JP5896713B2 - Manufacturing method of machine parts with excellent rolling fatigue life - Google Patents

Manufacturing method of machine parts with excellent rolling fatigue life Download PDF

Info

Publication number
JP5896713B2
JP5896713B2 JP2011270215A JP2011270215A JP5896713B2 JP 5896713 B2 JP5896713 B2 JP 5896713B2 JP 2011270215 A JP2011270215 A JP 2011270215A JP 2011270215 A JP2011270215 A JP 2011270215A JP 5896713 B2 JP5896713 B2 JP 5896713B2
Authority
JP
Japan
Prior art keywords
rolling
steel
fatigue life
ring
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011270215A
Other languages
Japanese (ja)
Other versions
JP2013121600A (en
Inventor
中溝 利尚
利尚 中溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2011270215A priority Critical patent/JP5896713B2/en
Priority to KR1020147018836A priority patent/KR20140099943A/en
Priority to CN201280060698.5A priority patent/CN103987475A/en
Priority to PCT/JP2012/081699 priority patent/WO2013085008A1/en
Publication of JP2013121600A publication Critical patent/JP2013121600A/en
Application granted granted Critical
Publication of JP5896713B2 publication Critical patent/JP5896713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • B21J5/025Closed die forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/04Making machine elements ball-races or sliding bearing races
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/16Remodelling hollow bodies with respect to the shape of the cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K23/00Making other articles
    • B21K23/04Making other articles flanged articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、軸受、ギア、ハブユニット、無段変速機、等速ジョイント、ピストンピンなどの、鋼材から成る機械部品の製造に関するもので、その特性として、良好な転動疲労寿命が求められる環状体からなる機械部品の製造に関する。   The present invention relates to the manufacture of mechanical parts made of steel, such as bearings, gears, hub units, continuously variable transmissions, constant velocity joints, piston pins, etc., and has an annular shape that requires good rolling fatigue life as its characteristics. The present invention relates to the production of machine parts.

近年、各種の機械装置の高性能化にともない、転動疲労寿命が求められる機械部品や装置における使用環境は非常に厳しくなり、これらの機械部品や装置の寿命の向上ならびに信頼性の向上が強く求められている。このような要求に対し、鋼材の面からの対策としては、鋼成分の適正化や鋼成分と共に含有される不純物元素の低減化が行われている。   In recent years, with the improvement in performance of various machinery and equipment, the use environment for machine parts and devices that require a rolling fatigue life has become extremely severe, and the improvement in the life and reliability of these machine components and devices has been strongly enhanced. It has been demanded. In response to such demands, as countermeasures from the aspect of steel materials, optimization of steel components and reduction of impurity elements contained together with steel components are performed.

これらの機械部品や装置を形成する鋼成分と共に含有される不純物元素のうち、これら不純物元素からなるAl23、MnS、TiNその他の非金属介在物は、機械部品や装置における鋼部品の破損の起点となる。このために、これらの非金属介在物は特に有害であることが知られている。さらに、これらの非金属介在物の径が大きいほど、鋼部品の転がり疲労寿命は短くなることが知られている。そのために、非金属介在物量を少なく、すなわち、鋼の清浄度を高くして、非金属介在物の径が20μm以上の大型の酸化物系非金属介在物の極めて少なくした高清浄度鋼が種々提案されている(例えば、特許文献1及び特許文献2参照。)。 Among the impurity elements contained together with the steel components forming these machine parts and devices, Al 2 O 3 , MnS, TiN and other non-metallic inclusions composed of these impurity elements are damaged steel parts in machine parts and devices. Is the starting point. For this reason, these non-metallic inclusions are known to be particularly harmful. Furthermore, it is known that the rolling fatigue life of steel parts becomes shorter as the diameter of these non-metallic inclusions is larger. Therefore, there are various high cleanliness steels with a small amount of non-metallic inclusions, that is, with a high degree of cleanliness of the steel and with a large amount of non-metallic inclusions having a diameter of 20 μm or more and extremely small number of non-metallic inclusions. It has been proposed (see, for example, Patent Document 1 and Patent Document 2).

ところで、このような高清浄度鋼からなる鋼材を機械部品や装置に用いても、これらの機械部品や装置が短寿命で破損することを抑制することは未だ十分にできていない。そのために、鋼材中の非金属介在物を低減し、さらに該非金属介在物を小径化しようとする開発が盛んに行なわれている。   By the way, even when such steel materials made of high cleanliness steel are used for machine parts and devices, it is still not possible to sufficiently prevent these machine parts and devices from being damaged in a short life. For this purpose, development has been actively conducted to reduce the non-metallic inclusions in the steel material and to further reduce the diameter of the non-metallic inclusions.

一方、鋼材中の非金属介在物の低減及びその小径化を図らなくても、転動疲労寿命に優れた機械部品を提供する技術開発も盛んに進められている。例えば、(1)部品の転動による製造時に転動部上におけるファイバーフロー(鍛流線)を制御し、優れた転動疲労寿命を得る技術(例えば、特許文献3参照。)、さらに、(2)転動部に対して予め圧縮応力を作用させることにより、優れた転動疲労寿命を得る技術(例えば、特許文献4参照。)が提案されている。また(3)鋼材中に含有する非金属介在物と母相である鋼との界面状態を改善した鋼材とすることで、優れた転動疲労寿命を得る技術が出願人から出願されており、これらは、非特許文献1及び非特許文献2に発表されている。   On the other hand, technology development that provides machine parts with excellent rolling fatigue life is being actively promoted without reducing non-metallic inclusions in steel and reducing the diameter thereof. For example, (1) Technology for obtaining an excellent rolling fatigue life by controlling the fiber flow (forged streamline) on the rolling part at the time of manufacturing by rolling parts (see, for example, Patent Document 3), ( 2) A technique for obtaining an excellent rolling fatigue life by applying a compressive stress to the rolling portion in advance (for example, see Patent Document 4) has been proposed. In addition, (3) a technique for obtaining an excellent rolling fatigue life has been filed by the applicant by using a steel material with an improved interface state between the nonmetallic inclusions contained in the steel material and the parent phase steel, These are published in Non-Patent Document 1 and Non-Patent Document 2.

これらの非特許文献1及び非特許文献2により、転動疲労における破損、つまり、剥離に至る過程について、以下のように説明されている。すなわち、非金属介在物からき裂発生及び進展して剥離に至る過程において、非金属介在物の周囲への応力集中効果により、き裂が変位する初期き裂(以下「開口型の初期き裂」という。)過程を経る。その後、せん断応力によるき裂の伝ぱを経て破損に至ることが知られている。このことは、開口型の初期き裂が起こらなければ、その後のき裂伝ぱや破損が起こらないことを意味している。また開口型の初期き裂は非金属介在物と母相との界面に物理的な隙間すなわち空洞が生じていることを前提として起こるのであり、物理的な隙間が生じていなければ、開口型のき裂は生じないことも検証されている。   These Non-Patent Document 1 and Non-Patent Document 2 describe the process leading to breakage in rolling fatigue, that is, peeling. In other words, in the process of crack initiation from non-metallic inclusions and progressing to delamination, the initial crack in which the crack is displaced by the stress concentration effect around the non-metallic inclusions (hereinafter referred to as “open-type initial crack”) It goes through the process. After that, it is known that the crack is propagated through the propagation of the crack due to the shear stress. This means that if the initial crack of the opening type does not occur, subsequent crack propagation and damage do not occur. In addition, the opening-type initial crack occurs on the premise that a physical gap, that is, a cavity, is generated at the interface between the nonmetallic inclusion and the parent phase. It has also been verified that no cracks occur.

一方、熱間圧延鋼材から切り出し、イオンミリングを行った後に、走査電子顕微鏡(FE−SEM)にて非金属介在物周囲の空洞有無を観察した影像を、図5の概念図にて示す。図5において、符号の5はAl23の非金属介在物であり、符号の4は空洞すなわち空隙である。特に機械構造用鋼では、通常Alによる脱酸が行なわれる。その際に生成するAl23系の非金属介在物5は母材との変形能の違いや形状から特に母相との界面に空隙4が生成しやすいことが確認されている。そこで、機械部品7の転動疲労寿命を向上させるためには、非金属介在物5と母相との界面に存在する空隙4を閉鎖もしくは空隙4の体積を減少させることが有効である。 On the other hand, after cutting out from a hot rolled steel material and performing ion milling, an image obtained by observing the presence or absence of cavities around non-metallic inclusions with a scanning electron microscope (FE-SEM) is shown in the conceptual diagram of FIG. In FIG. 5, reference numeral 5 is a non-metallic inclusion of Al 2 O 3 , and reference numeral 4 is a cavity or void. In particular, in machine structural steel, deoxidation with Al is usually performed. It has been confirmed that the Al 2 O 3 -based non-metallic inclusions 5 produced at that time are likely to generate voids 4 particularly at the interface with the parent phase due to the difference in deformability and shape from the parent material. Therefore, in order to improve the rolling fatigue life of the mechanical component 7, it is effective to close the gap 4 existing at the interface between the nonmetallic inclusion 5 and the parent phase or to reduce the volume of the gap 4.

特開2006−63402号公報JP 2006-63402 A 特開平06−192790号公報Japanese Patent Laid-Open No. 06-192790 特開平4−357324号公報JP-A-4-357324 特開2006−77854号公報JP 2006-77854 A

鉄と鋼、94(2008)、p.13Iron and Steel, 94 (2008), p. 13 平成20年度兵庫県立大学学位論文、平岡和彦(2008年1月)2008 Hyogo Prefectural University Dissertation, Kazuhiko Hiraoka (January 2008)

本発明が解決しようとする課題は、上記の段落0005に記載の(3)に関連する技術であって、リング状素材である鋼材中に含有の非金属介在物と母相である鋼材との界面状態を塑性加工によって改善することで、従来の鋼の製造時に非金属介在物の低減及び非金属介在物の小径化を図った鋼材の製造方法に比して、リング状素材の内径に優れた転動疲労寿命の転動部を有する転動部品である機械部品を製造する方法を提供することである。   The problem to be solved by the present invention is a technique related to (3) described in paragraph 0005 above, in which a nonmetallic inclusion contained in a steel material that is a ring-shaped material and a steel material that is a parent phase. By improving the interface state by plastic working, the inner diameter of the ring-shaped material is superior to conventional steel manufacturing methods that reduce non-metallic inclusions and reduce the diameter of non-metallic inclusions during steel manufacturing. Another object of the present invention is to provide a method of manufacturing a machine part which is a rolling part having a rolling part having a rolling fatigue life.

上記の課題を解決する本発明の手段は、請求項1の発明では、リング状素材の内径に転動部品が転動する転動部を有する機械部品の製造において、転動部を形成しようとするリング状素材の内径面に素材の降伏応力の1.5倍以上の圧縮の静水圧応力を付与して転動部品の転動方向への塑性ひずみが0.10以上の圧縮ひずみとなる鍛造加工により、リング状素材の内径面に転動部品が転動する転動部を形成することを特徴とする転動疲労寿命に優れた転動部を有するリング状の機械部品の製造方法である。なお、この鍛造加工は熱間・冷間を問わない。
すなわち、この転動部を形成しようとするリング状素材内径面に、鍛造加工時に少なくとも素材の降伏応力の1.5倍以上の圧縮の静水圧応力を付与して転動部品の転動方向への圧縮による塑性ひずみが0.10以上となる圧縮の転動面を形成することにより、鋼中の非金属介在物と母相である鋼との界面に存在する空隙が閉鎖する方向へ向かうこととなり、転動疲労寿命に優れた機械部品を製造することができる。
According to a first aspect of the present invention for solving the above-mentioned problems, in the invention of claim 1, in the manufacture of a mechanical part having a rolling part in which the rolling part rolls on the inner diameter of the ring-shaped material, an attempt is made to form the rolling part. Forging in which the hydrostatic pressure of 1.5 times the yield stress of the material is applied to the inner diameter surface of the ring-shaped material to be compressed, and the plastic strain in the rolling direction of the rolling component is 0.10 or more. A method of manufacturing a ring-shaped machine part having a rolling part with excellent rolling fatigue life, characterized in that a rolling part on which the rolling part rolls is formed on the inner diameter surface of the ring-shaped material by machining. . The forging process may be hot or cold.
That is, at the time of forging , the inner diameter surface of the ring-shaped material to be formed with the rolling part is applied with a hydrostatic pressure of at least 1.5 times the yield stress of the material in the rolling direction of the rolling component. By forming a compression rolling surface in which the plastic strain due to compression of the steel becomes 0.10 or more, the voids present at the interface between the nonmetallic inclusions in the steel and the parent steel are directed to close. Thus, it is possible to manufacture a mechanical component having an excellent rolling fatigue life.

本発明の製造方法は、上記の手段のリング状素材の鍛造加工時に、リング状素材の内径面に圧縮の静水圧応力を付与して、少なくとも素材の降伏応力の1.5倍の圧縮の静水圧応力を付与して、転動部品の転動方向への圧縮による塑性ひずみが0.10以上の圧縮となる転動面を形成することにより、鋼材の製造時に非金属介在物の低減及び小径化を図らなくても、非金属介在物と母相である鋼との界面に生じた空隙を閉鎖もしくは低減させることができ、その結果、非金属介在物を破壊起点とする転動疲労による剥離が回避でき、転動疲労寿命の大幅に向上した優れた転動部を有する機械部品を製造することができる。 The manufacturing method of the present invention applies a compressive hydrostatic stress to the inner diameter surface of the ring-shaped material during the forging process of the ring-shaped material of the above-described means, so that the static static pressure is at least 1.5 times the yield stress of the material. By applying a hydraulic stress and forming a rolling surface where the plastic strain due to compression in the rolling direction of the rolling parts is 0.10 or more , non-metallic inclusions are reduced and small diameter is produced during steel production Even if it is not intended to be made, the voids generated at the interface between the nonmetallic inclusions and the parent phase steel can be closed or reduced, and as a result, peeling due to rolling fatigue starting from the nonmetallic inclusions as the fracture origin Therefore, it is possible to manufacture a machine part having an excellent rolling part with a significantly improved rolling fatigue life.

本発明のリング母材の鍛造工程を説明する概略図である。It is the schematic explaining the forge process of the ring base material of this invention. 本発明方法により製造の転がり軸受けの縦断面図である。It is a longitudinal cross-sectional view of the rolling bearing manufactured by the method of this invention. 本発明方法で製造の転がり軸受けのCAEによる解析を示す図である。It is a figure which shows the analysis by CAE of the rolling bearing manufactured by the method of this invention. 鍛造前後の非金属介在物とその周囲の空隙を示す概念図である。It is a conceptual diagram which shows the nonmetallic inclusion before and behind forging, and the space | gap of the circumference | surroundings. 従来の熱間圧延鋼材の非金属介在物とその周囲の空隙を示す概念図である。It is a conceptual diagram which shows the nonmetallic inclusion of the conventional hot rolled steel materials, and the space | gap of the circumference | surroundings.

本発明を実施するための形態について、表及び図面を参照して以下に説明する。先ず、本発明の転動部品である機械部品の製造に求められる鋼材としては、機械構造用鋼や軸受鋼などである。   EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated below with reference to a table | surface and drawing. First, steel materials required for the manufacture of machine parts that are rolling parts of the present invention include steel for machine structure and bearing steel.

これらの鋼材は、1)アーク溶解炉または転炉による溶鋼の酸化精錬、2)取鍋精錬炉(LF)による還元精錬、3)還流式真空脱ガス装置(RH)による還流真空脱ガス処理(RH処理)、4)連続鋳造または一般造塊による鋼塊の鋳造及び5)鋼塊の熱間圧延あるいは熱間での鍛造及び冷間圧延、もしくは冷間圧延及び冷間鍛造による塑性加工の工程を経て鋼材に製造される。   These steel materials are: 1) oxidation refining of molten steel by an arc melting furnace or converter, 2) reductive refining by a ladle refining furnace (LF), 3) recirculation vacuum degassing treatment by a recirculation type vacuum degassing apparatus (RH) ( RH treatment) 4) Casting of steel ingot by continuous casting or general ingot and 5) Hot rolling or hot forging and cold rolling of steel ingot, or plastic working process by cold rolling and cold forging It is manufactured to steel materials through.

上記の1)〜5)の一連の工程を経て、上記の機械構造用鋼や軸受鋼などのJISに規定する鋼材を製造し、この鋼材をアッセルミルによる加工または押出し加工もしくは熱間鍛造などの熱間加工により鋼管へと加工した後、この鋼管を所定長さに切断した。さらに、この切断した鋼管の外径及び内径を切削処理によって所定の寸法の鋼管として、本発明のリング母材2とした。   Through the series of steps 1) to 5), a steel material specified in JIS such as the above-mentioned steel for machine structure and bearing steel is manufactured, and this steel material is processed by an Assel mill, extruded, or heat such as hot forging. After processing into a steel pipe by the inter-process, this steel pipe was cut into a predetermined length. Furthermore, the ring base material 2 of the present invention was obtained by cutting the outer diameter and the inner diameter of the cut steel pipe into a steel pipe having a predetermined size by a cutting process.

本発明の工法を図1により説明する。所定の形状のリング母材2もしくは加工を行う金型に、適切な潤滑処理を施して、室温近辺の温度もしくは熱間加工に適切な温度としたリング母材2を、プレス装置の環状の拘束枠1内に、図1の(a)に示すように、セットする。拘束枠1内には、金型3が上下にそれぞれに配置されており、これらの金型3はそれぞれプレス装置の上下の図示しない稼動部に固定されている。プレス装置が加工動作を開始するに伴い、固定されている金型3の上パンチ3a及びその周囲に配置の環状上パンチ3bが矢印方向の下降運動を開始する。金型3内の所定の位置にセットされたリング母材2は、下降してきた上パンチ3a及び環状上パンチ3bによって、リング母材2の内径2a及びその上端面2bが塑性加工を受ける。また、上パンチ3a及び環状上パンチ3bの下降に伴い、リング母材2は下方向に押し下げられ、同時に下パンチ3c及び環状下パンチ3dからも、リング母材2の内径2a及び下端面2cに塑性加工を受ける。すなわち、リング母材2の上端面2bは、上パンチ3a及び環状上パンチ3bの下降に伴い下方向へ押し下げられ、その結果、リング母材2の下端面2cは下パンチ3c及び環状下パンチ3dにより相対的に押し上げられる。加工末期には、リング母材2は上パンチ3a及び環状上パンチ3b、並びに下パンチ3c及び環状下パンチ3dの双方から鍛造による圧縮加工を受け、転動部6を形成しようとするリング母材2の内径2aの面に、素材の降伏応力の1.5倍となる静水圧応力を付与し、かつ転動部6近傍での転動方向への圧縮の塑性ひずみが0.10以上となる鍛造加工をすることにより、リング母材2の鋼の母相とその非金属介在物5との間に存在する空隙4は閉鎖される。 The construction method of the present invention will be described with reference to FIG. The ring base material 2 having a predetermined shape or a mold for processing is subjected to appropriate lubrication treatment, and the ring base material 2 having a temperature near room temperature or a temperature suitable for hot working is constrained in an annular shape of the press device. Set in the frame 1 as shown in FIG. In the restraint frame 1, molds 3 are respectively arranged up and down, and these molds 3 are respectively fixed to operating parts (not shown) above and below the press device. As the press apparatus starts the processing operation, the upper punch 3a of the fixed mold 3 and the annular upper punch 3b arranged around the upper punch 3b start a downward movement in the arrow direction. In the ring base material 2 set at a predetermined position in the mold 3, the inner diameter 2a and the upper end surface 2b of the ring base material 2 are subjected to plastic working by the upper punch 3a and the annular upper punch 3b that have been lowered. Further, as the upper punch 3a and the annular upper punch 3b are lowered, the ring base material 2 is pushed downward, and at the same time from the lower punch 3c and the annular lower punch 3d to the inner diameter 2a and the lower end surface 2c of the ring base material 2. Receives plastic working. That is, the upper end surface 2b of the ring base material 2 is pushed downward as the upper punch 3a and the annular upper punch 3b are lowered. As a result, the lower end surface 2c of the ring base material 2 is lowered to the lower punch 3c and the annular lower punch 3d. Is pushed up relatively. At the end of processing, the ring base material 2 is subjected to compression processing by forging from both the upper punch 3a and the annular upper punch 3b, and the lower punch 3c and the annular lower punch 3d, and the ring base material which is to form the rolling part 6 2 is applied with a hydrostatic pressure stress that is 1.5 times the yield stress of the material, and the compressive plastic strain in the rolling direction in the vicinity of the rolling part 6 is 0.10 or more. By performing the forging process, the gap 4 existing between the steel parent phase of the ring base material 2 and the non-metallic inclusion 5 is closed.

リング母材2に上記の圧縮加工を施すことにより、図1の(b)に示すように、製作しようとする機械部品7である転動部品の転動部6の近傍には、リング母材2の鋼の母相とその非金属介在物5との間に存在する空隙4を閉鎖する効果を付与する。この圧縮の静水圧応力の作用および転動方向への塑性ひずみを圧縮とすることによって、非金属介在物5と母相であるリング母材2の鋼との間に存在する、図4の(a)に示す、空隙4が閉鎖する方向へもしくは空隙4の体積が減少する方向へ変化する。この変化によって、非金属介在物5を破壊起点とする転動疲労による剥離が回避される。その結果、優れた転動疲労寿命の転動部6を有する機械部品7が得られることとなる。   By applying the above-described compression processing to the ring base material 2, as shown in FIG. 1B, the ring base material is placed in the vicinity of the rolling part 6 of the rolling part, which is the machine part 7 to be manufactured. The effect of closing the void 4 existing between the parent phase of steel No. 2 and its nonmetallic inclusions 5 is imparted. In FIG. 4 (FIG. 4), which exists between the nonmetallic inclusion 5 and the steel of the ring base material 2 which is the parent phase, by compressing the action of the hydrostatic stress of compression and the plastic strain in the rolling direction. It changes to the direction which the space | gap 4 shown to a) closes, or the direction where the volume of the space | gap 4 decreases. By this change, peeling due to rolling fatigue starting from the nonmetallic inclusion 5 is avoided. As a result, the machine part 7 having the rolling part 6 having an excellent rolling fatigue life is obtained.

本発明の実施例として、実施の条件と得られた結果について説明する。先ず、表1に、リング母材2の鋼材の鋼種として使用した供試材の成分組成を示す。   As an example of the present invention, conditions for implementation and results obtained will be described. First, Table 1 shows the component composition of the test material used as the steel type of the steel material of the ring base material 2.

Figure 0005896713
Figure 0005896713

この実施例では、表1に示す鋼種の供試材について実施した。先ず、アーク溶解炉にて溶鋼を酸化精錬し、これを取鍋精錬炉(LF)で還元精錬し、さらに還流式真空脱ガス装置(RH)で脱ガスにより溶鋼中の酸素成分を減少し、この溶鋼を経て連続鋳造にて鋼塊に製造した。この鋼塊を慣用どおりに熱間圧延にて鋼材とし、その後アッセルミルにて鋼管とした後、これらを慣用の球状化熱処理を施した鋼管に準備した。なお、鋼材を慣用の熱間鍛造にてリング状素材とする場合も考えられる。   In this example, the test materials of the steel types shown in Table 1 were used. First, the molten steel is oxidatively refined in an arc melting furnace, this is reduced and refined in a ladle smelting furnace (LF), and further the oxygen component in the molten steel is reduced by degassing in a reflux type vacuum degasser (RH). The molten steel was manufactured into a steel ingot by continuous casting. The steel ingot was made into a steel material by hot rolling as usual, and then made into a steel pipe by an Assel mill, and these were prepared into a steel pipe subjected to a conventional spheroidizing heat treatment. It is also conceivable that the steel material is made into a ring-shaped material by conventional hot forging.

上記で得られた外径φ90.0mm、肉厚9.75mmの表1に示す供試材からなる鋼管を、鋼管の長手方向である幅寸法30.0mmにノコ切断した後、外径及び内径を切削加工することにより、外径φ89.5mm、肉厚9.0mmのリング状素材とした。次いで当該リング状素材に慣用の潤滑処理を施して鍛造用のリング母材2とした。なお、鋼材を慣用の熱間鍛造にてリング状素材とし、切削加工を施してリング母材2とする場合も考えられる。このリング母材2を、図2に示すように、幅29.0mm、外径φ90.0mm、内径の中央部に幅10.0mmでかつその内径φ65.0mmからなる突出部2d、転動部6の外側の内径2aからなる75.0mmの鍛造品が得られるように設計した図1に示す金型3すなわち上パンチ3a、環状パンチ3b、下パンチ3c及び環状パンチ3dを用いて以下の鍛造加工を行った。鍛造加工は、冷間鍛造の場合および熱間鍛造の場合双方を実施した。冷間鍛造の場合は、リング母材2及び金型3ともに室温近辺の温度で、上記の図1に示す金型3による加工方式により、成形時の荷重4000〜4200kN、成形時の加工面圧1800〜1900MPaとなるようして冷間鍛造を施した。熱間鍛造の場合は、リング母材2を900℃および1100℃の温度に加熱し、上記の図1に示す金型3による加工方式により、成形時の荷重2000〜3500kN、成形時の加工面圧700〜1000MPaとなるようして熱間鍛造を施した。なお、素材の降伏応力は、室温近辺で約500MPa、900℃近辺では約120MPa、1100℃近辺では約50MPaである。 After the steel pipe made of the specimen shown in Table 1 having an outer diameter of 90.0 mm and a wall thickness of 9.75 mm obtained above is cut into a width of 30.0 mm, which is the longitudinal direction of the steel pipe, the outer diameter and inner diameter are cut. Was made into a ring-shaped material having an outer diameter of 89.5 mm and a wall thickness of 9.0 mm. Next, the ring-shaped material was subjected to a conventional lubrication treatment to obtain a ring base material 2 for forging. It is also conceivable that the steel material is made into a ring-shaped material by conventional hot forging and cut into the ring base material 2. As shown in FIG. 2, the ring base material 2 has a width of 29.0 mm, an outer diameter of φ90.0 mm, a central portion of the inner diameter of 10.0 mm in width and a protruding portion 2d having an inner diameter of φ65.0 mm, a rolling portion. 6 of the outer consisting inner diameter 2a 75.0 mm of the forged product is obtained so designed mold 3, that the upper punch 3a shown in FIG. 1, the annular punch 3b, following forging with a lower punch 3c and the annular punch 3d Processing was performed. Forging was performed for both cold forging and hot forging. In the case of cold forging, both the ring base material 2 and the mold 3 are at a temperature around room temperature, and the processing method using the mold 3 shown in FIG. 1 above is a load of 4000 to 4200 kN at the time of molding, and the processing surface pressure at the time of molding. Cold forging was performed at 1800 to 1900 MPa. In the case of hot forging, the ring base material 2 is heated to a temperature of 900 ° C. and 1100 ° C., and the processing method using the mold 3 shown in FIG. Hot forging was performed to a pressure of 700 to 1000 MPa. The yield stress of the material is about 500 MPa around room temperature, about 120 MPa around 900 ° C., and about 50 MPa around 1100 ° C.

この鍛造加工により、図3に示すCAE解析による図面に、予想して見られるように、転動部6の近傍には、少なくとも素材の降伏応力の1.5倍の静水圧応力が作用して、転動部6の近傍では、転動方面へ圧縮の塑性ひずみが発生していると考えられる。   With this forging, as can be seen in the CAE analysis drawing shown in FIG. 3, at least 1.5 times the hydrostatic stress of the material yield stress acts in the vicinity of the rolling part 6. In the vicinity of the rolling part 6, it is considered that a compressive plastic strain is generated in the rolling direction.

また、この鍛造加工の前後における、非金属介在物5とリング母材2である鋼との間に存在する空隙4の変化の様子の模式図を図4に示す。図4の(a)は、鍛造加工前のリング母材2の非金属介在物5の形状を示し、この非金属介在物5に隣接して空隙4が形成されている。しかし、図4の(b)に示すように、鍛造加工の後では、非金属介在物5のみであり、したがって非金属介在物5とリング母材2である鋼との間に存在する空隙4は閉鎖されていることが確認された。   Moreover, the schematic diagram of the mode of the change of the space | gap 4 which exists between the nonmetallic inclusion 5 and the steel which is the ring base material 2 before and after this forging process is shown in FIG. FIG. 4A shows the shape of the non-metallic inclusion 5 of the ring base material 2 before forging, and a gap 4 is formed adjacent to the non-metallic inclusion 5. However, as shown in FIG. 4B, after the forging process, only the non-metallic inclusions 5 exist, and therefore the voids 4 existing between the non-metallic inclusions 5 and the steel that is the ring base material 2. Was confirmed to be closed.

さらに、本発明の効果である機械部品7である転動部品の転動疲労寿命の評価を検るために、表2に加工条件A〜R、並びに鋼種条件1〜4のSUJ2、SUJ3、S45C、S53Cの鋼種を示す。これらから、加工条件A〜Rのテストピースを採取した。表2において、加工条件のA、B、C、D、E、Fは加工開始温度が20℃の冷間鍛造であり、加工条件のG、H、I、J、K、Lは加工開始温度が900℃の熱間鍛造であり、加工条件のM、N、O、P、Q、Rは加工開始温度が1100℃の熱間鍛造である。それぞれの素材の最大静水圧応力はその素材の降伏応力の1倍〜6倍とし、表2に示す通りである。発生した転動方向への塑性ひずみは圧縮ひずみあるいは引張りひずみで表2に示すとおりである。転動部品の疲労寿命の評価である寿命評価は◎が優れており、○は良好であり、△は可であり、このように寿命評価が◎、○、△であるものは、発生した塑性ひずみはいずれも圧縮ひずみである。これに対して、寿命評価が×のものは不可を示し、塑性ひずみはいずれも引張りひずみである。   Furthermore, in order to examine the evaluation of the rolling fatigue life of the rolling part which is the mechanical part 7 which is the effect of the present invention, Table 2 shows processing conditions A to R and steel type conditions 1 to 4 of SUJ2, SUJ3, S45C. , S53C steel type. From these, test pieces of processing conditions A to R were collected. In Table 2, processing conditions A, B, C, D, E, and F are cold forging with a processing start temperature of 20 ° C., and processing conditions G, H, I, J, K, and L are processing start temperatures. Is hot forging at 900 ° C., and processing conditions M, N, O, P, Q, and R are hot forging at a processing start temperature of 1100 ° C. The maximum hydrostatic pressure stress of each material is 1 to 6 times the yield stress of the material, as shown in Table 2. The generated plastic strain in the rolling direction is as shown in Table 2 in terms of compressive strain or tensile strain. The life evaluation, which is an evaluation of the fatigue life of rolling parts, is excellent, ◯ is good, △ is acceptable, and those whose life evaluation is ◎, ○, △ are generated plasticity All strains are compressive strains. On the other hand, those having a life evaluation of x indicate impossibility, and the plastic strains are all tensile strains.

Figure 0005896713
Figure 0005896713

これらの採取したテストピースを、スラスト型の転がり軸受の部材である軌道盤形状へと旋削加工し、焼入れ、焼戻し処理を施すことで、SUJ2及びSUJ3は58HRC以上、S45CはHRB94以上、S53CはHRC20以上の硬度をそれぞれ得た。さらに、これらに研磨を施してスラスト型の転がり軸受に仕上げ、転動疲労寿命の総合評価を行った。なお、転動体には、市販のスラスト型の転がり軸受用ボールを使用した。   These collected test pieces are turned into a washer disk shape that is a member of a thrust type rolling bearing and subjected to quenching and tempering, so that SUJ2 and SUJ3 are 58 HRC or higher, S45C is HRB94 or higher, and S53C is HRC20. The above hardnesses were obtained. Furthermore, these were polished to finish thrust type rolling bearings, and a comprehensive evaluation of rolling fatigue life was performed. A commercially available thrust-type ball for a rolling bearing was used as the rolling element.

上記の転動疲労寿命の総合評価の結果を表3に示す。これは表2における加工条件A〜Rと鋼種条件1〜4の組合せで総合評価したものである。転動疲労寿命の評価は、同じ鋼種間での比較で行った。先ず、加工開始温度が20℃の冷間鍛造時の最大静水圧応力が素材の降伏応力の1.5倍になり、かつ、圧縮の塑性ひずみが発生する場合、表3に示すように、転動疲労寿命が○あるいは◎で示すように向上することが確認された。発生した転動方向への塑性ひずみが引張の場合は、転動疲労寿命の評価は×であり、転動疲労寿命は向上しない。一方、加工開始温度が900℃あるいは1100℃の熱間鍛造時の最大静水圧応力が素材の降伏応力の1.5倍になり、かつ、圧縮の塑性ひずみが発生する場合、転動疲労寿命が○あるいは◎で示すように向上することが確認された。発生した転動方向への塑性ひずみが引張の場合は、転動疲労寿命の評価は×であり、転動疲労寿命は向上しない。   Table 3 shows the results of the comprehensive evaluation of the rolling fatigue life. This is a comprehensive evaluation based on combinations of the processing conditions A to R and the steel type conditions 1 to 4 in Table 2. The rolling fatigue life was evaluated by comparison between the same steel types. First, when the maximum hydrostatic stress during cold forging at a processing start temperature of 20 ° C. is 1.5 times the yield stress of the material and a compressive plastic strain occurs, as shown in Table 3, It was confirmed that the dynamic fatigue life was improved as indicated by ○ or ◎. When the generated plastic strain in the rolling direction is tensile, the evaluation of the rolling fatigue life is x, and the rolling fatigue life is not improved. On the other hand, when the maximum hydrostatic pressure stress during hot forging at a processing start temperature of 900 ° C. or 1100 ° C. is 1.5 times the yield stress of the material, and a compressive plastic strain occurs, the rolling fatigue life is The improvement was confirmed as indicated by ○ or ◎. When the generated plastic strain in the rolling direction is tensile, the evaluation of the rolling fatigue life is x, and the rolling fatigue life is not improved.

Figure 0005896713
Figure 0005896713

以上の4鋼種条件で、18加工条件のテストピースによる転動疲労寿命試験の表3に示す評価の結果から、冷間鍛造であろうと熱間鍛造であろうと、転動面の近傍に少なくとも素材の降伏応力の1.5倍以上の圧縮の静水圧応力を付与し、転動方向への塑性ひずみが圧縮となるように加工することにより、非金属介在物5とリング母材2である鋼との間にある空隙4が閉鎖もしくは減少し、転動疲労寿命を向上する役割が果たされることが判明した。なお、複列軌道輪の外輪用リング素材においても、上記したと同様に転動疲労寿命の向上が果たされることはいうまでもない。   From the results of the evaluation shown in Table 3 of the rolling fatigue life test using the test piece under the 18 processing conditions under the above four steel grade conditions, at least in the vicinity of the rolling surface, whether cold forging or hot forging. Steel which is a non-metallic inclusion 5 and a ring base material 2 by applying a hydrostatic stress of compression 1.5 times or more of the yield stress of the steel and processing the plastic strain in the rolling direction to be compressed. It was found that the gap 4 between the two was closed or reduced, and the role of improving the rolling fatigue life was played. Needless to say, in the ring material for the outer ring of the double row raceway, the rolling fatigue life is improved as described above.

1 拘束枠
2 リング母材
2a 内径
2b 上端面
2c 下端面
2d 突出部
3 金型
3a 上パンチ
3b 環状上パンチ
3c 下パンチ
3d 環状下パンチ
4 空隙
5 非金属介在物
6 転動部
7 機械部品
DESCRIPTION OF SYMBOLS 1 Restraint frame 2 Ring base material 2a Inner diameter 2b Upper end surface 2c Lower end surface 2d Protrusion part 3 Die 3a Upper punch 3b Annular upper punch 3c Lower punch 3d Annular lower punch 4 Air gap 5 Non-metallic inclusion 6 Rolling part 7 Machine part

Claims (1)

リング状素材の内径に転動部品が転動する転動部を有する機械部品の製造において、転動部を形成しようとするリング状素材の内径面に素材の降伏応力の1.5倍以上の圧縮の静水圧応力を付与して転動部品の転動方向への塑性ひずみが0.10以上の圧縮ひずみとなる鍛造加工により、リング状素材の内径面に転動部品が転動する転動部を形成することを特徴とする転動疲労寿命に優れた転動部を有するリング状の機械部品の製造方法。 In the manufacture of a machine part having a rolling part in which the rolling part rolls on the inner diameter of the ring-shaped material, the inner surface of the ring-shaped material to be formed with the rolling part has a yield stress of 1.5 times or more of the material. Rolling in which the rolling part rolls on the inner diameter surface of the ring-shaped material by forging that gives compressive hydrostatic stress and the plastic strain in the rolling direction of the rolling part becomes 0.10 or more. A method for manufacturing a ring-shaped mechanical component having a rolling part with excellent rolling fatigue life, wherein the part is formed.
JP2011270215A 2011-12-09 2011-12-09 Manufacturing method of machine parts with excellent rolling fatigue life Active JP5896713B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011270215A JP5896713B2 (en) 2011-12-09 2011-12-09 Manufacturing method of machine parts with excellent rolling fatigue life
KR1020147018836A KR20140099943A (en) 2011-12-09 2012-12-06 Method for manufacturing mechanical parts with superior rolling fatigue life
CN201280060698.5A CN103987475A (en) 2011-12-09 2012-12-06 Method for manufacturing mechanical parts with superior rolling fatigue life
PCT/JP2012/081699 WO2013085008A1 (en) 2011-12-09 2012-12-06 Method for manufacturing mechanical parts with superior rolling fatigue life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011270215A JP5896713B2 (en) 2011-12-09 2011-12-09 Manufacturing method of machine parts with excellent rolling fatigue life

Publications (2)

Publication Number Publication Date
JP2013121600A JP2013121600A (en) 2013-06-20
JP5896713B2 true JP5896713B2 (en) 2016-03-30

Family

ID=48574363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011270215A Active JP5896713B2 (en) 2011-12-09 2011-12-09 Manufacturing method of machine parts with excellent rolling fatigue life

Country Status (4)

Country Link
JP (1) JP5896713B2 (en)
KR (1) KR20140099943A (en)
CN (1) CN103987475A (en)
WO (1) WO2013085008A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106001364B (en) * 2016-07-28 2018-08-31 江苏太平洋精锻科技股份有限公司 One of radially inner ring finishing die of thin wall cylinder inner wall
JP7240815B2 (en) * 2018-03-22 2023-03-16 Ntn株式会社 Rolling component manufacturing method and bearing manufacturing method
DE102021205780A1 (en) * 2021-06-08 2022-12-08 Aktiebolaget Skf Forged outer ring

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2755716B2 (en) * 1989-08-28 1998-05-25 エヌティエヌ株式会社 Forging of double row ball bearing outer ring material
JP3308839B2 (en) * 1996-12-04 2002-07-29 山陽特殊製鋼株式会社 A method for producing a bearing steel wire excellent in cold workability and a method for machining a bearing race and a ball / roller.
CN1079715C (en) * 1998-06-22 2002-02-27 星龙金属株式会社 Method of producing socket plate for wobble plate compressors
CN101184562B (en) * 2005-05-26 2011-06-22 昭和电工株式会社 Method and apparatus for hole punching
JP5669128B2 (en) * 2009-08-26 2015-02-12 山陽特殊製鋼株式会社 Manufacturing method of machine parts with excellent rolling fatigue life

Also Published As

Publication number Publication date
JP2013121600A (en) 2013-06-20
KR20140099943A (en) 2014-08-13
WO2013085008A1 (en) 2013-06-13
CN103987475A (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5669128B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
CN101804450B (en) 20/321H corrosion-resisting double-metal composite tube and manufacturing process thereof
JP5783014B2 (en) Steel bar for bearing
JP5896713B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
US10479039B2 (en) Briquetting roll and method for manufacturing the same
JP2006063402A (en) Steel used in parts for machinery superior in rolling fatigue life
JP5403945B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
CN106216965B (en) A kind of casting and rolling composite forming method of corronium retainer
Loginov et al. Evolution of defects in the production of capillary copper tubes
JP5473249B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
JP2008213038A (en) Press forging method
JP6376725B2 (en) Steel member with excellent rolling fatigue life
WO2009145168A1 (en) Manufacturing method for machine parts having superior rolling-contact fatigue life
JP5403946B2 (en) Manufacturing method of machine parts with excellent rolling fatigue life
CN105499449B (en) The method for eliminating casting and rolling composite forming large ring metallurgical imperfection
JP6625420B2 (en) Method for producing steel for machine parts with excellent rolling fatigue life
JP6618345B2 (en) Manufacturing method of steel for machine parts with excellent rolling fatigue life
JP5765757B2 (en) Method for manufacturing annular shaped material
JP6665737B2 (en) Method for preparing raceway surface of thrust type ball bearing
JP2014040894A (en) Ring member for bearing component, race, rolling bearing, and method of manufacturing ring member for bearing component
Gao et al. Failure Analysis of a Brass Synchronizer Ring in the Gearbox of Vehicle
CN112643300B (en) Thermal coupling method for metal solid-solid composite additive blank making
Parida et al. 12 mm thick circular blanks of Al-killed AISI 1020 steel-applied for cylindrical cup manufacturing by multistage deep drawing with simultaneous ironing
JP2012006044A (en) Method of manufacturing machine component excellent in rolling fatigue life
Khlyamkov et al. Development of an Import-Replacing Technology Aimed at Manufacturing Mandrels Маde of X35CrMoV05KU-UNI 2955 Steel for Tubular Mills

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160301

R150 Certificate of patent or registration of utility model

Ref document number: 5896713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250