WO2014156014A1 - Contactless charging device - Google Patents

Contactless charging device Download PDF

Info

Publication number
WO2014156014A1
WO2014156014A1 PCT/JP2014/001357 JP2014001357W WO2014156014A1 WO 2014156014 A1 WO2014156014 A1 WO 2014156014A1 JP 2014001357 W JP2014001357 W JP 2014001357W WO 2014156014 A1 WO2014156014 A1 WO 2014156014A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power
power supply
shield
subcoil
Prior art date
Application number
PCT/JP2014/001357
Other languages
French (fr)
Japanese (ja)
Inventor
則明 朝岡
修 大橋
剛 西尾
正剛 小泉
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014156014A1 publication Critical patent/WO2014156014A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a non-contact charging device used for non-contact charging using electromagnetic force.
  • plug-in HEVs Hybrid Electric Vehicles
  • EVs Electric Vehicles
  • non-contact charging using electromagnetic force for example, an electromagnetic induction method or a magnetic resonance method (magnetic resonance method)
  • electromagnetic force for example, an electromagnetic induction method or a magnetic resonance method (magnetic resonance method)
  • Patent Document 1 reduces the leakage magnetic field and unnecessary radiation by surrounding the coil with a rectangular parallelepiped shield (shield box) made of a material having an electromagnetic wave shielding effect.
  • An object of the present invention is to provide a non-contact charging device capable of reducing heat generation and reducing a leakage magnetic field and unnecessary radiation.
  • a non-contact charging device is a non-contact charging device used for charging using electromagnetic force, and includes a coil that generates an electromagnetic wave and a sub-coil that collects the electromagnetic wave as electric energy. Take the configuration.
  • the present invention can reduce heat generation and reduce leakage magnetic field and unnecessary radiation.
  • the block diagram which shows the structural example of the charging system which concerns on embodiment of this invention The block diagram which shows the structural example of the electric power feeding part and power receiving part which concern on embodiment of this invention
  • the block diagram which shows the structural example of the sub power receiving part which concerns on embodiment of this invention The figure explaining the example of arrangement
  • FIG. 1 is a block diagram showing a configuration of a charging system 100 according to an embodiment of the present invention.
  • the charging system 100 includes a vehicle 1, a power feeding device 2, a power receiving device 3, and a storage battery 4.
  • the vehicle 1 has a power receiving device 3 and a storage battery 4 and travels using the storage battery 4 as a power source.
  • the vehicle 1 is an automobile that runs on the power of the storage battery 4 such as PEV (Plug-in Electric Vehicle) or EV (Electric Vehicle), for example.
  • PEV Plug-in Electric Vehicle
  • EV Electric Vehicle
  • the power feeding device 2 is provided in a parking space, for example, and feeds power to the power receiving device 3 while the vehicle 1 is parked. Details of the power supply device 2 will be described later.
  • the power receiving device 3 supplies power supplied from the power supply device 2 to the storage battery 4. Details of the power receiving device 3 will be described later.
  • the load 34 is provided in the power receiving device 3, but the load 34 may be provided outside the power receiving device 3 or in the sub power receiving unit 33.
  • the storage battery 4 stores the power supplied by the power receiving device 3.
  • the power feeding device 2 and the power receiving device 3 are used for non-contact charging using electromagnetic force, they can be called “non-contact charging devices”.
  • the present invention can be applied not only to the electromagnetic induction method but also to the magnetic resonance method (magnetic field resonance method).
  • the power feeding device 2 includes a power feeding side control unit 20, a power feeding unit 21, and a power feeding side communication unit 22.
  • the power supply side communication unit 22 receives a power supply start signal or a power supply stop signal from the vehicle side communication unit 32.
  • the power supply side communication unit 22 outputs the received power supply start signal or power supply stop signal to the power supply side control unit 20.
  • the power supply side control unit 20 controls the power supply unit 21 to start power supply in accordance with the power supply start signal input from the power supply side communication unit 22.
  • the power supply side control unit 20 controls the power supply unit 21 to stop power supply in accordance with the power supply stop signal input from the power supply side communication unit 22.
  • the power supply side control unit 20 may control not only the start / stop of power supply in accordance with an instruction from the vehicle 1 but also the start / stop of power supply based on its own judgment. That is, the power supply side control unit 20 confirms that the power reception coil exists at a position facing the power supply coil, and then controls to start power supply, and outputs a power supply start signal to the power supply side communication unit 22. In addition, if the power supply side control unit 20 determines that the power supply is not normally performed, the power supply side control unit 20 performs control so as to stop the power supply, and outputs a power supply stop signal to the power supply side communication unit 22.
  • the power feeding unit 21 is installed or buried on the ground so as to be exposed from the ground surface g.
  • the power feeding unit 21 has a power feeding coil (not shown).
  • the power feeding unit 21 feeds power to the power receiving unit 31 using electromagnetic force by supplying a current having a predetermined frequency to the power feeding coil according to the control of the power feeding side control unit 20.
  • This power supply is performed by, for example, an electromagnetic induction method or a magnetic resonance method (magnetic resonance method). Details of the power supply unit 21 and the power supply coil will be described later.
  • the power reception device 3 includes a vehicle side control unit 30, a power reception unit 31, a vehicle side communication unit 32, a sub power reception unit 33, and a load 34.
  • the vehicle side communication unit 32 generates a power supply start signal or a power supply stop signal according to the control of the vehicle side control unit 30 and transmits the generated power supply start signal or power supply stop signal to the power supply side communication unit 22. Further, the vehicle-side communication unit 32 may receive a power supply start signal or a power supply stop signal from the power supply side communication unit 22 when the power supply side control unit 20 controls the start / stop of power supply by its own judgment. is there.
  • the vehicle-side control unit 30 controls the power reception unit 31, the vehicle-side communication unit 32, and the sub power reception unit 33 to perform various processes associated with power supply or various processes associated with power supply stop.
  • the power reception unit 31 is provided at the bottom of the vehicle 1 and has a power reception coil (not shown), and faces the power supply coil of the power supply unit 21 in a non-contact state when supplying power to the storage battery 4.
  • the power reception unit 31 supplies the storage battery 4 with the power supplied from the power supply unit 21 to the power reception coil according to the control of the vehicle-side control unit 30.
  • the sub power receiving unit 33 is provided at the bottom of the vehicle 1 similarly to the power receiving unit 31, and has a sub coil (not shown).
  • the subcoil is provided in the vicinity of the power receiving coil of the power receiving unit 31.
  • the sub power receiving unit 33 collects about several W (watts) of electric power (electric energy) from the power feeding unit 21 using the sub coil.
  • the recovered electric power is electric power that has conventionally been heat lost by a shield surrounding the coil, or electric power that has affected the surroundings as a leakage magnetic field and unnecessary radiation.
  • the sub power receiving unit 33 supplies the collected power to the load 34 according to the control of the vehicle side control unit 30.
  • the sub power receiving unit 33 operates in accordance with the control of the vehicle side control unit 30, similarly to the power receiving unit 31.
  • one sub power receiving unit 33 is provided, but two or more sub power receiving units 33 may be provided.
  • the sub power receiving unit 33 is provided in the power receiving device 3 and collects power in the power receiving unit 31.
  • the sub power receiving unit 33 is provided in the power feeding device 2 and collects power in the power feeding unit 21. It may be.
  • the subcoil is provided in the vicinity of the power supply coil of the power supply unit 31. Then, the sub power receiving unit 33 collects about several W (watts) of power from the power feeding unit 21 using the sub coil.
  • the sub power receiving unit 33 operates according to the control of the power supply side control unit 20, and supplies the recovered power to a load (not shown), for example.
  • the load 34 is a predetermined device that consumes the power collected by the sub power receiving unit 33.
  • the load 34 include a device of the vehicle control unit 30 or the power supply control unit 20 (for example, a microcomputer in a control board).
  • the load 34 may be a heat dissipation resistor, for example.
  • the load 34 is installed in the vicinity of the cooling device provided outside the power receiving device 3 and inside the vehicle 1 or outside the power feeding device 2. In this way, the electric power collected by the sub power receiving unit 33 is moved to another place where the human body is less likely to touch and is dissipated there.
  • the electric power collected by the sub power receiving unit 33 provided in the power receiving device 3 is consumed by a load 34 (for example, a device or a heat radiation resistor of the vehicle side control unit 30) provided on the vehicle side.
  • the power collected by the sub power receiving unit 33 provided in the power feeding device 2 is consumed by a load 34 (for example, a device or a heat radiation resistor of the power feeding side control unit 20) provided on the power feeding device side.
  • FIG. 2 is a block diagram illustrating configurations of the power feeding unit 21 and the power receiving unit 31 according to the embodiment of the present invention.
  • the power feeding unit 21 includes a shield 210, a power feeding coil 211, a power feeding side inverter 212, and a power supply circuit 213.
  • the power supply circuit 213 is a power supply that generates direct current from a household power supply.
  • the power supply circuit 213 generates a DC power supply from AC electric energy of about 100 to 240 V, for example, and outputs it to the power supply side inverter 212.
  • the power feeding side inverter 212 further generates high frequency AC electric energy from the DC electric energy output from the power supply circuit 213 according to the control of the power feeding side control unit 20 in FIG.
  • the feeding coil 211 generates an electromagnetic wave due to the electric energy supplied from the feeding-side inverter 212, and supplies power to the receiving coil 311 of the power receiving unit 31.
  • the shield 210 (an example of a shield member) is a rectangular parallelepiped housing that houses the feeding coil 211 and is made of a material having an electromagnetic wave shielding effect. Thereby, the shield 210 shields electromagnetic waves generated from the feeding coil 211.
  • the power receiving unit 31 includes a shield 310, a power receiving coil 311, a rectifier 312, and a filter circuit 313.
  • the shield 310 (an example of a shield part) is a rectangular parallelepiped housing that houses the power receiving coil 311 and is made of a material having an electromagnetic wave shielding effect. Thereby, the shield 310 shields electromagnetic waves generated from the power receiving coil 311.
  • the power receiving coil 311 supplies the power supplied from the power feeding coil 211 of the power feeding unit 21 to the rectifier 312.
  • the rectifier 312 converts the power from the power receiving coil 311 into DC power and outputs it to the filter circuit 313.
  • the filter circuit 313 filters the power from the rectifier 312 and outputs it to the storage battery 4. As a result, the current output from the filter circuit 313 is supplied to the storage battery 4.
  • the power supply coil 211 and the power reception coil 311 are either a solenoid coil having a winding or a spiral coil.
  • each application example will be described with reference to FIGS. 3A and 3B.
  • FIG. 3A is a perspective view showing a case where a solenoid coil is applied to the power feeding coil 211 and the power receiving coil 311.
  • the power supply coil 211 that is a solenoid coil is referred to as “power supply coil 211a”
  • the power reception coil 311 that is a solenoid coil is referred to as “power reception coil 311a”.
  • the feeding coil 211a is housed in the shield 210
  • the power receiving coil 311a is housed in the shield 310, respectively.
  • the shield 210 and the shield 310 are rectangular parallelepiped, and have two bottom surfaces having a maximum area and four side surfaces. Of the two bottom surfaces of the shield 210, the surface facing the power receiving coil 311a is open. Similarly, of the two bottom surfaces of the shield 310, the surface facing the feeding coil 211a is open. Further, in shield 310, two of the four side surfaces are shown as side surface A and side surface C, but the surface in a positional relationship parallel to side surface A is referred to as side surface B and is opposed to side surface C. The planes that are parallel to each other are called side faces D (the same applies to the shield 210).
  • FIG. 3A when power supply using an electromagnetic force is performed between the power supply coil 211a and the power reception coil 311a, a line of magnetic force f1 (an example of an electromagnetic wave) is generated.
  • a line of magnetic force f1 an example of an electromagnetic wave
  • FIG. 3A only one magnetic field line f1 is shown, but there are many magnetic field lines f1.
  • the magnetic force line f ⁇ b> 1 passes through the side surface A, the side surface B, the side surface C, and the side surface D. And especially the electromagnetic waves of the side A and the side B direction are strong. Therefore, as will be described later with reference to FIG. 6A, it is optimal to arrange the subcoils on the side surface A and the side surface B.
  • FIG. 3B is a perspective view showing a case where a spiral coil is applied to the feeding coil 211 and the receiving coil 311.
  • the power feeding coil 211 that is a spiral coil is referred to as “power feeding coil 211b”
  • the power receiving coil 311 that is a spiral coil is referred to as “power receiving coil 311b”.
  • the feeding coil 211b is accommodated in the shield 210, and the receiving coil 311b is accommodated in the shield 310. Since each surface of the shield 210 and the shield 310 has already been described with reference to FIG. 3A, description thereof is omitted here.
  • FIG. 3B when power supply using electromagnetic force is performed between the power supply coil 211b and the power reception coil 311b, a magnetic force line f2 (an example of an electromagnetic wave) is generated.
  • a magnetic force line f2 (an example of an electromagnetic wave) is generated.
  • the magnetic force line f ⁇ b> 2 passes through the side surface A, the side surface B, the side surface C, and the side surface D.
  • the difference in strength of electromagnetic waves in the direction of the side surface A, the side surface B, the side surface C, and the side surface D is small. Therefore, as will be described later with reference to FIG. 7A, it is optimal to arrange the subcoils on the side surface A, side surface B, side surface C, and side surface D.
  • FIG. 4 is a block diagram illustrating a configuration of the sub power receiving unit 33.
  • the sub power receiving unit 33 includes a sub coil 331, a rectifier 332, and a filter circuit 333.
  • the subcoil 331 collects the electric power supplied from the power supply coil 211 of the power supply unit 21 and supplies it to the rectifier 332.
  • the rectifier 332 converts the power from the subcoil 331 into DC power and outputs it to the filter circuit 333.
  • the filter circuit 333 filters the power from the rectifier 332 and outputs it to the load 34.
  • the load 34 operates using the current output from the filter circuit 313.
  • FIG. 5 is a diagram for explaining an arrangement example of the subcoil 331 and the shield 310.
  • the power receiving coil 311a and the magnetic lines of force f1 in FIG. 3A are not shown. That is, FIG. 5 shows an arrangement example of the subcoils 331 when the power receiving coil is a solenoid coil.
  • the opening surfaces of the two subcoils 331 are parallel to the side surface A and the side surface B on the central axis X of the coil winding of the power receiving coil 311a, respectively. Is arranged.
  • the central axis X of the coil winding is illustrated in FIG. 6A.
  • the side surface A and the side surface B are surfaces through which the lines of magnetic force f1 between the feeding coil 211a and the power receiving coil 311a pass.
  • the sub-coil 331 is arranged on the side surface A and the side surface B through which the magnetic lines of force f1 pass, whereby optimal power reception is possible. The reason is that the electromagnetic waves in the direction of the side surface A and the side surface B are strong as described above.
  • the sub-coil 331 arranged as described above receives power from the power feeding unit 21 in the same manner as the power receiving coil 311a.
  • power that has been lost by heat at the shield surrounding the coil, or power that has been lost as leakage magnetic field and unnecessary radiation (power that the receiving coil could not receive) can be recovered by the subcoil 331.
  • ferrite may be provided between the subcoil 331 and the side surface A and between the subcoil 331 and the side surface B. Thereby, compared with the case where a ferrite is not installed, the electromagnetic waves which pass through the side surfaces A and B can be shielded completely.
  • the shield 310 may be formed of reinforced plastic, and the subcoil 331 may be embedded therein. Thereby, the leakage magnetic field and unnecessary radiation during electric power feeding can be reduced.
  • FIG. 6A is a diagram showing the arrangement shown in FIG. FIG. 6A illustrates the arrangement of the power receiving coil 311a.
  • the two subcoils 331 are arranged in parallel to the side surface A and the side surface B through which the magnetic force lines f1 of the power receiving coil 311a pass inside the shield 310, respectively.
  • FIG. 6A the arrangement of the subcoil 331 in the shield 310 is not limited to FIG. 6A.
  • Other examples are shown in FIGS. 6B and 6C.
  • each subcoil 331a having a size larger than the subcoil 331 may be arranged inside the shield 310 so as to surround the central power receiving coil 311a.
  • Each subcoil 331a is arranged in parallel to the side surface in the vicinity.
  • each subcoil 331 and four subcoils 331b smaller in size than the subcoil 331 may be arranged so as to surround the central power receiving coil 311a, respectively.
  • Each subcoil 331 is arranged in parallel to the side surface in the vicinity, and each subcoil 331 b is arranged at the four corners of the shield 310.
  • the subcoil also on the side surface C and the side surface D where electromagnetic waves are weaker than those in the side surface A and side surface B directions, it is possible to further recover power that has been conventionally lost.
  • FIG. 7A is a diagram showing the arrangement of the subcoil 331 from the top surface of the shield 310, as in FIG. 6A.
  • a power receiving coil 311b which is a spiral coil, is disposed in the center of the shield 310.
  • the four subcoils 331 are arranged so as to surround the central power receiving coil 311b, respectively.
  • each subcoil 331 is disposed in parallel to the side surfaces A, B, C, and D.
  • the side surfaces A, B, C, and D are surfaces through which the lines of magnetic force f2 between the power feeding coil 211a and the power receiving coil 311b pass.
  • the sub-coil 331 is disposed on each of the side surfaces A to D through which the magnetic lines of force f2 pass, whereby optimal power reception is possible. The reason is that, as described above, the difference in strength between the electromagnetic waves in the directions of the side surface A, the side surface B, the side surface C, and the side surface D is small.
  • the arrangement of the subcoil 331 is not limited to FIG. 7A, and may be the arrangement shown in FIG. 7B or 7C.
  • the arrangements shown in FIGS. 7B and 7C are the same as the arrangements shown in FIGS. 6B and 6C, respectively, and thus description thereof is omitted here. According to the arrangements shown in FIG. 7B and FIG. 7C, the power that has been conventionally lost can be further recovered by surrounding the power receiving coil 311a with the sub-coil.
  • the power receiving device is characterized in that a subcoil that receives power from the power feeding device is arranged on the surface through which the magnetic lines of force of the coil pass inside the shield.
  • the power receiving apparatus of this Embodiment can reduce heat_generation
  • the subcoil 331 may be accommodated in the shield 210 and disposed around the feeding coil 211 as shown in any of FIGS. 6A to 7C and FIGS. 7A to 7C.
  • the opening surface of the subcoil 331 is arranged in parallel to the side surface of the shield.
  • the subcoil 331 has the coil winding central axis X of the power receiving coil 311a (see FIG. 6A). If it is above, it may not be arranged parallel to the side surface.
  • the power receiving coil or the power feeding coil is a solenoid coil, the sub-coil may not be in a position parallel to the side surface as long as the sub coil is disposed in the vicinity of the side surface A and the side surface B.
  • the sub-coil may not be in a position parallel to the side surface as long as the sub coil is disposed in the vicinity of the side surface A, the side surface B, the side surface C, and the side surface D. Furthermore, the sub-coil does not have to be in a position parallel to the side surface as long as the sub-coil is arranged so as to surround the power receiving coil or the power feeding coil.
  • the shield 210 and the shield 310 are rectangular parallelepiped, but the shape is not limited to this. For example, other prisms or cylinders, or similar shapes may be used.
  • the shield 310 is not only the power receiving coil 311 but also the rectifier 312, the filter circuit 313, the vehicle side control unit 30, the vehicle side communication unit 32, the rectifier 332 of the sub power receiving unit 33, and the filter circuit 333 of the sub power receiving unit 33.
  • any of the loads 34 may be enclosed.
  • the shield 210 includes not only the power feeding coil 211 but also the power feeding side inverter 212, the power supply circuit 213, the power feeding side control unit 20, the power feeding side communication unit 22, the rectifier 332 of the sub power receiving unit 33, and the sub power receiving unit 33. Any one of the filter circuit 333 and the load 34 may be enclosed.
  • the arrangement order may be “receiving coil” ⁇ “subcoil” ⁇ “shield”.
  • Other devices such as the rectifier 312, the filter circuit 313, the vehicle side control unit 30, the vehicle side communication unit 32, the rectifier 332 of the sub power reception unit 33, the filter circuit 333 of the sub power reception unit 33, and the load 34
  • It may be disposed between the “coil” and the “subcoil”, or may be disposed between the “subcoil” and the “shield”. The same applies to the case where the sub-coil is provided on the power feeding device side.
  • the present invention can be applied to, for example, a power receiving device or a power feeding device as a non-contact charging device used for non-contact charging using electromagnetic force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

This contactless charging device reduces heat generation and can reduce a leakage magnetic field and superfluous radiation. The contactless charging device is used in charging using electromagnetic force, and has: a coil (311a) that generates electromagnetic waves; a shield section (310) that shields the electromagnetic waves; and a subcoil (331) that is disposed on the inside of the shield section (310) and recovers electromagnetic waves as electrical energy. The coil (311a) is a solenoid coil. Also, the subcoil (331) is disposed in the vicinity of two surfaces (A, B) on the central axis (X) of a wound wire of the solenoid coil among the four surfaces (A, B, C, D) that encircle the solenoid coil.

Description

非接触充電装置Non-contact charger
 本発明は、電磁力を利用した非接触充電に用いられる非接触充電装置に関する。 The present invention relates to a non-contact charging device used for non-contact charging using electromagnetic force.
 近年、プラグインHEV(Hybrid Electric Vehicle:ハイブリッド自動車)またはEV(Electric Vehicle:電気自動車)が普及している。そして、外部電源からEVまたはプラグインHEVに搭載された蓄電池へ充電を行う技術として、電磁力(例えば、電磁誘導方式、または磁気共鳴方式(磁界共鳴方式))を利用した非接触充電が知られている。 In recent years, plug-in HEVs (Hybrid Electric Vehicles) or EVs (Electric Vehicles) have become widespread. As a technique for charging a storage battery mounted on an EV or plug-in HEV from an external power source, non-contact charging using electromagnetic force (for example, an electromagnetic induction method or a magnetic resonance method (magnetic resonance method)) is known. ing.
 電磁力を利用した非接触充電では、給電コイルおよび受電コイルを用いるが、給電中にそれらのコイルにて発生する漏洩磁界および不要輻射が問題となる。そこで、例えば特許文献1の技術は、電磁波遮蔽効果のある素材で構成された直方体状のシールド(シールドボックス)によりコイルを囲むことで、漏洩磁界および不要輻射を低減している。 In non-contact charging using electromagnetic force, a power feeding coil and a power receiving coil are used, but leakage magnetic fields and unnecessary radiation generated in those coils during power feeding become a problem. Therefore, for example, the technique of Patent Document 1 reduces the leakage magnetic field and unnecessary radiation by surrounding the coil with a rectangular parallelepiped shield (shield box) made of a material having an electromagnetic wave shielding effect.
特開2011-91999号公報JP 2011-91999 A
 しかしながら、特許文献1の技術は、コイルからの電磁波がコイル付近に存在するシールドに当たることにより、シールドにおいて渦電流が発生する。このため、シールドの電気抵抗によって電力(電気エネルギ)を損失し、損失した電力(電気エネルギ)が熱に変わってシールドが発熱する、という課題がある。 However, in the technique of Patent Document 1, an eddy current is generated in the shield when the electromagnetic wave from the coil hits the shield near the coil. For this reason, there is a problem that power (electric energy) is lost due to the electrical resistance of the shield, and the lost power (electric energy) is changed to heat and the shield generates heat.
 本発明の目的は、発熱を低減し、かつ、漏洩磁界および不要輻射を低減できる非接触充電装置を提供することである。 An object of the present invention is to provide a non-contact charging device capable of reducing heat generation and reducing a leakage magnetic field and unnecessary radiation.
 本発明の一態様に係る非接触充電装置は、電磁力を利用した充電に用いられる非接触充電装置であって、電磁波を発生するコイルと、前記電磁波を電気エネルギとして回収するサブコイルと、を有する構成を採る。 A non-contact charging device according to an aspect of the present invention is a non-contact charging device used for charging using electromagnetic force, and includes a coil that generates an electromagnetic wave and a sub-coil that collects the electromagnetic wave as electric energy. Take the configuration.
 本発明は、発熱を低減し、かつ、漏洩磁界および不要輻射を低減できる。 The present invention can reduce heat generation and reduce leakage magnetic field and unnecessary radiation.
本発明の実施の形態に係る充電システムの構成例を示すブロック図The block diagram which shows the structural example of the charging system which concerns on embodiment of this invention 本発明の実施の形態に係る給電部および受電部の構成例を示すブロック図The block diagram which shows the structural example of the electric power feeding part and power receiving part which concern on embodiment of this invention 本発明の実施の形態に係る給電コイルおよび受電コイルにスパイラルコイルを適用した一例を示す斜視図The perspective view which shows an example which applied the spiral coil to the feed coil and receiving coil which concern on embodiment of this invention 本発明の実施の形態に係る給電コイルおよび受電コイルにソレノイドコイルを適用した一例を示す斜視図The perspective view which shows an example which applied the solenoid coil to the feed coil and receiving coil which concern on embodiment of this invention 本発明の実施の形態に係るサブ受電部の構成例を示すブロック図The block diagram which shows the structural example of the sub power receiving part which concerns on embodiment of this invention 本発明の実施の形態に係るサブコイルおよびシールドの配置例を説明する図The figure explaining the example of arrangement | positioning of the subcoil and shield which concern on embodiment of this invention 本発明の実施の形態に係るソレノイドコイルおよびサブコイルの配置例をそれぞれ示す上面図The top view which shows the example of arrangement | positioning of the solenoid coil which concerns on embodiment of this invention, and a subcoil, respectively 本発明の実施の形態に係るスパイラルコイルおよびサブコイルの配置例をそれぞれ示す上面図The top view which shows the example of arrangement | positioning of the spiral coil which concerns on embodiment of this invention, and a subcoil, respectively
 (実施の形態)
 以下、本発明の実施の形態について、図面を参照して説明する。
(Embodiment)
Embodiments of the present invention will be described below with reference to the drawings.
 <充電システム100の構成>
 図1は、本発明の実施の形態に係る充電システム100の構成を示すブロック図である。
<Configuration of charging system 100>
FIG. 1 is a block diagram showing a configuration of a charging system 100 according to an embodiment of the present invention.
 充電システム100は、車両1、給電装置2、受電装置3、および蓄電池4を有する。 The charging system 100 includes a vehicle 1, a power feeding device 2, a power receiving device 3, and a storage battery 4.
 車両1は、受電装置3および蓄電池4を有し、蓄電池4を動力源として走行する。車両1は、例えば、PEV(Plug-in Electric Vehicle)またはEV(Electric Vehicle)といった蓄電池4の電力で走行する自動車である。 The vehicle 1 has a power receiving device 3 and a storage battery 4 and travels using the storage battery 4 as a power source. The vehicle 1 is an automobile that runs on the power of the storage battery 4 such as PEV (Plug-in Electric Vehicle) or EV (Electric Vehicle), for example.
 給電装置2は、例えば駐車スペースに設けられ、車両1の駐車中に、受電装置3に対して給電する。給電装置2の詳細は後述する。 The power feeding device 2 is provided in a parking space, for example, and feeds power to the power receiving device 3 while the vehicle 1 is parked. Details of the power supply device 2 will be described later.
 受電装置3は、給電装置2から給電される電力を蓄電池4に供給する。受電装置3の詳細は後述する。なお、図1の例では、負荷34を受電装置3に備える例としているが、負荷34は、受電装置3外またはサブ受電部33内に備えるようにしてもよい。 The power receiving device 3 supplies power supplied from the power supply device 2 to the storage battery 4. Details of the power receiving device 3 will be described later. In the example of FIG. 1, the load 34 is provided in the power receiving device 3, but the load 34 may be provided outside the power receiving device 3 or in the sub power receiving unit 33.
 蓄電池4は、受電装置3により供給される電力を蓄える。 The storage battery 4 stores the power supplied by the power receiving device 3.
 このように、給電装置2および受電装置3は、電磁力を利用した非接触充電に用いられるので、「非接触充電装置」ということができる。電磁力を利用した非接触充電としては、電磁誘導方式だけでなく、磁気共鳴方式(磁界共鳴方式)であっても、本発明は適用可能である。 Thus, since the power feeding device 2 and the power receiving device 3 are used for non-contact charging using electromagnetic force, they can be called “non-contact charging devices”. As the non-contact charging using electromagnetic force, the present invention can be applied not only to the electromagnetic induction method but also to the magnetic resonance method (magnetic field resonance method).
 <給電装置2の構成>
 給電装置2は、給電側制御部20、給電部21、および給電側通信部22を有する。
<Configuration of power feeding device 2>
The power feeding device 2 includes a power feeding side control unit 20, a power feeding unit 21, and a power feeding side communication unit 22.
 給電側通信部22は、車両側通信部32からの給電開始信号または給電停止信号を受信する。給電側通信部22は、受信した給電開始信号または給電停止信号を給電側制御部20に出力する。 The power supply side communication unit 22 receives a power supply start signal or a power supply stop signal from the vehicle side communication unit 32. The power supply side communication unit 22 outputs the received power supply start signal or power supply stop signal to the power supply side control unit 20.
 給電側制御部20は、給電側通信部22から入力した給電開始信号に従って、給電部21に対して給電を開始するように制御する。給電側制御部20は、給電側通信部22から入力した給電停止信号に従って、給電部21に対して給電を停止するように制御する。なお、給電側制御部20は、車両1からの指示に応じて給電の開始/停止を制御するのみならず、自己の判断で給電の開始/停止を制御してもよい。すなわち、給電側制御部20は、給電コイルと対向する位置に受電コイルが存在することを確認したうえで、給電を開始するように制御し、給電側通信部22に給電開始信号を出力する。また、給電側制御部20は、正常に給電できていないことを判断すれば、給電を停止するように制御し、給電側通信部22に給電停止信号を出力する。 The power supply side control unit 20 controls the power supply unit 21 to start power supply in accordance with the power supply start signal input from the power supply side communication unit 22. The power supply side control unit 20 controls the power supply unit 21 to stop power supply in accordance with the power supply stop signal input from the power supply side communication unit 22. The power supply side control unit 20 may control not only the start / stop of power supply in accordance with an instruction from the vehicle 1 but also the start / stop of power supply based on its own judgment. That is, the power supply side control unit 20 confirms that the power reception coil exists at a position facing the power supply coil, and then controls to start power supply, and outputs a power supply start signal to the power supply side communication unit 22. In addition, if the power supply side control unit 20 determines that the power supply is not normally performed, the power supply side control unit 20 performs control so as to stop the power supply, and outputs a power supply stop signal to the power supply side communication unit 22.
 給電部21は、地表gから露出するように地面上に設置もしくは埋設される。給電部21は、給電コイル(図示略)を有する。給電部21は、給電側制御部20の制御に従って、給電コイルに所定の周波数の電流を供給することにより、電磁力を利用して受電部31に給電する。この給電は、例えば、電磁誘導方式、もしくは磁気共鳴方式(磁界共鳴方式)にて行われる。給電部21および給電コイルの詳細は後述する。 The power feeding unit 21 is installed or buried on the ground so as to be exposed from the ground surface g. The power feeding unit 21 has a power feeding coil (not shown). The power feeding unit 21 feeds power to the power receiving unit 31 using electromagnetic force by supplying a current having a predetermined frequency to the power feeding coil according to the control of the power feeding side control unit 20. This power supply is performed by, for example, an electromagnetic induction method or a magnetic resonance method (magnetic resonance method). Details of the power supply unit 21 and the power supply coil will be described later.
 <受電装置3の構成>
 受電装置3は、車両側制御部30、受電部31、車両側通信部32、サブ受電部33、および負荷34を有する。
<Configuration of power receiving device 3>
The power reception device 3 includes a vehicle side control unit 30, a power reception unit 31, a vehicle side communication unit 32, a sub power reception unit 33, and a load 34.
 車両側通信部32は、車両側制御部30の制御に従って、給電開始信号または給電停止信号を生成し、生成した給電開始信号または給電停止信号を給電側通信部22に送信する。また、車両側通信部32は、給電側制御部20が自己の判断で給電の開始/停止を制御した場合には、給電側通信部22から、給電開始信号または給電停止信号を受信することもある。 The vehicle side communication unit 32 generates a power supply start signal or a power supply stop signal according to the control of the vehicle side control unit 30 and transmits the generated power supply start signal or power supply stop signal to the power supply side communication unit 22. Further, the vehicle-side communication unit 32 may receive a power supply start signal or a power supply stop signal from the power supply side communication unit 22 when the power supply side control unit 20 controls the start / stop of power supply by its own judgment. is there.
 車両側制御部30は、受電部31、車両側通信部32、およびサブ受電部33に対して、給電に伴う各種処理または給電停止に伴う各種処理を行うように制御する。 The vehicle-side control unit 30 controls the power reception unit 31, the vehicle-side communication unit 32, and the sub power reception unit 33 to perform various processes associated with power supply or various processes associated with power supply stop.
 受電部31は、車両1の底部に設けられ、受電コイル(図示略)を有するとともに、蓄電池4に給電する際に、給電部21の給電コイルと非接触状態で対向する。受電部31は、車両側制御部30の制御に従って、給電部21から受電コイルに給電された電力を蓄電池4に供給する。 The power reception unit 31 is provided at the bottom of the vehicle 1 and has a power reception coil (not shown), and faces the power supply coil of the power supply unit 21 in a non-contact state when supplying power to the storage battery 4. The power reception unit 31 supplies the storage battery 4 with the power supplied from the power supply unit 21 to the power reception coil according to the control of the vehicle-side control unit 30.
 サブ受電部33は、受電部31と同様に車両1の底部に設けられ、サブコイル(図示略)を有する。サブコイルは、受電部31の受電コイル付近に設けられる。サブ受電部33は、サブコイルを用いて、給電部21からの電力(電気エネルギ)を数W(ワット)程度回収する。回収した電力は、従来、コイルを囲うシールドで熱損失していた電力、または、漏洩磁界および不要輻射として周囲に影響を及ぼしていた電力である。サブ受電部33は、車両側制御部30の制御に従って、回収した電力を負荷34に供給する。サブ受電部33は、受電部31と同様に、車両側制御部30の制御に従って動作する。 The sub power receiving unit 33 is provided at the bottom of the vehicle 1 similarly to the power receiving unit 31, and has a sub coil (not shown). The subcoil is provided in the vicinity of the power receiving coil of the power receiving unit 31. The sub power receiving unit 33 collects about several W (watts) of electric power (electric energy) from the power feeding unit 21 using the sub coil. The recovered electric power is electric power that has conventionally been heat lost by a shield surrounding the coil, or electric power that has affected the surroundings as a leakage magnetic field and unnecessary radiation. The sub power receiving unit 33 supplies the collected power to the load 34 according to the control of the vehicle side control unit 30. The sub power receiving unit 33 operates in accordance with the control of the vehicle side control unit 30, similarly to the power receiving unit 31.
 なお、図1の例では、サブ受電部33は、1つ設けられる例としたが、2つ以上設けられてもよい。また、図1の例では、サブ受電部33は、受電装置3に設けられ、受電部31における電力を回収する例としたが、給電装置2に設けられ、給電部21における電力を回収するようにしてもよい。この場合、サブコイルは、給電部31の給電コイル付近に設けられる。そして、サブ受電部33は、サブコイルを用いて、給電部21からの電力を数W(ワット)程度回収する。サブ受電部33は、給電側制御部20の制御に従って動作し、例えば、回収した電力を負荷(図示略)に供給する。 In the example of FIG. 1, one sub power receiving unit 33 is provided, but two or more sub power receiving units 33 may be provided. In the example of FIG. 1, the sub power receiving unit 33 is provided in the power receiving device 3 and collects power in the power receiving unit 31. However, the sub power receiving unit 33 is provided in the power feeding device 2 and collects power in the power feeding unit 21. It may be. In this case, the subcoil is provided in the vicinity of the power supply coil of the power supply unit 31. Then, the sub power receiving unit 33 collects about several W (watts) of power from the power feeding unit 21 using the sub coil. The sub power receiving unit 33 operates according to the control of the power supply side control unit 20, and supplies the recovered power to a load (not shown), for example.
 負荷34は、サブ受電部33にて回収した電力を消費する所定のデバイスである。負荷34は、例えば、車両側制御部30または給電側制御部20のデバイス(例えば、制御基板内にあるマイコン)などが挙げられる。または、負荷34は、例えば、放熱抵抗であってもよい。ただし、この場合、負荷34の設置場所は、受電装置3外で車両1内、または、給電装置2外に備えられている冷却装置付近とする。このように、サブ受電部33で回収した電力は、人体の触れる可能性が低い別の場所へ移され、そこで放熱させられる。なお、受電装置3に設けられたサブ受電部33で回収した電力は、車両側に設けられた負荷34(例えば、車両側制御部30のデバイスまたは放熱抵抗)で消費される。また、給電装置2に設けられたサブ受電部33で回収した電力は、給電装置側に設けられた負荷34(例えば、給電側制御部20のデバイスまたは放熱抵抗)で消費される。 The load 34 is a predetermined device that consumes the power collected by the sub power receiving unit 33. Examples of the load 34 include a device of the vehicle control unit 30 or the power supply control unit 20 (for example, a microcomputer in a control board). Alternatively, the load 34 may be a heat dissipation resistor, for example. However, in this case, the load 34 is installed in the vicinity of the cooling device provided outside the power receiving device 3 and inside the vehicle 1 or outside the power feeding device 2. In this way, the electric power collected by the sub power receiving unit 33 is moved to another place where the human body is less likely to touch and is dissipated there. The electric power collected by the sub power receiving unit 33 provided in the power receiving device 3 is consumed by a load 34 (for example, a device or a heat radiation resistor of the vehicle side control unit 30) provided on the vehicle side. In addition, the power collected by the sub power receiving unit 33 provided in the power feeding device 2 is consumed by a load 34 (for example, a device or a heat radiation resistor of the power feeding side control unit 20) provided on the power feeding device side.
 <給電部21および受電部31の構成>
 図2は、本発明の実施の形態に係る給電部21および受電部31の構成を示すブロック図である。
<Configuration of the power feeding unit 21 and the power receiving unit 31>
FIG. 2 is a block diagram illustrating configurations of the power feeding unit 21 and the power receiving unit 31 according to the embodiment of the present invention.
 給電部21は、シールド210、給電コイル211、給電側インバータ212、および電源回路213を有する。 The power feeding unit 21 includes a shield 210, a power feeding coil 211, a power feeding side inverter 212, and a power supply circuit 213.
 電源回路213は、家庭用電源から直流を発生させる電源である。電源回路213は、例えば100~240V程度の交流の電気エネルギから直流電源を生成し、給電側インバータ212へ出力する。 The power supply circuit 213 is a power supply that generates direct current from a household power supply. The power supply circuit 213 generates a DC power supply from AC electric energy of about 100 to 240 V, for example, and outputs it to the power supply side inverter 212.
 給電側インバータ212は、電源回路213から出力された直流の電気エネルギを、図1の給電側制御部20の制御に従って、さらに高周波交流の電気エネルギを生成して、給電コイル211に供給する。 The power feeding side inverter 212 further generates high frequency AC electric energy from the DC electric energy output from the power supply circuit 213 according to the control of the power feeding side control unit 20 in FIG.
 給電コイル211は、給電側インバータ212から供給された電気エネルギによって電磁波が生じ、受電部31の受電コイル311に電力を供給する。 The feeding coil 211 generates an electromagnetic wave due to the electric energy supplied from the feeding-side inverter 212, and supplies power to the receiving coil 311 of the power receiving unit 31.
 シールド210(シールド部材の一例)は、給電コイル211を収容する直方体状の筐体であり、電磁波遮蔽効果のある素材で構成される。これにより、シールド210は、給電コイル211から発生する電磁波を遮蔽する。 The shield 210 (an example of a shield member) is a rectangular parallelepiped housing that houses the feeding coil 211 and is made of a material having an electromagnetic wave shielding effect. Thereby, the shield 210 shields electromagnetic waves generated from the feeding coil 211.
 受電部31は、シールド310、受電コイル311、整流器312、およびフィルタ回路313を有する。 The power receiving unit 31 includes a shield 310, a power receiving coil 311, a rectifier 312, and a filter circuit 313.
 シールド310(シールド部の一例)は、シールド210と同じく、受電コイル311を収容する直方体状の筐体であり、電磁波遮蔽効果のある素材で構成される。これにより、シールド310は、受電コイル311から発生する電磁波を遮蔽する。 Like the shield 210, the shield 310 (an example of a shield part) is a rectangular parallelepiped housing that houses the power receiving coil 311 and is made of a material having an electromagnetic wave shielding effect. Thereby, the shield 310 shields electromagnetic waves generated from the power receiving coil 311.
 受電コイル311は、給電部21の給電コイル211から供給された電力を整流器312に供給する。 The power receiving coil 311 supplies the power supplied from the power feeding coil 211 of the power feeding unit 21 to the rectifier 312.
 整流器312は、受電コイル311からの電力を直流の電力に変換し、フィルタ回路313へ出力する。 The rectifier 312 converts the power from the power receiving coil 311 into DC power and outputs it to the filter circuit 313.
 フィルタ回路313は、整流器312からの電力をフィルタ処理し、蓄電池4に出力する。これにより、蓄電池4には、フィルタ回路313から出力された電流が供給される。 The filter circuit 313 filters the power from the rectifier 312 and outputs it to the storage battery 4. As a result, the current output from the filter circuit 313 is supplied to the storage battery 4.
 本実施の形態において、給電コイル211および受電コイル311は、巻線を有するソレノイドコイル、またはスパイラルコイルのいずれかを適用する。以下、図3Aおよび図3Bを参照して、それぞれの適用例について説明する。 In this embodiment, the power supply coil 211 and the power reception coil 311 are either a solenoid coil having a winding or a spiral coil. Hereinafter, each application example will be described with reference to FIGS. 3A and 3B.
 図3Aは、給電コイル211および受電コイル311にソレノイドコイルを適用した場合を示す斜視図である。以下、ソレノイドコイルである給電コイル211を「給電コイル211a」、ソレノイドコイルである受電コイル311を「受電コイル311a」という。 FIG. 3A is a perspective view showing a case where a solenoid coil is applied to the power feeding coil 211 and the power receiving coil 311. Hereinafter, the power supply coil 211 that is a solenoid coil is referred to as “power supply coil 211a”, and the power reception coil 311 that is a solenoid coil is referred to as “power reception coil 311a”.
 図3Aにおいて、給電コイル211aはシールド210に、受電コイル311aはシールド310にそれぞれ収容されている。シールド210およびシールド310は、直方体型であり、最大面積を有する2つの底面と、4つの側面とを有する。シールド210の2つの底面のうち、受電コイル311aと向き合う面は、開口している。同様に、シールド310の2つの底面のうち、給電コイル211aと向き合う面は、開口している。また、シールド310において、4つの側面のうちの2つを側面A、側面Cとして示しているが、側面Aと相対して平行な位置関係にある面は側面Bといい、側面Cと相対して平行な位置関係にある面は側面Dという(シールド210も同様)。 3A, the feeding coil 211a is housed in the shield 210, and the power receiving coil 311a is housed in the shield 310, respectively. The shield 210 and the shield 310 are rectangular parallelepiped, and have two bottom surfaces having a maximum area and four side surfaces. Of the two bottom surfaces of the shield 210, the surface facing the power receiving coil 311a is open. Similarly, of the two bottom surfaces of the shield 310, the surface facing the feeding coil 211a is open. Further, in shield 310, two of the four side surfaces are shown as side surface A and side surface C, but the surface in a positional relationship parallel to side surface A is referred to as side surface B and is opposed to side surface C. The planes that are parallel to each other are called side faces D (the same applies to the shield 210).
 図3Aにおいて、給電コイル211aと受電コイル311aの間で電磁力を利用した給電が行われると、磁力線f1(電磁波の一例)が発生する。なお、図3Aでは、磁力線f1を1つのみ示しているが、磁力線f1は、多数存在している。シールド210およびシールド310において、磁力線f1は、側面A、側面B、側面C、および側面Dを通る。そして、特に、側面Aおよび側面B方向の電磁波が強い。したがって、図6Aを用いて後述するが、側面Aおよび側面Bにサブコイルを配置するのが最適である。 In FIG. 3A, when power supply using an electromagnetic force is performed between the power supply coil 211a and the power reception coil 311a, a line of magnetic force f1 (an example of an electromagnetic wave) is generated. In FIG. 3A, only one magnetic field line f1 is shown, but there are many magnetic field lines f1. In the shield 210 and the shield 310, the magnetic force line f <b> 1 passes through the side surface A, the side surface B, the side surface C, and the side surface D. And especially the electromagnetic waves of the side A and the side B direction are strong. Therefore, as will be described later with reference to FIG. 6A, it is optimal to arrange the subcoils on the side surface A and the side surface B.
 図3Bは、給電コイル211および受電コイル311にスパイラルコイルを適用した場合を示す斜視図である。以下、スパイラルコイルである給電コイル211を「給電コイル211b」、スパイラルコイルである受電コイル311を「受電コイル311b」という。 FIG. 3B is a perspective view showing a case where a spiral coil is applied to the feeding coil 211 and the receiving coil 311. Hereinafter, the power feeding coil 211 that is a spiral coil is referred to as “power feeding coil 211b”, and the power receiving coil 311 that is a spiral coil is referred to as “power receiving coil 311b”.
 図3Bにおいて、給電コイル211bはシールド210に、受電コイル311bはシールド310にそれぞれ収容されている。シールド210およびシールド310の各面については、図3Aで説明済みであるので、ここでの説明は省略する。 3B, the feeding coil 211b is accommodated in the shield 210, and the receiving coil 311b is accommodated in the shield 310. Since each surface of the shield 210 and the shield 310 has already been described with reference to FIG. 3A, description thereof is omitted here.
 図3Bにおいて、給電コイル211bと受電コイル311bの間で電磁力を利用した給電が行われると、磁力線f2(電磁波の一例)が発生する。なお、図3Bでは、磁力線f2を2つのみ示しているが、磁力線f2は、多数存在している。シールド210およびシールド310において、磁力線f2は、側面A、側面B、側面C、および側面Dを通る。ただし、上述したソレノイドコイルの場合と比較して、スパイラルコイルの場合、側面A、側面B、側面C、および側面D方向の電磁波の強弱の差は小さい。したがって、図7Aを用いて後述するが、側面A、側面B、側面C、および側面Dにサブコイルを配置するのが最適である。 In FIG. 3B, when power supply using electromagnetic force is performed between the power supply coil 211b and the power reception coil 311b, a magnetic force line f2 (an example of an electromagnetic wave) is generated. In FIG. 3B, only two lines of magnetic force f2 are shown, but there are many lines of magnetic force f2. In the shield 210 and the shield 310, the magnetic force line f <b> 2 passes through the side surface A, the side surface B, the side surface C, and the side surface D. However, as compared with the case of the solenoid coil described above, in the case of the spiral coil, the difference in strength of electromagnetic waves in the direction of the side surface A, the side surface B, the side surface C, and the side surface D is small. Therefore, as will be described later with reference to FIG. 7A, it is optimal to arrange the subcoils on the side surface A, side surface B, side surface C, and side surface D.
 <サブ受電部33の構成>
 図4は、サブ受電部33の構成を示すブロック図である。
<Configuration of sub power receiving unit 33>
FIG. 4 is a block diagram illustrating a configuration of the sub power receiving unit 33.
 サブ受電部33は、サブコイル331、整流器332、およびフィルタ回路333を有する。 The sub power receiving unit 33 includes a sub coil 331, a rectifier 332, and a filter circuit 333.
 サブコイル331は、給電部21の給電コイル211から供給された電力を回収し、整流器332に供給する。 The subcoil 331 collects the electric power supplied from the power supply coil 211 of the power supply unit 21 and supplies it to the rectifier 332.
 整流器332は、サブコイル331からの電力を直流の電力に変換し、フィルタ回路333へ出力する。 The rectifier 332 converts the power from the subcoil 331 into DC power and outputs it to the filter circuit 333.
 フィルタ回路333は、整流器332からの電力をフィルタ処理し、負荷34に出力する。これにより、負荷34は、フィルタ回路313から出力された電流を用いて動作する。 The filter circuit 333 filters the power from the rectifier 332 and outputs it to the load 34. As a result, the load 34 operates using the current output from the filter circuit 313.
 <サブコイル331の配置>
 図5は、サブコイル331およびシールド310の配置例を説明する図である。なお、図5では、図3Aにおける受電コイル311aおよび磁力線f1の図示を省略している。すなわち、図5は、受電コイルがソレノイドコイルである場合におけるサブコイル331の配置例を示す。
<Arrangement of subcoil 331>
FIG. 5 is a diagram for explaining an arrangement example of the subcoil 331 and the shield 310. In FIG. 5, the power receiving coil 311a and the magnetic lines of force f1 in FIG. 3A are not shown. That is, FIG. 5 shows an arrangement example of the subcoils 331 when the power receiving coil is a solenoid coil.
 図5に示すように、シールド310の内側において、2つのサブコイル331の開口面が、それぞれ、受電コイル311aのコイル巻き線の中心軸X上にある側面Aおよび側面Bに対して平行になるように配置されている。なお、コイル巻き線の中心軸Xは、図6Aに図示している。側面Aおよび側面Bは、上述したとおり、給電コイル211aと受電コイル311aの間の磁力線f1が通る面である。このように、受電コイルがソレノイドコイルである場合、サブコイル331は、磁力線f1が通る側面Aおよび側面Bにそれぞれ配置されることで、最適な受電が可能となる。その理由は、上述したとおり、側面Aおよび側面B方向の電磁波が強いからである。 As shown in FIG. 5, inside the shield 310, the opening surfaces of the two subcoils 331 are parallel to the side surface A and the side surface B on the central axis X of the coil winding of the power receiving coil 311a, respectively. Is arranged. The central axis X of the coil winding is illustrated in FIG. 6A. As described above, the side surface A and the side surface B are surfaces through which the lines of magnetic force f1 between the feeding coil 211a and the power receiving coil 311a pass. As described above, when the power receiving coil is a solenoid coil, the sub-coil 331 is arranged on the side surface A and the side surface B through which the magnetic lines of force f1 pass, whereby optimal power reception is possible. The reason is that the electromagnetic waves in the direction of the side surface A and the side surface B are strong as described above.
 上述したように配置されたサブコイル331は、受電コイル311aと同様に、給電部21からの電力を受電する。これにより、従来、コイルを囲うシールドで熱損失していた電力、または、漏洩磁界および不要輻射として損失していた電力(受電コイルが受電できなかった電力)をサブコイル331で回収することができる。 The sub-coil 331 arranged as described above receives power from the power feeding unit 21 in the same manner as the power receiving coil 311a. As a result, conventionally, power that has been lost by heat at the shield surrounding the coil, or power that has been lost as leakage magnetic field and unnecessary radiation (power that the receiving coil could not receive) can be recovered by the subcoil 331.
 なお、図5において、サブコイル331と側面Aとの間、および、サブコイル331と側面Bとの間に、フェライトを設置するようにしてもよい。これにより、フェライトを設置しない場合と比べ、側面A、Bを通る電磁波を完全に遮蔽することができる。 In FIG. 5, ferrite may be provided between the subcoil 331 and the side surface A and between the subcoil 331 and the side surface B. Thereby, compared with the case where a ferrite is not installed, the electromagnetic waves which pass through the side surfaces A and B can be shielded completely.
 または、図5において、シールド310を強化プラスチックで形成し、その中にサブコイル331を埋め込んでもよい。これにより、給電中における漏洩磁界および不要輻射を低減できる。 Alternatively, in FIG. 5, the shield 310 may be formed of reinforced plastic, and the subcoil 331 may be embedded therein. Thereby, the leakage magnetic field and unnecessary radiation during electric power feeding can be reduced.
 図6Aは、図5に示す配置をシールド310の上面から示した図である。図6Aでは、受電コイル311aの配置を図示している。図6Aに示すように、2つのサブコイル331は、それぞれ、シールド310の内側において、受電コイル311aの磁力線f1が通る側面Aおよび側面Bに対して平行に配置されている。 FIG. 6A is a diagram showing the arrangement shown in FIG. FIG. 6A illustrates the arrangement of the power receiving coil 311a. As shown in FIG. 6A, the two subcoils 331 are arranged in parallel to the side surface A and the side surface B through which the magnetic force lines f1 of the power receiving coil 311a pass inside the shield 310, respectively.
 なお、シールド310におけるサブコイル331の配置は、図6Aに限られない。その他の例を、図6Bおよび図6Cに示す。 Note that the arrangement of the subcoil 331 in the shield 310 is not limited to FIG. 6A. Other examples are shown in FIGS. 6B and 6C.
 例えば、図6Bに示すように、シールド310の内側において、サブコイル331よりもサイズが大きい4つのサブコイル331aが、それぞれ、中央の受電コイル311aを囲むように配置されてもよい。各サブコイル331aは、近傍の側面に対して平行に配置されている。 For example, as shown in FIG. 6B, four subcoils 331a having a size larger than the subcoil 331 may be arranged inside the shield 310 so as to surround the central power receiving coil 311a. Each subcoil 331a is arranged in parallel to the side surface in the vicinity.
 または、図6Cに示すように、シールド310の内側において、4つのサブコイル331と、サブコイル331よりもサイズが小さい4つのサブコイル331bが、それぞれ、中央の受電コイル311aを囲むように配置されてもよい。各サブコイル331は、近傍の側面に対して平行に配置されており、また、各サブコイル331bは、シールド310の四隅に配置されている。このように、側面Aおよび側面B方向に比べて電磁波が弱い側面Cおよび側面Dにもサブコイルを配置することによって、従来損失していた電力をさらに回収することができる。 Alternatively, as illustrated in FIG. 6C, inside the shield 310, four subcoils 331 and four subcoils 331b smaller in size than the subcoil 331 may be arranged so as to surround the central power receiving coil 311a, respectively. . Each subcoil 331 is arranged in parallel to the side surface in the vicinity, and each subcoil 331 b is arranged at the four corners of the shield 310. As described above, by arranging the subcoil also on the side surface C and the side surface D where electromagnetic waves are weaker than those in the side surface A and side surface B directions, it is possible to further recover power that has been conventionally lost.
 次に、受電コイルがスパイラルコイルである場合のサブコイルの配置例について、図7を用いて説明する。図7Aは、図6Aと同様、サブコイル331の配置をシールド310の上面から示した図である。図7Aにおいて、シールド310の中央には、スパイラルコイルである受電コイル311bが配置されている。 Next, an example of the arrangement of subcoils when the power receiving coil is a spiral coil will be described with reference to FIG. FIG. 7A is a diagram showing the arrangement of the subcoil 331 from the top surface of the shield 310, as in FIG. 6A. In FIG. 7A, a power receiving coil 311b, which is a spiral coil, is disposed in the center of the shield 310.
 図7Aに示すように、シールド310の内側において、4つのサブコイル331は、それぞれ、中央の受電コイル311bを囲むように配置されている。このとき、各サブコイル331は、側面A、B、C、Dに対して平行に配置されている。側面A、B、C、Dは、上述したとおり、給電コイル211aと受電コイル311bの間の磁力線f2が通る面である。このように、受電コイルがスパイラルコイルである場合、サブコイル331は、磁力線f2が通る側面A~Dにそれぞれ配置されることで、最適な受電が可能となる。その理由は、上述したとおり、側面A、側面B、側面C、および側面D方向の電磁波の強弱の差が小さいからである。 7A, inside the shield 310, the four subcoils 331 are arranged so as to surround the central power receiving coil 311b, respectively. At this time, each subcoil 331 is disposed in parallel to the side surfaces A, B, C, and D. As described above, the side surfaces A, B, C, and D are surfaces through which the lines of magnetic force f2 between the power feeding coil 211a and the power receiving coil 311b pass. As described above, when the power receiving coil is a spiral coil, the sub-coil 331 is disposed on each of the side surfaces A to D through which the magnetic lines of force f2 pass, whereby optimal power reception is possible. The reason is that, as described above, the difference in strength between the electromagnetic waves in the directions of the side surface A, the side surface B, the side surface C, and the side surface D is small.
 なお、サブコイル331の配置は、図7Aに限られず、図7Bまたは図7Cに示す配置であってもよい。図7Bおよび図7Cに示す配置は、それぞれ、図6Bおよび図6Cに示す配置と同じであるので、ここでの説明は省略する。図7Bおよび図7Cに示す配置によれば、受電コイル311aの周囲をサブコイルで囲むことで、従来損失していた電力をさらに回収することができる。 The arrangement of the subcoil 331 is not limited to FIG. 7A, and may be the arrangement shown in FIG. 7B or 7C. The arrangements shown in FIGS. 7B and 7C are the same as the arrangements shown in FIGS. 6B and 6C, respectively, and thus description thereof is omitted here. According to the arrangements shown in FIG. 7B and FIG. 7C, the power that has been conventionally lost can be further recovered by surrounding the power receiving coil 311a with the sub-coil.
 以上説明したように、本実施の形態に係る受電装置は、シールドの内側において、コイルの磁力線が通る面に、給電装置からの電力を受電するサブコイルを配置することを特徴とする。これにより、本実施の形態の受電装置は、発熱を低減し、かつ、漏洩磁界および不要輻射を遮蔽することができる。 As described above, the power receiving device according to the present embodiment is characterized in that a subcoil that receives power from the power feeding device is arranged on the surface through which the magnetic lines of force of the coil pass inside the shield. Thereby, the power receiving apparatus of this Embodiment can reduce heat_generation | fever and can shield a leakage magnetic field and unnecessary radiation.
 以上、本発明の実施の形態について説明したが、上記説明は一例であり、種々の変形が可能である。 Although the embodiment of the present invention has been described above, the above description is an example, and various modifications are possible.
 例えば、上記実施の形態では、サブコイル331を、受電装置3に適用した場合を説明したが、給電装置2に適用してもよい。すなわち、本発明は、サブコイル331を、シールド210に収容して給電コイル211の周囲において、図6A~Cおよび図7A~Cのいずれかに示すように配置してもよい。 For example, in the above-described embodiment, the case where the subcoil 331 is applied to the power receiving device 3 has been described, but may be applied to the power feeding device 2. That is, according to the present invention, the subcoil 331 may be accommodated in the shield 210 and disposed around the feeding coil 211 as shown in any of FIGS. 6A to 7C and FIGS. 7A to 7C.
 また、例えば、上記実施の形態では、サブコイル331の開口面をシールドの側面に対して平行に配置する例としたが、サブコイル331が受電コイル311aのコイル巻き線の中心軸X(図6A参照)上にあれば、側面に平行な配置でなくてもよい。例えば、受電コイルまたは給電コイルがソレノイドコイルの場合、サブコイルは、側面Aと側面Bの付近に配置されれば、側面に平行な位置でなくてもよい。また、例えば、受電コイルまたは給電コイルがスパイラルコイルの場合、サブコイルは、側面A、側面B、側面C、および側面Dの付近に配置されれば、側面に平行な位置でなくてもよい。さらには、サブコイルは、受電コイルまたは給電コイルの周囲を囲むように配置されれば、側面に平行な位置でなくてもよい。 Further, for example, in the above embodiment, the opening surface of the subcoil 331 is arranged in parallel to the side surface of the shield. However, the subcoil 331 has the coil winding central axis X of the power receiving coil 311a (see FIG. 6A). If it is above, it may not be arranged parallel to the side surface. For example, when the power receiving coil or the power feeding coil is a solenoid coil, the sub-coil may not be in a position parallel to the side surface as long as the sub coil is disposed in the vicinity of the side surface A and the side surface B. In addition, for example, when the power receiving coil or the power feeding coil is a spiral coil, the sub-coil may not be in a position parallel to the side surface as long as the sub coil is disposed in the vicinity of the side surface A, the side surface B, the side surface C, and the side surface D. Furthermore, the sub-coil does not have to be in a position parallel to the side surface as long as the sub-coil is arranged so as to surround the power receiving coil or the power feeding coil.
 また、例えば、上記実施の形態では、シールド210およびシールド310を直方体型としたが、形状がこれに限定されない。例えば、その他の角柱型または円柱型、あるいは、それらに類似する形状であってもよい。 For example, in the above embodiment, the shield 210 and the shield 310 are rectangular parallelepiped, but the shape is not limited to this. For example, other prisms or cylinders, or similar shapes may be used.
 また、例えば、シールド310は、受電コイル311だけでなく、整流器312、フィルタ回路313、車両側制御部30、車両側通信部32、サブ受電部33の整流器332、サブ受電部33のフィルタ回路333、および負荷34のうち任意のものを囲むようにしてもよい。同様に、例えば、シールド210は、給電コイル211だけでなく、給電側インバータ212、電源回路213、給電側制御部20、給電側通信部22、サブ受電部33の整流器332、サブ受電部33のフィルタ回路333、および負荷34のうち任意のものを囲むようにしてもよい。 Further, for example, the shield 310 is not only the power receiving coil 311 but also the rectifier 312, the filter circuit 313, the vehicle side control unit 30, the vehicle side communication unit 32, the rectifier 332 of the sub power receiving unit 33, and the filter circuit 333 of the sub power receiving unit 33. , And any of the loads 34 may be enclosed. Similarly, for example, the shield 210 includes not only the power feeding coil 211 but also the power feeding side inverter 212, the power supply circuit 213, the power feeding side control unit 20, the power feeding side communication unit 22, the rectifier 332 of the sub power receiving unit 33, and the sub power receiving unit 33. Any one of the filter circuit 333 and the load 34 may be enclosed.
 また、上記実施の形態において、配置の順番は、「受電コイル」→「サブコイル」→「シールド」となっていればよい。また、その他デバイス(整流器312、フィルタ回路313、車両側制御部30、車両側通信部32、サブ受電部33の整流器332、サブ受電部33のフィルタ回路333、および負荷34など)は、「受電コイル」と「サブコイル」との間に配置しても、「サブコイル」と「シールド」との間に配置してもよい。なお、給電装置側にサブコイルを備える場合も、これと同様である。 Further, in the above embodiment, the arrangement order may be “receiving coil” → “subcoil” → “shield”. Other devices (such as the rectifier 312, the filter circuit 313, the vehicle side control unit 30, the vehicle side communication unit 32, the rectifier 332 of the sub power reception unit 33, the filter circuit 333 of the sub power reception unit 33, and the load 34) It may be disposed between the “coil” and the “subcoil”, or may be disposed between the “subcoil” and the “shield”. The same applies to the case where the sub-coil is provided on the power feeding device side.
 2013年3月27日出願の特願2013-066692の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2013-066692 filed on March 27, 2013 is incorporated herein by reference.
 本発明は、例えば、電磁力を利用した非接触充電に用いられる非接触充電装置として、受電装置または給電装置に適用することができる。 The present invention can be applied to, for example, a power receiving device or a power feeding device as a non-contact charging device used for non-contact charging using electromagnetic force.
 1 車両
 2 給電装置
 3 受電装置
 4 蓄電池
 20 給電側制御部
 21 給電部
 22 給電側通信部
 30 車両側制御部
 31 受電部
 32 車両側通信部
 33 サブ受電部
 34 負荷
 100 充電システム
 210 シールド
 211 給電コイル
 212 給電側インバータ
 213 電源回路
 310 シールド
 311 受電コイル
 312 整流器
 313 フィルタ回路
 331、331a、331b サブコイル
 332 整流器
 333 フィルタ回路
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Power supply apparatus 3 Power reception apparatus 4 Storage battery 20 Power supply side control part 21 Power supply part 22 Power supply side communication part 30 Vehicle side control part 31 Power reception part 32 Vehicle side communication part 33 Sub power reception part 34 Load 100 Charging system 210 Shield 211 Power supply coil 212 Feeder side inverter 213 Power supply circuit 310 Shield 311 Power receiving coil 312 Rectifier 313 Filter circuit 331, 331a, 331b Subcoil 332 Rectifier 333 Filter circuit

Claims (10)

  1.  電磁力を利用した充電に用いられる非接触充電装置であって、
     電磁波を発生するコイルと、
     前記電磁波を電気エネルギとして回収するサブコイルと、を有する、
     非接触充電装置。
    A non-contact charging device used for charging using electromagnetic force,
    A coil that generates electromagnetic waves;
    A subcoil that collects the electromagnetic wave as electrical energy,
    Non-contact charging device.
  2.  前記サブコイルが回収した電気エネルギを消費する負荷をさらに備えた、
     請求項1記載の非接触充電装置。
    A load that consumes the electrical energy recovered by the subcoil;
    The contactless charging apparatus according to claim 1.
  3.  前記負荷は、放熱抵抗または電子機器である、
     請求項2記載の非接触充電装置。
    The load is a heat dissipation resistor or an electronic device.
    The non-contact charging device according to claim 2.
  4.  前記サブコイルが回収した電気エネルギを直流の電気エネルギに変換して前記負荷へ出力する整流器を備えたサブ受電部を有する、
     請求項2記載の非接触充電装置。
    A sub power receiving unit including a rectifier that converts the electric energy collected by the sub coil into DC electric energy and outputs the electric energy to the load;
    The non-contact charging device according to claim 2.
  5.  前記コイルは、スパイラルコイルであり、
     前記サブコイルは、
     前記スパイラルコイルを囲む4つの面のそれぞれの付近に配置されている、
     請求項1記載の非接触充電装置。
    The coil is a spiral coil;
    The subcoil is:
    Arranged in the vicinity of each of the four surfaces surrounding the spiral coil;
    The contactless charging apparatus according to claim 1.
  6.  前記コイルは、ソレノイドコイルであり、
     前記サブコイルは、
     前記ソレノイドコイルを囲む4つの面のうち前記ソレノイドコイルの巻き線の中心軸上にある2つの面のそれぞれの付近に配置されている、
     請求項1記載の非接触充電装置。
    The coil is a solenoid coil;
    The subcoil is:
    The four surfaces surrounding the solenoid coil are arranged in the vicinity of two surfaces on the central axis of the winding of the solenoid coil,
    The contactless charging apparatus according to claim 1.
  7.  電磁波を遮蔽するシールド部をさらに備え、
     前記サブコイルは、前記シールド部の前記コイルのある側に配置される、
     請求項1記載の非接触充電装置。
    It further includes a shield part that shields electromagnetic waves,
    The sub-coil is disposed on the side of the shield portion where the coil is present.
    The contactless charging apparatus according to claim 1.
  8.  電磁波を遮蔽するシールド部をさらに備え、
     前記サブコイルと、前記シールド部の前記コイルのある側の面との間に、フェライトを備えた、
     請求項1記載の非接触充電装置。
    It further includes a shield part that shields electromagnetic waves,
    Between the subcoil and the surface of the shield portion on the side where the coil is provided, ferrite is provided,
    The contactless charging apparatus according to claim 1.
  9.  強化プラスチックで形成されたシールド部をさらに備え、
     前記サブコイルは、前記シールド部に埋め込まれる、
     請求項1記載の非接触充電装置。
    Further comprising a shield part formed of reinforced plastic,
    The sub-coil is embedded in the shield part.
    The contactless charging apparatus according to claim 1.
  10.  前記コイルが給電コイルとして機能する給電装置、または、前記コイルが受電コイルとして機能する受電装置、のいずれかである、
     請求項1記載の非接触充電装置。
    The power supply device in which the coil functions as a power supply coil, or the power reception device in which the coil functions as a power reception coil.
    The contactless charging apparatus according to claim 1.
PCT/JP2014/001357 2013-03-27 2014-03-11 Contactless charging device WO2014156014A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013066692A JP2014193031A (en) 2013-03-27 2013-03-27 Non-contact charger
JP2013-066692 2013-03-27

Publications (1)

Publication Number Publication Date
WO2014156014A1 true WO2014156014A1 (en) 2014-10-02

Family

ID=51623035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001357 WO2014156014A1 (en) 2013-03-27 2014-03-11 Contactless charging device

Country Status (2)

Country Link
JP (1) JP2014193031A (en)
WO (1) WO2014156014A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487105A (en) * 2016-11-14 2017-03-08 太原理工大学 A kind of magnet coupled resonant type wireless power transfer of modified line coil structures

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164421B2 (en) * 2013-11-28 2017-07-19 Tdk株式会社 Power transmission coil unit and wireless power transmission device
JP6601990B2 (en) * 2016-08-05 2019-11-06 シャープ株式会社 Communication device, control program, and non-contact power supply system
CN111137160A (en) * 2018-11-05 2020-05-12 马勒国际有限公司 Fixed induction charging station

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061266A (en) * 2001-08-08 2003-02-28 Hitachi Ltd Mobile system
JP2008301645A (en) * 2007-06-01 2008-12-11 Sanyo Electric Co Ltd Non-contact power receiving apparatus and electronic apparatus therewith
WO2010106648A1 (en) * 2009-03-18 2010-09-23 トヨタ自動車株式会社 Contactless power receiving device, contactless power transmitting device, contactless power supply system, and vehicle
JP2011130614A (en) * 2009-12-18 2011-06-30 Nissan Motor Co Ltd Noncontact power supply
JP2012210118A (en) * 2011-03-30 2012-10-25 Equos Research Co Ltd Antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061266A (en) * 2001-08-08 2003-02-28 Hitachi Ltd Mobile system
JP2008301645A (en) * 2007-06-01 2008-12-11 Sanyo Electric Co Ltd Non-contact power receiving apparatus and electronic apparatus therewith
WO2010106648A1 (en) * 2009-03-18 2010-09-23 トヨタ自動車株式会社 Contactless power receiving device, contactless power transmitting device, contactless power supply system, and vehicle
JP2011130614A (en) * 2009-12-18 2011-06-30 Nissan Motor Co Ltd Noncontact power supply
JP2012210118A (en) * 2011-03-30 2012-10-25 Equos Research Co Ltd Antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487105A (en) * 2016-11-14 2017-03-08 太原理工大学 A kind of magnet coupled resonant type wireless power transfer of modified line coil structures
CN106487105B (en) * 2016-11-14 2019-03-19 太原理工大学 A kind of magnet coupled resonant type wireless power transfer of modified line coil structures

Also Published As

Publication number Publication date
JP2014193031A (en) 2014-10-06

Similar Documents

Publication Publication Date Title
US10202045B2 (en) Vehicle with shielded power receiving coil
US9126491B2 (en) Shield and vehicle incorporating the shield
KR101750149B1 (en) Vehicle
JP6213611B2 (en) vehicle
JP5016069B2 (en) Power transmission system and vehicle power supply device
US11264834B2 (en) Coil apparatus
EP2407338B1 (en) Electric vehicle
JP5547359B1 (en) Non-contact power supply system and non-contact power supply method
US20150061402A1 (en) Power reception device, power transmission device and power transfer system
JPWO2013168239A1 (en) Vehicles that can receive power without contact
US10177603B2 (en) Coil unit and power supply system including the same
JP2015008547A (en) Non-contact power charger
WO2014156014A1 (en) Contactless charging device
EP3080824A1 (en) System and method to avoid magnetic power loss while providing alternating current through a ferromagnetic material
US11211189B2 (en) Coil device
US10332677B2 (en) Power reception device and power transmission device
US9748773B2 (en) Contactless power supply device
US20210300192A1 (en) Wired/wireless integrated power reception system
JP5930182B2 (en) antenna
JP6370564B2 (en) Power receiving unit and power supply system having the same
JP6916917B2 (en) Contactless power supply system
JP6508272B2 (en) vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774583

Country of ref document: EP

Kind code of ref document: A1