JP2015008547A - Non-contact power charger - Google Patents

Non-contact power charger Download PDF

Info

Publication number
JP2015008547A
JP2015008547A JP2011236892A JP2011236892A JP2015008547A JP 2015008547 A JP2015008547 A JP 2015008547A JP 2011236892 A JP2011236892 A JP 2011236892A JP 2011236892 A JP2011236892 A JP 2011236892A JP 2015008547 A JP2015008547 A JP 2015008547A
Authority
JP
Japan
Prior art keywords
coil
power
primary
primary side
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011236892A
Other languages
Japanese (ja)
Inventor
秀樹 定方
Hideki Sadakata
秀樹 定方
藤田 篤志
Atsushi Fujita
篤志 藤田
大森 義治
Yoshiharu Omori
義治 大森
宮下 功寛
Norihiro Miyashita
功寛 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011236892A priority Critical patent/JP2015008547A/en
Priority to PCT/JP2012/006913 priority patent/WO2013061610A1/en
Publication of JP2015008547A publication Critical patent/JP2015008547A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power charger capable of reducing an induction voltage to a metal substance disposed adjacent to a coil and radiation noises due to leakage current flowing to a floating capacitance.SOLUTION: A primary side electric field shield 14 disposed adjacent to a primary side coil 18 is connected to an output terminal of a primary side rectification circuit with primary side connection means 15, and a secondary side electric field shield 20 disposed adjacent to a secondary side coil 19 is connected to an output terminal of a secondary side rectification circuit 22 with secondary side connection means 26. Thereby the induction voltage to a metal substance is prevented. With this, not only accident such as electric shock can be prevented and the safety is increased but also leakage current flowing to floating capacitance between the first and secondary coils and a metal substance can be reduced and thus radiation noises can be reduced.

Description

本発明は、例えば電気自動車やプラグインハイブリッド車のような電気推進車両等の充電に用いられる非接触充電装置に関する。   The present invention relates to a non-contact charging device used for charging an electric propulsion vehicle such as an electric vehicle or a plug-in hybrid vehicle.

図12は、従来の非接触充電装置106の構成を示す模式図である。図12において、地上側の電源109の電源盤に接続された非接触給電装置(1次側)Fが、電気推進車両に搭載された受電装置(2次側)Gに対し、給電時において、物理的接続なしに空隙空間であるエアギャップを介して対峙するよう配置される。このような配置状態で、給電装置Fに備わる1次コイル107に交流電流が与えられ磁束が形成されると、受電装置Gに備わる2次コイル108に誘導起電力が生じ、これによって、1次コイル107から2次コイル108へと電力が非接触で伝達される。   FIG. 12 is a schematic diagram showing a configuration of a conventional non-contact charging device 106. In FIG. 12, the non-contact power feeding device (primary side) F connected to the power panel of the ground-side power source 109 supplies power to the power receiving device (secondary side) G mounted on the electric propulsion vehicle. It arrange | positions so that it may oppose through the air gap which is a space | gap space without a physical connection. In this arrangement state, when an alternating current is applied to the primary coil 107 provided in the power feeding device F to form a magnetic flux, an induced electromotive force is generated in the secondary coil 108 provided in the power receiving device G. Electric power is transmitted from the coil 107 to the secondary coil 108 without contact.

受電装置Gは、例えば車載バッテリー110に接続され、上述したようにして伝達された電力が車載バッテリー110に充電される。この車載バッテリー110に蓄積された電力により車載のモータ111が駆動される。なお、非接触給電処理の間、給電装置Fと受電装置Gとの間では、例えば無線通信装置112により必要な情報交換が行われる。   The power receiving device G is connected to the in-vehicle battery 110, for example, and the in-vehicle battery 110 is charged with the electric power transmitted as described above. The in-vehicle motor 111 is driven by the electric power stored in the in-vehicle battery 110. Note that, during the non-contact power supply process, for example, the wireless communication device 112 exchanges necessary information between the power supply device F and the power reception device G.

図13は、給電装置F及び受電装置Gの内部構造を示す模式図である。特に、図13(a)は、給電装置Fを上方から、また、受電装置Gを下方から見たときの内部構造を示す模式図である。図13(b)は、給電装置F及び受電装置Gを側方から見たときの内部構造を示す模式図である。   FIG. 13 is a schematic diagram illustrating the internal structure of the power feeding device F and the power receiving device G. In particular, FIG. 13A is a schematic diagram illustrating an internal structure when the power feeding device F is viewed from above and the power receiving device G is viewed from below. FIG. 13B is a schematic diagram illustrating an internal structure when the power feeding device F and the power receiving device G are viewed from the side.

図13において、給電装置Fは、1次コイル107、1次磁心コア113、背板115、及びカバー116等を備える。受電装置Gは、簡単に述べると、給電装置Fと対称的な構造を有しており、2次コイル108、2次磁心コア114、背板115、カバー116等を備え、1次コイル107と1次磁心コア113の表面、および2次コイル108と2次磁心コア114の表面は、それぞれ、発泡材118が混入されたモールド樹脂117にて被覆固定されている。   In FIG. 13, the power feeding device F includes a primary coil 107, a primary magnetic core 113, a back plate 115, a cover 116, and the like. Briefly speaking, the power receiving device G has a symmetric structure with the power feeding device F, and includes a secondary coil 108, a secondary magnetic core 114, a back plate 115, a cover 116, and the like. The surface of the primary magnetic core 113 and the surfaces of the secondary coil 108 and the secondary magnetic core 114 are covered and fixed with a mold resin 117 mixed with a foam material 118, respectively.

すなわち、給電装置F,受電装置G共に、背板115とカバー116間にモールド樹脂117が充填され、内部の1次コイル107、2次コイル108、更には1次磁心コア113、2次磁心コア114の表面が、被覆固定されている。モールド樹脂117は、例えばシリコン樹脂製よりなり、このように内部を固めることにより、1次,2次コイル107,108を位置決め固定し、その機械的強度を確保すると共に、放熱機能も発揮する。すなわち、1次,2次コイル107,108は、励磁電流が流れジュール熱により発熱するが、モールド樹脂117の熱伝導により放熱され、冷却される。   That is, in both the power feeding device F and the power receiving device G, the mold resin 117 is filled between the back plate 115 and the cover 116, and the primary coil 107, the secondary coil 108, the primary magnetic core 113, and the secondary magnetic core are contained therein. The surface of 114 is covered and fixed. The mold resin 117 is made of, for example, a silicon resin. By hardening the interior in this way, the primary and secondary coils 107 and 108 are positioned and fixed, and the mechanical strength is ensured and the heat dissipation function is also exhibited. That is, the primary and secondary coils 107 and 108 generate heat due to Joule heat through an exciting current, but are radiated and cooled by heat conduction of the mold resin 117.

特開2008−87733号公報JP 2008-87733 A

給電装置Fは車両下方に配置されるため、車両を駐車する際に給電装置Fに乗り上げる可能性がある。このような加重に耐えるため背板115は金属物で構成されることが望ましいが、金属製の背板115を1次コイル近傍に配置すると誘起電圧が発生し感電の危険が生じる。また、給電装置Fは屋外に設置されるためカバー116の外側に金属物質が接近する可能性もあるが、1次コイル近傍では感電する危険が生じる。また、1次コイル近傍に金属物質が配置されると1次コイルと金属物質間の浮遊容量に流れる漏洩電流が増大する。   Since the power feeding device F is disposed below the vehicle, there is a possibility of riding on the power feeding device F when the vehicle is parked. In order to withstand such a load, it is desirable that the back plate 115 is made of a metal material. However, if the metal back plate 115 is disposed in the vicinity of the primary coil, an induced voltage is generated, resulting in a risk of electric shock. In addition, since the power feeding device F is installed outdoors, there is a possibility that a metal substance may approach the outside of the cover 116, but there is a risk of electric shock in the vicinity of the primary coil. Further, when a metal material is disposed in the vicinity of the primary coil, a leakage current flowing in the stray capacitance between the primary coil and the metal material increases.

特に、給電装置Fは図12に示すように、大地上に接触するように設置された場合、1次コイルと大地間の浮遊容量に流れる漏洩電流29が大きくなり、感電だけでなくノイズが増大するなどの課題もある。また、漏電遮断機が誤動作するなど動作も不安定となる。仮に、大地上に設置されない場合でも金属製背板27への漏洩電流による感電対策として商用電源6のアースラインと金属製背板27とを接続する場合、前述した問題と同様に漏洩電流がアースラインに流れることによってノイズが増大するといった問題がある。   In particular, as shown in FIG. 12, when the power feeding device F is installed so as to be in contact with the ground, the leakage current 29 flowing in the stray capacitance between the primary coil and the ground increases, and not only electric shock but also noise increases. There are also issues such as In addition, the operation becomes unstable, for example, the leakage breaker malfunctions. Even if the ground line of the commercial power source 6 and the metal back plate 27 are connected as a countermeasure against electric shock due to the leakage current to the metal back plate 27 even when not installed on the ground, the leakage current is grounded in the same manner as the above-described problem. There is a problem that noise increases due to flowing in the line.

また、受電装置Gにおいても走行中の振動に耐えるため、背板および背板と車体の接続部は金属製が望ましいが同様に感電の危険が生じるといった課題がある。また2次コイル近傍に金属物質が配置されると図12に示すように2次コイルと金属物質間の浮遊容量に流れる漏洩電流30が増大するなど、感電だけでなく、ノイズが増大するなどの課題もある。   Further, in order to withstand vibration during traveling in the power receiving device G, the back plate and the connecting portion between the back plate and the vehicle body are preferably made of metal. Further, when a metal material is disposed in the vicinity of the secondary coil, the leakage current 30 flowing in the stray capacitance between the secondary coil and the metal material increases as shown in FIG. There are also challenges.

それゆえに、本発明は、1次および2次コイルの近傍に配置される金属物質への誘起電圧だけでなく、漏洩電流も抑制可能な非接触充電装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a non-contact charging device capable of suppressing not only an induced voltage to a metal material disposed in the vicinity of the primary and secondary coils but also a leakage current.

上記目的を達成するために、本発明は、受電装置へと非接触で電力を供給する給電装置であって、前記給電装置は、商用電源から高周波交流電流を発生させる電力変換回路と、入力された前記高周波交流電流により磁束を発生する一次コイルと、前記一次コイルの近傍に配置される電界シールドと、前記電界シールドを電力変換回路に接続する接続手段とを備えている。   In order to achieve the above object, the present invention provides a power feeding device that supplies power to a power receiving device in a contactless manner, and the power feeding device is input with a power conversion circuit that generates a high-frequency alternating current from a commercial power source. A primary coil that generates a magnetic flux by the high-frequency alternating current, an electric field shield disposed in the vicinity of the primary coil, and connection means for connecting the electric field shield to a power conversion circuit.

また、本発明の別の態様は、給電装置側から非接触で電力供給を受ける受電装置であって、前記受電装置は、前記給電装置側の一次コイルで発生した磁束に応じて起電力を発生する二次コイルと、前記2次コイルから入力された電力を整流してバッテリーに出力する2次側整流回路と、前記2次コイルの近傍に配置される電界シールドと、前記電界シールドを前記2次側整流回路に接続する接続手段とを備えている。   According to another aspect of the present invention, there is provided a power receiving device that receives power supply contactlessly from the power feeding device side, and the power receiving device generates an electromotive force according to a magnetic flux generated by a primary coil on the power feeding device side. A secondary coil that rectifies the electric power input from the secondary coil and outputs it to the battery, an electric field shield disposed in the vicinity of the secondary coil, and the electric field shield for the 2 Connecting means for connecting to the secondary side rectifier circuit.

本発明によれば、非接触充電装置の給電装置や受電装置は、それぞれ電界シールドと接続手段により電力変換回路または整流回路の安定電位に接続されることにより、1次および2次コイル近傍に配置される金属物質への誘起電圧を抑制することが可能となる。   According to the present invention, the power feeding device and the power receiving device of the non-contact charging device are arranged in the vicinity of the primary and secondary coils by being connected to the stable potential of the power conversion circuit or rectifier circuit by the electric field shield and the connecting means, respectively. It is possible to suppress the induced voltage on the metal material.

本発明に係る電力制御装置を備えた非接触充電装置のブロック図Block diagram of a non-contact charging device provided with a power control device according to the present invention 図1の非接触充電装置の外観図(車両側方からみた図)External view of the non-contact charging device of FIG. 1 (viewed from the side of the vehicle) 図1の非接触充電装置の外観図(車両後方からみた図)External view of the non-contact charging device of FIG. 1 (viewed from the rear of the vehicle) 図1の地上コイルユニットの側面断面図で、1次側電界シールド14を、1次側コイル18を覆うように配置した状態を示す図1 is a side cross-sectional view of the ground coil unit of FIG. 1 and shows a state in which a primary-side electric field shield 14 is disposed so as to cover a primary-side coil 18. 同地上コイルユニットの側面断面図で、1次側電界シールド14を1次側コイル18と金属製背板27との間に配置した状態を示す図The figure which shows the state which has arrange | positioned the primary side electric field shield 14 between the primary side coil 18 and the metal backplate 27 by the side sectional drawing of the ground coil unit. 同地上コイルユニットの側面断面図で、1次側電界シールド14を1次側コイル18と金属製背板27との間および1次側コイル18側面に配置した状態を示す図The figure which shows the state which has arrange | positioned the primary side electric field shield 14 between the primary side coil 18 and the metal backplate 27, and the primary side coil 18 side surface by sectional drawing of the same ground coil unit. 同地上コイルユニットの側面断面図で、1次側電界シールド14を1次側コイル18とカバー28との間に配置した状態を示す図The figure which shows the state which has arrange | positioned the primary side electric field shield 14 between the primary side coil 18 and the cover 28 in the sectional side view of the ground coil unit. 1次側電界シールド14を1次側コイル18とカバーとの間および1次側コイル18側面に配置した状態を示す図The figure which shows the state which has arrange | positioned the primary side electric field shield 14 between the primary side coil 18 and a cover, and the primary side coil 18 side surface. (a)は図1の1次側電界シールド14(20)の上面図(b)は1次側電解シールド14(20)の他の形態を示す上面図(A) is a top view of the primary-side electric field shield 14 (20) in FIG. 1 (b) is a top view showing another form of the primary-side electrolytic shield 14 (20). 図1のコイル18(19)と電界シールド14(20)の上面図Top view of coil 18 (19) and field shield 14 (20) of FIG. 図4の漏洩電流の流れ方を示す図The figure which shows how the leakage current of FIG. 4 flows 従来の非接触充電装置の構成を示す模式図Schematic diagram showing the configuration of a conventional non-contact charging device 図12の給電装置(受電装置)に対峙して配置される受電装置(給電装置)の内部構造を示す模式図The schematic diagram which shows the internal structure of the power receiving apparatus (power feeding apparatus) arrange | positioned facing the power feeding apparatus (power receiving apparatus) of FIG.

本発明の一態様は、受電装置へと非接触で電力を供給する給電装置であって、前記給電装置は、商用電源から高周波交流電流を発生させる電力変換回路と、入力された前記高周波交流電流により磁束を発生する一次コイルと、前記一次コイルの近傍に配置される電界シールドと、前記電界シールドを電力変換回路に接続する接続手段とを備えている。   One embodiment of the present invention is a power supply device that supplies power to a power receiving device in a contactless manner, and the power supply device generates a high-frequency alternating current from a commercial power source, and the input high-frequency alternating current A primary coil for generating magnetic flux, an electric field shield disposed in the vicinity of the primary coil, and connection means for connecting the electric field shield to a power conversion circuit.

また、本発明の別の一態様は、給電装置側から非接触で電力供給を受ける受電装置であって、前記受電装置は、前記給電装置側の一次コイルで発生した磁束に応じて起電力を発生する二次コイルと、前記2次コイルから入力された電力を整流してバッテリーに出力する2次側整流回路と、前記2次コイルの近傍に配置される電界シールドと、前記電界シールドを前記2次側整流回路に接続する接続手段とを備えている。   Another embodiment of the present invention is a power receiving device that receives power supply contactlessly from the power feeding device side, and the power receiving device generates an electromotive force according to magnetic flux generated in a primary coil on the power feeding device side. A secondary coil that is generated, a secondary side rectifier circuit that rectifies power input from the secondary coil and outputs the rectified power to a battery, an electric field shield disposed in the vicinity of the secondary coil, and the electric field shield. Connecting means for connecting to the secondary side rectifier circuit.

このような構成によれば、電力伝送中に1次および2次コイルに高周波交流電流が流れ各コイルに高電圧が発生しても、1次および2次コイルの近傍に配置された金属物質への誘起電圧を抑制でき、感電などの事故を未然に防止でき安全性が向上する。   According to such a configuration, even when high-frequency alternating current flows through the primary and secondary coils during power transmission and a high voltage is generated in each coil, the metallic material disposed near the primary and secondary coils Induction voltage can be suppressed, accidents such as electric shock can be prevented, and safety is improved.

また、1次および2次コイルと金属物質間の浮遊容量に流れる漏洩電流を低減し、放射ノイズを抑制することができる。   Moreover, the leakage current which flows into the stray capacitance between the primary and secondary coils and the metal material can be reduced, and radiation noise can be suppressed.

電界シールドは抵抗率の低い物質、例えば非磁性ステンレス、アルミ、銅などを用いることが望ましい。抵抗率が低い物質を用いることで、送電コイルから発生する磁束と電界シールドが磁気結合して誘導加熱されても発熱量が少なく安全性の高い電解シールドとすることができる。また誘導加熱されないように誘導電流が流れるループをカットする形状とすることで、電界シールド自体の温度上昇を防止することができる。   The electric field shield is preferably made of a low resistivity material such as non-magnetic stainless steel, aluminum, or copper. By using a substance having a low resistivity, even if the magnetic flux generated from the power transmission coil and the electric field shield are magnetically coupled and induction-heated, it is possible to provide a highly safe electrolytic shield with a small amount of heat generation. Further, by making the shape in which the loop through which the induction current flows is cut so as not to be induction-heated, the temperature rise of the electric field shield itself can be prevented.

さらに、電界シールドは、1次および2次コイルに流れる高周波電流の周波数と上記材質で決まる誘導電流の浸透深さと同等以下の厚みとすることで、誘導加熱による温度上昇を防止することができる。   Furthermore, the electric field shield has a thickness equal to or less than the penetration depth of the induction current determined by the frequency of the high-frequency current flowing through the primary and secondary coils and the above-described material, thereby preventing a temperature rise due to induction heating.

また、接続手段は所定のインピーダンスを介して電力変換回路または2次側整流回路に接続される。このインピーダンスは電界シールドと回路を接続するラインのインピーダンスであり、非常に小さいため電界シールド自体が接続された電力変換回路または2次側整流回路の安定電位とすることができる。   The connecting means is connected to the power conversion circuit or the secondary rectifier circuit via a predetermined impedance. This impedance is an impedance of a line connecting the electric field shield and the circuit, and is very small, so that it can be a stable potential of the power conversion circuit or the secondary side rectifier circuit to which the electric field shield itself is connected.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明に係る非接触充電装置のブロック図である。また、図2及び図3は車両が駐車スペースに設置された状態の外観図である。図1、図2及び図3に示されるように、非接触充電装置は、例えば駐車スペースに設置される給電装置2と、例えば電気推進車両に搭載される受電装置4とで構成される。   FIG. 1 is a block diagram of a contactless charging apparatus according to the present invention. Moreover, FIG.2 and FIG.3 is an external view of the state in which the vehicle was installed in the parking space. As shown in FIGS. 1, 2, and 3, the non-contact charging device includes a power feeding device 2 installed in a parking space, for example, and a power receiving device 4 mounted on an electric propulsion vehicle, for example.

給電装置2は、商用電源6に接続される1次側整流回路8と、インバータ部10と、制御部(例えば、マイコン)16とを備えた電力変換回路17と、1次側コイル18と1次側電界シールド14とを備えたコイルユニット12と、1次側電界シールド14と1次側整流回路の出力端を接続する接続手段25とを備えている。   The power feeding device 2 includes a primary side rectifier circuit 8 connected to a commercial power source 6, an inverter unit 10, a power conversion circuit 17 including a control unit (for example, a microcomputer) 16, primary side coils 18 and 1. A coil unit 12 having a secondary electric field shield 14 and a connecting means 25 for connecting the primary electric field shield 14 and the output terminal of the primary rectifier circuit are provided.

一方、受電装置4は、2次側コイル19と、2次側電界シールド20とを備えたコイルユニット21と、2次側整流回路22と、負荷(バッテリー)23と、制御部(例えば、マイコン)24と、2次側電界シールド20と2次側整流回路22とを接続する2次側接続手段26とを備えている。   On the other hand, the power receiving device 4 includes a coil unit 21 including a secondary coil 19 and a secondary electric field shield 20, a secondary rectifier circuit 22, a load (battery) 23, and a control unit (for example, a microcomputer). ) 24, and secondary side connection means 26 for connecting the secondary side electric field shield 20 and the secondary side rectifier circuit 22.

給電装置2において、商用電源6は、低周波交流電源である200V商用電源であり、1次側整流回路8の入力端に接続され、1次側整流回路8の出力端はインバータ部10の入力端に接続され、インバータ部10の出力端はコイルユニット12に接続されている。一方、受電装置4においては、コイルユニット21の出力端は2次側整流回路22の入力端に接続され、2次側整流回路22の出力端はバッテリー23に接続されている。また、1次側電界シールド14は1次側整流回路8の出力端(高電位側または低電位側のいずれか一方)に接続手段25で接続している。   In the power supply device 2, the commercial power source 6 is a 200 V commercial power source that is a low-frequency AC power source, and is connected to the input end of the primary side rectifier circuit 8. The output end of the primary side rectifier circuit 8 is the input of the inverter unit 10. The output end of the inverter unit 10 is connected to the coil unit 12. On the other hand, in the power receiving device 4, the output end of the coil unit 21 is connected to the input end of the secondary side rectifier circuit 22, and the output end of the secondary side rectifier circuit 22 is connected to the battery 23. Further, the primary side electric field shield 14 is connected to the output terminal (either the high potential side or the low potential side) of the primary side rectifier circuit 8 by the connecting means 25.

また、コイルユニット12は地上に敷設され、電力変換回路17は、例えばコイルユニット12から所定距離だけ離隔した位置に立設される。一方、コイルユニット21は、例えば車体底部(例えば、シャーシ)に取り付けられる。   Further, the coil unit 12 is laid on the ground, and the power conversion circuit 17 is erected at a position separated from the coil unit 12 by a predetermined distance, for example. On the other hand, the coil unit 21 is attached to, for example, the bottom of the vehicle body (for example, a chassis).

制御部16は制御部24と無線通信を行い、制御部24は、検知したバッテリー23の残電圧に応じて電力指令値を決定し、決定した電力指令値を制御部16に送信する。制御部16は、コイルユニット12で検知した給電電力と、受信した電力指令値とを比較し、電力指令値が得られるようにインバータ部10を駆動する。   The control unit 16 performs wireless communication with the control unit 24, and the control unit 24 determines a power command value according to the detected remaining voltage of the battery 23 and transmits the determined power command value to the control unit 16. The control unit 16 compares the supplied power detected by the coil unit 12 with the received power command value, and drives the inverter unit 10 to obtain the power command value.

給電中、制御部24は受電電力を検知し、バッテリー23に過電流や過電圧がかからないように、制御部16への電力指令値を変更する。   During power feeding, the control unit 24 detects the received power and changes the power command value to the control unit 16 so that the battery 23 is not overcurrent or overvoltage.

図2に示されるように、給電装置2から受電装置4に給電するに際し、コイルユニット21は、車両を適宜移動させることでコイルユニット12に対向して配置され、制御部16がインバータ部10を駆動制御することで、コイルユニット12とコイルユニット21との間に高周波の電磁場が形成される。受電装置4は、高周波の電磁場より電力を取り出し、取り出した電力でバッテリー23を充電する。   As shown in FIG. 2, when power is supplied from the power feeding device 2 to the power receiving device 4, the coil unit 21 is disposed so as to face the coil unit 12 by appropriately moving the vehicle, and the control unit 16 causes the inverter unit 10 to operate. By controlling the driving, a high-frequency electromagnetic field is formed between the coil unit 12 and the coil unit 21. The power receiving device 4 takes out electric power from the high frequency electromagnetic field and charges the battery 23 with the taken out electric power.

図4にコイルユニット12の側面の断面図を示す。   FIG. 4 is a sectional view of the side surface of the coil unit 12.

図4に示されるように1次側コイル18と、金属製の背板27と、コイルユニット12の上部および側面を覆うカバー28と、を備える。図4では1次側電界シールド14は1次側コイル18を覆うように配置される。このように高周波高電圧を発生する1次側コイル18の外部を接続手段25で1次側整流回路8の出力端に接続されて安定電位となっている1次側電界シールド14で覆うことで、1次側コイル18の近傍に金属物質があっても誘起電圧を抑制することが可能となり、安全性を向上することができる。   As shown in FIG. 4, the primary side coil 18, a metal back plate 27, and a cover 28 that covers the upper and side surfaces of the coil unit 12 are provided. In FIG. 4, the primary side electric field shield 14 is disposed so as to cover the primary side coil 18. In this way, the outside of the primary side coil 18 that generates a high frequency high voltage is covered with the primary side electric field shield 14 that is connected to the output terminal of the primary side rectifier circuit 8 by the connecting means 25 and has a stable potential. Even if there is a metallic substance in the vicinity of the primary side coil 18, it is possible to suppress the induced voltage, and safety can be improved.

また、図5に示されるように地上コイルユニット周囲に金属物質が挿入する可能性が低い場合、1次側コイル18と金属製背板27との間にのみ1次側電界シールド14を配置しても良い。   Further, as shown in FIG. 5, when the possibility of inserting a metal substance around the ground coil unit is low, the primary side electric field shield 14 is disposed only between the primary side coil 18 and the metal back plate 27. May be.

さらに、図6に示されるようにコイルユニット12上部には金属物質が挿入される可能性は低いが、側面近傍に金属物質が挿入される可能性がある場合は1次側コイル18の側面と、1次側コイル18と金属製背板27との間にのみ1次側電界シールド14を配置しても良い。   Furthermore, as shown in FIG. 6, it is unlikely that a metal material will be inserted into the upper part of the coil unit 12, but if there is a possibility that a metal material will be inserted in the vicinity of the side surface, The primary side electric field shield 14 may be disposed only between the primary side coil 18 and the metal back plate 27.

図4〜図6に示されるように1次側コイル18と背板27間に1次側電界シールド14を配置することで、コイルユニット12を図2に示すように屋外の大地(大地上に設置されたコンクリートやアスファルトも同様)に設置した場合、金属製背板27は大地(アース)電位となるが、1次側コイル18と大地間の浮遊容量に流れる漏洩電流i0は図11のように減少し、発生するノイズを抑制することが可能となる。からまた漏電遮断機の誤動作も抑制できる。   As shown in FIG. 4 to FIG. 6, by arranging the primary electric field shield 14 between the primary coil 18 and the back plate 27, the coil unit 12 is placed on the outdoor ground (on the ground) as shown in FIG. 11), the metal back plate 27 is at ground (earth) potential, but the leakage current i0 flowing through the stray capacitance between the primary coil 18 and the ground is as shown in FIG. It becomes possible to suppress the generated noise. In addition, malfunction of the earth leakage breaker can be suppressed.

図7および図8に示されるように背板27の強度が問題なければ、地上コイルユニット周囲に金属物質が挿入される可能性がある方向のみ1次側電界シールド14を配置しても良い。   As shown in FIGS. 7 and 8, if the strength of the back plate 27 is not a problem, the primary electric field shield 14 may be disposed only in the direction in which the metal material may be inserted around the ground coil unit.

以上のように、1次側電界シールド14を配置することにより、安全性を向上するだけでなく、1次または2側次コイルと金属物質間の浮遊容量に流れる漏洩電流を低減し、放射ノイズを抑制することができる。   As described above, the primary-side electric field shield 14 not only improves the safety but also reduces the leakage current flowing in the stray capacitance between the primary or secondary side coil and the metal material, thereby radiating noise. Can be suppressed.

コイルユニット21の2次側電界シールド20においても同様であるが、1次側電界シールド14と2次側電界シールド20の形状が異なっても何ら問題ない。   The same applies to the secondary-side electric field shield 20 of the coil unit 21, but there is no problem even if the shapes of the primary-side electric field shield 14 and the secondary-side electric field shield 20 are different.

1次側コイル18および2次側コイル19に流れる高周波電流によって、近傍に配置される金属製の電界シールドが誘導加熱されないような形状としている。電界シールドの上部概観図を図9に示す。1次側コイル18および2次側コイル19と対向するように配置される電界シールドが、図9(a)に示される形状の場合、図中の誘導電流が流れ誘導加熱されてしまう。   The metal electric field shield disposed in the vicinity is not induction-heated by the high-frequency current flowing through the primary side coil 18 and the secondary side coil 19. An upper schematic view of the electric field shield is shown in FIG. When the electric field shield arranged so as to face the primary side coil 18 and the secondary side coil 19 has the shape shown in FIG. 9A, the induced current in the figure flows and induction heating occurs.

そのため、図9(b)に示されるように誘導電流の流れる経路をカットした形状としている。図9(b)に示される形状からさらにカット数を増やしても良い。   Therefore, as shown in FIG. 9B, the path through which the induced current flows is cut. The number of cuts may be further increased from the shape shown in FIG.

また、1次および2次コイルの内周部よりも内側、およびコイルの外周部より外側は磁束量が多く特に誘導加熱されやすいため、図11のような形状の場合には、電界シールドの内径をコイルの内径以上、電界シールドの外形をコイルの外形以下となるようにしている。図10に形状を示す。図10に示されるような形状とすることで電界シールドの温度上昇を抑制することができる。   Further, since the amount of magnetic flux is large on the inner side than the inner peripheral part of the primary and secondary coils and on the outer side of the outer peripheral part of the coil, the inner diameter of the electric field shield is increased in the case of the shape shown in FIG. Is equal to or greater than the inner diameter of the coil and the outer shape of the electric field shield is equal to or smaller than the outer shape of the coil. The shape is shown in FIG. By making the shape as shown in FIG. 10, the temperature rise of the electric field shield can be suppressed.

さらに、1次側または2次側いずれか一方にのみ電界シールドを配置しても良い。   Furthermore, an electric field shield may be arranged only on either the primary side or the secondary side.

なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。   It is to be noted that, by appropriately combining arbitrary embodiments of the various embodiments described above, the effects possessed by them can be produced.

以上のように、本発明に係る非接触充電装置の給電装置及び受電装置では、給電装置から受電装置への給電中にコイル近傍に配置される金属物質への誘起電圧を抑制可能となり、感電事故を防止することができる。またコイルと金属物質間の浮遊容量に流れる漏洩電流を抑制することが可能となり、放射ノイズを低減することが可能となる。   As described above, in the power feeding device and the power receiving device of the non-contact charging device according to the present invention, it is possible to suppress the induced voltage on the metal substance disposed in the vicinity of the coil during power feeding from the power feeding device to the power receiving device. Can be prevented. In addition, it is possible to suppress the leakage current flowing in the stray capacitance between the coil and the metal material, and to reduce radiation noise.

以上のような構成とすることにより、安全性向上と低ノイズ化が実現できるようになり、電気推進車両の受電装置への給電等に有用である。   With the configuration as described above, safety can be improved and noise can be reduced, which is useful for feeding power to a power receiving device of an electric propulsion vehicle.

2 給電装置
4 受電装置
6 商用電源
8 1次側整流回路
10 インバータ部
12 コイルユニット
14 1次側電界シールド
16 制御部
17 電力変換回路
18 1次側コイル
20 2次側電界シールド
21 車両側コイルユニット
22 2次側整流回路
23 バッテリー
24 受電装置側制御部
DESCRIPTION OF SYMBOLS 2 Electric power feeder 4 Power receiving device 6 Commercial power supply 8 Primary side rectifier circuit 10 Inverter part 12 Coil unit 14 Primary side electric field shield 16 Control part 17 Power conversion circuit 18 Primary side coil 20 Secondary side electric field shield 21 Vehicle side coil unit 22 Secondary side rectifier circuit 23 Battery 24 Power receiving device side control unit

Claims (4)

受電装置へと非接触で電力を供給する給電装置であって、前記給電装置は、商用電源から高周波交流電流を発生させる電力変換回路と、入力された前記高周波交流電流により磁束を発生する一次コイルと、前記一次コイルの近傍に配置される導電体と、前記導電体を電力変換回路に接続する1次側接続手段とを備えた非接触充電装置。   A power supply device that supplies power to a power receiving device in a contactless manner, the power supply device including a power conversion circuit that generates a high-frequency alternating current from a commercial power supply, and a primary coil that generates a magnetic flux by the input high-frequency alternating current And a non-contact charging device comprising: a conductor disposed in the vicinity of the primary coil; and primary side connection means for connecting the conductor to a power conversion circuit. 商用電源を整流する1次側整流回路を備え、前記1次側整流回路の出力端に1次側接続手段を接続した請求項1に記載の非接触充電装置。   The non-contact charging device according to claim 1, further comprising a primary side rectifier circuit that rectifies a commercial power supply, wherein a primary side connection unit is connected to an output terminal of the primary side rectifier circuit. 前記1次側接続手段により前記導電体が接地されていることを特徴とした請求項1に記載の非接触充電装置。   The contactless charging apparatus according to claim 1, wherein the conductor is grounded by the primary side connecting means. 給電装置側から非接触で電力供給を受ける受電装置であって、前記受電装置は、前記給電装置側の一次コイルで発生した磁束に応じて起電力を発生する二次コイルと、前記2次コイルから入力された電力を整流してバッテリーに出力する2次側整流回路と、前記2次コイルの近傍に配置される導電体と、前記導電体を前記2次側整流回路に接続する2次側接続手段とを備えた非接触充電装置。   A power receiving device that receives power supply in a non-contact manner from a power feeding device side, wherein the power receiving device includes a secondary coil that generates an electromotive force according to a magnetic flux generated in a primary coil on the power feeding device side, and the secondary coil Secondary side rectifier circuit that rectifies the power input from the battery and outputs it to the battery, a conductor disposed in the vicinity of the secondary coil, and a secondary side that connects the conductor to the secondary side rectifier circuit A contactless charging device comprising a connection means.
JP2011236892A 2011-10-28 2011-10-28 Non-contact power charger Pending JP2015008547A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011236892A JP2015008547A (en) 2011-10-28 2011-10-28 Non-contact power charger
PCT/JP2012/006913 WO2013061610A1 (en) 2011-10-28 2012-10-29 Power supplying apparatus, power receiving apparatus, and non-contact charging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236892A JP2015008547A (en) 2011-10-28 2011-10-28 Non-contact power charger

Publications (1)

Publication Number Publication Date
JP2015008547A true JP2015008547A (en) 2015-01-15

Family

ID=48167459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236892A Pending JP2015008547A (en) 2011-10-28 2011-10-28 Non-contact power charger

Country Status (2)

Country Link
JP (1) JP2015008547A (en)
WO (1) WO2013061610A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162644A (en) * 2012-02-06 2013-08-19 Toyota Motor Corp Power transmitting device, power receiving device, and power transmission system
JP2015520064A (en) * 2012-04-23 2015-07-16 ボンバルディアー トランスポーテーション ゲゼルシャフト ミット ベシュレンクテル ハフツング Supplying electrical energy by induction to land vehicles, especially rail vehicles or road vehicles
JP2016158486A (en) * 2015-02-24 2016-09-01 Tdk株式会社 Coil unit, wireless power feeding apparatus, wireless power reception apparatus and wireless power transmission apparatus
JP2018535640A (en) * 2016-09-23 2018-11-29 アップル インコーポレイテッドApple Inc. Wireless charging mat for portable electronic devices
WO2020066081A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Wireless power feeding system
WO2021014087A1 (en) * 2019-07-25 2021-01-28 Institut Vedecom Magnetic shield for a contactless charging device of a motor vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148552B2 (en) * 2013-07-02 2017-06-14 矢崎総業株式会社 Coil unit
JP6559946B2 (en) * 2014-12-03 2019-08-14 トヨタ自動車株式会社 Contactless power transmission device and contactless power reception device
GB2551731A (en) * 2016-06-28 2018-01-03 Bombardier Primove Gmbh Cable bearing arrangement and method of installing a cable bearing arrangement
CN110289046A (en) * 2019-06-26 2019-09-27 浙江诺尔康神经电子科技股份有限公司 A kind of electric field shielding device not influencing wireless coupling transmission coil efficiency of transmission
CN114696564A (en) * 2020-12-30 2022-07-01 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Suspension propulsion integrated module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3065171B2 (en) * 1992-04-06 2000-07-12 共同印刷株式会社 Contactless IC card and its identification system
JP2002084665A (en) * 2000-06-27 2002-03-22 Toshitaka Takei Power system which curtails stand-by power consumption
JP2002170725A (en) * 2000-11-30 2002-06-14 Toko Inc Power supply unit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162644A (en) * 2012-02-06 2013-08-19 Toyota Motor Corp Power transmitting device, power receiving device, and power transmission system
JP2015520064A (en) * 2012-04-23 2015-07-16 ボンバルディアー トランスポーテーション ゲゼルシャフト ミット ベシュレンクテル ハフツング Supplying electrical energy by induction to land vehicles, especially rail vehicles or road vehicles
JP2016158486A (en) * 2015-02-24 2016-09-01 Tdk株式会社 Coil unit, wireless power feeding apparatus, wireless power reception apparatus and wireless power transmission apparatus
US10693308B2 (en) 2016-09-23 2020-06-23 Apple Inc. Interconnections for multi-layer transmitter coil arrangements in wireless charging mats
US10622820B2 (en) 2016-09-23 2020-04-14 Apple Inc. Bobbin structure and transmitter coil for wireless charging mats
JP2018535640A (en) * 2016-09-23 2018-11-29 アップル インコーポレイテッドApple Inc. Wireless charging mat for portable electronic devices
US10714951B2 (en) 2016-09-23 2020-07-14 Apple Inc. Structural framework for wireless charging mats
US10897148B2 (en) 2016-09-23 2021-01-19 Apple Inc. Wireless charging mats with multi-layer transmitter coil arrangements
WO2020066081A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Wireless power feeding system
JPWO2020066081A1 (en) * 2018-09-27 2021-06-03 株式会社村田製作所 Wireless power supply system
US11637460B2 (en) 2018-09-27 2023-04-25 Murata Manufacturing Co., Ltd. Wireless power transfer system having an electric field shield member
JP7287402B2 (en) 2018-09-27 2023-06-06 株式会社村田製作所 Wireless power supply system
WO2021014087A1 (en) * 2019-07-25 2021-01-28 Institut Vedecom Magnetic shield for a contactless charging device of a motor vehicle
FR3099336A1 (en) * 2019-07-25 2021-01-29 Institut Vedecom Magnetic shielding screen for a contactless charging device of a motor vehicle

Also Published As

Publication number Publication date
WO2013061610A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP2015008547A (en) Non-contact power charger
JP6213611B2 (en) vehicle
US10202045B2 (en) Vehicle with shielded power receiving coil
JP6131915B2 (en) Power transmission device and power reception device
JP5759716B2 (en) Wireless power transmission system
KR101750149B1 (en) Vehicle
JPWO2013168239A1 (en) Vehicles that can receive power without contact
JP5915857B2 (en) antenna
JP6003565B2 (en) Non-contact power feeding device
JP6300107B2 (en) Non-contact power transmission device
US20160197492A1 (en) Contactless power transmission device
EP3076412B1 (en) Power-receiving device and power-transmitting device
JP2013215073A (en) Feeding apparatus and power reception apparatus for non-contact power transmission system
US9748773B2 (en) Contactless power supply device
WO2014156014A1 (en) Contactless charging device
JP5930182B2 (en) antenna
JP5888504B2 (en) antenna
JP2017107896A (en) Non-contact power supply system
JP6285810B2 (en) Coil unit in non-contact power feeder
JP2014093797A (en) Power transmission system
JP2013074683A (en) Antenna
JP2014147242A (en) Non-contact power transmission device
JP2020080406A (en) Non-contact power supply system
JP2014093321A (en) Power transmission system
JP2017076653A (en) Non-contact power supply system