JP2017106076A - Manufacturing method of steel for machine component excellent in rolling motion fatigue life - Google Patents

Manufacturing method of steel for machine component excellent in rolling motion fatigue life Download PDF

Info

Publication number
JP2017106076A
JP2017106076A JP2015240868A JP2015240868A JP2017106076A JP 2017106076 A JP2017106076 A JP 2017106076A JP 2015240868 A JP2015240868 A JP 2015240868A JP 2015240868 A JP2015240868 A JP 2015240868A JP 2017106076 A JP2017106076 A JP 2017106076A
Authority
JP
Japan
Prior art keywords
steel
jis
machine
manufacturing
machine parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015240868A
Other languages
Japanese (ja)
Other versions
JP6618345B2 (en
Inventor
藤松 威史
Takeshi Fujimatsu
威史 藤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2015240868A priority Critical patent/JP6618345B2/en
Publication of JP2017106076A publication Critical patent/JP2017106076A/en
Application granted granted Critical
Publication of JP6618345B2 publication Critical patent/JP6618345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a steel for machine component exhibiting more excellent rolling motion fatigue life than a steel with improved boundary state between a non-metallic inclusion and a base phase.SOLUTION: There is provided a manufacturing method of a steel for machine component targeting the steel which is a machine component having surface hardness of 58 HRC or more by a cutting processing and hardening and tempering treatment, wherein the steel has O:≤8 ppm and S:≤0.008% by mass percentage, an oxide-based non-metallic inclusion generated by deoxidation with adding an oxidant containing Si in addition to Al or without adding an Al deoxidant is softened compared to a MgO-AlO-based oxide-based non-metallic inclusion, capable of providing the steel for machine component with a boundary between the non-metallic inclusion and the base phase steel in an adhesion state and internal breakage in the inclusion repaired shown in the Figure 2 by adding isostatic compression stress of 100 MPa or more at 1105 to 1220°C on the steel for machine structure small in difference of deformation performance from the steel of the base phase, having a machine component shape by a plurality of plastic processes and excellent in rolling motion fatigue life.SELECTED DRAWING: Figure 2

Description

本発明は、非金属介在物が破損起点となるような軸受、ギア、ハブユニット、無段変速機、等速ジョイント、ピストンピンなどの優れた転動疲労寿命が求められ、表面硬さを58HRC以上に硬化して使用される機械部品用鋼の製造方法に関するものである。   The present invention requires excellent rolling fatigue life of bearings, gears, hub units, continuously variable transmissions, constant velocity joints, piston pins, etc. in which non-metallic inclusions become the starting point of damage, and has a surface hardness of 58 HRC. The present invention relates to a method for producing steel for machine parts used after being cured.

近年、各種の機械装置の高性能化にともない、転動疲労寿命が求められる機械部品や装置の使用環境は非常に厳しくなり、寿命の向上ならびに信頼性の向上が強く求められている。このような要求に対し、鋼成分の適正化や不純物元素の低減化などの取り組みがなされている。しかし、このような取り組みで、高清浄度とされた鋼材を用いても、十分に短寿命破損を抑制することはできていない。そこで、鋼材中の非金属介在物を低減(高清浄度化)し、さらに該非金属介在物を小径化しようとする試みが行われている。良く知られるAl23、MnS、TiNのような鋼中の非金属介在物は、鋼部品の転動疲労における内部はく離の起点として有害であるとの考え方は根強い。これらの非金属介在物の径が大きいほど、鋼部品の転動疲労寿命が低下することからも、上記の考え方は概ね正しいとみられる。したがって、非金属介在物量を少なくした、すなわち、鋼の清浄度を高めて、介在物径が20μm以上の大型の酸化物系非金属介在物を極めて少なくした高清浄度鋼が種々提案されている(例えば、特許文献1や特許文献2参照。)。しかし、これらにおいても安定して非金属介在物を小径化することは必ずしも容易ではない。 In recent years, with the improvement in performance of various mechanical devices, the use environment of mechanical parts and devices that require a rolling fatigue life has become extremely severe, and there is a strong demand for improved life and improved reliability. In response to such demands, efforts are being made to optimize steel components and reduce impurity elements. However, even with the use of a steel material having a high cleanliness, it is not possible to sufficiently suppress short-life damage. Therefore, attempts have been made to reduce non-metallic inclusions in steel (high cleanliness) and further reduce the diameter of the non-metallic inclusions. The well-known idea that non-metallic inclusions in steel, such as well-known Al 2 O 3 , MnS, and TiN, are harmful as a starting point of internal separation in rolling fatigue of steel parts. Since the rolling fatigue life of steel parts decreases as the diameter of these non-metallic inclusions increases, the above concept is considered to be generally correct. Accordingly, various high cleanliness steels have been proposed in which the amount of nonmetallic inclusions is reduced, that is, the cleanliness of the steel is increased, and the large oxide nonmetallic inclusions having an inclusion diameter of 20 μm or more are extremely reduced. (For example, refer to Patent Document 1 and Patent Document 2.) However, even in these cases, it is not always easy to reduce the diameter of the nonmetallic inclusion stably.

また、一方、質量%でAl:0.003%以下、Ti:0.003%以下、Zr:0.0010%以下およびSi:0.05〜4.0%を含有する、Si脱酸鋼であって、かつこのSi脱酸鋼中の介在物が質量%でSiO2:45%以上、アルカリ金属R(R=Na、K、Li)の酸化物(R2O):0.5〜10%を含有することを特徴とする疲労強度に優れたSi脱酸鋼およびその製造方法に関する発明が提案されている(例えば、特許文献3参照。)。ただし、この発明は、従来の鋼と比較して、有害な大型介在物が少なく、しかも残留した介在物も延性のある介在物であり、かつその介在物は微細に分散されたものであり、疲労強度に優れたSi脱酸鋼およびその製造方法を提案したものであり、その効果は回転曲げ疲労試験により確認されているが、転動疲労寿命に対して有害な硫化物系介在物に対しては、何らの規制もなされておらず、必ずしも転動疲労寿命が優れたものではない。 On the other hand, in Si deoxidized steel containing Al: 0.003% or less, Ti: 0.003% or less, Zr: 0.0010% or less, and Si: 0.05 to 4.0% in mass%. In addition, inclusions in this Si deoxidized steel are in mass% SiO 2 : 45% or more, oxide (R 2 O) of alkali metal R (R = Na, K, Li): 0.5 to 10 An invention relating to a Si-deoxidized steel excellent in fatigue strength and a method for producing the same is proposed (see, for example, Patent Document 3). However, the present invention has less harmful large inclusions compared to conventional steel, and the remaining inclusions are ductile inclusions, and the inclusions are finely dispersed, Si deoxidized steel with excellent fatigue strength and its manufacturing method have been proposed, and its effect has been confirmed by the rotating bending fatigue test, but it is effective against sulfide inclusions harmful to rolling fatigue life. Therefore, no regulation is made and the rolling fatigue life is not necessarily excellent.

一方、本発明者らは、転動疲労における破損すなわちはく離に至る過程を、人工欠陥材のき裂化過程の観察を行なうことにより詳細に検討し、空洞や非金属介在物周囲の隙間の存在がき裂発生に対して支配的な役割を果たす可能性が高いことを示した(例えば、非特許文献1参照。)。それらの知見に基づき、本発明者らは、機械構造用鋼の一部もしくは全体を焼入焼戻し処理する方法により58HRC以上を得る機械部品の製造方法において、該機械構造用鋼が鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で塑性加工を受けた後、焼入焼戻しを行う前に、800〜1100℃に加熱し100MPa以上の静水圧圧縮応力を付与することにより該鋼中に含有する非金属介在物と母相である鋼との界面を密着する処理を行うことを特徴とする転動疲労寿命に優れた機械部品の製造方法を提案している(例えば特許文献4。)。   On the other hand, the present inventors have examined in detail the process leading to breakage, that is, separation in rolling fatigue by observing the cracking process of the artificial defect material, and the existence of gaps around cavities and nonmetallic inclusions. It was shown that there is a high possibility of playing a dominant role in crack initiation (for example, see Non-Patent Document 1). Based on these findings, the present inventors obtain a steel material shape in a machine part manufacturing method in which 58 HRC or more is obtained by a method of quenching and tempering a part or the whole of a machine structural steel. After being subjected to plastic working in the process for obtaining the shape of the machine part or the subsequent process for forming the machine part, it is heated to 800 to 1100 ° C. and subjected to hydrostatic compression stress of 100 MPa or more before quenching and tempering. Proposes a manufacturing method of machine parts with excellent rolling fatigue life, characterized by performing a process of closely adhering the interface between non-metallic inclusions contained in steel and steel as a parent phase (for example, Patent Documents) 4)).

さらには、本発明者らは機械構造用鋼の一部もしくは全体を焼入焼戻し処理方法により58HRC以上を得る機械部品の製造方法において、通常のAlに加えてSiを含む酸化剤を添加して、あるいは、Alからなる脱酸剤を添加することなく、脱酸されて、生成する酸化物系非金属介在物を、Al23・MgO系の酸化物系非金属介在物に比べて、軟質化させて、母相との変形能の差を小さくするようにしたこの機械構造用鋼が鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で塑性加工を受けた後、焼入焼戻しが行われる前に、この機械構造用鋼を780〜1100℃に加熱し80MPa以上の静水圧を付与することによりこの鋼中に含有する非金属介在物と母相である鋼との界面を密着する処理を行うことを特徴とする転動疲労寿命に優れた機械部品の製造方法を提案している(例えば、特許文献5。)。 Furthermore, the present inventors have added a oxidizer containing Si in addition to normal Al in a method of manufacturing a machine part that obtains 58 HRC or more by quenching and tempering a part or the whole of steel for machine structure. Alternatively, the oxide-based nonmetallic inclusions that are generated by deoxidation without adding a deoxidizing agent composed of Al are compared with the oxide-based nonmetallic inclusions of Al 2 O 3 .MgO-based, After this machine structural steel, which has been softened to reduce the difference in deformability from the parent phase, has undergone plastic working in the process for obtaining the steel material shape or the subsequent process for obtaining the machine part shape Before quenching and tempering, the steel for mechanical structure is heated to 780 to 1100 ° C. and a hydrostatic pressure of 80 MPa or more is applied, and the non-metallic inclusions contained in the steel and the steel that is the parent phase The process of adhering the interface We propose a method for manufacturing a machine component having excellent rolling fatigue life characterized (e.g., Patent Document 5).

これらの方法により母相と鋼の界面を密着することにより、従来に無い大幅な寿命向上を達成している。この母相と鋼の界面のような物理的な隙間は、鋼材の製造過程や部材に成形していく過程において必ず行なわれる何らかの塑性加工、すなわち、熱間圧延、冷間圧延、熱間鍛造、温間鍛造、冷間鍛造、ローリング鍛造、冷間転造、冷間ヘッダー加工ならびに引抜き加工などによって生じる場合があることが指摘されている。また、本発明者らは表面硬さを58HRC以上とする機械部品に用いる鋼部材であって、鋼中のO量が8ppm以下、S量が0.008質量%以下で、転動体が負荷を受けて回転する転動面から、転動面に平行に被検面積40mm2以上から400mm2以下の大きさの試験片を採取して観察を行う際に、実効有害長さが10μm以上、実効有害幅が2μm以上の介在物を全て観察し、以下で定義される隙間率をそれぞれの介在物について算出し、観察された全介在物の隙間率の平均が8%以下で、かつ、観察された全介在物のうち、隙間率1.0%未満の介在物が観察された全介在物に占める割合を隙間ゼロ個数率としたとき、隙間ゼロ個数率が30%以上となることを特徴とする転がり疲労寿命に優れた鋼部材について提案している(例えば、特許文献6参照。)。なお、同発明において、隙間率とは以下のように定義されている。
隙間率=隙間部分の面積÷(隙間部分の面積+介在物面積)
By bringing the interface between the matrix and the steel into close contact by these methods, a significant improvement in the life that has not been achieved in the past has been achieved. This physical gap such as the interface between the parent phase and steel is a plastic process that is always performed in the manufacturing process of steel materials and the process of forming into members, that is, hot rolling, cold rolling, hot forging, It has been pointed out that it may be caused by warm forging, cold forging, rolling forging, cold rolling, cold header processing and drawing. Further, the present inventors are steel members used for machine parts having a surface hardness of 58 HRC or more, wherein the amount of O in the steel is 8 ppm or less, the amount of S is 0.008 mass% or less, and the rolling elements are loaded. When taking and observing a test piece having a test area of 40 mm 2 or more and 400 mm 2 or less in parallel with the rolling surface from the rolling surface that receives and rotates, the effective harmful length is 10 μm or more. Observe all inclusions with a harmful width of 2 μm or more, calculate the gap ratio defined below for each inclusion, and the average of the observed gap ratios of all the inclusions is 8% or less and is observed. Of all the inclusions, when the ratio of inclusions with a gap ratio of less than 1.0% to the total inclusions observed is defined as the zero gap number ratio, the zero gap ratio is 30% or more. Has proposed a steel member with excellent rolling fatigue life (for example, , See Patent Document 6.). In the present invention, the clearance ratio is defined as follows.
Gap ratio = gap area / (gap area + inclusion area)

また、ここでいう実効有害長さは、実際の介在物に加えて介在物周囲の隙間を含めた長さであり、実効有害幅は、実際の介在物に加えて介在物周囲の隙間も含めた幅である(例えば、特許文献4参照。)。これらの発明者らによる発明はいずれも介在物と母相の界面の制御に主眼が置かれたものとなっている。   The effective harmful length here is the length including the gap around the inclusion in addition to the actual inclusion, and the effective harmful width includes the gap around the inclusion in addition to the actual inclusion. (For example, refer to Patent Document 4). All of the inventions by these inventors focus on the control of the interface between inclusions and the parent phase.

これらの特許文献4〜6の3件の発明においては、非金属介在物と母相との密着について十分な関心が払われている。しかし、特許文献6では、非金属介在物中に内在する損傷については何ら言及されておらず、考慮の対象では無かった。また、特許文献4ならびに特許文献5においては、静水圧応力を付与する温度と静水圧圧縮応力が必要十分には高くないため、介在物と母相である鋼との界面の密着については明白な効果があるものの、塑性加工にともなって介在物自体に導入された割れなどの内部損傷の修復については効果が小さかった。発明者らは、この介在物の内部損傷に着眼することによって、さらなる寿命向上の余地があることを見出した。すなわち、そのような内部損傷にともなって介在物にはエッジの鋭い部分が生成されやすく、そこが応力集中を助長して転動疲労寿命に対して悪影響を与えることから、その内部損傷自体の修復に着眼するものである。   In the three inventions of these Patent Documents 4 to 6, sufficient attention is paid to the adhesion between the nonmetallic inclusions and the matrix. However, Patent Document 6 does not mention any damage inherent in non-metallic inclusions and has not been considered. Further, in Patent Document 4 and Patent Document 5, the temperature at which the hydrostatic pressure stress is applied and the hydrostatic pressure compressive stress are not sufficiently high, so the adhesion between the interface between the inclusion and the steel as the parent phase is obvious. Although effective, it was less effective for repairing internal damage such as cracks introduced into the inclusions themselves with plastic working. The inventors have found that there is room for further improvement in life by focusing on the internal damage of the inclusions. In other words, sharp edges of the inclusions are easily generated due to such internal damage, which promotes stress concentration and adversely affects the rolling fatigue life. The focus is on.

特開2006−63402号公報JP 2006-63402 A 特開平06−192790号公報Japanese Patent Laid-Open No. 06-192790 特開2005−264335号公報JP 2005-264335 A 特許第5403945号公報Japanese Patent No. 5403945 特許第5473249号公報Japanese Patent No. 5473249 特開平2014−55346号公報Japanese Patent Application Laid-Open No. 2014-55346

鉄と鋼、94(2008)、p.13〜20Iron and Steel, 94 (2008), p. 13-20

本発明が解決しようとする課題は、化学成分の限定、介在物組成の制限、鋼材中に含有する非金属介在物と母相である鋼との界面状態の改善、さらには非金属介在物中に内在される損傷の修復を図った鋼材とすることで、非金属介在物と母相との界面状態を改善した鋼に比べてもなお優れた転動疲労寿命を発揮する機械部品用鋼の製造方法を提供することである。   Problems to be solved by the present invention include chemical component limitation, inclusion composition limitation, improvement of interface state between nonmetallic inclusions contained in steel and steel as a parent phase, and further in nonmetallic inclusions By using a steel material that repairs damage inherent in steel, the steel for machine parts that exhibits a superior rolling fatigue life even when compared with steel that has improved the interface state between non-metallic inclusions and the parent phase. It is to provide a manufacturing method.

発明者は、高炭素クロム軸受鋼SUJ2を素材として作製した金属粉末と、少量のAl23の粉末を混合したものを金属製コンテナに充填し、封止したのち熱間で押出し加工を行った。次いで、870℃の焼ならしと最高点温度800℃の球状化焼なましを施したのち、その断面のミクロ組織を観察した。また、押出し加工した鋼に対して、特許文献4ならびに特許文献5に提案されている温度域より高い1150℃に加熱したのち、140MPaの静水圧圧縮応力を付与した後、同様の焼ならし、および球状化焼なましを施したのちの断面のミクロ組織を観察した。その結果、図2に示すように、適切な条件での静水圧圧縮応力付与により、介在物と母相である鋼との界面の密着が図られるのみならず、介在物中の割れが修復されていることを突き止めた。 The inventor filled a metal container with a mixture of metal powder made from high carbon chromium bearing steel SUJ2 and a small amount of Al 2 O 3 powder, sealed it, and then extruded it hot. It was. Next, after normalizing at 870 ° C. and spheroidizing annealing at a maximum temperature of 800 ° C., the microstructure of the cross section was observed. Further, after heating the extruded steel to 1150 ° C., which is higher than the temperature range proposed in Patent Document 4 and Patent Document 5, after applying a hydrostatic compression stress of 140 MPa, the same normalization, And the microstructure of the cross section after spheroidizing annealing was observed. As a result, as shown in FIG. 2, by applying hydrostatic compression stress under appropriate conditions, not only adhesion of the interface between the inclusion and the steel as the parent phase is achieved, but also cracks in the inclusion are repaired. I found out.

この知見に基づき、以下の課題を解決するための手段を得た。   Based on this knowledge, the means for solving the following problems were obtained.

第1の手段では、質量割合で、O量が8ppm以下、S量が0.008%以下である鋼は、通常のAlに加えてSiを含む脱酸剤を添加しての、あるいはAl脱酸剤の添加無しでの、それぞれ脱酸を行うことにより、生成された酸化物系非金属介在物をMgO−Al23系の酸化物系非金属介在物に比べて軟質化させて、母相との変形能の差を小さくするようにした機械構造用鋼に対して、最終的に該鋼製部品としての切削加工とそれに続く焼入焼戻しにより表面硬さ58HRC以上を付与する工程に先立ち、1105〜1220℃に加熱し、さらに100MPa以上の静水圧圧縮応力を付与することにより、当該鋼中に含有される非金属介在物と母相である鋼との界面を密着状態とし、なおかつ非金属介在物中の内部損傷を修復することを特徴とする転動疲労寿命に優れた機械部品用鋼の製造方法である。 In the first means, a steel having an O content of 8 ppm or less and an S content of 0.008% or less by mass ratio is obtained by adding a deoxidizer containing Si in addition to normal Al or by removing Al. By performing deoxidation without adding an acid agent, the generated oxide-based non-metallic inclusions are softened compared to the MgO-Al 2 O 3- based oxide-based non-metallic inclusions. In the process of giving a surface hardness of 58 HRC or higher to the steel for machine structural use in which the difference in deformability from the parent phase is reduced, by finally cutting the steel part and subsequent quenching and tempering. Prior to heating to 1105 ° C. to 1220 ° C. and further applying a hydrostatic compression stress of 100 MPa or more, the interface between the nonmetallic inclusions contained in the steel and the steel that is the parent phase is brought into a close contact state, and Repair internal damage in non-metallic inclusions It is an excellent method for producing mechanical parts for steel rolling fatigue life characterized.

なお、上記の手段における鋼製部品の製造方法としての切削加工とそれに続く焼入焼戻し工程に先立つ静水圧圧縮応力を付与する際の加熱温度は、望ましくは1120℃から1220℃であり、より望ましくは1120℃から1200℃である。   The heating temperature for applying the hydrostatic compression stress prior to the cutting and subsequent quenching and tempering steps as the steel part manufacturing method in the above means is preferably 1120 ° C to 1220 ° C, and more preferably Is 1120 ° C. to 1200 ° C.

ところで、第1の手段に用いられる機械部品用鋼において、質量割合で、O量を8ppm以下、S量を0.008%以下とする理由は、鋼中で母相である鋼と密着状態で存在する場合であっても、鋼を部品に成形したのちの部品表面に表出した状態となった場合には、寿命に対して有害な作用を及ぼす酸化物系介在物、ならびに硫化物系介在物について、その大きさと存在頻度を低減するためである。これらでは、より好ましくは、質量割合で、O量を6ppm以下、S量を0.003%以下とする。さらに、MgO−Al23系の酸化物系非金属介在物に比べて軟質化させた酸化物を含有させた鋼とするために、本発明に用いられる機械部品用鋼は通常のAlに加えてSiを含む脱酸剤を添加するか、もしくはAlからなる脱酸剤を添加することなく、それぞれ脱酸を行うものとする。 By the way, in the steel for machine parts used in the first means, the reason for setting the O amount to 8 ppm or less and the S amount to 0.008% or less in the mass ratio is that it is in close contact with the steel that is the parent phase in the steel. Even if it exists, when steel is formed into a part and then appears on the surface of the part, oxide inclusions and sulfide inclusions that have a detrimental effect on the service life This is to reduce the size and frequency of objects. In these, more preferably, the O amount is 6 ppm or less and the S amount is 0.003% or less in terms of mass ratio. Furthermore, in order to make steel containing oxides softened compared to MgO-Al 2 O 3 oxide-based nonmetallic inclusions, the steel for machine parts used in the present invention is made of ordinary Al. In addition, deoxidation is performed without adding a deoxidizer containing Si or adding a deoxidizer composed of Al.

通常は、一般的な機械構造用鋼はAlによる脱酸が行なわれている。そのために生成する酸化物系非金属介在物は、MgO−Al23系やAl23系が多くなる。これらは、いずれも硬質の介在物であり、かつ精錬以降に凝集し、JIS G 0555に規定されているグループBに分類される形状をとり易いという問題がある。この問題があることから、静水圧を付与した際に、酸化物系非金属介在物と母相との界面に存在する空洞を完全に消滅させ、なおかつ非金属介在物中の内部損傷が修復されたものとするための、適正な静水圧圧縮応力付与時の条件範囲が限られる。そこで、鋼中に含有される酸化物系非金属介在物の変形能を母相に近いものとすれば、静水圧圧縮応力を付与した際に、主に酸化物系非金属介在物と母相との界面に存在する空洞を完全に消滅させる効果が増進する。さらに、MgO−Al23系に比べて軟質な酸化物系介在物とすれば、鋼の塑性加工に伴う介在物の内部損傷を修復する効果が増進する。すなわち、その手段としては、通常のAlに加えてSiを含む脱酸材を添加して、あるいは、Alからなる脱酸剤を添加することなく、脱酸することにより、生成する酸化物系非金属介在物を軟質化させて、母相との変形能の差を小さくすることである。 Usually, general mechanical structural steel is deoxidized with Al. For this reason, the oxide-based non-metallic inclusions produced increase in number of MgO—Al 2 O 3 and Al 2 O 3 systems. All of these are hard inclusions, and have a problem that they tend to aggregate after refining and take a shape classified into group B defined in JIS G 0555. Because of this problem, when hydrostatic pressure is applied, cavities existing at the interface between the oxide-based nonmetallic inclusions and the parent phase are completely eliminated, and internal damage in the nonmetallic inclusions is repaired. Therefore, the condition range when applying an appropriate hydrostatic compression stress is limited. Therefore, assuming that the deformability of the oxide-based nonmetallic inclusions contained in the steel is close to that of the parent phase, when the hydrostatic compression stress is applied, the oxide-based nonmetallic inclusions and the parent phase are mainly used. The effect of completely eliminating the cavities existing at the interface is enhanced. Furthermore, if the oxide inclusion is softer than the MgO—Al 2 O 3 system, the effect of repairing the internal damage of the inclusion accompanying the plastic processing of steel is enhanced. That is, as a means for this, non-oxide-based non-oxides produced by adding a deoxidizing material containing Si in addition to normal Al, or without adding a deoxidizing agent made of Al. It is to soften the metal inclusions and reduce the difference in deformability from the parent phase.

ところで、鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程中において、鋼に与えられる塑性加工によって、介在物と母相との間に隙間が発生したり、さらに介在物内には割れ等の損傷が発生したりする。そこで、これらの隙間や損傷の発生対策として、最終的に該鋼製部品としての切削加工とそれに続く焼入焼戻しにより表面硬さ58HRC以上を付与する工程に先立って、鋼を1105〜1220℃に加熱し、100MPa以上の静水圧圧縮応力を付与することにより、該鋼中に含有される非金属介在物と母相である鋼との界面を密着させ、かつ介在物中の内部損傷が修復された鋼とすることで、従来に無い転動疲労寿命に優れた機械部品用鋼が得られるのである。   By the way, in the process for obtaining the steel material shape or the subsequent process for obtaining the machine part shape, a gap is generated between the inclusion and the parent phase due to the plastic working applied to the steel, and further in the inclusion. Damage such as cracks may occur. Therefore, as a countermeasure against the occurrence of these gaps and damage, the steel is first heated to 1105 to 1220 ° C. prior to the step of imparting a surface hardness of 58 HRC or higher by cutting as the steel part and subsequent quenching and tempering. By heating and applying a hydrostatic compression stress of 100 MPa or more, the interface between the nonmetallic inclusions contained in the steel and the parent phase steel is brought into close contact, and internal damage in the inclusions is repaired. By using this steel, it is possible to obtain steel for machine parts that has an unprecedented rolling fatigue life.

さらに第2の手段では、機械部品用鋼の製造方法は、その鋼組成が、JIS G 4805に規定されている高炭素クロム軸受鋼鋼材、JIS G 4051に規定されている機械構造用炭素鋼鋼材、JIS G 4052に規定されている焼入れ性を保証した構造用鋼鋼材(H鋼)、JIS G 4053に規定されている機械構造用合金鋼鋼材、JIS G 3441に規定されている機械構造用合金鋼鋼管、JIS G 3445に規定されている機械構造用炭素鋼鋼管、JIS G 3507−1に規定されている冷間圧造用炭素鋼−第1部:線材、JIS G 3507−2に規定されている冷間圧造用炭素鋼−第2部:線、JIS G 3509−1に規定されている冷間圧造用合金鋼−第1部:線材、JIS G 3509−2に規定されている冷間圧造用合金鋼−第2部:線のいずれかの組成であることを特徴とする第1の手段による転動疲労寿命に優れた機械部品用鋼の製造方法である。   Further, in the second means, the method of manufacturing the steel for machine parts includes a high carbon chrome bearing steel material whose steel composition is specified in JIS G 4805, and a carbon steel material for machine structure specified in JIS G 4051. , Structural steel (H steel) with guaranteed hardenability specified in JIS G 4052, alloy steel for machine structure specified in JIS G 4053, alloy for mechanical structure specified in JIS G 3441 Steel pipes, carbon steel pipes for machine structures specified in JIS G 3445, carbon steel for cold heading specified in JIS G 3507-1-Part 1: Wire, specified in JIS G 3507-2 Carbon steel for cold heading-Part 2: Wire, alloy steel for cold heading specified in JIS G 3509-1-Part 1: Wire, specified in JIS G 3509-2 Alloy steel for cold heading-Part 2: A method for producing steel for machine parts excellent in rolling fatigue life by the first means characterized in that it has any composition of wire.

さらに第3の手段では、機械部品用鋼の製造方法は、その鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で受ける塑性加工が複数回の工程からなり、これらの複数回の工程中の切削加工を除く最後の塑性加工が熱間塑性加工であることを特徴とする第1の手段による転動疲労寿命に優れた機械部品用鋼の製造方法である。   Further, in the third means, the method of manufacturing the steel for machine parts includes a plurality of processes in which the plastic processing received in the process for obtaining the steel material shape or the subsequent process for obtaining the machine part shape is performed. A method for producing steel for machine parts having excellent rolling fatigue life by a first means, characterized in that the last plastic processing excluding cutting during the round process is hot plastic processing.

さらに第4の手段では、機械部品用鋼の製造方法は、その鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で受ける塑性加工が複数回の工程からなり、これらの複数回の中の切削加工を除く最後の塑性加工が温間塑性加工であることを特徴とする第1の手段による転動疲労寿命に優れた機械部品用鋼の製造方法である。   Further, in the fourth means, the method of manufacturing the steel for machine parts includes a plurality of processes in which the plastic working received in the process for obtaining the steel material shape or the process for obtaining the machine part shape thereafter is a plurality of processes. The last plastic processing excluding cutting in a round is warm plastic processing, and is a method for producing steel for machine parts having excellent rolling fatigue life by the first means.

さらに第5の手段では、機械部品用鋼の製造方法は、その鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で受ける塑性加工が複数回の工程からなり、これらの複数回の中の切削加工を除く最後の塑性加工が冷間塑性加工であることを特徴とする第1の手段による転動疲労寿命に優れた機械部品用鋼の製造方法である。   Further, according to a fifth means, the method of manufacturing steel for machine parts includes a plurality of processes in which plastic processing received in a process for obtaining the steel material shape or a subsequent process for obtaining a machine part shape is performed. The last plastic processing excluding cutting in a round is cold plastic processing, which is a method for producing steel for machine parts having excellent rolling fatigue life by the first means.

上記の本発明の手段とすることにより、化学成分が限定され、介在物が規制された鋼に対して、該鋼材中に含有の非金属介在物と母相である鋼との界面状態の改善、さらに非金属介在物中に内在される損傷が修復された鋼材を製造することができるので、非金属介在物と母相との界面状態を改善した鋼と比較しても、優れた転動疲労寿命を発揮する、表面硬さが58HRC以上で、かつ、はく離の可能性の極めて低い、転動疲労寿命に優れた機械部品用鋼を製造することができる。   By using the above-mentioned means of the present invention, improvement in the interface state between the non-metallic inclusions contained in the steel material and the steel as the parent phase with respect to the steel in which the chemical components are limited and the inclusions are regulated. In addition, it is possible to produce a steel material in which the damage inherent in the nonmetallic inclusions is repaired, so that superior rolling compared to steel with improved interface state between the nonmetallic inclusions and the parent phase. It is possible to produce steel for machine parts that exhibits fatigue life, has a surface hardness of 58 HRC or more, and has an extremely low possibility of peeling, and excellent in rolling fatigue life.

熱間押出し加工で試作のSUJ2鋼に対し、焼ならしと球状化焼なましを施した、Al23系非金属介在物近傍の断面のミクロ組織(腐食はピクラールによる)の顕微鏡写真である。A micrograph of the microstructure of the cross section of Al 2 O 3 -based non-metallic inclusions (corrosion is caused by Picral) after normalizing and spheroidizing annealing of the SUJ2 steel prototype manufactured by hot extrusion is there. 熱間押出し加工で試作のSUJ2鋼に対し、1150℃の加熱後、140MPaの静水圧圧縮応力を付与し、さらに焼ならしと球状化焼なましを施した、Al23系非金属介在物近傍の断面のミクロ組織(腐食はピクラールによる)の顕微鏡写真で、鋼中の非金属介在物と母相鋼との界面が密着状態で内部損傷が修復されていることを示す。Of SUJ2 steel prototype in hot extrusion, after heating 1150 ° C., Grant isostatic compressive stress of 140 MPa, further subjected to a normalizing and spheroidizing annealing, Al 2 O 3 based nonmetallic inclusions A micrograph of the microstructure of the cross section in the vicinity of the object (corrosion is caused by Picral) shows that the internal damage has been repaired with the interface between the nonmetallic inclusions in the steel and the parent phase steel in close contact.

軸受、ギア、ハブユニット、無段変速機、等速ジョイント、ピストンピンなどの機械部品に求められる本発明における機械部品用鋼には、一般的にJIS G 4805に規定されている高炭素クロム軸受鋼鋼材、JIS G 4051に規定されている機械構造用炭素鋼鋼材、JIS G 4052に規定されている焼入れ性を保証した構造用鋼鋼材(H鋼)、JIS G 4053に規定されている機械構造用合金鋼鋼材、JIS G 3441に規定されている機械構造用合金鋼鋼管、JIS G 3445に規定されている機械構造用炭素鋼鋼管、JIS G 3507−1に規定されている冷間圧造用炭素鋼−第1部:線材、JIS G3507−2に規定されている冷間圧造用炭素鋼−第2部:線、JIS G 3509−1に規定されている冷間圧造用合金鋼−第1部:線材、JIS G 3509−2に規定されている冷間圧造用合金鋼−第2部:線、およびそれぞれの関連外国規格鋼、が用いられる。ところで、上記した本発明としての機械部品用鋼の実施により得られる効果はいずれも同様のものであるので、ここでは、JIS G 4805に規定されている高炭素クロム軸受鋼鋼材における実施の形態について説明するものとする。ただし、この鋼炭素クロム軸受鋼の化学組成の範囲により、本願発明で対象とする上記の全ての機械部品用鋼の化学組成を限定するものではない。   The steel for machine parts in the present invention required for machine parts such as bearings, gears, hub units, continuously variable transmissions, constant velocity joints, piston pins and the like is generally a high carbon chromium bearing defined in JIS G 4805. Steel materials, carbon steel materials for machine structures specified in JIS G 4051, structural steel materials (H steel) that ensure hardenability specified in JIS G 4052, machine structures specified in JIS G 4053 Alloy steel for machinery, Alloy steel pipe for machine structure specified in JIS G 3441, Carbon steel pipe for machine structure specified in JIS G 3445, Carbon for cold heading specified in JIS G 3507-1 Steel-Part 1: Wire rod, carbon steel for cold heading specified in JIS G3507-2-Part 2: Wire, wire JIS G 3509-1 Alloy steel for cold heading-Part 1: Wire material, Alloy steel for cold heading specified in JIS G 3509-2-Part 2: Wire, and their respective foreign standard steels are used. By the way, since all the effects obtained by the implementation of the steel for machine parts as the present invention described above are the same, the embodiment in the high carbon chrome bearing steel material defined in JIS G 4805 is here described. Shall be explained. However, the range of the chemical composition of the steel carbon chromium bearing steel does not limit the chemical composition of all the above-mentioned steel for machine parts used in the present invention.

本願発明で対象とする上記のJIS規格の鋼は、一般的に、1)アーク溶解炉または転炉による溶鋼の酸化精錬、2)取鍋精錬炉(LF)による還元精錬、3)還流式真空脱ガス装置(RH)による還流真空脱ガス処理(RH処理)、4)連続鋳造法または造塊法による鋼塊の鋳造、および5)鋼塊の熱間圧延あるいは熱間での圧鍛による、または冷間圧延あるいは冷間での圧鍛による、塑性加工工程を経て製造される。本発明における鋼材形状を得るための工程とは上記に記載の1)〜5)の各工程を指し、鋼材形状とは形鋼、棒鋼、管材、線材、鋼板、および鋼帯を指す。   The steel of the above-mentioned JIS standard, which is the subject of the present invention, is generally 1) oxidation refining of molten steel using an arc melting furnace or converter, 2) reduction refining using a ladle refining furnace (LF), and 3) refluxing vacuum. Reflux vacuum degassing treatment (RH treatment) by degassing device (RH), 4) casting of ingot by continuous casting method or ingot-making method, and 5) by hot rolling or hot forging of ingot. Or it manufactures through a plastic working process by cold rolling or cold forging. The process for obtaining the steel material shape in the present invention refers to each of the processes 1) to 5) described above, and the steel material shape refers to a shape steel, a bar, a pipe, a wire, a steel plate, and a steel strip.

次いで、熱間鍛造、亜熱間鍛造、温間鍛造、冷間鍛造、ローリング鍛造、冷間転造、冷間ヘッダー加工ならびに引抜き加工、場合によっては引抜き加工と冷間ヘッダー加工、さらには上記の各加工の組合せからなる塑性加工と、必要に応じて軟化や組織調整を目的とした熱処理とを施し、さらに切削加工を行なって、機械部品形状の部材に成形する。本発明における機械部品形状を得るための工程とは上記に記載の各加工の工程を指す。   Next, hot forging, sub-hot forging, warm forging, cold forging, rolling forging, cold rolling, cold header processing and drawing, and in some cases, drawing and cold header processing, and above A plastic working consisting of a combination of the respective processes and a heat treatment for softening and structure adjustment as necessary are performed, and further a cutting process is performed to form a member having a machine part shape. The process for obtaining the machine part shape in the present invention refers to each process described above.

なお、本発明における熱間鍛造などの熱間塑性加工における熱間とは加工される素材である当該鋼の再結晶温度以上の温度域を指し、温間鍛造などの温間塑性加工における温間とは室温より上で再結晶温度より下の温度域をそれぞれ指し、冷間鍛造などの冷間塑性加工における冷間とは室温およびその近辺の温度域を指す。   The hot in the hot plastic working such as hot forging in the present invention refers to a temperature range equal to or higher than the recrystallization temperature of the steel being processed, and the warm in the warm plastic working such as warm forging. Refers to a temperature range above room temperature and below the recrystallization temperature, and cold in cold plastic working such as cold forging refers to room temperature and the temperature range in the vicinity thereof.

上記の機械部品形状の部材への成形に続いて、表面硬さ58HRC以上を得るために、全体焼入れ(ズブ焼入れ)、浸炭焼入れ、浸炭窒化焼入れ、窒化焼入れ、浸炭浸窒焼入れ、または高周波焼入れなどとその後の焼戻しなどである、焼入焼戻し処理が鋼材や用途に応じて施されて、研磨や研削などの仕上げ処理を経て、本願発明が対象とする機械部品が製造される。本願発明における焼入焼戻し処理方法とは上記に記載の処理を指す。   Subsequent to molding into the above-mentioned member having a machine part shape, in order to obtain a surface hardness of 58 HRC or more, total quenching (carbure quenching), carburizing quenching, carbonitriding quenching, nitriding quenching, carburizing and nitrogen quenching, or induction quenching, etc. Then, a quenching and tempering process, such as tempering thereafter, is performed according to the steel material and application, and a finishing process such as polishing and grinding is performed to produce a machine part targeted by the present invention. The quenching and tempering treatment method in the present invention refers to the treatment described above.

本願発明の効果を得るためには、最終的に該鋼製部品としての切削加工とそれに続く焼入焼戻しにより表面硬さ58HRC以上を付与する工程に先立って、当該鋼を1105〜1220℃に加熱し、100MPa以上の静水圧圧縮応力を付与することによりこの鋼中に含有される非金属介在物と母相である鋼との界面が密着され、かつ非金属介在物中の内部損傷が、図2の顕微鏡写真にみられるように、修復された状態とする必要がある。その手段としては、1105〜1220℃に加熱した後に100MPa以上の静水圧圧縮応力を付与することが可能な手段が適する。例えば、その手段としては、熱間等方圧プレスすなわちHIP、ホットプレス、完全閉塞あるいは完全密閉による熱間鍛造が推奨される。   In order to obtain the effect of the present invention, the steel is finally heated to 1105 to 1220 ° C. prior to the step of imparting a surface hardness of 58 HRC or higher by cutting as the steel part and subsequent quenching and tempering. By applying an isostatic pressure stress of 100 MPa or more, the interface between the nonmetallic inclusions contained in this steel and the parent phase steel is brought into close contact, and internal damage in the nonmetallic inclusions is As seen in the photomicrograph 2 of FIG. As the means, a means capable of applying a hydrostatic compression stress of 100 MPa or more after heating to 1105 to 1220 ° C. is suitable. For example, as the means, hot isostatic pressing, that is, HIP, hot pressing, hot forging by complete closure or complete sealing is recommended.

なお、金型による完全密閉をしないで行う、熱間鍛造、亜熱間鍛造、温間鍛造、冷間鍛造、また、拡径加工を行うローリング鍛造、また、冷間ヘッダー加工ならびに引抜き加工では、鋼材に等しく静水圧圧縮応力を付与できないか、もしくは特定方向に引張応力が付与されるために、非金属介在物と母相である鋼との界面に隙間を生じたり、非金属介在物内部に割れを生じたりする場合があるために、また特に冷間工法や温間工法では静水圧圧縮応力を付与する際の加熱温度不足のため、本発明の効果は得られない。   In addition, in hot forging, sub-hot forging, warm forging, cold forging, rolling forging that performs diameter expansion processing, cold header processing and drawing processing performed without completely sealing with a mold, Since the hydrostatic compression stress cannot be applied equally to steel materials, or tensile stress is applied in a specific direction, a gap is formed at the interface between the nonmetallic inclusions and the parent steel, or inside the nonmetallic inclusions. In some cases, cracking may occur, and particularly in the cold construction method and the warm construction method, the effect of the present invention cannot be obtained due to insufficient heating temperature when applying hydrostatic compression stress.

次に、静水圧圧縮応力を付与する際の温度および圧力の限定理由について述べる。鋼材は、その加熱温度が高いほど変形し易くなる。したがって、鋼材の加熱温度が高いほど酸化物系非金属介在物と母相との界面に存在する隙間すなわち空洞を消滅させるため、ならびに非金属介在物中の割れなどの損傷を修復するため、必要な静水圧圧縮応力は比較的低くて良い。本発明者が鋭意検討した結果、1105〜1220℃に加熱して、かつ100MPa以上の静水圧圧縮応力が付与できれば、本発明の効果が得られていることから、本発明の手段では1105〜1220℃に加熱して、かつ100MPa以上の静水圧圧縮応力を付与するものとする。   Next, the reasons for limiting the temperature and pressure when applying hydrostatic compression stress will be described. A steel material is easily deformed as its heating temperature increases. Therefore, the higher the heating temperature of the steel, the more necessary to eliminate gaps or cavities existing at the interface between the oxide-based nonmetallic inclusions and the parent phase, and to repair damage such as cracks in the nonmetallic inclusions. The hydrostatic compression stress can be relatively low. As a result of intensive studies by the inventor, the effect of the present invention can be obtained by heating to 1105 to 1220 ° C. and applying a hydrostatic compression stress of 100 MPa or more. It is heated to 0 ° C. and applied with a hydrostatic compression stress of 100 MPa or more.

本発明の実施の形態の実施条件と得られた効果について具体的に説明する。このため、表1に実施の形態の供試材としてのNo.1〜4の鋼1〜4の化学成分を質量%で示す。表1には、JIS G 4805の成分を満足する鋼である高炭素クロム軸受鋼のなかのSUJ2鋼について示し、さらに、化学成分のうちのO量とS量については、本発明の請求範囲の製造方法で対象とする鋼の規制を満たす鋼1と鋼3、および満たさないものである鋼2の計3種類を用意した。これらの鋼は、その溶鋼をアーク溶解炉にて酸化精錬し、取鍋精錬炉(LF)にて還元精錬し、還流式真空脱ガス装置(RH)にて還流真空脱ガス処理(RH処理)し、連続鋳造にて鋳造により鋼塊とし、これらの鋼塊を熱間圧延にて鋼材とした。次にこの鋼材を800℃にて球状化焼なましを施した。   The implementation conditions and the obtained effects of the embodiment of the present invention will be specifically described. For this reason, No. 1 as the test material of the embodiment is shown in Table 1. The chemical composition of the steels 1-4 of 1-4 is shown by the mass%. Table 1 shows SUJ2 steel in high carbon chromium bearing steel, which is a steel satisfying the components of JIS G 4805. Further, the O amount and S amount of chemical components are as defined in the claims of the present invention. A total of three types were prepared: Steel 1 and Steel 3 that satisfy the regulations of steels targeted by the manufacturing method, and Steel 2 that does not satisfy the regulations. These steels are subjected to oxidation refining of the molten steel in an arc melting furnace, reductive refining in a ladle refining furnace (LF), and reflux vacuum degassing treatment (RH treatment) in a reflux type vacuum degassing apparatus (RH). Then, steel ingots were formed by casting in continuous casting, and these steel ingots were made into steel materials by hot rolling. Next, this steel was subjected to spheroidizing annealing at 800 ° C.

本発明の実施の形態の実施条件と得られた効果についてさらに具体的に説明する。先ず、表1に本発明の実施の形態の供試材である鋼1〜鋼3の成分組成をそれぞれ示す。この供試材である鋼1〜鋼3は、いずれもSUJ2鋼であるが、鋼2については本発明の請求範囲の製造方法で対象とする機械部品用鋼における化学成分の規制を外れるものである。いずれの区分の鋼種も上記したように、アーク溶解炉での溶鋼の酸化精錬、取鍋精錬炉(LF)での還元精錬、還流式真空脱ガス装置(RH)での還流真空脱ガス処理(RH処理)、連続鋳造での鋼塊の鋳造に続く、鋼塊の熱間圧延により、直径65mmの鋼材を作製した。なお、供試材の鋼1ならびに鋼2は脱酸時にAlを添加することなく、SiとMnで脱酸を行なったもので、表1に示すAlの0.003%ならびに0.002%は不可避不純物として含有されているものである。鋼3については一般的に行なわれているAlによる脱酸を行なったものである。これらは、その後、熱間圧延した鋼材に対して800℃にて球状化焼なましを施した。   The implementation conditions and the obtained effects of the embodiment of the present invention will be described more specifically. First, Table 1 shows the component compositions of Steel 1 to Steel 3, which are test materials according to the embodiment of the present invention. Steels 1 to 3 which are the test materials are all SUJ2 steels, but the steels 2 are out of the regulation of chemical components in the steel for machine parts targeted by the manufacturing method of the claims of the present invention. is there. As described above, all types of steel types are oxidative refining of molten steel in an arc melting furnace, reductive refining in a ladle refining furnace (LF), and recirculation vacuum degassing treatment in a recirculation vacuum degassing apparatus (RH) ( RH treatment), a steel material having a diameter of 65 mm was produced by hot rolling of the steel ingot following the casting of the steel ingot by continuous casting. Steels 1 and 2 as test materials were deoxidized with Si and Mn without adding Al during deoxidation, and 0.003% and 0.002% of Al shown in Table 1 are It is contained as an inevitable impurity. Steel 3 has been deoxidized by Al, which is generally performed. These were subsequently subjected to spheroidizing annealing at 800 ° C. on the hot-rolled steel.

上記の球状化焼なましした鋼材に対し、表3に示す、工程条件1では、スラスト型の転動疲労試験のため外径60mmで厚さ5.8mmの鋼板の中央に内径20mmの穴を空けた円盤形状に切削加工した。工程条件2では、室温以上で再結晶温度以下である温間の620℃に加熱して据え込みを行なった後にスラスト型の転動疲労試験のための円盤形状に切削加工した。工程条件3では、冷間据え込みを行なった後に上記と同様の円盤形状に切削加工した。これらの据え込み加工はいずれも鍛造を模擬したものである。   With respect to the above-mentioned spheroidized steel, in process condition 1 shown in Table 3, a hole having an inner diameter of 20 mm is formed in the center of a steel plate having an outer diameter of 60 mm and a thickness of 5.8 mm for a thrust type rolling fatigue test. Cut into a hollow disk shape. In process condition 2, after heating up to a temperature of 620 ° C. which is not less than room temperature and not more than the recrystallization temperature, it was cut into a disk shape for a thrust type rolling fatigue test. In process condition 3, after cold upsetting, it was cut into a disk shape similar to the above. All these upsetting processes simulate forging.

得られた円盤形状品にそれぞれ熱間等方圧プレス(HIP)処理を施した。この処理条件を表2に示す。表2のプレス条件の条件Aと条件Bは、本発明の1105〜1220℃の加熱と、100MPa以上のプレス圧の条件を満足するものである。プレス条件の条件C、条件D、および条件Eにおいては、本発明の1105〜1220℃の加熱と、100MPa以上のプレス圧の条件とのいずれかを満足しないものである。これらプレス条件の条件A〜Eの円盤形状品に対して、通常のSUJ2鋼の場合の適正な焼入焼戻し前ミクロ組織に調整するための焼ならしと球状化焼なましを施してから、焼入焼戻処理を付与した。このときの焼ならしは865℃で1時間保持後に空冷する条件、また、球状化焼なましは800℃の条件にて行っているが、適正な焼入焼戻し前ミクロ組織に調整するための熱処理条件は鋼種に応じて選定されるものとし、不要な場合は省略しても良い。次いで、条件A〜Eの円盤形状品に対して835℃で20分保持した後、油冷により焼入れし、次いで170℃で90分の焼戻し処理を行い、所望の58HRC以上の硬さを得た。さらに切削、研磨を施して、スラスト型転動試験を行うための円盤試験片に仕上げて、転動疲労寿命評価を行なった。なお、転動体は市販のスラスト型の転がり軸受用の鋼球を使用した。   The obtained disk-shaped products were each subjected to hot isostatic pressing (HIP) treatment. Table 2 shows the processing conditions. Conditions A and B of the pressing conditions in Table 2 satisfy the conditions of heating at 1105 to 1220 ° C. and pressing pressure of 100 MPa or more according to the present invention. In the conditions C, D and E of the pressing conditions, either the heating at 1105 to 1220 ° C. of the present invention or the pressing pressure condition of 100 MPa or more is not satisfied. After subjecting the disk-shaped products of these pressing conditions A to E to normalization and spheroidizing annealing to adjust to the appropriate microstructure before quenching and tempering in the case of normal SUJ2 steel, A quenching and tempering treatment was applied. The normalization at this time is carried out under the condition of air cooling after holding at 865 ° C. for 1 hour, and the spheroidizing annealing is carried out under the condition of 800 ° C. In order to adjust the microstructure before proper quenching and tempering The heat treatment conditions are selected according to the steel type, and may be omitted if unnecessary. Next, the disc-shaped products of conditions A to E were held at 835 ° C. for 20 minutes, then quenched by oil cooling, and then tempered at 170 ° C. for 90 minutes to obtain a desired hardness of 58 HRC or higher. . Further, cutting and polishing were performed to finish a disk specimen for performing a thrust type rolling test, and a rolling fatigue life evaluation was performed. In addition, the rolling element used the steel ball for commercially available thrust type rolling bearings.

スラスト型転がり疲労試験は最大ヘルツ応力Pmaxが5292MPaとなる条件で、上記の各プレス条件の条件A〜Eに対して、それぞれ20回ずつ行なった。その結果から、ワイブル分布関数に基づき、短寿命側から総試験片数の5%の割合の試験片に、はく離が生じるまでの総回転数を求め、これをL5寿命とした。焼入焼戻し後の表面硬さとスラスト型転がり疲労試験を行った、各条件に対するL5寿命を下記の表3に示す。なお、各条件の試験片において1×108cycleに到達した場合は、実用上十分な寿命が得られていることから、はく離に至らなくても試験を中止することとした。 The thrust type rolling fatigue test was performed 20 times for each of the press conditions A to E under the condition that the maximum Hertz stress Pmax was 5292 MPa. The results, based on the Weibull distribution function, the 5% ratio of the test piece of the total specimen number from the short life side, determine the total number of rotations until flaking occurs, and it was used as a L 5 life. Table 3 below shows the surface hardness after quenching and tempering and the L 5 life for each condition in which a thrust type rolling fatigue test was conducted. In addition, when the test piece of each condition reached 1 × 10 8 cycle, a practically sufficient life was obtained, so the test was stopped even if it did not come off.

なお、表3の鋼1のL5寿命の欄における記号「→」は20枚の試験片のいずれも1×108cycleで、はく離しなかったことを意味する。表3における鋼1は、本発明の請求範囲の製造条件で対象とする鋼の構成を満足し、他方で、鋼2は、S量およびO量が請求範囲の製造条件で対象とする鋼の規制上限を超えるもので、また、鋼3はS量およびO量は請求範囲を満たすものの、Al脱酸により溶製した点から本発明の請求範囲の製造条件で対象とする鋼を外れるものである。また、表3における、プレス条件Aとプレス条件Bは、本発明の1105〜1220℃に加熱し、100MPa以上の静水圧圧縮応力を付与するとする本発明の請求項の構成を満足する製造条件からなる。一方、プレス条件C〜Eは本発明の1105〜1220℃に加熱し、100MPa以上の静水圧圧縮応力を付与する本発明の構成を満足しない製造条件のものである。本発明の請求範囲の製造条件で対象とする機械部品用鋼の化学成分、脱酸方法の規制を満足し、かつ加熱温度ならびに静水圧圧縮応力が本発明の請求項を満足する製造条件によるプレス条件Aおよびプレス条件Bの発明例は、最終工程が、熱間塑性加工、温間塑性加工、冷間塑性加工のいずれであるかにかかわらず、本発明の請求範囲の製造条件で対象とする機械部品用鋼の化学成分、脱酸方法の規制を満足するものの、加熱温度ならびに静水圧圧縮応力が本発明の請求範囲の製造条件を満足しないプレス条件C〜Eの比較例に比べて転動疲労寿命が格段に優れている。さらに本発明の請求範囲の製造条件で対象とする機械部品用鋼の化学成分か脱酸方法のいずれかの規制を満たさないものの、加熱温度ならびに静水圧圧縮応力が本発明の請求項を満足する製造条件によるプレス条件Aおよびプレス条件Bの比較例に比べて、あるいは、本発明の請求範囲の製造条件で対象とする機械部品用鋼の化学成分か脱酸方法のいずれかの規制を満たさず、なおかつ加熱温度ならびに静水圧圧縮応力が本発明の請求範囲の製造条件を満足しないプレス条件C〜Eの比較例に比べて、明らかに転動疲労寿命が優れている。さらに、SiとMnで脱酸を行なった鋼1に対して本発明の製造条件を適用した場合は、通常のAl脱酸により溶製した鋼3に比べて、最適な静水圧圧縮応力付与時の条件範囲がより低い圧縮応力にまで拡張されている点でも優れている。 In addition, the symbol “→” in the column of L 5 life of steel 1 in Table 3 means that none of the 20 test pieces was 1 × 10 8 cycle and was not peeled off. The steel 1 in Table 3 satisfies the structure of the steel targeted in the manufacturing conditions of the claims of the present invention, while the steel 2 is a steel of which the S content and the O content are the target of the manufacturing conditions in the claims. The steel 3 exceeds the upper limit of regulation, and although the amount of S and O satisfy the claims, Steel 3 deviates from the target steel under the production conditions of the claims of the present invention from the point of melting by Al deoxidation. is there. In Table 3, press conditions A and B are heated from 1105 to 1220 ° C. according to the present invention, and from the manufacturing conditions satisfying the constitution of the claims of the present invention to apply hydrostatic compression stress of 100 MPa or more. Become. On the other hand, the pressing conditions C to E are the manufacturing conditions that do not satisfy the configuration of the present invention that is heated to 1105 to 1220 ° C. and imparts a hydrostatic compression stress of 100 MPa or more. The press according to the manufacturing conditions satisfying the regulation of the chemical composition of the steel for machine parts and the deoxidation method, and the heating temperature and the hydrostatic pressure stress satisfying the claims of the present invention. The invention examples of the condition A and the press condition B are covered by the manufacturing conditions in the claims of the present invention regardless of whether the final process is hot plastic working, warm plastic working, or cold plastic working. Rolling compared to comparative examples of press conditions C to E, which satisfy the chemical component of machine part steel and the regulation of deoxidation method, but the heating temperature and hydrostatic pressure compression stress do not satisfy the production conditions of the claims of the present invention The fatigue life is remarkably excellent. Furthermore, the heating temperature and the hydrostatic pressure compressive stress satisfy the claims of the present invention, although the chemical component of the steel for machine parts or the deoxidation method is not satisfied under the manufacturing conditions of the claims of the present invention. Compared with the comparative example of the pressing condition A and the pressing condition B depending on the manufacturing conditions, or does not meet the regulation of either the chemical component of the steel for machine parts or the deoxidation method which is the subject of the manufacturing conditions of the claims of the present invention. In addition, the rolling fatigue life is clearly superior to the comparative examples of the press conditions C to E in which the heating temperature and the hydrostatic pressure compressive stress do not satisfy the production conditions of the claims of the present invention. Furthermore, when the production conditions of the present invention are applied to steel 1 deoxidized with Si and Mn, compared to steel 3 melted by ordinary Al deoxidation, the optimum hydrostatic compression stress is applied. This is also excellent in that the condition range is expanded to a lower compressive stress.

Claims (5)

質量割合で、O:≦8ppm、S:≦0.008%を有し、Alに加えてSiを含む酸化剤を添加する脱酸、もしくはAl脱酸剤を無添加とする脱酸を行い、生成された酸化物系非金属介在物はMgO−Al23系の酸化物系非金属介在物に比して軟質化されており、母相の鋼との変形能による差が小さくされた機械部品用鋼に対して、最終的に該鋼製部品としての切削加工とそれに続く焼入焼戻しにより表面硬さ58HRC以上を付与する工程に先立ち、1105〜1220℃、100MPa以上の静水圧圧縮応力を付与することにより該鋼中の非金属介在物と母相である鋼との界面を密着状態とし、なおかつ非金属介在物中の内部損傷を修復することを特徴とする転動疲労寿命に優れた機械部品用鋼の製造方法。 In a mass ratio, O: ≦ 8 ppm, S: ≦ 0.008%, deoxidation in which an oxidizing agent containing Si in addition to Al is added, or deoxidation in which no Al deoxidizing agent is added, The generated oxide-based non-metallic inclusions are softened compared to MgO-Al 2 O 3- based oxide-based non-metallic inclusions, and the difference due to the deformability of the parent phase steel is reduced. Prior to the step of imparting a surface hardness of 58 HRC or higher to the steel for machine parts, by finally cutting the steel part and subsequent quenching and tempering, the hydrostatic compression stress of 1105 to 1220 ° C. and 100 MPa or higher. Is excellent in rolling fatigue life, characterized in that the interface between the nonmetallic inclusions in the steel and the parent phase steel is brought into close contact, and internal damage in the nonmetallic inclusions is repaired. Manufacturing method for steel for machine parts. 機械部品用鋼の製造方法は、その鋼組成が、JIS G 4805の高炭素クロム軸受鋼鋼材、JIS G 4051の機械構造用炭素鋼鋼材、JIS G 4052の焼入れ性を保証した構造用鋼鋼材(H鋼)、JIS G 4053の機械構造用合金鋼鋼材、JIS G 3441の機械構造用合金鋼鋼管、JIS G 3445の機械構造用炭素鋼鋼管、JIS G 3507−1の冷間圧造用炭素鋼−第1部:線材、JIS G 3507−2の冷間圧造用炭素鋼−第2部:線、JIS G 3509−1の冷間圧造用合金鋼−第1部:線材、もしくはJIS G 3509−2の冷間圧造用合金鋼−第2部:線のいずれかの鋼組成であることを特徴とする請求項1に記載の転動疲労寿命に優れた機械部品用鋼の製造方法。   The manufacturing method of steel for machine parts is as follows: high carbon chrome bearing steel with JIS G 4805, carbon steel for mechanical structure with JIS G 4051, structural steel with guaranteed hardenability with JIS G 4052 ( Steel H), alloy steel for machine structure of JIS G 4053, alloy steel pipe for machine structure of JIS G 3441, carbon steel pipe for machine structure of JIS G 3445, carbon steel for cold heading of JIS G 3507-1 Part 1: Wire, JIS G 3507-2 cold head carbon steel-Part 2: Wire, JIS G 3509-1 cold head steel-Part 1: Wire, or JIS G 3509-2 The method for producing steel for machine parts having excellent rolling fatigue life according to claim 1, wherein the steel composition is any one of the following steel alloys for cold heading: Part 2: Wire. 機械部品用鋼の製造方法は、その鋼材形状を得るための工程あるいはその工程に続く機械部品形状を得るための工程で受ける複数回の塑性加工からなり、これらの複数回の工程のうちの切削加工を除く最後の塑性加工が熱間塑性加工であることを特徴とする請求項1に記載の転動疲労寿命に優れた機械部品用鋼の製造方法。   The manufacturing method of steel for machine parts consists of a plurality of plastic workings received in the process for obtaining the steel material shape or the process for obtaining the machine part shape following the process, and cutting of these multiple processes. 2. The method for producing steel for machine parts having an excellent rolling fatigue life according to claim 1, wherein the last plastic processing excluding the processing is hot plastic processing. 機械部品用鋼の製造方法は、その鋼材形状を得るための工程あるいはその工程に続く機械部品形状を得るための工程で受ける複数回の塑性加工からなり、これらの複数回の工程のうちの切削加工を除く最後の塑性加工が温間塑性加工であることを特徴とする請求項1に記載の転動疲労寿命に優れた機械部品用鋼の製造方法。   The manufacturing method of steel for machine parts consists of a plurality of plastic workings received in the process for obtaining the steel material shape or the process for obtaining the machine part shape following the process, and cutting of these multiple processes. 2. The method for producing steel for machine parts having an excellent rolling fatigue life according to claim 1, wherein the last plastic processing excluding the processing is warm plastic processing. 機械部品用鋼の製造方法は、その鋼材形状を得るための工程あるいはその工程に続く機械部品形状を得るための工程で受ける複数回の塑性加工からなり、これらの複数回の工程のうちの切削加工を除く最後の塑性加工が冷間塑性加工であることを特徴とする請求項1に記載の転動疲労寿命に優れた機械部品用鋼の製造方法。   The manufacturing method of steel for machine parts consists of a plurality of plastic workings received in the process for obtaining the steel material shape or the process for obtaining the machine part shape following the process, and cutting of these multiple processes. The method for producing steel for machine parts excellent in rolling fatigue life according to claim 1, wherein the last plastic processing excluding the processing is cold plastic processing.
JP2015240868A 2015-12-10 2015-12-10 Manufacturing method of steel for machine parts with excellent rolling fatigue life Active JP6618345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015240868A JP6618345B2 (en) 2015-12-10 2015-12-10 Manufacturing method of steel for machine parts with excellent rolling fatigue life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240868A JP6618345B2 (en) 2015-12-10 2015-12-10 Manufacturing method of steel for machine parts with excellent rolling fatigue life

Publications (2)

Publication Number Publication Date
JP2017106076A true JP2017106076A (en) 2017-06-15
JP6618345B2 JP6618345B2 (en) 2019-12-11

Family

ID=59059146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240868A Active JP6618345B2 (en) 2015-12-10 2015-12-10 Manufacturing method of steel for machine parts with excellent rolling fatigue life

Country Status (1)

Country Link
JP (1) JP6618345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256158A1 (en) * 2020-06-16 2021-12-23 Jfeスチール株式会社 Method for manufacturing high-cleanliness steel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302256A (en) * 1979-11-16 1981-11-24 Chromalloy American Corporation Method of improving mechanical properties of alloy parts
JPS57207163A (en) * 1981-06-17 1982-12-18 Chromalloy American Corp Improvement of alloy part mechanical properties
JPS63171262A (en) * 1987-01-07 1988-07-15 Mitsubishi Heavy Ind Ltd Method for reforming defect of cast steel products
JP2000282803A (en) * 1999-03-31 2000-10-10 Hmy Ltd Moving blade castings for steam turbine
JP2000343239A (en) * 1999-04-01 2000-12-12 Denso Corp Heat treatment method for cool and warm working product of high carbon-high alloy-containing steel
JP2006316326A (en) * 2005-05-13 2006-11-24 Gainsmart Group Ltd Ultrahigh-strength anti-weathering steel and manufacturing method therefor
JP2008050665A (en) * 2006-08-25 2008-03-06 Hitachi Metals Ltd Method of manufacturing steel casting part made of martensitic stainless steel
JP2009287055A (en) * 2008-05-27 2009-12-10 Sanyo Special Steel Co Ltd Method for manufacturing machine-parts excellent in rolling fatigue life
JP2009287056A (en) * 2008-05-27 2009-12-10 Sanyo Special Steel Co Ltd Method for manufacturing machine-parts excellent in rolling fatigue life
JP2014113599A (en) * 2012-12-06 2014-06-26 Nippon Chuzo Co Ltd Component for precision instrument, and method of manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302256A (en) * 1979-11-16 1981-11-24 Chromalloy American Corporation Method of improving mechanical properties of alloy parts
JPS57207163A (en) * 1981-06-17 1982-12-18 Chromalloy American Corp Improvement of alloy part mechanical properties
JPS63171262A (en) * 1987-01-07 1988-07-15 Mitsubishi Heavy Ind Ltd Method for reforming defect of cast steel products
JP2000282803A (en) * 1999-03-31 2000-10-10 Hmy Ltd Moving blade castings for steam turbine
JP2000343239A (en) * 1999-04-01 2000-12-12 Denso Corp Heat treatment method for cool and warm working product of high carbon-high alloy-containing steel
JP2006316326A (en) * 2005-05-13 2006-11-24 Gainsmart Group Ltd Ultrahigh-strength anti-weathering steel and manufacturing method therefor
JP2008050665A (en) * 2006-08-25 2008-03-06 Hitachi Metals Ltd Method of manufacturing steel casting part made of martensitic stainless steel
JP2009287055A (en) * 2008-05-27 2009-12-10 Sanyo Special Steel Co Ltd Method for manufacturing machine-parts excellent in rolling fatigue life
JP2009287056A (en) * 2008-05-27 2009-12-10 Sanyo Special Steel Co Ltd Method for manufacturing machine-parts excellent in rolling fatigue life
JP2014113599A (en) * 2012-12-06 2014-06-26 Nippon Chuzo Co Ltd Component for precision instrument, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256158A1 (en) * 2020-06-16 2021-12-23 Jfeスチール株式会社 Method for manufacturing high-cleanliness steel
JP7028376B1 (en) * 2020-06-16 2022-03-02 Jfeスチール株式会社 Manufacturing method of high cleanliness steel

Also Published As

Publication number Publication date
JP6618345B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
JP5126857B2 (en) Manufacturing method of case-hardened steel pipe with excellent workability
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP5824063B2 (en) Manufacturing method of steel parts
JP5723233B2 (en) Steel material for spheroidized heat-treated bearings with excellent rolling fatigue life
JP5723232B2 (en) Steel for bearings with excellent rolling fatigue life
WO2015147067A1 (en) Steel component for high-temperature carburizing with excellent spalling strength and low-cycle fatigue strength
JP5605912B2 (en) Bearing steel and bearing parts with excellent rolling fatigue characteristics
JP5403945B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
JPWO2014027463A1 (en) Induction hardening steel
JP5473249B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
JP6295665B2 (en) Carburized bearing steel
JP6376725B2 (en) Steel member with excellent rolling fatigue life
WO2009145168A1 (en) Manufacturing method for machine parts having superior rolling-contact fatigue life
JP6618345B2 (en) Manufacturing method of steel for machine parts with excellent rolling fatigue life
JP5403946B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
JP6625420B2 (en) Method for producing steel for machine parts with excellent rolling fatigue life
JP2012207247A (en) Carburizing member, steel for carburizing member and method for producing carburizing member
JP2017048441A (en) Steel pipe for machine construction member excellent in machinability and manufacturing method therefor
JP2018165403A (en) Steel for carburizing having excellent low cycle fatigue strength and machinability, and carburized component
JP6621315B2 (en) Manufacturing method of steel for machine parts with excellent rolling fatigue life
WO2017069064A1 (en) Steel for mechanical structures and induction hardened steel parts
TW201739933A (en) Case hardened steel
JP2010043331A (en) Method for manufacturing seamless steel pipe for high-strength carburized part
JP6085210B2 (en) Case-hardened steel with excellent rolling fatigue characteristics and method for producing the same
JP2009204025A (en) Large rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191112

R150 Certificate of patent or registration of utility model

Ref document number: 6618345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250