを敷き詰めることが考えられるが、車体下面は複雑な形状であるためコアや磁性体シートの加工にコストがかかり、車体下面への取り付けが困難であるという問題がある。また、車体重量が増加する懸念や、コアや磁性体シートは脆いため破損し易いといった問題もある。 There are helical coil and spiral coil as coil types used in non-contact power feeding system, but it was decided to adopt spiral coil as primary coil and secondary coil in the international standardization of non-contact power feeding system for automobiles. .. Spiral coils are more susceptible to the metal on the back of the coil than helical coils. For example, if there is a metal member in the vicinity of the secondary coil, there is a problem that an eddy current is generated in the metal member due to the magnetic flux generated in the primary coil, and the power transmission efficiency is lowered. In order to solve this problem, for example, it is conceivable to spread the core and the magnetic material sheet in a wide range on the vehicle body side, but since the lower surface of the vehicle body has a complicated shape, the processing of the core and the magnetic material sheet is costly. There is a problem that it is difficult to attach it to the lower surface of the vehicle body. In addition, there is a concern that the weight of the vehicle body will increase, and that the core and the magnetic sheet are fragile and easily damaged.

上記問題に鑑み、本発明は、自動車向けの非接触給電システムにおいて、簡易な方法で車体側の金属製部材における渦電流を抑制することを課題とする。 In view of the above problems, it is an object of the present invention to suppress the eddy current in the metal member on the vehicle body side by a simple method in the non-contact power feeding system for automobiles.

本発明の一局面に従った非接触給電システムは、地上に設置された送電コイルと車体下面に設置された受電コイルとが対向して送電コイルと受電コイルとの間で非接触給電を行う非接触給電システムであって、送電コイルおよび受電コイルがいずれもスパイラルコイルであり、受電コイルが直接的またはコイルコアを介して間接的に金属製部材に取り付けられており、金属製部材の表面の、受電コイルの取り付け位置を中心とする一定の範囲に非導電性磁性薄膜が形成されており、受電コイルと非導電性磁性薄膜との間に非磁性導体が介在しないものである。 In the non-contact power feeding system according to one aspect of the present invention, the power transmitting coil installed on the ground and the power receiving coil installed on the lower surface of the vehicle body face each other to perform non-contact power feeding between the power transmitting coil and the power receiving coil. In a contact power supply system, both the power transmitting coil and the power receiving coil are spiral coils, and the power receiving coil is attached to a metal member directly or indirectly via a coil core to receive power on the surface of the metal member. The non-conductive magnetic thin film is formed in a certain range centered on the mounting position of the coil, and the non-magnetic conductor does not intervene between the power receiving coil and the non-conductive magnetic thin film.

これによると、受電コイルの取り付け位置の一定範囲に非導電性磁性薄膜を形成するといった簡易な方法で車体側の金属製部材における渦電流を抑制して電力伝送効率を向上させることができる。 According to this, it is possible to suppress the eddy current in the metal member on the vehicle body side and improve the power transmission efficiency by a simple method such as forming a non-conductive magnetic thin film in a certain range of the mounting position of the power receiving coil.

好ましくは、非導電性磁性薄膜の直径を受電コイルの直径よりも150mm〜350mm程度大きくする。 Preferably, the diameter of the non-conductive magnetic thin film is made larger by about 150 mm to 350 mm than the diameter of the power receiving coil.

これによると、非導電性磁性薄膜を形成する面積をより小さくして電力伝送効率を向上させることができる。 According to this, the area for forming the non-conductive magnetic thin film can be made smaller to improve the power transmission efficiency.

より好ましくは、非導電性磁性薄膜の直径を受電コイルの直径よりも250mm程度大きくする。 More preferably, the diameter of the non-conductive magnetic thin film is made larger than the diameter of the power receiving coil by about 250 mm.

これによると、非導電性磁性薄膜を形成する面積を可能な限り小さくして良好な電力伝送効率を確保することができる。 According to this, the area for forming the non-conductive magnetic thin film can be made as small as possible to ensure good power transmission efficiency.

好ましくは、非導電性磁性薄膜の形状を、送電コイルの形状を車幅方向へ引き延ばした形状にする。 Preferably, the shape of the non-conductive magnetic thin film is made such that the shape of the power transmission coil is stretched in the vehicle width direction.

これによると、送電コイルと受電コイルとの位置ずれ、特に、車幅方向の位置ずれに対応することができる。 According to this, it is possible to cope with the misalignment between the power transmitting coil and the power receiving coil, particularly the misalignment in the vehicle width direction.

非導電性磁性薄膜の比透磁率を上げすぎても電力伝送効率はあまり変わらないため、非導電性磁性薄膜の比透磁率は50程度が適当である。 Since the power transmission efficiency does not change much even if the relative magnetic permeability of the non-conductive magnetic thin film is increased too much, the relative magnetic permeability of the non-conductive magnetic thin film is appropriately about 50.

非導電性磁性薄膜が磁性塗料を塗布して形成された塗膜であってもよい。 The non-conductive magnetic thin film may be a coating film formed by applying a magnetic paint.

これによると、受電コイルの取り付け位置の一定範囲に磁性塗料を塗布するといった簡易な方法で車体側の金属製部材における渦電流を抑制して電力伝送効率を向上させることができる。 According to this, it is possible to suppress the eddy current in the metal member on the vehicle body side and improve the power transmission efficiency by a simple method such as applying a magnetic paint to a certain range of the mounting position of the power receiving coil.

本発明によると、車体下面にコアや磁性体シートを敷き詰めることなく、受電コイルの取り付け位置の一定範囲に非導電性磁性薄膜を形成するといった簡易な方法で、車体側の金属製部材における渦電流を抑制して電力伝送効率を向上させることができる。 According to the present invention, an eddy current in a metal member on the vehicle body side is formed by a simple method such as forming a non-conductive magnetic thin film in a certain range of the mounting position of the power receiving coil without laying a core or a magnetic material sheet on the lower surface of the vehicle body. It is possible to improve the power transmission efficiency by suppressing the above.

本発明の一実施形態に係る非接触給電システムの概略図Schematic of a non-contact power supply system according to an embodiment of the present invention 一例に係る送電コイルの平面図および断面図Plan view and cross-sectional view of a power transmission coil according to an example 一例に係る受電コイルの平面図および断面図Plan view and cross-sectional view of the power receiving coil according to an example 受電コイルが設置された車体の下面図Bottom view of the vehicle body where the power receiving coil is installed 送電コイルと受電コイルとの間の磁束を説明する図The figure explaining the magnetic flux between a power transmission coil and a power reception coil 送電コイルと受電コイル(コアなし)との間の磁束を説明する図The figure explaining the magnetic flux between a power transmission coil and a power reception coil (without a core). 受電コイルが大の場合の磁性塗膜の直径と電力伝送効率との関係を示すグラフA graph showing the relationship between the diameter of the magnetic coating film and the power transmission efficiency when the power receiving coil is large. 受電コイルが小の場合の磁性塗膜の直径と電力伝送効率との関係を示すグラフA graph showing the relationship between the diameter of the magnetic coating film and the power transmission efficiency when the power receiving coil is small. 磁性塗料の比透磁率と電力伝送効率との関係を示すグラフGraph showing the relationship between the relative permeability of magnetic paint and power transmission efficiency

以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations for substantially the same configuration may be omitted. This is to avoid unnecessary redundancy of the following description and to facilitate the understanding of those skilled in the art.

なお、発明者(ら)は、当業者が本発明を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。また、図面に描かれた各部材の寸法、厚み、細部の詳細形状などは実際のものとは異なることがある。 It should be noted that the inventors (or others) intend to limit the subject matter described in the claims by those skilled in the art by providing the accompanying drawings and the following description in order to fully understand the present invention. It is not something to do. In addition, the dimensions, thickness, detailed shape of details, etc. of each member drawn in the drawing may differ from the actual ones.

図1は、本発明の一実施形態に係る非接触給電システムの概略を示す。例えば、本実施形態に係る非接触給電システムは、プラグインハイブリッド車や電気自動車などの自動車100のバッテリ30をワイヤレスで充電する磁界共鳴式の非接触給電システムである。 FIG. 1 shows an outline of a non-contact power feeding system according to an embodiment of the present invention. For example, the non-contact power supply system according to the present embodiment is a magnetic field resonance type non-contact power supply system that wirelessly charges the battery 30 of an automobile 100 such as a plug-in hybrid vehicle or an electric vehicle.

本実施形態に係る非接触給電システムにおいて、地上に地上装置200および送電ユニット60が設置されている。自動車100と地上装置200とは無線300により通信できるようになっている。自動車100は、バッテリ30の充電量を判断し、地上装置200に対して無線300を通じて適宜給電の開始/停止を要求する。地上装置200は、自動車100からの要求に従って自動車100への電気エネルギーの供給/停止をコントロールする。 In the non-contact power supply system according to the present embodiment, the ground device 200 and the power transmission unit 60 are installed on the ground. The automobile 100 and the terrestrial device 200 can communicate with each other by wireless 300. The automobile 100 determines the charge amount of the battery 30, and requests the ground device 200 to appropriately start / stop the power supply through the wireless 300. The ground device 200 controls the supply / stop of electric energy to the automobile 100 according to the request from the automobile 100.

自動車100へ電気エネルギーを供給する場合、地上装置200は、商用電力(AC電源)から85kHz帯(81.38k〜90kHz)の3kWクラスの高周波電流を生成する。地上装置200が生成した高周波電流はケーブル201を通じて送電ユニット60に通電される。送電ユニット60には図略の送電コイル(1次コイル)が収容されており、当該送電コイルに高周波電流が通電されることで送電ユニット60に強力な磁界が発生する。 When supplying electrical energy to the automobile 100, the ground device 200 generates a 3 kW class high frequency current in the 85 kHz band (81.38 k to 90 kHz) from commercial power (AC power supply). The high-frequency current generated by the ground device 200 is energized to the power transmission unit 60 through the cable 201. A power transmission coil (primary coil) (not shown) is housed in the power transmission unit 60, and a strong magnetic field is generated in the power transmission unit 60 by energizing the power transmission coil with a high-frequency current.

一方、自動車100において、車体下面に受電ユニット10が設置されている。バッテリ30を充電する場合、受電ユニット10が送電ユニット60と上下に対向する位置に来るように自動車100を移動させる。受電ユニット10と送電ユニット60とのギャップは100〜160mmである。 On the other hand, in the automobile 100, the power receiving unit 10 is installed on the lower surface of the vehicle body. When charging the battery 30, the automobile 100 is moved so that the power receiving unit 10 comes to a position vertically opposed to the power transmission unit 60. The gap between the power receiving unit 10 and the power transmission unit 60 is 100 to 160 mm.

受電ユニット10には図略の受電コイル(2次コイル)およびコンデンサからなる共振回路が収容されており、当該受電コイルが送電ユニット60で発生した磁界に晒されることで当該共振回路が共鳴して受電ユニット10に高周波電流が発生する。受電ユニット10に発生した高周波電流は整流器20により直流電流に変換されてバッテリ30に充電される。このように、本実施形態に係るシステムでは、地上装置200から自動車100へ磁界共鳴によりワイヤレスで電気エネルギーが供給される。 The power receiving unit 10 includes a resonance circuit composed of a power receiving coil (secondary coil) and a capacitor (not shown), and the resonance circuit resonates when the power receiving coil is exposed to a magnetic field generated by the power transmission unit 60. A high frequency current is generated in the power receiving unit 10. The high-frequency current generated in the power receiving unit 10 is converted into a direct current by the rectifier 20 and charged in the battery 30. As described above, in the system according to the present embodiment, electric energy is wirelessly supplied from the ground device 200 to the automobile 100 by magnetic field resonance.

バッテリ30にはインバータ40が接続されている。自動車100を走行させる場合、インバータ40がバッテリ30に蓄電された直流電流を交流電流に変換して自動車100の動力源である電動モータ50を駆動する。 An inverter 40 is connected to the battery 30. When the automobile 100 is driven, the inverter 40 converts the direct current stored in the battery 30 into an alternating current to drive the electric motor 50 which is the power source of the automobile 100.

図2は、一例に係る送電コイルの平面図および断面図である。送電ユニット60には送電コイル61が収容されている。送電コイル61は、直径5.4mmの絶縁被覆電線62を円形の渦巻き状に2段8回巻きしたスパイラルコイルであり、外径は350mm、内径は260mmである。送電コイル61は、フェライトなどの磁性体で形成された円盤状のコイルコア63上に取り付けられている。コイルコア63の直径は400mmである。 FIG. 2 is a plan view and a cross-sectional view of the power transmission coil according to an example. A power transmission coil 61 is housed in the power transmission unit 60. The power transmission coil 61 is a spiral coil in which an insulated coated electric wire 62 having a diameter of 5.4 mm is wound in a circular spiral shape in two stages eight times, and has an outer diameter of 350 mm and an inner diameter of 260 mm. The power transmission coil 61 is mounted on a disk-shaped coil core 63 made of a magnetic material such as ferrite. The diameter of the coil core 63 is 400 mm.

図3は、一例に係る受電コイルの平面図および断面図である。受電ユニット10には受電コイル11が収容されている。受電コイル11は、直径5.4mmの絶縁被覆電線12を円形の渦巻き状に1段8回巻きしたスパイラルコイルであり、外径は350mm、内径は260mmである。受電コイル11は、フェライトなどの磁性体で形成された円盤状のコイルコア13上に取り付けられている。コイルコア13の直径は400mmである。 FIG. 3 is a plan view and a cross-sectional view of the power receiving coil according to an example. The power receiving coil 11 is housed in the power receiving unit 10. The power receiving coil 11 is a spiral coil in which an insulating coated electric wire 12 having a diameter of 5.4 mm is wound in a circular spiral shape in one stage eight times, and has an outer diameter of 350 mm and an inner diameter of 260 mm. The power receiving coil 11 is mounted on a disk-shaped coil core 13 formed of a magnetic material such as ferrite. The diameter of the coil core 13 is 400 mm.

なお、受電コイル11の形状は送電コイル61の形状と同じにする必要はない。例えば、受電コイル11の外径および内径を上記よりも100mmずつ小さく(外径250mm、内径160mm)してもよい。このように受電コイル11を小型化することで、受電ユニット10のコストを低減することができ、また、受電ユニット10の取り付け作業が容易になる。 The shape of the power receiving coil 11 does not have to be the same as the shape of the power transmission coil 61. For example, the outer diameter and inner diameter of the power receiving coil 11 may be smaller than the above by 100 mm (outer diameter 250 mm, inner diameter 160 mm). By reducing the size of the power receiving coil 11 in this way, the cost of the power receiving unit 10 can be reduced, and the work of attaching the power receiving unit 10 becomes easy.

また、送電コイル61および受電コイル11ともに円形である必要はない。例えば、送電コイル61および/または受電コイル11を車幅方向に長い長円形や楕円形にしてもよい。 Further, both the power transmitting coil 61 and the power receiving coil 11 do not have to be circular. For example, the power transmission coil 61 and / or the power reception coil 11 may be oval or elliptical long in the vehicle width direction.

図4は、受電コイルが設置された車体の下面図である。受電ユニット10は、例えば、車両後部の左右後輪の間に設置されている。自動車100の下面は鉄やアルミニウムなどでできたアンダーカバー101で覆われており、受電ユニット10に収容された受電コイル11はそのようなアンダーカバー101に取り付けられている。より詳細には、受電コイル11が取り付けられたコイルコア13がアンダーカバー101に取り付けられている。 FIG. 4 is a bottom view of the vehicle body on which the power receiving coil is installed. The power receiving unit 10 is installed, for example, between the left and right rear wheels at the rear of the vehicle. The lower surface of the automobile 100 is covered with an undercover 101 made of iron, aluminum, or the like, and the power receiving coil 11 housed in the power receiving unit 10 is attached to such an undercover 101. More specifically, the coil core 13 to which the power receiving coil 11 is attached is attached to the undercover 101.

さらに、受電コイル11を取り囲むようにアンダーカバー101の表面に円形の磁性塗膜14が形成されている。磁性塗膜14は、フェライトなどの磁性体を20μm程度のメディアン径に粉砕した磁性粉粒体を含む塗料(磁性塗料)を厚さ数mmに塗布して形成することができる。磁性塗膜14は、高透磁率および高電気抵抗という特徴を有し、磁束を集中できるとともに、渦電流による損失を抑制することができる。 Further, a circular magnetic coating film 14 is formed on the surface of the undercover 101 so as to surround the power receiving coil 11. The magnetic coating film 14 can be formed by applying a coating material (magnetic coating material) containing magnetic powder particles obtained by pulverizing a magnetic material such as ferrite to a median diameter of about 20 μm to a thickness of several mm. The magnetic coating film 14 has the characteristics of high magnetic permeability and high electrical resistance, can concentrate magnetic flux, and can suppress loss due to eddy current.

なお、磁性塗膜14は外部環境に晒されるため、磁性塗料に防錆処理を施したり、磁性塗料を塗布した後に磁性塗膜14の表面に防錆処理を施したりすることが望ましい。 Since the magnetic coating film 14 is exposed to the external environment, it is desirable to apply a rust preventive treatment to the magnetic paint, or to apply a rust preventive treatment to the surface of the magnetic coating film 14 after applying the magnetic paint.

磁性塗膜14は、特許請求の範囲に記載の「非導電性磁性薄膜」の一例である。磁性塗料を塗布することに代えてアンダーカバー101の表面に磁性フィルムなどを円形に貼り付けてもよい。あるいは、メッキや蒸着などの方法でアンダーカバー101の表面に円形の磁性薄膜を形成してもよい。以下では、説明の便宜上、磁性塗料を塗布して形成された磁性塗膜を例に説明する。 The magnetic coating film 14 is an example of the "non-conductive magnetic thin film" described in the claims. Instead of applying the magnetic paint, a magnetic film or the like may be attached to the surface of the undercover 101 in a circular shape. Alternatively, a circular magnetic thin film may be formed on the surface of the undercover 101 by a method such as plating or vapor deposition. Hereinafter, for convenience of explanation, a magnetic coating film formed by applying a magnetic paint will be described as an example.

図5は、送電コイルと受電コイルとの間の磁束を説明する図である。同図は、送電コイル61と受電コイル11を側面から見た図である。なお、便宜のため、受電コイル11を送電コイル61よりも小さく描いている。 FIG. 5 is a diagram for explaining the magnetic flux between the power transmission coil and the power reception coil. The figure is a side view of the power transmission coil 61 and the power reception coil 11. For convenience, the power receiving coil 11 is drawn smaller than the power transmission coil 61.

送電コイル61に高周波電流が通電されることで送電コイル61に磁束70で示したような磁界が発生する。送電コイル61で発生した磁束70が受電コイル11に伝わることで、磁界共鳴により受電コイル11に高周波電流が発生する。また、送電コイル61で発生した磁束70が金属製のアンダーカバー101を貫通すると、アンダーカバー101に渦電流が発生して電力伝送効率が低下してしまう。しかし、本実施形態ではアンダーカバー101の表面に磁性塗膜14が形成されていることにより、アンダーカバー101を貫通する磁束70が非常に少なくなる。これにより、電気エネルギーの伝送損失の原因となるアンダーカバー101の渦電流が減り、電力伝送効率を良好に保つことができる。 When a high-frequency current is applied to the power transmission coil 61, a magnetic field as shown by the magnetic flux 70 is generated in the power transmission coil 61. When the magnetic flux 70 generated by the power transmission coil 61 is transmitted to the power reception coil 11, a high frequency current is generated in the power reception coil 11 due to magnetic field resonance. Further, when the magnetic flux 70 generated by the power transmission coil 61 penetrates the metal undercover 101, an eddy current is generated in the undercover 101 and the power transmission efficiency is lowered. However, in the present embodiment, since the magnetic coating film 14 is formed on the surface of the undercover 101, the magnetic flux 70 penetrating the undercover 101 is very small. As a result, the eddy current of the undercover 101, which causes a transmission loss of electric energy, is reduced, and the power transmission efficiency can be kept good.

なお、磁性塗膜14の形状を、送電コイル61の形状を車幅方向に引き延ばした形状にしてもよい。自動車100がバッテリ充電のために所定位置に駐車する場合、車長方向の位置は車止めにより規制できるのに対して車幅方向にはそのようなものがなく車幅方向の位置が規制できないため、送電ユニット60に対する受電ユニット10の車幅方向の位置ずれが発生し易いと考えられる。したがって、あらかじめ磁性塗膜14の形状を、送電コイル61の形状を車幅方向に引き延ばした形状にしておく、例えば、円形の送電コイル61に対して磁性塗膜14の形状を車幅方向に長い長円形または楕円形にしておくことで、送電コイルと受電コイルとに多少の位置ずれが発生しても、磁性塗膜14による防磁効果を得ることができる。 The shape of the magnetic coating film 14 may be a shape obtained by extending the shape of the power transmission coil 61 in the vehicle width direction. When the automobile 100 is parked in a predetermined position for charging the battery, the position in the vehicle length direction can be regulated by the vehicle stop, whereas there is no such thing in the vehicle width direction and the position in the vehicle width direction cannot be regulated. It is considered that the position shift of the power receiving unit 10 in the vehicle width direction with respect to the power transmission unit 60 is likely to occur. Therefore, the shape of the magnetic coating film 14 is preliminarily made into a shape obtained by extending the shape of the transmission coil 61 in the vehicle width direction. For example, the shape of the magnetic coating film 14 is longer in the vehicle width direction with respect to the circular power transmission coil 61. By making the shape oval or elliptical, the magnetic shielding effect of the magnetic coating film 14 can be obtained even if the power transmitting coil and the power receiving coil are slightly misaligned.

また、コイルコア13は省略することができる。図6は、送電コイルと受電コイル(コアなし)との間の磁束を説明する図である。このように、磁性塗膜14の厚みを適宜調整することにより、磁性塗膜14を、アンダーカバー101における渦電流の抑制だけではなく、受電コイル11のコアとして使用することもできる。 Further, the coil core 13 can be omitted. FIG. 6 is a diagram illustrating a magnetic flux between a power transmitting coil and a power receiving coil (without a core). By appropriately adjusting the thickness of the magnetic coating film 14 in this way, the magnetic coating film 14 can be used not only for suppressing the eddy current in the undercover 101 but also as the core of the power receiving coil 11.

次に、本実施形態に係る非接触給電システムにおける電力伝送効率の実証結果を示す。表1は、図2に示した送電コイル61と図3に示した受電コイル11とを150mm隔てて対向させて送電コイル61に85kHz帯の3kWの高周波電流を通電したときの各条件下での電力伝送効率を示す。「受電コイル:大」は、送電コイル61と同じ大きさ(外径350mm、内径260mm)の受電コイル11を表し、「受電コイル:小」は、送電コイル61よりも小さい受電コイル11(外径250mm、内径160mm)を表す。「金属板あり」は、アンダーカバー101を想定した厚さ2mm、縦600mm、横500mmの鉄板に受電コイル11(より詳細にはコイルコア13)を取り付けたものであり、「金属板なし」は、そのような鉄板がない状態である。「磁性塗膜あり」は、上記の鉄板の表面全体に比透磁率が100の磁性塗膜14を厚さ1mmで形成したものである。 Next, the demonstration result of the power transmission efficiency in the non-contact power supply system according to the present embodiment is shown. Table 1 shows the conditions under each condition when the power transmission coil 61 shown in FIG. 2 and the power receiving coil 11 shown in FIG. 3 are opposed to each other at a distance of 150 mm and a high frequency current of 3 kW in the 85 kHz band is applied to the power transmission coil 61. Shows power transmission efficiency. "Power receiving coil: large" represents a power receiving coil 11 having the same size as the power transmission coil 61 (outer diameter 350 mm, inner diameter 260 mm), and "power receiving coil: small" means a power receiving coil 11 (outer diameter) smaller than the power transmission coil 61. 250 mm, inner diameter 160 mm). "With metal plate" means that the power receiving coil 11 (more specifically, coil core 13) is attached to an iron plate having a thickness of 2 mm, a length of 600 mm, and a width of 500 mm assuming an undercover 101. There is no such iron plate. “With magnetic coating film” means that a magnetic coating film 14 having a relative magnetic permeability of 100 is formed on the entire surface of the iron plate with a thickness of 1 mm.

Figure 0006916917
Figure 0006916917

表1から分かるように、受電コイル11の大小にかかわらず、磁性塗膜14があることで、磁性塗膜14がない場合と比べて効率が向上する。特に、受電コイル11が小さくなると金属板の影響を強く受ける傾向があるが、磁性塗膜14を形成することにより、金属板がない場合以上に効率を改善することができる。 As can be seen from Table 1, the presence of the magnetic coating film 14 improves efficiency as compared with the case without the magnetic coating film 14, regardless of the size of the power receiving coil 11. In particular, when the power receiving coil 11 becomes small, it tends to be strongly influenced by the metal plate, but by forming the magnetic coating film 14, the efficiency can be improved more than when there is no metal plate.

上述したようにアンダーカバー101の表面に磁性塗膜14を形成することにより電力伝送効率を向上させることができるが、アンダーカバー101の全面に磁性塗料を塗布するとコストがかかってしまう。したがって、コストを考慮すると、必要最小限の面積に磁性塗料を塗布して磁性塗膜14を形成することが好ましい。 As described above, the power transmission efficiency can be improved by forming the magnetic coating film 14 on the surface of the undercover 101, but applying the magnetic paint to the entire surface of the undercover 101 is costly. Therefore, in consideration of cost, it is preferable to apply the magnetic paint to the minimum necessary area to form the magnetic coating film 14.

図7は、受電コイルが大の場合(受電コイル11の外径350mm、内径260mm、コイルコア13の直径400mm)の磁性塗膜14の直径と電力伝送効率との関係を示すグラフである。磁性塗膜14の直径が受電コイル11の直径よりも小さいかわずかに大きい範囲(磁性塗膜14の直径0〜400mm近辺)では効率にあまり変化が見られないが、磁性塗膜14の直径が受電コイル11の直径よりも50mm程度大きくなった辺り(磁性塗膜14の直径400mm近辺)から効率が著しく向上し、磁性塗膜14の直径が受電コイル11の直径よりも250mm以上大きくなると(磁性塗膜14の直径600mm以上)効率の向上が鈍くなる。 FIG. 7 is a graph showing the relationship between the diameter of the magnetic coating film 14 and the power transmission efficiency when the power receiving coil is large (the outer diameter of the power receiving coil 11 is 350 mm, the inner diameter is 260 mm, and the diameter of the coil core 13 is 400 mm). In the range where the diameter of the magnetic coating film 14 is smaller than or slightly larger than the diameter of the power receiving coil 11 (the diameter of the magnetic coating film 14 is around 0 to 400 mm), the efficiency does not change much, but the diameter of the magnetic coating film 14 is large. Efficiency is significantly improved from around 50 mm larger than the diameter of the power receiving coil 11 (around 400 mm in diameter of the magnetic coating film 14), and when the diameter of the magnetic coating film 14 is 250 mm or more larger than the diameter of the power receiving coil 11 (magnetism). (Diameter 600 mm or more of the coating film 14) The improvement of efficiency becomes slow.

図8は、受電コイルが小の場合(受電コイル11の外径250mm、内径160mm、コイルコア13の直径300mm)の磁性塗膜14の直径と電力伝送効率との関係を示すグラフである。受電コイル11が小の場合においても、磁性塗膜14の直径が受電コイル11の直径よりも小さいかわずかに大きい範囲(磁性塗膜14の直径0〜300mm近辺)では効率にあまり変化が見られないが、磁性塗膜14の直径が受電コイル11の直径よりも50mm程度大きくなる辺り(磁性塗膜14の直径300mm近辺)から効率が著しく向上し、磁性塗膜14の直径が受電コイル11の直径よりも250mm以上大きくなると(磁性塗膜14の直径500mm以上)効率の向上が鈍くなる。 FIG. 8 is a graph showing the relationship between the diameter of the magnetic coating film 14 and the power transmission efficiency when the power receiving coil is small (the outer diameter of the power receiving coil 11 is 250 mm, the inner diameter is 160 mm, and the diameter of the coil core 13 is 300 mm). Even when the power receiving coil 11 is small, the efficiency does not change much in the range where the diameter of the magnetic coating film 14 is smaller than or slightly larger than the diameter of the power receiving coil 11 (the diameter of the magnetic coating film 14 is around 0 to 300 mm). However, the efficiency is remarkably improved from the point where the diameter of the magnetic coating film 14 is about 50 mm larger than the diameter of the power receiving coil 11 (around 300 mm in diameter of the magnetic coating film 14), and the diameter of the magnetic coating film 14 is the diameter of the power receiving coil 11. If it is 250 mm or more larger than the diameter (the diameter of the magnetic coating film 14 is 500 mm or more), the improvement of efficiency becomes slow.

以上のことから、受電コイル11の大小にかかわらず、磁性塗膜14の直径を受電コイル11の直径よりも150mm〜350mm程度大きくすればよいと言える。さらに、磁性塗膜14の面積を小さくしつつ電力伝送効率を向上させるといった相反する要件をバランスよく満たすには、磁性塗膜14の直径を受電コイル11の直径よりも250mm程度大きくすればよい。 From the above, it can be said that the diameter of the magnetic coating film 14 may be made larger by about 150 mm to 350 mm than the diameter of the power receiving coil 11 regardless of the size of the power receiving coil 11. Further, in order to satisfy the contradictory requirements such as improving the power transmission efficiency while reducing the area of the magnetic coating film 14, the diameter of the magnetic coating film 14 may be increased by about 250 mm from the diameter of the power receiving coil 11.

一方、磁性塗料の比透磁率は低いよりも高い方が電力伝送効率の向上が期待できるが、コストを考慮すると、磁性塗料の比透磁率は必要最小限にすることが好ましい。 On the other hand, it is expected that the power transmission efficiency is improved when the relative magnetic permeability of the magnetic paint is higher than when it is low, but in consideration of cost, it is preferable to minimize the relative magnetic permeability of the magnetic paint.

図9は、磁性塗料の比透磁率と電力伝送効率との関係を示すグラフである。送電コイル61および受電コイル11の外径350mm、内径260mmであり、コイルコア63、13の直径400mmであり、磁性塗膜14の厚さ1mm、直径500mmである。磁性塗料の比透磁率が0〜50の範囲では効率が向上するが、比透磁率が50を超えると効率の向上が鈍くなる。したがって、磁性塗料の比透磁率は50程度であればよいと言える。なお、磁気飽和すると効率改善が制限されるため、磁気飽和を避けるために飽和磁束密度を30mT以上にすることが好ましい。 FIG. 9 is a graph showing the relationship between the relative magnetic permeability of the magnetic paint and the power transmission efficiency. The outer diameter of the power transmitting coil 61 and the power receiving coil 11 is 350 mm and the inner diameter is 260 mm, the diameters of the coil cores 63 and 13 are 400 mm, and the thickness of the magnetic coating film 14 is 1 mm and the diameter is 500 mm. The efficiency is improved when the relative magnetic permeability of the magnetic paint is in the range of 0 to 50, but the improvement of efficiency is slowed down when the relative magnetic permeability exceeds 50. Therefore, it can be said that the relative magnetic permeability of the magnetic paint may be about 50. Since magnetic saturation limits efficiency improvement, it is preferable to set the saturation magnetic flux density to 30 mT or more in order to avoid magnetic saturation.

以上のように、本発明における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。 As described above, an embodiment has been described as an example of the technique in the present invention. To that end, the accompanying drawings and detailed description are provided.

したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 Therefore, among the components described in the attached drawings and the detailed description, not only the components essential for solving the problem but also the components not essential for solving the problem in order to exemplify the above technology. Can also be included. Therefore, the fact that those non-essential components are described in the accompanying drawings and detailed description should not immediately determine that those non-essential components are essential.

また、上述の実施の形態は、本発明における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Further, since the above-described embodiment is for exemplifying the technique of the present invention, various changes, replacements, additions, omissions, etc. can be made within the scope of claims or the equivalent scope thereof.

上記では、便宜のため、磁界共鳴式の非接触給電システムを例に本発明における技術を説明したが、本発明は、磁界共鳴式の非接触給電システムに限定されず、電磁誘導式の非接触給電システムにも適用可能である。 In the above, for convenience, the technique in the present invention has been described by taking a magnetic field resonance type non-contact power feeding system as an example, but the present invention is not limited to the magnetic field resonance type non-contact power feeding system, and the present invention is not limited to the magnetic field resonance type non-contact power feeding system. It can also be applied to power supply systems.

また、上記では、受電コイル11側に磁性塗膜14が形成されているとしたが、送電コイル61側に磁性塗膜を形成してもよい。例えば、立体駐車場などに送電ユニット60を設置する場合、場所的制約から鉄骨などの金属製部材に送電コイル61を直接取り付けざるを得ないこともある。そのような場合、鉄骨などの金属製部材の表面に磁性塗料を塗布して磁性塗膜を形成することで、当該金属製部材を貫通する磁束を少なくして当該金属製部材における渦電流の発生を減らして電力伝送効率を良好に保つことができる。 Further, in the above, it is assumed that the magnetic coating film 14 is formed on the power receiving coil 11 side, but the magnetic coating film may be formed on the power transmission coil 61 side. For example, when the power transmission unit 60 is installed in a multi-storey car park or the like, the power transmission coil 61 may have to be directly attached to a metal member such as a steel frame due to space restrictions. In such a case, by applying a magnetic paint to the surface of a metal member such as a steel frame to form a magnetic coating film, the magnetic flux penetrating the metal member is reduced and an eddy current is generated in the metal member. Can be reduced to maintain good power transmission efficiency.

11 受電コイル
13 コイルコア
14 磁性塗膜(非導電性磁性薄膜)
61 送電コイル
101 アンダーカバー(金属製部材)
11 Power receiving coil 13 Coil core 14 Magnetic coating film (non-conductive magnetic thin film)
61 Power transmission coil 101 Undercover (metal member)

Claims (7)

地上に設置された送電コイルと車体下面に設置された受電コイルとが対向して前記送電コイルと前記受電コイルとの間で非接触給電を行う非接触給電システムであって、
前記送電コイルおよび前記受電コイルがいずれもスパイラルコイルであり、
前記受電コイルがコイルコアを介して間接的に金属製部材に取り付けられており、
前記金属製部材の表面の、前記受電コイルの取り付け位置を中心とする一定の範囲に前記受電コイルを取り囲むように非導電性磁性薄膜が形成されており、
前記受電コイルと前記非導電性磁性薄膜との間に非磁性導体が介在しない
ことを特徴とする非接触給電システム。
A non-contact power supply system in which a power transmission coil installed on the ground and a power reception coil installed on the lower surface of a vehicle body face each other to perform non-contact power supply between the power transmission coil and the power reception coil.
Both the power transmission coil and the power reception coil are spiral coils, and the power transmission coil and the power reception coil are spiral coils.
It has been indirectly attached to the metal member through the power receiving coil child Irukoa,
A non-conductive magnetic thin film is formed on the surface of the metal member so as to surround the power receiving coil in a certain range centered on the mounting position of the power receiving coil.
A non-contact power feeding system characterized in that a non-magnetic conductor does not intervene between the power receiving coil and the non-conductive magnetic thin film.
前記非導電性磁性薄膜の直径が前記受電コイルの直径よりも150mm〜350mm大きい、請求項1に記載の非接触給電システム。 The non-contact power feeding system according to claim 1, wherein the diameter of the non-conductive magnetic thin film is 150 mm to 350 mm larger than the diameter of the power receiving coil. 前記非導電性磁性薄膜の直径が前記受電コイルの直径よりも250mm大きい、請求項2に記載の非接触給電システム。 The non-contact power feeding system according to claim 2, wherein the diameter of the non-conductive magnetic thin film is 250 mm larger than the diameter of the power receiving coil. 前記非導電性磁性薄膜の形状が前記送電コイルの形状を車幅方向へ引き延ばした形状である、請求項1ないし請求項3のいずれかに記載の非接触給電システム。 The non-contact power feeding system according to any one of claims 1 to 3, wherein the shape of the non-conductive magnetic thin film is a shape obtained by extending the shape of the power transmission coil in the vehicle width direction. 前記非導電性磁性薄膜の比透磁率が50程度である、請求項1ないし請求項4のいずれかに記載の非接触給電システム。 The non-contact power feeding system according to any one of claims 1 to 4, wherein the non-conductive magnetic thin film has a relative magnetic permeability of about 50. 前記非導電性磁性薄膜が磁性塗料を塗布して形成された塗膜である、請求項1ないし請求項5のいずれかに記載の非接触給電システム。 The non-contact power feeding system according to any one of claims 1 to 5, wherein the non-conductive magnetic thin film is a coating film formed by applying a magnetic paint. 前記金属製部材は鉄である、請求項1ないし請求項6のいずれかに記載の非接触給電システム。 The non-contact power feeding system according to any one of claims 1 to 6, wherein the metal member is iron.
JP2020004956A 2015-10-13 2020-01-16 Contactless power supply system Active JP6916917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020004956A JP6916917B2 (en) 2015-10-13 2020-01-16 Contactless power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015202060A JP6664924B2 (en) 2015-10-13 2015-10-13 Contactless power supply system
JP2020004956A JP6916917B2 (en) 2015-10-13 2020-01-16 Contactless power supply system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015202060A Division JP6664924B2 (en) 2015-10-13 2015-10-13 Contactless power supply system

Publications (2)

Publication Number Publication Date
JP2020080406A JP2020080406A (en) 2020-05-28
JP6916917B2 true JP6916917B2 (en) 2021-08-11

Family

ID=70801972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020004956A Active JP6916917B2 (en) 2015-10-13 2020-01-16 Contactless power supply system

Country Status (1)

Country Link
JP (1) JP6916917B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179838A (en) * 1992-12-15 1994-06-28 Shin Etsu Chem Co Ltd Soft magnetic coating material
DE19746919A1 (en) * 1997-10-24 1999-05-06 Daimler Chrysler Ag Electrical transmission device
JP2005272714A (en) * 2004-03-25 2005-10-06 Tokyo Magnetic Printing Co Ltd Insulating magnetic paint
JP5431774B2 (en) * 2009-04-14 2014-03-05 富士通テン株式会社 Wireless power transmission apparatus and wireless power transmission method
JP2011010435A (en) * 2009-06-25 2011-01-13 Fujitsu Ten Ltd Contactless power supply system and contactless power supply unit
JP5592241B2 (en) * 2010-12-03 2014-09-17 富士通テン株式会社 Power receiving device, power transmitting device, and wireless power transmission system
US20130245176A1 (en) * 2012-03-19 2013-09-19 E I Du Pont De Nemours And Company Polymer thick film ferrite-containing shielding composition
US10014104B2 (en) * 2012-11-02 2018-07-03 Qualcomm Incorporated Coil arrangements in wireless power transfer systems for low electromagnetic emissions

Also Published As

Publication number Publication date
JP2020080406A (en) 2020-05-28

Similar Documents

Publication Publication Date Title
US10202045B2 (en) Vehicle with shielded power receiving coil
US10014105B2 (en) Coil unit and wireless power transmission device
JP5730587B2 (en) Magnetic resonance type non-contact power feeding device
JP6217518B2 (en) Wireless power supply system and wireless power transmission system
JP5437650B2 (en) Non-contact power feeding device
US10002708B2 (en) Coil unit and wireless power transmission device
US10308124B2 (en) Power reception apparatus and power transmission apparatus
EP2927917B1 (en) Power receiving device and power transmission device
JP5274989B2 (en) Non-contact power feeding device
US20150091518A1 (en) Charging configuration for the inductive wireless emission of energy
JP2010093180A (en) Non-contact power supply
US20160197492A1 (en) Contactless power transmission device
JP2015008547A (en) Non-contact power charger
JP2014179438A (en) Coil unit and noncontact power feeding device
JP6460373B2 (en) Coil unit and wireless power transmission device
WO2012001758A1 (en) Non-contact electric power feeding device
JP2016082618A (en) Power receiving coil device and non-contact power supply system
WO2013150784A1 (en) Coil unit, and power transmission device equipped with coil unit
US9748773B2 (en) Contactless power supply device
JP6916917B2 (en) Contactless power supply system
WO2014156014A1 (en) Contactless charging device
JP6684579B2 (en) Contactless power supply system
JP6162609B2 (en) Non-contact power feeding device
JP6664924B2 (en) Contactless power supply system
US11850952B2 (en) System for power feeding during traveling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210611

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210611

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210621

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210716

R150 Certificate of patent or registration of utility model

Ref document number: 6916917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250