JP6621315B2 - Manufacturing method of steel for machine parts with excellent rolling fatigue life - Google Patents

Manufacturing method of steel for machine parts with excellent rolling fatigue life Download PDF

Info

Publication number
JP6621315B2
JP6621315B2 JP2015240848A JP2015240848A JP6621315B2 JP 6621315 B2 JP6621315 B2 JP 6621315B2 JP 2015240848 A JP2015240848 A JP 2015240848A JP 2015240848 A JP2015240848 A JP 2015240848A JP 6621315 B2 JP6621315 B2 JP 6621315B2
Authority
JP
Japan
Prior art keywords
steel
jis
machine
machine parts
specified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015240848A
Other languages
Japanese (ja)
Other versions
JP2017106075A (en
Inventor
藤松 威史
威史 藤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2015240848A priority Critical patent/JP6621315B2/en
Publication of JP2017106075A publication Critical patent/JP2017106075A/en
Application granted granted Critical
Publication of JP6621315B2 publication Critical patent/JP6621315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Description

本発明は、非金属介在物が破損起点となるような軸受、ギア、ハブユニット、無段変速機、等速ジョイント、ピストンピンなどの優れた転動疲労寿命が求められ、表面硬さを58HRC以上に硬化して使用される機械部品用鋼の製造方法に関するものである。   The present invention requires excellent rolling fatigue life of bearings, gears, hub units, continuously variable transmissions, constant velocity joints, piston pins, etc. in which non-metallic inclusions are the starting point of damage, and has a surface hardness of 58 HRC. The present invention relates to a method for producing steel for machine parts used after being cured.

近年、各種の機械装置の高性能化にともない、転動疲労寿命が求められる機械部品や装置の使用環境は非常に厳しくなり、寿命の向上ならびに信頼性の向上が強く求められている。このような要求に対し、鋼成分の適正化や不純物元素の低減化の取り組みがなされている。しかし、このような高清浄度の鋼材を用いても、十分に短寿命破損を抑制することはできていない。そこで、鋼材中の非金属介在物を低減して高清浄度化をはかり、さらに該非金属介在物を小径化しようとする試みが行われている。   In recent years, with the improvement in performance of various mechanical devices, the use environment of mechanical parts and devices that require a rolling fatigue life has become extremely severe, and there is a strong demand for improved life and improved reliability. In response to such demands, efforts are being made to optimize steel components and reduce impurity elements. However, even when such a high clean steel material is used, it is not possible to sufficiently suppress short-life damage. Therefore, attempts have been made to reduce the nonmetallic inclusions in the steel material to increase the cleanliness and to further reduce the diameter of the nonmetallic inclusions.

ところで、良く知られるAl23、MnS、TiNのような鋼中の非金属介在物は、鋼部品の転動疲労における内部はく離の起点として有害であるとの考え方は根強い。これらの非金属介在物の径が大きいほど、鋼部品の転動疲労寿命が低下することからも、この考え方は概ね正しいとみられる。したがって、非金属介在物量を少なくした、すなわち、鋼の清浄度を高めた、介在物径が20μm以上の大型の酸化物系非金属介在物の極めて少ない高清浄度鋼が種々提案されている(例えば、特許文献1や特許文献2参照。)。しかし、安定して非金属介在物を小径化することは必ずしも容易ではない。 By the way, the idea that non-metallic inclusions in steel such as well-known Al 2 O 3 , MnS, and TiN are harmful as a starting point of internal separation in rolling fatigue of steel parts is deeply rooted. This idea seems to be generally correct because the rolling fatigue life of steel parts decreases as the diameter of these non-metallic inclusions increases. Accordingly, various types of high cleanliness steels with a small amount of nonmetallic inclusions, that is, with a high cleanliness of steel and a large number of oxide-based nonmetallic inclusions having an inclusion diameter of 20 μm or more and extremely small ( For example, refer to Patent Document 1 and Patent Document 2.) However, it is not always easy to reduce the diameter of the nonmetallic inclusion stably.

一方、本発明者らは、転動疲労における破損、すなわち、はく離に至る過程を人工欠陥材のき裂化過程の観察により詳細に検討し、空洞や非金属介在物周囲の隙間の存在がき裂発生に対して支配的な役割を果たす可能性が高いことを示した(例えば、非特許文献1参照。)。それらの知見に基づき、本発明者らは機械構造用鋼の一部もしくは全体を焼入焼戻し処理方法により58HRC以上を得る機械部品の製造方法において、該機械構造用鋼が鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程で塑性加工を受けた後、焼入焼戻しを行う前に、800〜1100℃に加熱し100MPa以上の静水圧圧縮応力を付与することにより、該鋼中に含有する非金属介在物と母相である鋼との界面を密着する処理を行うことを特徴とする転動疲労寿命に優れた機械部品の製造方法を提案している(例えば、特許文献3参照。)。この方法により母相と鋼の界面を密着することにより、従来に無い大幅な寿命向上を達成している。このような物理的な隙間は、鋼材の製造過程や部材に成形していく過程において、必ず行なわれる何らかの塑性加工、すなわち、熱間圧延、冷間圧延、熱間鍛造、温間鍛造、冷間鍛造、ローリング鍛造、冷間転造、冷間ヘッダー加工ならびに引抜き加工などによって生じる場合があることが指摘されている。   On the other hand, the present inventors examined in detail the process leading to breakage in rolling fatigue, that is, the process of separation by observing the cracking process of the artificial defect material, and the existence of gaps around cavities and nonmetallic inclusions It has been shown that there is a high possibility that it will play a dominant role (see Non-Patent Document 1, for example). Based on these findings, the present inventors have made it possible for a machine structural steel to obtain a steel material shape in a method for producing a machine part in which a part or the whole of a machine structural steel is obtained by a quenching and tempering method to obtain 58 HRC or more. After being subjected to plastic working in the process or subsequent process for obtaining the machine part shape, and before quenching and tempering, the steel is heated to 800 to 1100 ° C. and applied with a hydrostatic compression stress of 100 MPa or more. Proposes a method of manufacturing a machine part with excellent rolling fatigue life, characterized by performing a process of closely adhering the interface between the nonmetallic inclusions contained in the steel and the parent phase steel (for example, Patent Documents) 3). By this method, the interface between the mother phase and the steel is brought into close contact with each other, thereby achieving a significant improvement in life that has not been achieved in the past. Such a physical gap is a plastic process that is always performed in the process of manufacturing a steel material or forming a member, that is, hot rolling, cold rolling, hot forging, warm forging, cold It has been pointed out that it may be caused by forging, rolling forging, cold rolling, cold header processing and drawing.

また、本発明者らは、表面硬さを58HRC以上とする機械部品に用いる鋼部材であって、鋼中の酸素含有量が8ppm以下、硫黄含有量が0.008質量%以下で、転動体が負荷を受けて回転する転動面から、転動面に平行に被検面積40mm2以上400mm2以下の試験片を採取して観察を行う際に、実効有害長さが10μm以上、実効有害幅が2μm以上の介在物を全て観察し、以下で定義される隙間率をそれぞれの介在物について算出し、観察された全介在物の隙間率の平均が8%以下で、かつ、観察された全介在物のうち、隙間率1.0%未満の介在物が観察された全介在物に占める割合を、隙間ゼロ個数率としたとき、隙間ゼロ個数率が30%以上となることを特徴とする転がり疲労寿命に優れた鋼部材について提案している(例えば、特許文献4参照。)。なお、同発明において、隙間率とは以下のように定義されている。
隙間率=隙間部分の面積÷(隙間部分の面積+介在物面積)
The present inventors also provide a steel member used for a machine part having a surface hardness of 58 HRC or more, wherein the oxygen content in the steel is 8 ppm or less, the sulfur content is 0.008 mass% or less, and the rolling element When a specimen with a test area of 40 mm 2 or more and 400 mm 2 or less is collected from the rolling surface that rotates under load, the effective harmful length is 10 μm or more. All the inclusions having a width of 2 μm or more were observed, the gap ratio defined below was calculated for each inclusion, and the average of the observed gap ratios of all the inclusions was 8% or less and was observed. Of the total inclusions, when the ratio of the inclusions with a gap ratio of less than 1.0% to the total inclusions observed is defined as the zero gap number ratio, the zero gap ratio is 30% or more. Has proposed a steel member with excellent rolling fatigue life ( In example, see Patent Document 4.). In the present invention, the clearance ratio is defined as follows.
Gap ratio = gap area / (gap area + inclusion area)

また、上記でいう実効有害長さは、特許文献4に記載するように、実際の介在物に加えて介在物周囲の隙間を含めた長さであり、実効有害幅は、実際の介在物に加えて介在物周囲の隙間も含めた幅である。これらの発明者らによる両発明はいずれも介在物と母相の界面の制御に主眼が置かれたものとなっている。   In addition, as described in Patent Document 4, the effective harmful length described above is a length including a gap around the inclusions in addition to the actual inclusions, and the effective harmful width is the actual inclusions. In addition, the width includes the gap around the inclusion. Both of these inventions by these inventors focus on the control of the interface between inclusions and the parent phase.

これらの両発明においては、非金属介在物と母相との密着について十分な関心が払われている。しかし、特許文献4では、非金属介在物中に内在する損傷については何ら言及されておらず、考慮の対象では無かった。また、特許文献3においては、静水圧応力を付与する温度と静水圧圧縮応力が必要十分には高くないため、介在物と母相である鋼との界面の密着については明白な効果があるものの、塑性加工にともなって介在物自体に導入された割れなどの内部損傷の修復については効果が小さかった。発明者らは、この非金属介在物の内部損傷に着眼することによって、さらなる寿命向上の余地があることを見出した。すなわち、そのような内部損傷にともなって介在物にはエッジの鋭い部分が生成されやすく、そこが応力集中を助長して転動疲労寿命に対して悪影響を与えることから、その内部損傷自体の修復に着眼するものである。   In both of these inventions, sufficient attention is paid to the adhesion between the nonmetallic inclusions and the parent phase. However, Patent Document 4 does not mention any damage inherent in non-metallic inclusions, and has not been considered. Further, in Patent Document 3, the temperature for applying the hydrostatic pressure stress and the hydrostatic pressure compressive stress are not sufficiently high, so that there is an obvious effect on the adhesion between the inclusion and the steel that is the parent phase. The effect of repairing internal damage such as cracks introduced into the inclusion itself with plastic working was small. The inventors have found that there is room for further improvement in life by focusing on the internal damage of the nonmetallic inclusions. In other words, sharp edges of the inclusions are easily generated due to such internal damage, which promotes stress concentration and adversely affects the rolling fatigue life. The focus is on.

特開2006−63402号公報JP 2006-63402 A 特開平06−192790号公報Japanese Patent Laid-Open No. 06-192790 特許第5403945号公報Japanese Patent No. 5403945 特開平2014−55346号公報Japanese Patent Application Laid-Open No. 2014-55346

鉄と鋼、Vol.94(2008)No.1、p.13〜20Iron and steel, Vol. 94 (2008) No. 1 1, p. 13-20

本発明が解決しようとする課題は、化学成分の限定、介在物組成の制限、鋼材中に含有する非金属介在物と母相である鋼との界面状態の改善、さらには非金属介在物中に内在される損傷の修復を図った鋼材とすることで、非金属介在物と母相との界面状態を改善した鋼に比べてもなお優れた転動疲労寿命を発揮する機械部品用鋼の製造方法を提供することである。   Problems to be solved by the present invention include chemical component limitation, inclusion composition limitation, improvement of interface state between nonmetallic inclusions contained in steel and steel as a parent phase, and further in nonmetallic inclusions By using a steel material that repairs damage inherent in steel, the steel for machine parts that exhibits a superior rolling fatigue life even when compared with steel that has improved the interface state between non-metallic inclusions and the parent phase. It is to provide a manufacturing method.

発明者は、高炭素クロム軸受鋼SUJ2を素材として作製した金属粉末と、少量のAl23の粉末を混合したものを金属製コンテナに充填し、封止したのち熱間で押出し加工を行った。次いで、870℃の焼ならしと最高点温度800℃の球状化焼なましを施したのち、その断面のミクロ組織を観察した。また、押出し加工した鋼に対して、特許文献3に提案されている温度域より高い1150℃に加熱したのち、140MPaの静水圧圧縮応力を付与した後、同様の焼ならし、および球状化焼なましを施したのちの断面のミクロ組織を観察した。その結果、図2に示すように、適切な条件での静水圧圧縮応力付与により、介在物と母相である鋼との界面の密着が図られるのみならず、介在物中の割れが修復されていることを突き止めた。この知見等に基づき、以下の課題を解決するための手段を得た。 The inventor filled a metal container with a mixture of metal powder made from high carbon chromium bearing steel SUJ2 and a small amount of Al 2 O 3 powder, sealed it, and then extruded it hot. It was. Next, after normalizing at 870 ° C. and spheroidizing annealing at a maximum temperature of 800 ° C., the microstructure of the cross section was observed. Further, after the extruded steel is heated to 1150 ° C., which is higher than the temperature range proposed in Patent Document 3, after applying a hydrostatic compression stress of 140 MPa, the same normalizing and spheroidizing annealing is performed. The microstructure of the cross section after annealing was observed. As a result, as shown in FIG. 2, by applying hydrostatic compression stress under appropriate conditions, not only adhesion of the interface between the inclusion and the steel as the parent phase is achieved, but also cracks in the inclusion are repaired. I found out. Based on this knowledge, etc., means for solving the following problems were obtained.

課題を解決するための手段は、第1の手段では、質量割合で、O:≦8ppm、S:≦0.008%、Al:0.005〜0.030%を含有し、かつ、この鋼中の全酸化物系介在物に占めるMgO−Al23系酸化物の個数比率が70%以上からなる機械部品用鋼に対して、最終的に該鋼製部品としての焼入焼戻しにより表面硬さ58HRC以上を付与する工程に先立ち、1105〜1220℃に加熱し、120MPa以上の静水圧圧縮応力付与を付与することによって、該鋼中の非金属介在物と母相である鋼との界面を密着状態とし、なおかつ非金属介在物中の内部損傷を修復することを特徴とする転動疲労寿命に優れた機械部品用鋼の製造方法である。 Means for solving the problem is that in the first means, by mass ratio, O: ≦ 8 ppm, S: ≦ 0.008%, Al: 0.005 to 0.030%, and this steel The surface of the steel for machine parts in which the number ratio of MgO—Al 2 O 3 oxide in the total oxide inclusions in the steel is 70% or more is finally quenched and tempered as the steel parts. Prior to the step of imparting a hardness of 58 HRC or more , heating to 1105 to 1220 ° C., and imparting a hydrostatic compressive stress of 120 MPa or more, provides an interface between the nonmetallic inclusions in the steel and the steel that is the parent phase. Is a method for producing steel for machine parts having an excellent rolling fatigue life, characterized by repairing internal damage in non-metallic inclusions.

この第1の手段の機械部品用鋼の製造方法は、上記したように、該鋼中に含有の非金属介在物と母相である鋼との界面が密着されて、非金属介在物中の内部損傷が修復されたものであり、最終的には鋼製部品としての切削加工とそれに続く一部または全体の焼入焼戻しが施されるものであり、転動疲労寿命に優れた機械部品用鋼製品とすることができる。   As described above, in the method for producing steel for machine parts of the first means, the interface between the nonmetallic inclusions contained in the steel and the steel that is the parent phase is brought into close contact with the steel. For machine parts with excellent rolling fatigue life, with internal damage repaired and ultimately subjected to cutting as a steel part followed by partial or full quenching and tempering. It can be a steel product.

上記の手段の静水圧を付与する際の加熱温度は1105〜1220℃であるが、望ましくは1120℃から1220℃である。より望ましくは1120℃から1200℃である。なお、上記でいうMgO−Al23系非金属介在物には、化学量論組成比となるMgO−Al23以外に、質量%で、CaO:≦15%、および/またはSiO2:≦15%を有するものであっても良い。 The heating temperature for applying the hydrostatic pressure of the above means is 1105 to 1220 ° C, preferably 1120 ° C to 1220 ° C. More desirably, the temperature is 1120 ° C to 1200 ° C. Note that the MgO-Al 2 O 3 based nonmetallic inclusions mentioned above, in addition to MgO-Al 2 O 3 as a stoichiometric ratio, in mass%, CaO: ≦ 15%, and / or SiO 2 : It may have ≦ 15%.

上記の第1の手段で用いられる機械部品用鋼について、質量割合で、O:8≦ppm、S≦0.008%とする理由は、鋼中で、非金属介在物と母相である鋼が密着状態で存在した場合であっても、鋼を部品に成形したのちの部品表面に表出した状態となった場合には、寿命に対して有害な作用を及ぼす酸化物系介在物、ならびに硫化物系介在物について、その大きさと存在頻度を低減するためである。   About the steel for machine parts used by said 1st means, the reason which shall be O: 8 <= ppm and S <= 0.008% by mass ratio is steel which is a nonmetallic inclusion and a parent phase in steel. Even if it is in a close contact state, when steel is formed into a part and then exposed to the surface of the part, oxide inclusions that have a detrimental effect on the life, and This is to reduce the size and frequency of sulfide inclusions.

上記の第1の手段で用いられる機械部品用鋼は、好ましくは、O:≦6ppm、S:≦0.003%である。さらに、MgO−Al23系に比べて軟質性の介在物を生成させないために、またさらに、硬質でかつ鋼中で凝集してクラスター状となりやすい純アルミナ(Al23)の生成を回避するために、Al:0.005〜0.030%、好ましくは0.008〜0.030%、さらに好ましくは0.011〜0.030質量%とする。 The steel for machine parts used in the first means is preferably O: ≦ 6 ppm and S: ≦ 0.003%. Furthermore, in order to prevent the formation of soft inclusions compared to the MgO-Al 2 O 3 system, it is also possible to produce pure alumina (Al 2 O 3 ) that is hard and tends to agglomerate and form clusters in steel. In order to avoid this, Al: 0.005 to 0.030%, preferably 0.008 to 0.030%, more preferably 0.011 to 0.030% by mass.

さらに、第1の手段に用いられる機械部品用鋼においては、酸化物系介在物の平均組成の規制の下で、かつ、酸化物系介在物の全酸化物系介在物に占めるMgO−Al23系酸化物の個数比率が70%以上、好ましくは80%以上に規制したものにおいて、これらは高融点を有する酸化物組成であるため、鋼の鋳塊を製造する過程において溶鋼中から小径の酸化物が球状に近い形で晶出しているので、このように球状に近い形で酸化物が晶出していても、その後に溶鋼中で凝集し、クラスター状となり易い純アルミナ(Al23)は晶出が抑制されているため、溶鋼が凝固した後の鋳塊内において酸化物系介在物は小径でかつ球状に近い形で分散することになり、したがって、最終製品である転動輪部品としての軌道表面に非金属介在物が表出した場合であっても、応力集中が軽減される効果が得られる。 Furthermore, in the steel for machine parts used for the first means, MgO—Al 2 occupies the total composition of oxide inclusions under the regulation of the average composition of oxide inclusions. In the case where the number ratio of the O 3 -based oxide is regulated to 70% or more, preferably 80% or more, these are oxide compositions having a high melting point. Since the oxide of this crystallized in a nearly spherical shape, even if the oxide crystallizes in such a nearly spherical shape, pure alumina (Al 2 O, which tends to agglomerate and form clusters in the molten steel afterwards. 3 ) Since the crystallization is suppressed, the oxide inclusions are dispersed in a small diameter and nearly spherical shape in the ingot after the molten steel solidifies, and therefore the final product is a rolling wheel. Non-metallic inclusions on the raceway surface as parts Even when exposed, effects are obtained stress concentration is reduced.

ところで、鋼材形状を得るための工程あるいはその後の機械部品形状を得るための工程中で機械部品用鋼に与えられる塑性加工によって、非金属介在物と母相との間に隙間が発生したり、さらに介在物内に割れ等の損傷が発生することがある。それに対する対策として、機械部品用鋼の製造方法として最終的に該鋼製部品としての切削加工とそれに続く焼入焼戻しにより表面硬さ58HRC以上を付与する工程に先立ち、1105〜1220℃に加熱し120MPa以上の静水圧圧縮応力を付与することにより、該鋼中に含有される非金属介在物と母相である鋼との界面を密着状態とし、かつ非金属介在物中の内部損傷が修復された鋼とすることで、これらの鋼の切削加工と焼入焼戻してなる最終的な鋼製部品として使用する際に、従来に無い転動疲労寿命に優れた機械部品用鋼製品とすることができる。   By the way, by the plastic working given to the steel for machine parts in the process for obtaining the steel material shape or the subsequent process for obtaining the machine part shape, a gap is generated between the non-metallic inclusion and the parent phase, Furthermore, damage such as cracks may occur in the inclusions. As a countermeasure against this, as a manufacturing method of steel for machine parts, the steel is finally heated to 1105 to 1220 ° C. prior to the step of imparting a surface hardness of 58 HRC or more by cutting as the steel part and subsequent quenching and tempering. By applying a hydrostatic compressive stress of 120 MPa or more, the interface between the nonmetallic inclusions contained in the steel and the parent steel is brought into a close contact state, and internal damage in the nonmetallic inclusions is repaired. By using these steels, when used as final steel parts made by cutting and quenching and tempering these steels, it is possible to make steel products for machine parts that have an unprecedented rolling fatigue life. it can.

第2の手段では、機械部品用鋼の製造方法は、その鋼組成が、JIS G 4805に規定される高炭素クロム軸受鋼鋼材、JIS G 4051に規定されている機械構造用炭素鋼鋼材、JIS G 4052に規定されている焼入れ性を保証した構造用鋼鋼材(H鋼)、JIS G 4053に規定されている機械構造用合金鋼鋼材、JIS G 3441に規定されている機械構造用合金鋼鋼管、JIS G 3445に規定されている機械構造用炭素鋼鋼管、JIS G 3507−1に規定されている冷間圧造用炭素鋼−第1部:線材、JIS G 3507−2に規定されている冷間圧造用炭素鋼−第2部:線、JIS G 3509−1に規定されている冷間圧造用合金鋼−第1部 線材、JIS G 3509−2に規定されている冷間圧造用合金鋼−第2部:線におけるいずれかの鋼であることを特徴とする第1の手段の転動疲労寿命に優れた機械部品用鋼の製造方法である。   According to a second means, a method for producing steel for machine parts includes a high carbon chrome bearing steel material defined in JIS G 4805, a carbon steel material for machine structure defined in JIS G 4051, and a JIS G 4805 steel composition. Structural steel (H steel) that guarantees the hardenability specified in G 4052, Alloy steel for machine structure specified in JIS G 4053, Alloy steel pipe for machine structure specified in JIS G 3441 , Carbon steel pipe for machine structure specified in JIS G 3445, Carbon steel for cold heading specified in JIS G 3507-1-Part 1: Wire material, Cold specified in JIS G 3507-2 Carbon steel for cold heading-Part 2: Wire, Alloy steel for cold heading specified in JIS G 3509-1-Part 1 Wire, Cold pressure specified in JIS G 3509-2 Use Alloy Steel - Part 2: A method of producing mechanical parts for steel which is excellent in rolling fatigue life of the first means, characterized in that any of the steel in the wire.

第3の手段では、機械部品用鋼の製造方法は、この鋼からなる鋼材部品形状を得るための工程あるいはその工程に続く機械部品形状を得るための工程で受ける複数回の塑性加工で、これらの複数回の工程のうちの切削加工を除く最後の塑性加工が熱間塑性加工であることを特徴とする第1の手段による転動疲労寿命に優れた機械部品用鋼の製造方法である。   In the third means, the method of manufacturing the steel for machine parts includes a plurality of plastic workings received in a process for obtaining a steel part shape made of this steel or a process for obtaining a machine part shape following the process. A method for producing steel for machine parts having excellent rolling fatigue life by a first means, characterized in that the last plastic processing excluding cutting of the plurality of processes is hot plastic processing.

第4の手段では、機械部品用鋼の製造方法は、この鋼からなる鋼材形状を得るための工程あるいはその工程に続く機械部品形状を得るための工程で受ける塑性加工が複数回で、これらの複数回の工程のうちの切削加工を除く最後の塑性加工が温間塑性加工であることを特徴とする第1の手段による転動疲労寿命に優れた機械部品用鋼の製造方法である。   In the fourth means, the method of manufacturing steel for machine parts includes a plurality of times of plastic working received in a process for obtaining a steel material shape made of this steel or a process for obtaining a machine part shape following the process. The last plastic processing excluding cutting processing in a plurality of processes is warm plastic processing, which is a method for producing steel for machine parts having excellent rolling fatigue life by the first means.

第5の手段では、第1の手段に用いられる機械部品用鋼の製造方法は、この鋼からなる鋼材形状を得るための工程あるいはその工程に続く機械部品形状を得るための工程で受ける複数回の塑性加工で、これらの複数回の工程のうちの切削加工を除く最後の塑性加工が冷間塑性加工であることを特徴とする第1の手段による転動疲労寿命に優れた機械部品用鋼の製造方法である。   In the fifth means, the method of manufacturing the steel for machine parts used in the first means includes a plurality of times received in a process for obtaining a steel material shape made of the steel or a process for obtaining a machine part shape following the process. The last plastic working excluding the cutting work in these multiple processes is a cold plastic working, and the steel for machine parts having excellent rolling fatigue life by the first means It is a manufacturing method.

上記の本発明の手段とすることにより、化学成分が限定され、非金属介在物組成が制限された機械部品用鋼に対して、該鋼材中に含有する非金属介在物と母相である鋼の界面状態の改善、さらに非金属介在物中に内在される損傷の修復された鋼材を製造することができるので、単に非金属介在物と母相の界面状態を改善した鋼に比して、より優れた転動疲労寿命を発揮する機械部品用鋼材が得られ、該鋼からなる部品を焼入焼戻しにより、表面硬さが58HRC以上で、かつ、はく離の可能性の極めて低い、転動疲労寿命に優れた機械用部品を得ることができる。   By using the above-mentioned means of the present invention, the steel which is a parent phase with the nonmetallic inclusions contained in the steel material with respect to the steel for machine parts having a limited chemical composition and a limited nonmetallic inclusion composition As a result, it is possible to produce a steel material in which the damage inherent in the non-metallic inclusions is repaired. Therefore, compared to a steel whose interface state between the non-metallic inclusions and the parent phase is simply improved, A steel material for machine parts that exhibits a better rolling fatigue life can be obtained. By rolling and tempering a part made of the steel, the surface hardness is 58 HRC or more and the rolling fatigue is extremely low. It is possible to obtain a machine part having a long life.

熱間押出し加工による高炭素クロム軸受鋼のSUJ2鋼中のAl23系非金属介在物近傍の光学顕微鏡写真で、熱間押出し加工で試作したSUJ2鋼に焼ならしと球状化焼なましを施した後のAl23系非金属介在物近傍の断面ミクロ組織を示す。Optical micrograph near the Al 2 O 3 non-metallic inclusions in SUJ2 steel of high carbon chromium bearing steel by hot extrusion, normalizing and spheroidizing annealing on SUJ2 steel prototyped by hot extrusion 2 shows a cross-sectional microstructure in the vicinity of Al 2 O 3 -based non-metallic inclusions after applying. 熱間押出し加工による高炭素クロム軸受鋼のSUJ2鋼中のAl23系非金属介在物近傍の光学顕微鏡写真で、熱間押し出し加工で試作したSUJ2鋼を1150℃に加熱した後、140MPaの静水圧圧縮応力を付与し、さらに焼ならしと球状化焼なましを施した後のAl23系非金属介在物近傍の断面ミクロ組織を示す。In an optical micrograph of the vicinity of Al 2 O 3 -based non-metallic inclusions in SUJ2 steel of high carbon chromium bearing steel by hot extrusion processing, after heating SUJ2 steel prototyped by hot extrusion to 1150 ° C, 140 MPa 2 shows a cross-sectional microstructure in the vicinity of an Al 2 O 3 -based non-metallic inclusion after applying hydrostatic compression stress and further normalizing and spheroidizing annealing.

軸受、ギア、ハブユニット、無段変速機、等速ジョイント、ピストンピンなどの機械部品に求められる本発明における鋼には、一般的にJIS G 4805に規定されている高炭素クロム軸受鋼鋼材、JIS G 4051に規定されている機械構造用炭素鋼鋼材、JIS G 4052に規定されている焼入れ性を保証した構造用鋼鋼材(H鋼)、JIS G 4053に規定されている機械構造用合金鋼鋼材、JIS G 3441に規定されている機械構造用合金鋼鋼管、JIS G 3445に規定されている機械構造用炭素鋼鋼管、JIS G 3507−1に規定されている冷間圧造用炭素鋼−第1部:線材、JIS G3507−2に規定されている冷間圧造用炭素鋼−第2部:線、JIS G 3509−1に規定されている冷間圧造用合金鋼−第1部:線材、JIS G 3509−2に規定されている冷間圧造用合金鋼−第2部:線、およびそれぞれの関連外国規格鋼が用いられる。ところで、上記した本発明としての鋼の実施により得られる効果はいずれも同様のものであるので、ここでは、上記のJIS G 4805に規定されている高炭素クロム軸受鋼鋼材における実施の形態について説明するものとする。ただし、この高炭素クロム軸受鋼の化学組成の範囲により、本願発明で対象とする上記の全ての鋼の化学組成を限定するものではない。   The steel in the present invention required for machine parts such as bearings, gears, hub units, continuously variable transmissions, constant velocity joints, piston pins, etc., is generally a high carbon chromium bearing steel material defined in JIS G 4805, Carbon steel for machine structure specified in JIS G 4051, Structural steel (H steel) assured hardenability specified in JIS G 4052, Alloy steel for machine structure specified in JIS G 4053 Steel, Alloy steel pipe for machine structure specified in JIS G 3441, Carbon steel pipe for machine structure specified in JIS G 3445, Carbon steel for cold heading specified in JIS G 3507-1 Part 1: Wire rod, carbon steel for cold heading specified in JIS G3507-2-Part 2: Wire head, cold heading specified in JIS G 3509-1 Alloy steel-Part 1: Wire, Alloy steel for cold heading specified in JIS G 3509-2-Part 2: Wire, and related foreign standard steels are used. By the way, since the effects obtained by implementing the steel as the present invention described above are the same, the embodiment of the high carbon chromium bearing steel defined in the above JIS G 4805 will be described here. It shall be. However, the range of the chemical composition of the high carbon chromium bearing steel does not limit the chemical composition of all the steels targeted in the present invention.

本願発明で対象とする上記のJIS規格の鋼は、一般的に、1)アーク溶解炉または転炉による溶鋼の酸化精錬、2)取鍋精錬炉(LF)による還元精錬、3)還流式真空脱ガス装置(RH)による還流真空脱ガス処理(RH処理)、4)連続鋳造法または造塊法による鋼塊の鋳造、および5)鋼塊の熱間圧延もしくは熱間での圧鍛による、または冷間圧延もしくは冷間での圧鍛による、塑性加工工程を経て製造される。本発明における鋼材形状を得るための工程とは上記に記載の1)〜5)の各工程を指し、鋼材形状とは形鋼、棒鋼、管材、線材、鋼板、および鋼帯の形状を指す。   The steel of the above-mentioned JIS standard, which is the subject of the present invention, is generally 1) oxidation refining of molten steel using an arc melting furnace or converter, 2) reduction refining using a ladle refining furnace (LF), and 3) refluxing vacuum. Reflux vacuum degassing treatment (RH treatment) by degassing apparatus (RH), 4) casting of steel ingot by continuous casting method or ingot forming method, and 5) by hot rolling of steel ingot or hot forging. Or it manufactures through a plastic working process by cold rolling or cold forging. The process for obtaining the steel material shape in the present invention refers to each of the processes 1) to 5) described above, and the steel material shape refers to the shape of the shape steel, bar steel, pipe material, wire material, steel plate, and steel strip.

次いで、熱間鍛造、亜熱間鍛造、温間鍛造、冷間鍛造、ローリング鍛造、冷間転造、冷間ヘッダー加工ならびに引抜き加工、場合によっては引抜き加工と冷間ヘッダー加工、さらには上記の各加工の組合せからなる塑性加工と、必要に応じて軟化や組織調整を目的とした熱処理とを施し、さらに切削加工を行なって、機械部品形状の部材に成形する。本発明における機械部品形状を得るための工程とは上記に記載の各加工の工程を指す。   Next, hot forging, sub-hot forging, warm forging, cold forging, rolling forging, cold rolling, cold header processing and drawing, and in some cases, drawing and cold header processing, and above A plastic working consisting of a combination of the respective processes and a heat treatment for softening and structure adjustment as necessary are performed, and further a cutting process is performed to form a member having a machine part shape. The process for obtaining the machine part shape in the present invention refers to each process described above.

なお、本発明における熱間鍛造などの熱間塑性加工における熱間とは加工される素材である当該鋼の再結晶温度以上の温度域を指し、温間鍛造などの温間塑性加工における温間とは室温より上で再結晶温度より下の温度域をそれぞれ指し、冷間鍛造などの冷間塑性加工における冷間とは室温およびその近辺の温度域を指す。   The hot in the hot plastic working such as hot forging in the present invention refers to a temperature range equal to or higher than the recrystallization temperature of the steel being processed, and the warm in the warm plastic working such as warm forging. Refers to a temperature range above room temperature and below the recrystallization temperature, and cold in cold plastic working such as cold forging refers to room temperature and the temperature range in the vicinity thereof.

上記の機械部品形状の部材への成形に続いて、表面硬さ58HRC以上を得るために、全体焼入れ(ズブ焼入れ)、浸炭焼入れ、浸炭窒化焼入れ、窒化焼入れ、浸炭浸窒焼入れ、または高周波焼入れなどとその後の焼戻しなどである、焼入焼戻し処理が鋼材や用途に応じて施されて、研磨や研削などの仕上げ処理を経て、本願発明で対象とする機械部品が製造される。本願発明における焼入焼戻し処理方法とは上記に記載の処理を指す。   Subsequent to molding into the above-mentioned member having a machine part shape, in order to obtain a surface hardness of 58 HRC or more, total quenching (carbure quenching), carburizing quenching, carbonitriding quenching, nitriding quenching, carburizing and nitrogen quenching, or induction quenching, etc. Then, a quenching and tempering process, such as tempering after that, is performed according to the steel material and application, and a finishing process such as polishing and grinding is performed to produce the machine part targeted by the present invention. The quenching and tempering treatment method in the present invention refers to the treatment described above.

本願発明の効果を得るためには、最終的に該鋼製部品としての切削加工とそれに続く焼入焼戻しにより表面硬さ58HRC以上を付与する工程に先立って、当該鋼を1105〜1220℃に加熱し、120MPa以上の静水圧圧縮応力を付与することにより、当該鋼中に含有される非金属介在物と母相である鋼との界面が密着され、かつ非金属介在物中の内部損傷が、図2の顕微鏡写真にみられるように、修復された状態とする必要がある。その手段としては、1105〜1220℃に加熱した後に120MPa以上の静水圧圧縮応力を付与することが可能な工法が適する。例えば、その工法として、熱間等方圧プレス法すなわちHIP法やホットプレス法や完全閉塞あるいは完全密閉による熱間鍛造法が推奨される。   In order to obtain the effect of the present invention, the steel is finally heated to 1105 to 1220 ° C. prior to the step of imparting a surface hardness of 58 HRC or higher by cutting as the steel part and subsequent quenching and tempering. In addition, by applying a hydrostatic compression stress of 120 MPa or more, the interface between the nonmetallic inclusions contained in the steel and the parent steel is closely adhered, and internal damage in the nonmetallic inclusions is As seen in the photomicrograph of FIG. 2, it needs to be in a repaired state. As the means, a method capable of applying a hydrostatic compression stress of 120 MPa or more after heating to 1105 to 1220 ° C. is suitable. For example, a hot isostatic pressing method, that is, a HIP method, a hot pressing method, or a hot forging method with complete closure or complete sealing is recommended as the construction method.

なお、金型による完全密閉をしないで行う、熱間鍛造、亜熱間鍛造、温間鍛造、冷間鍛造や、また拡径加工を行うローリング鍛造、また冷間ヘッダー加工や、あるいは引抜き加工の場合では、鋼材に等しく静水圧圧縮応力を付与できなくなるか、もしくは、特定方向の引張応力の付与のために非金属介在物と母相である鋼との界面に隙間が生じたり、非金属介在物内部に割れを生じたりする場合があるために、また特に冷間工法や温間工法では静水圧圧縮応力を付与する際の加熱温度不足のため、本発明の効果は得られない。   In addition, hot forging, sub-hot forging, warm forging, cold forging, rolling forging that performs diameter expansion processing, cold header processing, or drawing processing without completely sealing with a mold In some cases, the hydrostatic compression stress cannot be applied equally to the steel material, or a gap is formed at the interface between the non-metallic inclusion and the parent phase steel due to the application of tensile stress in a specific direction, or non-metallic inclusion. The effect of the present invention cannot be obtained because cracks may occur inside the object, and particularly in the cold method or the warm method, the heating temperature is insufficient when applying the hydrostatic compression stress.

次に、静水圧圧縮応力を付与する際の限定理由について説明する。
鋼材の加熱温度が高いほど、鋼材は変形し易くなる。したがって、鋼材の加熱温度が高いほど、酸化物系非金属介在物と母相との界面に存在する隙間すなわち空洞が消滅することとなり、また、さらに非金属介在物中の割れなどの損傷を修復するために必要な静水圧圧縮応力が比較的低くて済むこととなる。本願発明者は、鋭意検討した結果、鋼材を1105〜1220℃に加熱し、かつ120MPa以上の静水圧圧縮応力を鋼材に付与できれば、本願発明の効果が得られていることを知見している。したがって、本願発明は、鋼材を1105〜1220℃に加熱し、かつ120MPa以上の静水圧圧縮応力を付与するものとする。
Next, the reason for limitation when applying hydrostatic compression stress will be described.
The higher the heating temperature of the steel material, the easier it is for the steel material to deform. Therefore, the higher the heating temperature of the steel, the more gaps or cavities that exist at the interface between the oxide-based nonmetallic inclusions and the parent phase disappear, and further, damage such as cracks in the nonmetallic inclusions is repaired. Therefore, the hydrostatic compression stress necessary for this is relatively low. As a result of earnest study, the inventor of the present application has found that the effect of the present invention is obtained if the steel material can be heated to 1105 to 1220 ° C. and a hydrostatic compression stress of 120 MPa or more can be applied to the steel material. Therefore, this invention shall heat a steel material to 1105-1220 degreeC, and shall provide the hydrostatic pressure compressive stress of 120 Mpa or more.

本発明の実施の形態の実施条件と得られた効果について以下に具体的に説明する。先ず、下記の表1に本発明の実施の形態の供試材としてのNo.1〜4の鋼1〜4の化学成分を質量%で示す。なお、表1におけるこれら化学成分残部は各鋼のFeおよび不可避不純物であるが表1には示していない。この表1のNo.1の鋼1は、JIS G 4805の成分を満足する鋼である高炭素クロム軸受鋼の中のSUJ2鋼である。No.1の鋼1は表1の化学成分のO量、S量、Al量が本発明の製造方法の対象とする鋼の規制を満足するものである。しかしながら、No.2〜4の鋼2〜鋼3は化学成分のO量、S量、Al量のいずれかの1つまたは2つが本発明の製造方法の対象とする鋼の規制を満足しないものである。   The implementation conditions and the obtained effects of the embodiment of the present invention will be specifically described below. First, in Table 1 below, No. as a test material of the embodiment of the present invention is shown. The chemical composition of the steels 1-4 of 1-4 is shown by mass%. In addition, although these chemical composition remainders in Table 1 are Fe and unavoidable impurities of each steel, they are not shown in Table 1. No. 1 in Table 1 Steel No. 1 is SUJ2 steel in high carbon chromium bearing steel which is a steel satisfying the components of JIS G 4805. No. Steel No. 1 satisfies the regulations of steels subject to the production method of the present invention in the amounts of O, S and Al of the chemical components shown in Table 1. However, no. Steels 2 to 3 of 2 to 4 are those in which one or two of the O content, the S content, and the Al content of the chemical components do not satisfy the regulation of the steel targeted by the production method of the present invention.

これらの表1に示すNo.1の鋼1とNo.2〜4の鋼2〜4の各鋼はアーク溶解炉で溶解して溶鋼とし、これら溶鋼を酸化精錬した後、取鍋精錬炉(LF)で還元精錬し、さらに還流式真空脱ガス装置(RH)で還流真空脱ガス処理(RH処理)した。さらに、これらのRH処理した溶鋼を連続鋳造により鋼塊とし、これらの鋼塊をさらに熱間圧延により直径65mmの鋼材に作製した。次に、これらの熱間圧延した鋼材に対し、800℃にて球状化焼なましを施した。   These are shown in No. 1 shown in Table 1. No. 1 Steel 1 and No. 1 Steels 2 to 4 are melted in an arc melting furnace to form molten steel, and after these molten steels are oxidatively refined, they are reduced and refined in a ladle refining furnace (LF), and further, a reflux-type vacuum degassing apparatus ( RH) was refluxed vacuum degassed (RH treated). Furthermore, these RH-treated molten steel was made into steel ingots by continuous casting, and these steel ingots were further made into steel materials having a diameter of 65 mm by hot rolling. Next, spheroidizing annealing was performed on these hot-rolled steel materials at 800 ° C.

さらに、上記のNo.1〜4の各鋼材ついて、全酸化物中に占めるMgO−Al23系酸化物の個数比率(%)を評価して下記の表2に示した。これらのMgO−Al23系酸化物の個数比率を精度良く評価するためには、鋼材断面の任意の箇所から選んだ少なくとも40mm2中の被検面積における介在物径が1μm以上の酸化物介在物について、エネルギー分散型X線分析により酸化物組成の成分分析と酸化物数のカウントを行うものとし、ここでは被検面積100mm2に対して実施した。得られた酸化物組成の分析結果と酸化物カウント数に基づいて、下記の表2に示すように、全酸化物中に占めるMgO−Al23系酸化物の個数比率をそれぞれ算出した。なお、この算出では、硫化物や窒化物と複合した酸化物については、酸化物としてカウントした。 Furthermore, the above-mentioned No. For each of the steel materials 1 to 4, the number ratio (%) of MgO—Al 2 O 3 -based oxide in the total oxide was evaluated and shown in Table 2 below. In order to accurately evaluate the number ratio of these MgO—Al 2 O 3 -based oxides, an oxide having an inclusion diameter of 1 μm or more in a test area in at least 40 mm 2 selected from an arbitrary position of the steel cross section. for inclusions, by energy dispersive X-ray analysis and to perform the counting of the oxide number and component analysis of the oxide composition was performed on the test area 100 mm 2 here. Based on the analysis result of the obtained oxide composition and the oxide count number, as shown in Table 2 below, the number ratio of the MgO—Al 2 O 3 -based oxide in the total oxide was calculated. In this calculation, oxides combined with sulfides and nitrides were counted as oxides.

さらに、表4に示す、工程条件1では、上記の球状化焼なましした鋼材からスラスト型の転動疲労試験のため外径60mmで厚さ5.8mmの鋼板を形成し、この鋼板の中央に内径20mmの穴を空けた円盤形状に切削加工した。工程条件2では、上記の球状化焼なましした鋼材を室温より上でかつ再結晶温度以下である温間の650℃に加熱して据え込みを行なった後、上記と同様の円盤形状に切削加工した。工程条件3では、上記の球状化焼なましした鋼材から冷間据え込みを行なって上記と同様の円盤形状に切削加工した。これらにおける据え込み加工はいずれも鍛造を模擬したものである。   Further, in process condition 1 shown in Table 4, a steel plate having an outer diameter of 60 mm and a thickness of 5.8 mm is formed from the above-mentioned spheroidized and annealed steel material for a thrust type rolling fatigue test. Were cut into a disk shape having a hole with an inner diameter of 20 mm. In the process condition 2, the above-mentioned spheroidized and annealed steel was heated to a temperature of 650 ° C. above the room temperature and below the recrystallization temperature, and then placed into a disk shape similar to the above. processed. In the process condition 3, the spheroidized and annealed steel material was cold upset and cut into a disk shape similar to the above. These upsetting processes all simulate forging.

上記で得られた円盤形状品には、それぞれ熱間等方圧プレス(HIP)処理を施した。この処理条件を下記の表3に示す。表3における、条件Aと条件Bのプレス条件のものは、本発明の1105〜1220℃の加熱温度と120MPa以上とするプレス圧を満足するもので、表3の備考に記載するように、発明例である。これに対して、条件Cと条件Dのプレス条件のものは、本発明の1105〜1220℃の加熱温度と120MPa以上とするプレス圧を満足しないものであり、表3の備考に記載するように、比較例である。   The disk-shaped products obtained above were each subjected to hot isostatic pressing (HIP) treatment. The processing conditions are shown in Table 3 below. In Table 3, the press conditions of Condition A and Condition B satisfy the heating temperature of 1105 to 1220 ° C. and the press pressure of 120 MPa or more according to the present invention. As described in the remarks of Table 3, the invention It is an example. On the other hand, the press conditions of conditions C and D do not satisfy the heating temperature of 1105 to 1220 ° C. and the press pressure of 120 MPa or more according to the present invention, and are described in the remarks in Table 3. This is a comparative example.

表3に示す条件A〜Dの円盤形状品に対して、通常のSUJ2鋼の場合の適正な焼入焼戻し前ミクロ組織に調整するための焼ならしと球状化焼なましを施してから、焼入焼戻処理を付与した。このときの焼ならしは865℃で1時間保持後に空冷する条件、また、球状化焼なましは800℃の条件にて行っているが、適正な焼入焼戻し前ミクロ組織に調整するための熱処理条件は鋼種に応じて選定されるものとし、不要な場合は省略しても良い。次いで、条件A〜Dの円盤形状品に対して835℃で20分保持した後、油冷により焼入れし、次いで170℃で90分の焼戻し処理を行い、所望の58HRC以上の硬さを得た。さらに切削、研磨を施して、スラスト型転動疲労試験を行うための円盤試験片に仕上げて、転動疲労寿命の評価を行なった。なお、転動体は市販のスラスト型の転がり軸受用の鋼球を使用した。   For the disk-shaped products of conditions A to D shown in Table 3, after performing normalization and spheroidizing annealing to adjust to the appropriate microstructure before quenching and tempering in the case of normal SUJ2 steel, A quenching and tempering treatment was applied. The normalization at this time is carried out under the condition of air cooling after holding at 865 ° C. for 1 hour, and the spheroidizing annealing is carried out under the condition of 800 ° C. In order to adjust the microstructure before proper quenching and tempering The heat treatment conditions are selected according to the steel type, and may be omitted if unnecessary. Next, after holding at 835 ° C. for 20 minutes with respect to the disk-shaped products of conditions A to D, quenching was performed by oil cooling, and then tempering treatment was performed at 170 ° C. for 90 minutes to obtain a desired hardness of 58 HRC or higher. . Further, cutting and polishing were performed to finish a disk specimen for performing a thrust type rolling fatigue test, and the rolling fatigue life was evaluated. In addition, the rolling element used the steel ball for commercially available thrust type rolling bearings.

スラスト型転動疲労試験は、最大ヘルツ応力Pmaxが5292MPaとなる条件で行い、上記の表3に示すプレス条件の各条件A〜Dに対して、それぞれ20回ずつ行なった。その結果から、ワイブル分布関数に基づき、短寿命側から総試験片数の5%の割合の試験片にはく離が生じるまでの総回転数を求め、これをL5寿命とした。焼入焼戻し後の表面硬さとスラスト型転動疲労試験を行った各条件に対するL5寿命を、下記の表4に示す。なお、各条件の試験片において1×108cycleに到達した場合は、実用上十分な寿命が得られていることから、はく離に至らなくても試験を中止することとした。 The thrust type rolling fatigue test was performed under the condition that the maximum Hertz stress Pmax was 5292 MPa, and was performed 20 times for each of the conditions A to D of the press conditions shown in Table 3 above. The results, based on the Weibull distribution function, determine the total number of revolutions to flaking from the short life side test piece 5% proportion of the total specimen number occurs, which was used as L 5 life. Table 4 below shows the surface hardness after quenching and tempering and the L 5 life for each condition in which the thrust type rolling fatigue test was conducted. In addition, when the test piece of each condition reached 1 × 10 8 cycle, a practically sufficient life was obtained, so the test was stopped even if it did not come off.

なお、表4のL5寿命の欄における記号「→」は20枚の試験片のいずれも1×108cycleで、はく離しなかったことを意味する。 Symbols in the column of L 5 lifetime of Table 4 "→" is either 1 × 10 8 cycle of 20 test pieces, means not peel.

表4において、鋼1は本発明の請求範囲の製造方法で対象とする機械部品用鋼の化学成分の規制およびMgO−Al23の個数比率の規制を満足するものである。一方、鋼2〜4は化学成分およびMgO−Al23の個数比率のいずれかひとつまたは複数について本発明の請求範囲の製造方法で対象とする機械部品用鋼の規制を満足しないものである。また、表4においてプレス条件Aとプレス条件Bは、本発明の1105〜1220℃に加熱し、120MPa以上の静水圧圧縮応力を付与するとする本発明の構成を満足する条件からなるものである。一方、プレス条件Cとプレス条件Dは、本発明の1105〜1220℃に加熱し、120MPa以上の静水圧圧縮応力を付与する本発明の構成を満足しない製造条件からなるものである。 In Table 4, steel 1 satisfies the regulation of chemical components of the steel for machine parts and the regulation of the number ratio of MgO—Al 2 O 3 in the manufacturing method of the claims of the present invention. On the other hand, the steels 2 to 4 do not satisfy the regulation of steel for machine parts targeted by the manufacturing method of the claims of the present invention for any one or a plurality of chemical components and the number ratio of MgO—Al 2 O 3. . Moreover, in Table 4, press conditions A and press conditions B consist of the conditions which satisfy | fill the structure of this invention which heats to 1105-1220 degreeC of this invention, and gives the hydrostatic compression stress of 120 Mpa or more. On the other hand, the press condition C and the press condition D consist of manufacturing conditions that do not satisfy the configuration of the present invention that is heated to 1105 to 1220 ° C. and imparts a hydrostatic compression stress of 120 MPa or more.

本発明の請求範囲の製造方法で対象とする機械部品用鋼の化学成分、介在物の規制を満足し、かつ加熱温度ならびに静水圧圧縮応力が本発明の請求項の範囲を満足する製造条件によるプレス条件Aおよびプレス条件Bの例は、最終工程が熱間塑性加工、温間塑性加工、冷間塑性加工のいかんによらず、本発明の請求範囲の製造方法で対象とする機械部品用鋼の化学成分、介在物の規制を満足するものの、加熱温度ならびに静水圧圧縮応力が本発明の請求範囲を満足しない製造条件によるプレス条件Cおよびプレス条件Dの比較例に比して、転動疲労寿命が格段に優れている。さらには、本発明の請求範囲の製造方法で対象とする機械部品用鋼の化学成分、介在物の規制を満足し、かつ加熱温度ならびに静水圧圧縮応力が本発明の請求項の範囲を満足する製造条件によるプレス条件Aおよびプレス条件Bの発明例は、最終工程が熱間塑性加工、温間塑性加工、冷間塑性加工のいかんによらず、本発明の請求範囲の製造方法で対象とする機械部品用鋼の介在物の規制を満足するものの、化学成分の規制を満足しない場合、もしくは本発明の請求範囲の製造方法で対象とする機械部品用鋼の化学成分、介在物の規制を共に満足しない場合において加熱温度ならびに静水圧圧縮応力が本発明の請求範囲を満足する製造条件によるプレス条件Aおよびプレス条件Bの比較例に比して、あるいは本発明の請求範囲の製造方法で対象とする機械部品用鋼の介在物の規制を満足するものの、化学成分の規制を満足しない場合、もしくは本発明の請求範囲の製造方法で対象とする機械部品用鋼の化学成分、介在物の規制を共に満足しない場合において、かつ加熱温度および静水圧圧縮応力が本発明の請求範囲を満足しない製造条件によるプレス条件Cおよびプレス条件Dの比較例に比して、明らかに転動疲労寿命が格段に優れている。   According to the manufacturing conditions satisfying the regulations of chemical components and inclusions of steel for machine parts, which is the object of the manufacturing method of the present invention, and the heating temperature and hydrostatic pressure compressive stress satisfy the scope of the present invention Examples of the press condition A and the press condition B are steels for machine parts to be used in the manufacturing method according to the claims of the present invention regardless of whether the final process is hot plastic working, warm plastic working, or cold plastic working. In comparison with the comparative example of the pressing condition C and the pressing condition D according to the manufacturing conditions in which the heating temperature and the hydrostatic pressure compressive stress do not satisfy the claims of the present invention, while satisfying the regulation of chemical components and inclusions, rolling fatigue Life is much better. Furthermore, the chemical composition of steel for machine parts and the regulation of inclusions are satisfied by the manufacturing method of the claims of the present invention, and the heating temperature and the hydrostatic pressure compressive stress satisfy the scope of the claims of the present invention. The invention examples of the press condition A and the press condition B depending on the manufacturing conditions are covered by the manufacturing method of the claims of the present invention regardless of whether the final process is hot plastic working, warm plastic working, or cold plastic working. If the regulation of inclusions in steel for machine parts is satisfied, but the regulation of chemical components is not satisfied, or the regulation of chemical components and inclusions in the steel for machine parts used in the manufacturing method of the claims of the present invention is both If not satisfied, the heating temperature and the hydrostatic pressure compressive stress are compared with the comparative example of the pressing condition A and the pressing condition B according to the manufacturing conditions satisfying the claims of the present invention, or by the manufacturing method of the claims of the present invention. If the regulation of inclusions in steel for machine parts is satisfied, but the regulation of chemical components is not satisfied, or the chemical composition and inclusions in steel for machine parts targeted by the manufacturing method of the claims of the present invention are regulated In comparison with the comparative example of the press condition C and the press condition D according to the production conditions in which the heating temperature and the hydrostatic pressure compressive stress do not satisfy the claims of the present invention, the rolling fatigue life is clearly markedly higher. Is excellent.

Claims (5)

質量割合で、O:≦8ppm、S:≦0.008%、Al:0.005〜0.030%を有し、鋼中の全酸化物系介在物に占めるMgO−Al23系酸化物の個数比率が70%以上からなる機械部品用鋼の製造方法に対して、最終的に該鋼製部品としての焼入焼戻しにより表面硬さ58HRC以上を付与する工程に先立ち、1105〜1220℃に加熱し、120MPa以上の静水圧圧縮応力を付与することにより該鋼中の非金属介在物と母相である鋼との界面を密着状態とし、なおかつ非金属介在物中の内部損傷を修復することを特徴とする転動疲労寿命に優れた機械部品用鋼の製造方法。 MgO—Al 2 O 3 -based oxidation that occupies O: ≦ 8 ppm, S: ≦ 0.008%, Al: 0.005-0.030%, and occupies all oxide-based inclusions in steel. Prior to the step of imparting a surface hardness of 58 HRC or higher by quenching and tempering as a steel part for the manufacturing method of steel for machine parts comprising 70% or more of the number ratio of objects, 1105 to 1220 ° C. To the interface between the non-metallic inclusions in the steel and the parent phase steel, and to repair internal damage in the non-metallic inclusions. A method for producing steel for machine parts having an excellent rolling fatigue life. 機械部品用鋼の製造方法は、その鋼組成がJIS G 4805に規定される高炭素クロム軸受鋼鋼材、JIS G 4051に規定されている機械構造用炭素鋼鋼材、JIS G 4052に規定されている焼入れ性を保証した構造用鋼鋼材(H鋼)、JIS G 4053に規定されている機械構造用合金鋼鋼材、JIS G 3441に規定されている機械構造用合金鋼鋼管、JIS G 3445に規定されている機械構造用炭素鋼鋼管、JIS G 3507−1に規定されている冷間圧造用炭素鋼−第1部:線材、JIS G 3507−2に規定されている冷間圧造用炭素鋼−第2部:線、JIS G 3509−1に規定されている冷間圧造用合金鋼−第1部 線材、JIS G 3509−2に規定されている冷間圧造用合金鋼−第2部:線におけるいずれかの鋼組成であることを特徴とする請求項1に記載の転動疲労寿命に優れた機械部品用鋼の製造方法。   The manufacturing method of steel for machine parts is specified in JIS G 4052, a high carbon chromium bearing steel material whose steel composition is specified in JIS G 4805, a carbon steel material for machine structure specified in JIS G 4051. Structural steel with guaranteed hardenability (H steel), alloy steel for machine structure specified in JIS G 4053, alloy steel pipe for machine structure specified in JIS G 3441, specified in JIS G 3445 Carbon steel pipe for machine structural use, carbon steel for cold heading specified in JIS G 3507-1-Part 1: Wire rod, carbon steel for cold heading specified in JIS G 3507-2 Part 2: Wire, alloy steel for cold forging specified in JIS G 3509-1-Part 1 Wire material, Alloy steel for cold forging specified in JIS G 3509-2-Part 2 Method for manufacturing a machine component for steel excellent in rolling fatigue life of claim 1, characterized in that any of the steel composition in line. 機械部品用鋼の製造方法は、その鋼材形状を得るための工程あるいはその工程に続く機械部品形状を得るための工程で受ける複数回の塑性加工において、これらの複数回の工程のうちの切削加工を除く最後の塑性加工が熱間塑性加工であることを特徴とする請求項1に記載の転動疲労寿命に優れた機械部品用鋼の製造方法。   The manufacturing method of the steel for machine parts is a cutting process of these multiple times in the multiple times of plastic working received in the process for obtaining the steel material shape or the process for obtaining the machine part shape following the process. The method for producing steel for machine parts having an excellent rolling fatigue life according to claim 1, wherein the last plastic working excluding the step is hot plastic working. 機械部品用鋼の製造方法は、その鋼材形状を得るための工程あるいはその工程に続く機械部品形状を得るための工程で受ける複数回の塑性加工において、これらの複数回の工程のうちの切削加工を除く最後の塑性加工が温間塑性加工であることを特徴とする請求項1に記載の転動疲労寿命に優れた機械部品用鋼の製造方法。   The manufacturing method of the steel for machine parts is a cutting process of these multiple times in the multiple times of plastic working received in the process for obtaining the steel material shape or the process for obtaining the machine part shape following the process. The method for producing steel for machine parts having an excellent rolling fatigue life according to claim 1, wherein the last plastic working excluding the step is warm plastic working. 機械部品用鋼の製造方法は、その鋼材形状を得るための工程あるいはその工程に続く機械部品形状を得るための工程で受ける複数回の塑性加工において、これらの複数回の工程のうちの切削加工を除く最後の塑性加工が冷間塑性加工であることを特徴とする請求項1に記載の転動疲労寿命に優れた機械部品用鋼の製造方法。   The manufacturing method of the steel for machine parts is a cutting process of these multiple times in the multiple times of plastic working received in the process for obtaining the steel material shape or the process for obtaining the machine part shape following the process. The method for producing steel for machine parts having an excellent rolling fatigue life according to claim 1, wherein the last plastic working excluding the step is cold plastic working.
JP2015240848A 2015-12-10 2015-12-10 Manufacturing method of steel for machine parts with excellent rolling fatigue life Active JP6621315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015240848A JP6621315B2 (en) 2015-12-10 2015-12-10 Manufacturing method of steel for machine parts with excellent rolling fatigue life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240848A JP6621315B2 (en) 2015-12-10 2015-12-10 Manufacturing method of steel for machine parts with excellent rolling fatigue life

Publications (2)

Publication Number Publication Date
JP2017106075A JP2017106075A (en) 2017-06-15
JP6621315B2 true JP6621315B2 (en) 2019-12-18

Family

ID=59059137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240848A Active JP6621315B2 (en) 2015-12-10 2015-12-10 Manufacturing method of steel for machine parts with excellent rolling fatigue life

Country Status (1)

Country Link
JP (1) JP6621315B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673136B2 (en) * 1999-04-01 2005-07-20 株式会社デンソー Heat treatment method for cold and warm processed products of high carbon-high alloy steel
JP2004323938A (en) * 2003-04-25 2004-11-18 Daido Steel Co Ltd Bearing steel having excellent rolling life characteristic and its producing method
JP5403946B2 (en) * 2008-05-27 2014-01-29 山陽特殊製鋼株式会社 Manufacturing method of machine parts with excellent rolling fatigue life
JP5403945B2 (en) * 2008-05-27 2014-01-29 山陽特殊製鋼株式会社 Manufacturing method of machine parts with excellent rolling fatigue life
JP5473249B2 (en) * 2008-05-27 2014-04-16 山陽特殊製鋼株式会社 Manufacturing method of machine parts with excellent rolling fatigue life
JP5283788B1 (en) * 2012-05-07 2013-09-04 山陽特殊製鋼株式会社 Steel with excellent rolling fatigue life

Also Published As

Publication number Publication date
JP2017106075A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP5126857B2 (en) Manufacturing method of case-hardened steel pipe with excellent workability
JP5723232B2 (en) Steel for bearings with excellent rolling fatigue life
JP5723233B2 (en) Steel material for spheroidized heat-treated bearings with excellent rolling fatigue life
JP2007131907A (en) Steel for induction hardening with excellent cold workability, and its manufacturing method
WO2019198415A1 (en) Steel material for component to be carburized
CN104024444A (en) Method for producing steel part
JP6515327B2 (en) Bearing steel and method of manufacturing the same
JP5035137B2 (en) Bearing steel and manufacturing method thereof
JP5700174B2 (en) Induction hardening steel
JP5605912B2 (en) Bearing steel and bearing parts with excellent rolling fatigue characteristics
JP5403945B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
JP6295665B2 (en) Carburized bearing steel
CN106399861A (en) Alloy for high-pressure eighth-grade partition board outer ring and forging method of outer ring
JP6376725B2 (en) Steel member with excellent rolling fatigue life
JP5473249B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
WO2009145168A1 (en) Manufacturing method for machine parts having superior rolling-contact fatigue life
JP6618345B2 (en) Manufacturing method of steel for machine parts with excellent rolling fatigue life
JP6621315B2 (en) Manufacturing method of steel for machine parts with excellent rolling fatigue life
JP6625420B2 (en) Method for producing steel for machine parts with excellent rolling fatigue life
JP5403946B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
JP2017048441A (en) Steel pipe for machine construction member excellent in machinability and manufacturing method therefor
JP2017048440A (en) Steel pipe for machine construction member excellent in machinability and manufacturing method therefor
WO2017069064A1 (en) Steel for mechanical structures and induction hardened steel parts
JP5991254B2 (en) Manufacturing method of bearing steel
JP6085210B2 (en) Case-hardened steel with excellent rolling fatigue characteristics and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191119

R150 Certificate of patent or registration of utility model

Ref document number: 6621315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250