JP5403945B2 - Manufacturing method of machine parts with excellent rolling fatigue life - Google Patents

Manufacturing method of machine parts with excellent rolling fatigue life Download PDF

Info

Publication number
JP5403945B2
JP5403945B2 JP2008138774A JP2008138774A JP5403945B2 JP 5403945 B2 JP5403945 B2 JP 5403945B2 JP 2008138774 A JP2008138774 A JP 2008138774A JP 2008138774 A JP2008138774 A JP 2008138774A JP 5403945 B2 JP5403945 B2 JP 5403945B2
Authority
JP
Japan
Prior art keywords
steel
obtaining
machine
plastic working
rolling fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008138774A
Other languages
Japanese (ja)
Other versions
JP2009287055A (en
Inventor
和弥 橋本
威史 藤松
典正 常陰
和彦 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2008138774A priority Critical patent/JP5403945B2/en
Priority to CN2009801292273A priority patent/CN102105604B/en
Priority to PCT/JP2009/059573 priority patent/WO2009145168A1/en
Priority to SE1051359A priority patent/SE536953C2/en
Publication of JP2009287055A publication Critical patent/JP2009287055A/en
Application granted granted Critical
Publication of JP5403945B2 publication Critical patent/JP5403945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、軸受、ギア、ハブユニット、無段変速機、等速ジョイント、ピストンピンなどの非金属介在物が破損起点である転動疲労寿命が求められ、表面硬さが58HRC以上に硬化され使用される鋼材からなる機械部品に関するものである。   The present invention requires a rolling fatigue life in which non-metallic inclusions such as bearings, gears, hub units, continuously variable transmissions, constant velocity joints, piston pins and the like are the starting points of damage, and has a surface hardness of 58 HRC or higher. The present invention relates to a machine part made of steel used.

近年、各種の機械装置の高性能化にともない、転動疲労寿命が求められる機械部品や装置の使用環境は非常に厳しくなり、寿命の向上ならびに信頼性の向上が強く求められている。このような要求に対し、鋼材の面からの対策としては、鋼成分の適正化や不純物元素の低減化が行われている。   In recent years, with the improvement in performance of various mechanical devices, the use environment of mechanical parts and devices that require a rolling fatigue life has become extremely severe, and there is a strong demand for improved life and improved reliability. In response to such demands, as countermeasures from the aspect of steel materials, optimization of steel components and reduction of impurity elements are performed.

鋼成分の不純物元素のうち、これらからなるAl23、MnS、TiNその他の非金属介在物は鋼部品の破損の起点となるため、特に有害であることが知られている。さらに、これらの非金属介在物の径が大きいほど、鋼部品の転がり疲労寿命は短くなることが知られている。そのため非金属介在物量を少なく、すなわち、鋼の清浄度が高く、介在物径が20μm以上の大型の酸化物系非金属介在物の極めて少ない高清浄度鋼が種々提案されている(例えば、特許文献1や特許文献2参照。)。 Among the impurity elements of the steel component, Al 2 O 3 , MnS, TiN and other non-metallic inclusions made of these are known to be particularly harmful because they are the starting points for damage to steel parts. Furthermore, it is known that the rolling fatigue life of steel parts becomes shorter as the diameter of these non-metallic inclusions is larger. For this reason, various types of high cleanliness steels with a small amount of nonmetallic inclusions, that is, high cleanliness of steel and extremely small large oxide nonmetallic inclusions with an inclusion diameter of 20 μm or more have been proposed (for example, patents). (See Literature 1 and Patent Literature 2.)

このような高清浄度鋼からなる鋼材を用いても、短寿命で破損することを抑制することは十分にできていない。そのため、鋼材中の非金属介在物を低減し、さらに該非金属介在物を小径化しようとする開発が盛んに行なわれている。   Even when such a steel material made of high cleanliness steel is used, it is not sufficiently possible to suppress damage with a short life. For this reason, development has been actively conducted to reduce non-metallic inclusions in steel materials and to further reduce the diameter of the non-metallic inclusions.

特開2006−63402号公報JP 2006-63402 A 特開平06−192790号公報Japanese Patent Laid-Open No. 06-192790 鉄と鋼、94(2008)、p.13Iron and Steel, 94 (2008), p. 13 平成20年度兵庫県立大学学位論文、平岡和彦(2008年1月)2008 Hyogo Prefectural University Dissertation, Kazuhiko Hiraoka (January 2008)

本発明が解決しようとする課題は、鋼の製造時に非金属介在物の低減およびその小径化を図らなくても、鋼材中に含有する非金属介在物と母相である鋼との界面状態を改善した鋼材とすることで、鋼の製造時に非金属介在物の低減およびその小径化を図った鋼材に比べて安定して転動疲労寿命に優れた機械用部品を提供することである。   The problem to be solved by the present invention is that the state of the interface between the nonmetallic inclusions contained in the steel and the parent phase steel can be achieved without reducing the nonmetallic inclusions and reducing their diameters during the production of the steel. By providing an improved steel material, it is to provide a machine part that is stable and excellent in rolling fatigue life as compared with a steel material in which nonmetallic inclusions are reduced and the diameter thereof is reduced at the time of manufacturing the steel.

軸受その他の機械部品において転動疲労寿命を改善するためには、これらの機械部品用鋼材から、非金属介在物を少なくすることが重要である。さらに軸受その他の機械部品の転走面下に大きな非金属介在物が存在すれば、該機械部品にはく離を発生させ、破損に至らせることから、軸受その他の機械部品の転走面下の危険部位に出現する非金属介在物を小さくすることが軸受その他の機械部品の寿命向上に対して特に重要であることが知られている。そこで、量産の製造工程において、非金属介在物を小径化する方策が多く発明されているが、しかし、安定して非金属介在物を小径化することは難しかった。   In order to improve the rolling fatigue life of bearings and other machine parts, it is important to reduce non-metallic inclusions from these steels for machine parts. Furthermore, if there are large non-metallic inclusions under the rolling surface of bearings and other machine parts, they will cause separation and damage to the machine parts. It is known that reducing non-metallic inclusions appearing at the site is particularly important for improving the life of bearings and other machine parts. Thus, many measures for reducing the diameter of non-metallic inclusions have been invented in mass production processes, but it has been difficult to stably reduce the diameter of non-metallic inclusions.

本発明者らは転動疲労における破損すなわちはく離に至る過程について、人工欠陥材を用いてき裂観察を行なうことで鋭意詳細に検討した。非金属介在物からき裂発生および進展してはく離に至る過程において、非金属介在物の周囲への応力集中効果により、き裂が変位する初期き裂(以下「開口型の初期き裂」という。)過程を経ることを見出した。その後、せん断応力によるき裂の伝ぱを経て破損に至ることは従来の知見通りである。このことは、本発明者らが見出した開口型の初期き裂が起こらなければ、その後のき裂伝ぱや破損が起こらないことを意味する。また開口型の初期き裂は非金属介在物と母相との界面に物理的な隙間すなわち空洞が生じていることを前提として起こるのであり、物理的な隙間が生じていなければ、開口型のき裂は生じないことも応力計算により検証している(非特許文献1および非特許文献2参照。)。   The present inventors diligently examined the process leading to breakage in rolling fatigue, that is, peeling, by using an artificial defect material and observing cracks. In the process of crack initiation from non-metallic inclusions and progressing to separation, the initial crack in which the crack is displaced by the effect of stress concentration around the non-metallic inclusions (hereinafter referred to as “open-type initial crack”). ) I found out through the process. After that, it is the conventional knowledge that cracks are propagated through the propagation of cracks due to shear stress. This means that subsequent crack propagation and damage do not occur unless the opening-type initial crack found by the present inventors occurs. In addition, the opening-type initial crack occurs on the premise that a physical gap, that is, a cavity, is generated at the interface between the nonmetallic inclusion and the parent phase. It is also verified by stress calculation that no crack occurs (see Non-Patent Document 1 and Non-Patent Document 2).

さらに物理的な隙間は、鋼材の製造過程、部材に成形していく過程において必ず行なわれる何らかの塑性加工、すなわち、熱間圧延、冷間圧延、熱間鍛造、温間鍛造、冷間鍛造、ローリング鍛造、冷間転造、冷間ヘッダー加工ならびに引抜き加工などによって生じることも見出した。図1に熱間圧延鋼材から切り出し、イオンミリングを行った後に、走査電子顕微鏡(FE−SEM)にて非金属介在物周囲の空洞有無を観察した影像を概念図にて示す。図1において、符号の2はAl23であり、符号の3は空洞である。特に機械構造用鋼では、通常Alによる脱酸が行なわれる。その際に生成するAl23系非金属介在物は母材との変形能の違いや形状から特に母相との界面に空洞が生成しやすいことを確認している。本発明は以上の新たに得た知見に基づきなされたものである。 Furthermore, the physical gap is any plastic processing that is always performed in the manufacturing process of steel materials and in the process of forming into members, that is, hot rolling, cold rolling, hot forging, warm forging, cold forging, rolling. It has also been found that it is caused by forging, cold rolling, cold header processing and drawing. FIG. 1 is a conceptual diagram showing an image obtained by observing the presence or absence of cavities around non-metallic inclusions with a scanning electron microscope (FE-SEM) after cutting out from hot-rolled steel and performing ion milling. In FIG. 1, reference numeral 2 is Al 2 O 3 and reference numeral 3 is a cavity. In particular, in machine structural steel, deoxidation with Al is usually performed. It has been confirmed that the Al 2 O 3 -based non-metallic inclusions generated at that time tend to generate cavities, particularly at the interface with the parent phase, due to the difference in deformability and shape from the parent material. The present invention has been made based on the above newly obtained knowledge.

すなわち、上記の課題を解決するための本発明の手段は、請求項1の発明では、機械構造用鋼の一部もしくは全体を焼入焼戻し処理方法により58HRC以上を得る機械部品の製造方法において、該機械構造用鋼が鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で塑性加工を受けた後、焼入焼戻しを行う前に、800〜1100℃に加熱し100MPa以上の静水圧を付与することにより該鋼中に含有する非金属介在物と母相である鋼との界面を密着する処理を行うことを特徴とする転動疲労寿命に優れた機械部品の製造方法である。 That is, the means of the present invention for solving the above-mentioned problems is as follows. In the invention according to claim 1, in the method of manufacturing a machine part, a part or the whole of the steel for machine structure obtains 58HRC or more by a quenching and tempering method. After the mechanical structural steel is subjected to plastic working in the step for obtaining the steel material shape or the subsequent step for obtaining the machine part shape, it is heated to 800 to 1100 ° C. and subjected to 100 MPa or more before quenching and tempering. A process for producing a machine part having excellent rolling fatigue life, characterized by applying a hydrostatic pressure to perform a process of closely contacting an interface between a non-metallic inclusion contained in the steel and a steel as a parent phase. is there.

請求項2の発明では、鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で受ける塑性加工は、複数回からなり該複数回の中の最後の塑性加工が熱間塑性加工であることを特徴とする請求項1の手段の転動疲労寿命に優れた機械部品の製造方法である。   In the invention of claim 2, the plastic working received in the step for obtaining the steel material shape or the subsequent step for obtaining the machine part shape is composed of a plurality of times, and the last plastic working in the plurality of times is hot plastic working. The method according to claim 1, wherein the mechanical part is excellent in rolling fatigue life.

請求項3の発明では、鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で受ける塑性加工は、複数回からなり該複数回の中の最後の塑性加工が温間塑性加工であることを特徴とする請求項1の手段の転動疲労寿命に優れた機械部品の製造方法である。   In the invention of claim 3, the plastic working received in the step for obtaining the steel material shape or the subsequent step for obtaining the machine part shape is composed of a plurality of times, and the last plastic working in the plurality of times is warm plastic working. The method according to claim 1, wherein the mechanical part is excellent in rolling fatigue life.

請求項4の発明では、鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で受ける塑性加工は、複数回からなり該複数回の中の最後の塑性加工が冷間塑性加工であることを特徴とする請求項1の手段の転動疲労寿命に優れた機械部品の製造方法である。   In the invention of claim 4, the plastic working received in the step for obtaining the steel material shape or the subsequent step for obtaining the machine part shape is composed of a plurality of times, and the last plastic working in the plurality of times is cold plastic working. The method according to claim 1, wherein the mechanical part is excellent in rolling fatigue life.

本願発明の鋼材は、上記の手段とすることで、鋼材の製造時に非金属介在物の低減および小径化を図らなくても、何らかの塑性加工により鋼中に含有する非金属介在物と母相である鋼との界面に生じた物理的な隙間すなわち空洞を消滅させ、これらからなる界面を密着させうるならば、非金属介在物を破壊起点とする転動疲労によるはく離が回避され、その結果、大幅に寿命が向上すると見込まれる極めて優れた機械部品の製造方法である。   By adopting the above-described means, the steel material of the present invention can be made of the non-metallic inclusions and the parent phase contained in the steel by some plastic working without reducing non-metallic inclusions and reducing the diameter during the production of the steel materials. If the physical gaps or cavities generated at the interface with a certain steel can be eliminated and the interface consisting of these can be adhered, separation due to rolling fatigue starting from nonmetallic inclusions can be avoided, and as a result, This is an extremely excellent method of manufacturing a machine part that is expected to greatly improve the service life.

上記の本発明の手段とすることにより、鋼の製造時に非金属介在物の低減および非金属介在物の小径化を図らなくても、鋼中の非金属介在物と母相である鋼との隙間を無くした状態の鋼材とすることで、該鋼材からなる表面硬さが58HRC以上で、かつ、はく離することのない、転動疲労寿命に優れた機械用部品を得ることができる。   By using the above-described means of the present invention, the nonmetallic inclusions in the steel and the parent phase steel can be reduced without reducing nonmetallic inclusions and reducing the diameter of the nonmetallic inclusions during the production of the steel. By using a steel material with no gaps, a machine part having a surface hardness of 58 HRC or more and excellent in rolling fatigue life that does not peel off can be obtained.

軸受、ギア、ハブユニット、無段変速機、等速ジョイント、ピストンピンなどの機械部品に求められる鋼には、一般的にJIS G 4805に規定されている高炭素クロム軸受鋼鋼材、JIS G 4051に規定されている機械構造用炭素鋼鋼材、JIS G 4052に規定されている焼入れ性を保証した構造用鋼鋼材(H鋼)、JIS G 4053に規定されている機械構造用合金鋼鋼材、JIS G 3441に規定されている機械構造用合金鋼鋼管、JIS G 3445に規定されている機械構造用炭素鋼鋼管、JIS G 3507−1に規定されている冷間圧造用炭素鋼−第1部:線材、JIS G 3507−2に規定されている冷間圧造用炭素鋼−第2部:線、JIS G 3509−1に規定されている冷間圧造用合金鋼−第1部:線材、JIS G 3509−2に規定されている冷間圧造用合金鋼−第2部:線、およびそれぞれの関連外国規格鋼、さらにそれぞれの成分類似鋼と成分改良鋼が使用されている。本発明における機械構造用鋼とは上記に記載の化学成分を満足する鋼材を指す。   For steels required for mechanical parts such as bearings, gears, hub units, continuously variable transmissions, constant velocity joints, piston pins, etc., high carbon chromium bearing steel materials generally defined in JIS G 4805, JIS G 4051 Carbon steels for machine structures specified in JIS, structural steels (H steel) with guaranteed hardenability specified in JIS G 4052, alloy steels for machine structures specified in JIS G 4053, JIS Alloy steel pipe for machine structure specified in G 3441, Carbon steel pipe for machine structure specified in JIS G 3445, Carbon steel for cold heading specified in JIS G 3507-1-Part 1: Wire, carbon steel for cold heading specified in JIS G 3507-2-Part 2: Wire, alloy steel for cold heading specified in JIS G 3509-1-No. 2 Part: Wire, Alloy steel for cold heading specified in JIS G 3509-2-Part 2: Wire, each related foreign standard steel, and each component similar steel and component modified steel are used . The steel for machine structure in the present invention refers to a steel material that satisfies the chemical components described above.

この鋼は一般的に、1)アーク溶解炉または転炉による溶鋼の酸化精錬、2)取鍋精錬炉(LF)による還元精錬、3)還流式真空脱ガス装置(RH)による還流真空脱ガス処理(RH処理)、4)連続鋳造または一般造塊による鋼塊の鋳造および5)鋼塊の熱間圧延あるいは熱間での圧鍛および冷間圧延あるいは冷間での圧鍛による塑性加工工程を経て、鋼材が製造される。本発明における鋼材形状を得るための工程とは上記に記載の工程を指し、鋼材形状とは形鋼、棒鋼、管材、線材、鋼板、鋼帯を指す。   This steel is generally 1) Oxidative refining of molten steel by arc melting furnace or converter, 2) Reductive refining by ladle refining furnace (LF), 3) Recirculation vacuum degassing by recirculation type vacuum degassing apparatus (RH) Treatment (RH treatment) 4) Casting of steel ingot by continuous casting or general ingot and 5) Plastic working process by hot rolling or hot forging of steel ingot and cold rolling or cold forging After that, steel material is manufactured. The process for obtaining the steel material shape in the present invention refers to the process described above, and the steel material shape refers to a shape steel, a steel bar, a pipe, a wire, a steel plate, and a steel strip.

次いで、熱間鍛造、亜熱間鍛造、温間鍛造、冷間鍛造、ローリング鍛造、冷間転造、冷間ヘッダー加工ならびに引抜き加工、場合によっては引抜きと冷間ヘッダー加工、上記の組合せの塑性加工と必要に応じて軟化や組織調整を目的とした熱処理あるいは旋削を行なって部材に成形される。本発明における機械部品形状を得るための工程とは上記に記載の工程を指す。   Next, hot forging, sub-hot forging, warm forging, cold forging, rolling forging, cold rolling, cold header processing and drawing, and in some cases drawing and cold header processing, plasticity of the above combination The material is formed into a member by performing heat treatment or turning for the purpose of softening and structural adjustment as needed. The process for obtaining the machine part shape in the present invention refers to the process described above.

なお、本発明における熱間塑性加工の熱間とは該鋼の再結晶温度以上を指し、温間塑性加工の温間とは室温以上、再結晶温度以下を指し、冷間塑性加工の冷間とは室温およびその近辺を指す。   In the present invention, the hot of the hot plastic working refers to a temperature higher than the recrystallization temperature of the steel, the warm of the hot plastic working refers to a temperature higher than the room temperature and lower than the recrystallization temperature, the cold of the cold plastic working. Refers to room temperature and its vicinity.

次いで、表面硬さ58HRC以上を得るために全体焼入れ(ズブ焼入れ)、浸炭焼入れ、浸炭窒化焼入れ、窒化焼入れ、浸炭浸窒焼入れ、高周波焼入れなどの焼入焼戻し処理が鋼材や用途に応じて施されて、研磨や研削などの仕上げ処理を経て、本発明が対象とする機械部品が製造される。本発明における焼入焼戻し処理方法とは上記に記載の処理を指す。   Next, in order to obtain a surface hardness of 58 HRC or more, quenching and tempering processes such as total quenching (sub-quenching), carburizing quenching, carburizing and nitriding quenching, nitriding quenching, carburizing and nitriding quenching, and induction quenching are performed according to steel materials and applications Thus, a machine part targeted by the present invention is manufactured through a finishing process such as polishing or grinding. The quenching and tempering treatment method in the present invention refers to the treatment described above.

本発明の効果を得るためには、機械部品に焼入焼戻しを行い、表面硬さ58HRC以上を得る前の段階で、強制的に酸化物系非金属介在物と母相との界面に存在する空洞を消滅させるための工程を経る必要がある。その手段としては、800〜1100℃に加熱した後に100MPa以上の静水圧付与が可能な工法が良い。例えば、その工法として熱間等方圧プレス法すなわちHIP法、ホットプレス法、完全閉塞あるいは完全密閉による熱間鍛造法が良い。 In order to obtain the effect of the present invention, mechanical parts are quenched and tempered, and are forcibly present at the interface between the oxide-based nonmetallic inclusion and the parent phase before obtaining a surface hardness of 58 HRC or more. It is necessary to go through a process for eliminating the cavity. As the means, a method that can apply a hydrostatic pressure of 100 MPa or more after heating to 800 to 1100 ° C. is preferable. For example, a hot isostatic pressing method, that is, a HIP method, a hot pressing method, or a hot forging method by complete closure or complete sealing is preferable.

なお、金型に完全密閉されていない熱間鍛造、亜熱間鍛造、温間鍛造、冷間鍛造、ローリング鍛造、冷間転造、冷間ヘッダー加工ならびに引抜き加工では、全鋼材部分に静水圧が付与できないか、もしくはある方向に材料が連続的に延伸されるために、本発明の効果が得られない。   In hot forging, sub-hot forging, warm forging, cold forging, rolling forging, cold rolling, cold header processing, and drawing processing that are not completely sealed in the mold, all steel parts are subjected to hydrostatic pressure. Can not be imparted, or the material is continuously stretched in a certain direction, so the effects of the present invention cannot be obtained.

次に、静水圧付与する際の限定理由について述べる。
鋼材の加熱温度が高いほど、鋼材は変形し易くなる。従って、鋼材の加熱温度が高いほど、酸化物系非金属介在物と母相との界面に存在する隙間すなわち空洞を消滅させるために必要な静水圧は低くすることができる。本発明者らが鋭意検討した結果、800〜1100℃に加熱して、かつ100MPa以上の静水圧が付与できれば、本発明の効果は得られるので、800〜1100℃に加熱して、かつ100MPa以上とする。
Next, the reason for limitation when applying hydrostatic pressure will be described.
The higher the heating temperature of the steel material, the easier it is for the steel material to deform. Therefore, the higher the heating temperature of the steel material, the lower the hydrostatic pressure required to eliminate gaps or cavities existing at the interface between the oxide-based nonmetallic inclusions and the parent phase. As a result of intensive studies by the present inventors, the effect of the present invention can be obtained if heated to 800 to 1100 ° C. and a hydrostatic pressure of 100 MPa or more can be imparted, so that it is heated to 800 to 1100 ° C. and 100 MPa or more. And

本発明の実施の形態の実施条件と得られた効果について具体的に説明する。先ず、表1に本発明の実施の形態の一供試材の成分組成を示す。本供試材ではJIS G 4805の成分を満足する鋼であるSUJ2鋼について実施した。アーク溶解炉にて溶鋼を酸化精錬し、取鍋精錬炉(LF)にて還元精錬し、還流式真空脱ガス装置(RH)にて還流真空脱ガス処理(RH処理)し、連続鋳造にて鋼塊を鋳造し、鋼塊を熱間圧延して鋼材を作製した。次に800℃にて球状化焼なましを施した。   The implementation conditions and the obtained effects of the embodiment of the present invention will be specifically described. First, Table 1 shows the component composition of one sample material according to the embodiment of the present invention. In this sample material, it implemented about SUJ2 steel which is steel which satisfy | fills the component of JISG4805. Oxidation refining of molten steel in an arc melting furnace, reduction refining in a ladle refining furnace (LF), recirculation vacuum degassing treatment (RH treatment) in a recirculation type vacuum degassing device (RH), and continuous casting A steel ingot was cast, and the steel ingot was hot-rolled to produce a steel material. Next, spheroidizing annealing was performed at 800 ° C.

Figure 0005403945
Figure 0005403945

さらに、上記の球状化焼なましした鋼材を工程条件1はスラスト型の転がり軸受の部材である軌道盤形状に切削加工した。工程条件2は室温以上で再結晶温度以下である温間、600℃に加熱して据え込みを行なった後にスラスト型の転がり軸受の部材である軌道盤形状に切削加工した。工程条件3は冷間据え込みを行なった後にスラスト型の転がり軸受の部材である軌道盤形状に切削加工した。得られた軌道盤形状品にそれぞれ熱間等方圧プレス(HIP)処理を施した。この処理条件を表2に示す。プレス条件Aとプレス条件Bは本発明の800〜1100℃に加熱し、100MPa以上とする条件を満足する。プレス条件Cとプレス条件Dはプレス条件で、プレス条件EはHIP処理を行わないもので、これらは本発明の800〜1100℃に加熱し、100MPa以上とする条件を満足しないものである。これらプレス条件Aとプレス条件Bの軌道盤形状品を835℃で20分保持した後、油冷により焼入れし、次いで170℃で90分の焼戻し処理を行い、所望の58HRC以上の硬さを得た。さらに研磨を施して、スラスト型の転がり軸受に仕上げて、転動疲労寿命評価を行なった。なお、転動体は市販のスラスト型の転がり軸受用ボールを使用した。 Further, the above spheroidally annealed steel material was cut into a washer shape which is a member of a thrust type rolling bearing in process condition 1. Process condition 2 was that the temperature was higher than room temperature and lower than the recrystallization temperature, heated to 600 ° C., and then set up, and then cut into the shape of a washer which was a member of a thrust type rolling bearing. In process condition 3, after cold upsetting, cutting was performed into the shape of a washer which is a member of a thrust type rolling bearing. The obtained washer-shaped products were each subjected to hot isostatic pressing (HIP) treatment. Table 2 shows the processing conditions. The pressing condition A and the pressing condition B satisfy the conditions of heating to 800 to 1100 ° C. and 100 MPa or more. The pressing condition C and the pressing condition D are pressing conditions, and the pressing condition E does not perform the HIP treatment, and these are not satisfied with the conditions of heating to 800 to 1100 ° C. and 100 MPa or more according to the present invention. These press condition A and press condition B washer-shaped products were held at 835 ° C. for 20 minutes, then quenched by oil cooling, and then subjected to tempering at 170 ° C. for 90 minutes to obtain a desired hardness of 58 HRC or higher. It was. Furthermore, it was ground and finished into a thrust type rolling bearing, and the rolling fatigue life was evaluated. The rolling element used was a commercially available thrust type rolling bearing ball.

Figure 0005403945
Figure 0005403945

スラスト型転がり疲労試験は5292MPaの最大ヘルツ応力Pmaxで行い、上記の各プレス条件につきそれぞれ10回づつ行なった。その結果から、ワイブル分布関数に基づき、短寿命側から10%の試験片にはく離が生じるまでの総回転数を求め、これをL10寿命とした。これらの焼入・焼戻し後の表面硬さとスラスト型転がり疲労試験を行った各条件の10枚の試験片の寿命から評価したL10寿命を表3に示す。なお、各条件の試験片は試験の都合で1×108cycleに到達した時点で、はく離に至らなくても中止した。 The thrust type rolling fatigue test was performed at a maximum hertz stress Pmax of 5292 MPa, and was performed 10 times for each of the above pressing conditions. From the result, based on the Weibull distribution function, the total number of rotations until the 10% specimen was peeled from the short life side was obtained, and this was defined as the L 10 life. Table 3 shows the L 10 life evaluated from the surface hardness after quenching and tempering and the life of 10 test pieces under each condition in which the thrust type rolling fatigue test was conducted. In addition, the test piece of each condition was stopped when it reached 1 × 10 8 cycle for convenience of the test even if it did not come off.

Figure 0005403945
Figure 0005403945

なお、表3のL10における→は1×108cycleで、はく離しなかったことを意味する。表3において、本発明の800〜1100℃に加熱し、100MPa以上とする構成を満足する条件からなるプレス条件Aとプレス条件Bは表面硬さが58HRC以上である。また、本発明の800〜1100℃に加熱し、100MPa以上とする構成を満足しない条件から形成したプレス条件C〜Eは表面硬さが58HRC以上である。しかし、本発明のプレス条件Aおよびプレス条件Bの発明例は、最終が熱間塑性加工、温間塑性加工、冷間塑性加工にかかわらずプレス条件C〜Eの比較例に比べて、転がり疲れ寿命が格段に優れている。 Incidentally, → is in L 10 in Table 3 at 1 × 10 8 cycle, means not peel. In Table 3, the surface hardness of the pressing condition A and the pressing condition B consisting of the conditions satisfying the configuration of heating to 800 to 1100 ° C. and 100 MPa or more of the present invention is 58 HRC or more. Also, heating to 800 to 1100 ° C. of the present invention, press forming from the condition which does not satisfy the structure of the above 100MPa conditions C~E the surface hardness is not less than 58 HRC. However, the invention example of the press condition A and the press condition B of the present invention has rolling fatigue compared to the comparative examples of the press conditions C to E regardless of whether the final is hot plastic working, warm plastic working, or cold plastic working. Life is much better.

熱間圧延した鋼材から試料を切り出し、イオンミリングを行なった後に、走査電子顕微鏡(FE−SEM)にて非金属介在物周囲の空洞有無を観察した影像を概念図にて示す。After cutting out a sample from the hot-rolled steel material and performing ion milling, the image which observed the presence or absence of the cavity around a nonmetallic inclusion with a scanning electron microscope (FE-SEM) is shown with a conceptual diagram.

符号の説明Explanation of symbols

1 概念図
2 Al23
3 空洞
1 Conceptual diagram 2 Al 2 O 3
3 cavity

Claims (4)

機械構造用鋼の一部もしくは全体を焼入焼戻し処理方法により58HRC以上を得る機械部品の製造方法において、該機械構造用鋼が鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で塑性加工を受けた後、焼入焼戻しを行う前に、800〜1100℃に加熱し100MPa以上の静水圧を付与することにより該鋼中に含有する非金属介在物と母相である鋼との界面を密着する処理を行うことを特徴とする転動疲労寿命に優れた機械部品の製造方法。 In a manufacturing method of a machine part that obtains 58 HRC or more by quenching and tempering a part or the whole of a machine structural steel, a process for obtaining the steel material shape of the machine structural steel or a subsequent machine part shape After being subjected to plastic working in the process and before quenching and tempering, it is heated to 800 to 1100 ° C. and applied with a hydrostatic pressure of 100 MPa or more, and the steel that is the parent phase of nonmetallic inclusions contained in the steel A process for producing a machine part having an excellent rolling fatigue life, characterized in that a treatment for closely adhering to the interface is performed. 鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で受ける塑性加工は、複数回からなり該複数回の中の最後の塑性加工が熱間塑性加工であることを特徴とする請求項1に記載の転動疲労寿命に優れた機械部品の製造方法。   The plastic processing received in the process for obtaining the steel material shape or the subsequent process for obtaining the machine part shape is composed of a plurality of times, and the last plastic processing in the plurality of times is a hot plastic working. The manufacturing method of the machine component excellent in the rolling fatigue life of Claim 1. 鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で受ける塑性加工は、複数回からなり該複数回の中の最後の塑性加工が温間塑性加工であることを特徴とする請求項1に記載の転動疲労寿命に優れた機械部品の製造方法。   The plastic processing received in the process for obtaining the steel material shape or the subsequent process for obtaining the machine part shape is composed of a plurality of times, and the last plastic processing in the plurality of times is a warm plastic working. The manufacturing method of the machine component excellent in the rolling fatigue life of Claim 1. 鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で受ける塑性加工は、複数回からなり該複数回の中の最後の塑性加工が冷間塑性加工であることを特徴とする請求項1に記載の転動疲労寿命に優れた機械部品の製造方法。   The plastic working received in the process for obtaining the steel material shape or the subsequent process for obtaining the machine part shape is composed of a plurality of times, and the last plastic working in the plurality of times is a cold plastic working. The manufacturing method of the machine component excellent in the rolling fatigue life of Claim 1.
JP2008138774A 2008-05-27 2008-05-27 Manufacturing method of machine parts with excellent rolling fatigue life Active JP5403945B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008138774A JP5403945B2 (en) 2008-05-27 2008-05-27 Manufacturing method of machine parts with excellent rolling fatigue life
CN2009801292273A CN102105604B (en) 2008-05-27 2009-05-26 Manufacturing method for machine parts having superior rolling-contact fatigue life
PCT/JP2009/059573 WO2009145168A1 (en) 2008-05-27 2009-05-26 Manufacturing method for machine parts having superior rolling-contact fatigue life
SE1051359A SE536953C2 (en) 2008-05-27 2009-05-26 Procedure for the production of machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008138774A JP5403945B2 (en) 2008-05-27 2008-05-27 Manufacturing method of machine parts with excellent rolling fatigue life

Publications (2)

Publication Number Publication Date
JP2009287055A JP2009287055A (en) 2009-12-10
JP5403945B2 true JP5403945B2 (en) 2014-01-29

Family

ID=41456555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008138774A Active JP5403945B2 (en) 2008-05-27 2008-05-27 Manufacturing method of machine parts with excellent rolling fatigue life

Country Status (1)

Country Link
JP (1) JP5403945B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6621315B2 (en) * 2015-12-10 2019-12-18 山陽特殊製鋼株式会社 Manufacturing method of steel for machine parts with excellent rolling fatigue life
JP6618345B2 (en) * 2015-12-10 2019-12-11 山陽特殊製鋼株式会社 Manufacturing method of steel for machine parts with excellent rolling fatigue life
JP6625420B2 (en) * 2015-12-10 2019-12-25 山陽特殊製鋼株式会社 Method for producing steel for machine parts with excellent rolling fatigue life
JP7292991B2 (en) * 2019-06-18 2023-06-19 山陽特殊製鋼株式会社 Rolling fatigue test piece, rolling fatigue test piece manufacturing method, and rolling fatigue test method
JP7292992B2 (en) * 2019-06-18 2023-06-19 山陽特殊製鋼株式会社 Rolling fatigue test piece, rolling fatigue test piece manufacturing method, and rolling fatigue test method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110723A (en) * 1979-02-18 1980-08-26 Kobe Steel Ltd Compaction of metal material
JP2000190064A (en) * 1998-12-22 2000-07-11 Daido Steel Co Ltd Ingot reforming method

Also Published As

Publication number Publication date
JP2009287055A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP5403945B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
JP5783014B2 (en) Steel bar for bearing
JP5723233B2 (en) Steel material for spheroidized heat-treated bearings with excellent rolling fatigue life
JP5669128B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
JP2006063402A (en) Steel used in parts for machinery superior in rolling fatigue life
JP2007131907A (en) Steel for induction hardening with excellent cold workability, and its manufacturing method
JP2013001930A (en) Steel material for bearing having excellent rolling fatigue life
JP5473249B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
US9394593B2 (en) Bearing steel material with excellent rolling contact fatigue properties and a bearing part
JP2013147689A (en) Carburized bearing steel material
WO2009145168A1 (en) Manufacturing method for machine parts having superior rolling-contact fatigue life
JP2012214892A (en) Bearing ring of rolling bearing and method for producing the same, and rolling bearing
JP5403946B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
JP6376725B2 (en) Steel member with excellent rolling fatigue life
JP2007113027A (en) Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus
JP5896713B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
JP2008069436A (en) Component carburized under reduced pressure and its production method
JP6625420B2 (en) Method for producing steel for machine parts with excellent rolling fatigue life
JP6618345B2 (en) Manufacturing method of steel for machine parts with excellent rolling fatigue life
JP2012207247A (en) Carburizing member, steel for carburizing member and method for producing carburizing member
JP2006328514A (en) Rolling supporting device
JP2008240019A (en) Steel excellent in rolling contact fatigue life
JP2017179394A (en) Case hardened steel
JP2010043331A (en) Method for manufacturing seamless steel pipe for high-strength carburized part
JP6621315B2 (en) Manufacturing method of steel for machine parts with excellent rolling fatigue life

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5403945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250