JP2017095333A - Alumina sintered body excellent in high temperature and corrosion resistance - Google Patents

Alumina sintered body excellent in high temperature and corrosion resistance Download PDF

Info

Publication number
JP2017095333A
JP2017095333A JP2015232155A JP2015232155A JP2017095333A JP 2017095333 A JP2017095333 A JP 2017095333A JP 2015232155 A JP2015232155 A JP 2015232155A JP 2015232155 A JP2015232155 A JP 2015232155A JP 2017095333 A JP2017095333 A JP 2017095333A
Authority
JP
Japan
Prior art keywords
alumina
sintered body
weight
magnesia
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015232155A
Other languages
Japanese (ja)
Other versions
JP6636307B2 (en
Inventor
祐介 阪口
Yusuke Sakaguchi
祐介 阪口
大樹 滝本
Taiki Takimoto
大樹 滝本
大西 宏司
Koji Onishi
宏司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Original Assignee
Nikkato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp filed Critical Nikkato Corp
Priority to JP2015232155A priority Critical patent/JP6636307B2/en
Publication of JP2017095333A publication Critical patent/JP2017095333A/en
Application granted granted Critical
Publication of JP6636307B2 publication Critical patent/JP6636307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alumina sintered body excellent in high temperature property and corrosion resistance.SOLUTION: There is provided an alumina sintered body satisfying requirements <1> to <7>. <1> alumina content is 98.3 wt.% or more. <2> magnesia content is 0.1 to 1.0 wt.%. <3> silica content is 0.10 wt.% or less. <4> weight ratio of magnesia and silica (magnesia/silica) is 2.0 or more. <5> bulk density is 3.85 g/cmor more. <6> average crystal particle diameter is 3 to 20 μm. <7> a ratio of MgAlOspinel and alumina (MgAlOspinel/alumina) is 0.01 to 0.07.SELECTED DRAWING: None

Description

本発明は高温特性及び耐食性に優れたアルミナ焼結体に関するものである。   The present invention relates to an alumina sintered body excellent in high temperature characteristics and corrosion resistance.

アルミナ焼結体は、耐食性、耐熱性に優れ、他のセラミックスに比べて安価で取り扱いが容易であるため、古くから高温部材、熱処理用容器、セッター、炉芯管、測温用保護管等の分野で使用されている。
最近ではリチウム2次電池用正極材、電子材料や蛍光体材料等の熱処理用としても使用されているが、急速昇温、降温等の過酷な条件で使用されるケースが多い。また、熱処理の効率化のため、1度に多くの処理物が熱処理されており、従来品よりも大きな熱処理用部材が必要とされているが、このような大型熱処理用部材にかかる負荷は、小型熱処理用部材にかかる負荷よりも大きい。そこで、過酷な条件でも使用可能な、高温強度、クリープ特性、熱衝撃抵抗性等の高温特性に優れたアルミナ製熱処理用部材が要求されている。また、アルミナ製熱処理用部材の場合、繰り返し使用され高温環境に置かれる時間が長くなると、アルミナ粒子が粒成長し、特性の低下や特性のバラツキが大きくなる。そこで、長時間高温環境に置かれても粒成長しにくい、熱安定性に優れたアルミナ製熱処理用部材が要求されている。
しかし、従来のアルミナ焼結体は、該焼結体に含まれる不純物により結晶粒界に第2相やガラス相を有するため、温度の上昇に伴って高温強度、クリープ特性が低下するだけでなく、耐食性が低いという問題を有している。
Alumina sintered bodies are excellent in corrosion resistance and heat resistance, and are cheaper and easier to handle than other ceramics. For a long time, such as high temperature members, heat treatment containers, setters, furnace core tubes, temperature measuring protection tubes, etc. Used in the field.
Recently, it is also used for heat treatment of positive electrode materials for lithium secondary batteries, electronic materials, phosphor materials, etc., but it is often used under severe conditions such as rapid temperature rise and fall. In addition, many processed products are heat-treated at once for efficiency of heat treatment, and a heat treatment member larger than the conventional product is required, but the load on such a large heat treatment member is It is larger than the load applied to the small heat treatment member. Therefore, there is a demand for a member for heat treatment made of alumina that can be used even under severe conditions and has excellent high-temperature characteristics such as high-temperature strength, creep characteristics, and thermal shock resistance. In the case of an alumina heat treatment member, if the time for repeated use and the high temperature environment is increased, alumina particles grow, resulting in deterioration in characteristics and variations in characteristics. Therefore, there is a demand for an alumina heat treatment member that is resistant to grain growth even in a high temperature environment for a long time and has excellent thermal stability.
However, since the conventional alumina sintered body has the second phase and the glass phase at the crystal grain boundary due to impurities contained in the sintered body, not only the high-temperature strength and creep characteristics decrease with increasing temperature. , Has the problem of low corrosion resistance.

従来技術として、特許文献1には、アルミナを主成分とし、ジルコニア、マグネシア、カルシアの含有量が0.05〜10重量%で、最大結晶粒径が30μm以下のアルミナ焼結体が開示されている。しかし、アルミナ焼結体にジルコニアが含まれていると、高温での機械的特性や耐食性が低下するという問題があり、カルシアが含まれていると、異常粒成長により強度が低下するという問題がある。また、シリカは高温特性だけでなく耐食性にも大きく影響を与える不純物であって、特性を左右する重要な因子であるが、シリカ量を制御する必要性については全く記載されていない。   As a prior art, Patent Document 1 discloses an alumina sintered body containing alumina as a main component, containing zirconia, magnesia, and calcia in an amount of 0.05 to 10% by weight and having a maximum crystal grain size of 30 μm or less. Yes. However, if zirconia is contained in the alumina sintered body, there is a problem that mechanical properties and corrosion resistance at high temperatures are lowered, and if calcia is contained, there is a problem that strength is lowered due to abnormal grain growth. is there. Silica is an impurity that greatly affects not only high temperature characteristics but also corrosion resistance, and is an important factor that affects the characteristics. However, the necessity of controlling the amount of silica is not described at all.

また、特許文献2には、アルミナ含有量が99.8重量%以上、平均結晶粒径が2μm以上で、高温での耐クリープ性に優れたアルミナ焼結体が開示されている。しかし、このアルミナ焼結体は、アルミナが高純度で、かつ添加する焼結助剤量が0.2重量%以下と非常に少ないため、焼成時にアルミナ粒子が異常成長し易く、結晶粒径が不均一となり、高温特性や耐食性の低下及びバラツキが大きくなるといった問題がある。また、アルミナ焼結体を高温下で使用する場合には、熱衝撃抵抗性がアルミナ焼結体の寿命を左右するにも関わらず、熱衝撃抵抗性について全く記載されていない。   Patent Document 2 discloses an alumina sintered body having an alumina content of 99.8% by weight or more, an average crystal grain size of 2 μm or more, and excellent creep resistance at high temperatures. However, since this alumina sintered body has high purity of alumina and the amount of the sintering aid to be added is very small, 0.2% by weight or less, the alumina particles are prone to abnormal growth during firing, and the crystal grain size is small. There is a problem that it becomes non-uniform and the high temperature characteristics and corrosion resistance are reduced and variations are increased. Further, when the alumina sintered body is used at a high temperature, the thermal shock resistance is not described at all even though the thermal shock resistance affects the life of the alumina sintered body.

また、特許文献3には、α−Al及びその粒界に分散しているMgAlスピネルよりなる焼結体において、上記スピネルの粒径が0.1μm以下で、その含有量がマグネシア換算で1.5〜3.0重量%である耐熱セラミックスが開示されている。しかし、MgAlスピネルはアルミナよりも耐食性は高いが熱衝撃抵抗性が低いため、MgAlスピネル相を多く含有すると、熱衝撃抵抗性が低下し、様々な用途に適用可能な耐熱材料にはならない。また、同じ温度差でも、アルミナ焼結体のサイズが大きくなるに伴い、生じる熱衝撃は大きくなるため、上記のようなMgAlスピネルを多く含有する熱衝撃抵抗性が低いセラミックスは、大型化が難しいという問題がある。 Further, in Patent Document 3, in a sintered body composed of α-Al 2 O 3 and MgAl 2 O 4 spinel dispersed in the grain boundary, the particle size of the spinel is 0.1 μm or less, and its content Discloses a heat-resistant ceramic having a content of 1.5 to 3.0% by weight in terms of magnesia. However, MgAl 2 O 4 spinel has higher corrosion resistance than alumina but low thermal shock resistance. Therefore, if it contains a large amount of MgAl 2 O 4 spinel phase, the thermal shock resistance decreases, and it can be applied to various applications. It is not a material. In addition, even when the temperature difference is the same, as the size of the alumina sintered body increases, the resulting thermal shock increases. Therefore, ceramics containing a large amount of MgAl 2 O 4 spinel as described above and having low thermal shock resistance are large. There is a problem that it is difficult.

特開2004−107193号公報JP 2004-107193 A 特許第3130987号公報Japanese Patent No. 3130987 特許第2879169号公報Japanese Patent No. 2879169

本発明は、高温特性及び耐食性に優れたアルミナ焼結体の提供を目的とする。   An object of this invention is to provide the alumina sintered compact excellent in the high temperature characteristic and corrosion resistance.

本発明者らは、前述したような現状に鑑み、アルミナ焼結体の化学組成、微構造に着目して鋭意研究を重ねた結果、焼結助剤としてマグネシアを用い、マグネシア添加量及び高温特性や耐食性を低下させる不純物量を一定の範囲とし、平均結晶粒径を特定の範囲内にすると共に、アルミナ粒子の粒界にMgAlスピネル粒子を特定の割合で生成させることにより、高温強度、耐クリープ性、熱衝撃抵抗性、熱安定性等の高温特性及び耐食性に優れたアルミナ焼結体が得られることを見出し、本発明を完成した。 In view of the present situation as described above, the present inventors have conducted extensive research focusing on the chemical composition and microstructure of the alumina sintered body, and as a result, magnesia was used as a sintering aid, and the magnesia addition amount and high temperature characteristics. In addition, the amount of impurities that reduce corrosion resistance is set within a certain range, the average crystal grain size is within a specific range, and MgAl 2 O 4 spinel particles are generated at a specific ratio at the grain boundaries of alumina particles, thereby increasing the high temperature strength. The present inventors have found that an alumina sintered body excellent in high temperature characteristics such as creep resistance, thermal shock resistance, thermal stability, and corrosion resistance can be obtained, thereby completing the present invention.

即ち、上記課題は、次の1)〜3)の発明によって解決される。
1) 次の要件<1>〜<7>を満たすことを特徴とするアルミナ焼結体。
<1>アルミナ含有量が98.3重量%以上
<2>マグネシア含有量が0.1〜1.0重量%
<3>シリカ含有量が0.10重量%以下
<4>マグネシアとシリカの重量比(マグネシア/シリカ)が2.0以上
<5>かさ密度が3.85g/cm以上
<6>平均結晶粒径が3〜20μm
<7>MgAlスピネルとアルミナの結晶相量の比(MgAlスピネル/アルミナ)が0.01〜0.07
2) 次の要件<8>を満たすことを特徴とする1)記載のアルミナ焼結体。
<8>アルミナ結晶粒径の分布の変動係数が20%以下
3) 次の要件<9>を満たすことを特徴とする1)又は2)記載のアルミナ焼結体。
<9>ジルコニア含有量が0.10重量%以下、カルシア含有量が0.5重量%以下
That is, the above-mentioned problems are solved by the following inventions 1) to 3).
1) An alumina sintered body that satisfies the following requirements <1> to <7>.
<1> Alumina content is 98.3% by weight or more <2> Magnesia content is 0.1 to 1.0% by weight
<3> silica content of 0.10 wt% or less <4> weight ratio of magnesia and silica (magnesia / silica) of 2.0 or more <5> bulk density 3.85 g / cm 3 or more <6> mean crystal Particle size is 3-20μm
<7> Ratio of MgAl 2 O 4 spinel and alumina crystal phase amount (MgAl 2 O 4 spinel / alumina) is 0.01 to 0.07
2) The alumina sintered body according to 1), which satisfies the following requirement <8>.
<8> Variation coefficient of distribution of alumina crystal grain size is 20% or less 3) The alumina sintered body according to 1) or 2), wherein the following requirement <9> is satisfied.
<9> Zirconia content is 0.10 wt% or less, calcia content is 0.5 wt% or less

本発明によれば、高温特性及び耐食性に優れたアルミナ焼結体を提供できる。
このアルミナ焼結体は、高温特性及び耐食性に優れるので、リチウム2次電池正極材料の合成、蛍光体材料の合成、圧電体、誘電体、磁性体、セラミックコンデンサー等の電子部品の焼成用部材として好適である。更に、金属及び合金の溶解用ルツボとしても好適である。更に、優れた熱衝撃抵抗性を有するので、各種電気炉用炉芯管、高温搬送用ローラー、サポートチューブ、ラジアンとチューブ、ガス吹込管、ガス採取管にも好適である。
According to the present invention, an alumina sintered body excellent in high temperature characteristics and corrosion resistance can be provided.
Since this alumina sintered body is excellent in high-temperature characteristics and corrosion resistance, it is used as a material for firing lithium-ion battery positive electrode materials, phosphor materials, electronic parts such as piezoelectric bodies, dielectric bodies, magnetic bodies, and ceramic capacitors. Is preferred. Furthermore, it is also suitable as a crucible for melting metals and alloys. Furthermore, since it has excellent thermal shock resistance, it is suitable for various furnace core tubes for electric furnaces, high-temperature transfer rollers, support tubes, radians and tubes, gas blowing tubes, and gas sampling tubes.

以下、上記本発明について詳しく説明する。
・要件<1>について
本発明では、アルミナ含有量を98.3重量%以上とする。好ましくは99.1重量%以上である。アルミナ含有量が98.3重量%未満の場合は、アルミナ粒子の粒界に第2相及びガラス相が多くなって耐食性が低下する上に、機械的特性、特に高温下での強度やクリープ特性が低下する。また、使用する原料に含まれる不純物量や原料処理中に混入する不純物量を考慮すると、上限は99.8重量%程度である。
Hereinafter, the present invention will be described in detail.
-About requirement <1> In this invention, alumina content shall be 98.3 weight% or more. Preferably it is 99.1 weight% or more. When the alumina content is less than 98.3% by weight, the second phase and the glass phase increase at the grain boundaries of the alumina particles to reduce the corrosion resistance, and the mechanical properties, particularly the strength and creep properties at high temperatures. Decreases. In consideration of the amount of impurities contained in the raw material used and the amount of impurities mixed during the raw material processing, the upper limit is about 99.8% by weight.

・要件<2>について
本発明では、焼結助剤としてマグネシアを0.1〜1.0重量%含有させる。好ましくは0.2〜0.7重量%である。マグネシア含有量が前記範囲であると、焼成時にマグネシアがアルミナ粒子の異常粒成長を抑制するため、結晶粒径が均一なアルミナ焼結体が得られる。更に、アルミナ粒子の粒界にMgAlスピネル粒子が生成して耐食性が向上し、粒界が強化されて、高温強度、耐クリープ性、熱衝撃抵抗性、熱安定性等の高温特性が向上する。マグネシア含有量が0.1重量%未満の場合は、生成するMgAlスピネル粒子の量が少なく、高温特性及び耐食性を向上させる効果が小さい上に、焼成時にマグネシアがアルミナ粒子の異常粒成長を抑制する効果が小さいため、結晶粒径が大きくなり、更には粒径分布のバラツキも大きくなり、機械的特性が低下する。また、マグネシア含有量が1.0重量%を超えると、アルミナ粒子粒界に第2相やガラス相が多く形成されて耐食性が低下するし、アルミナ焼結体に含まれる、熱衝撃抵抗性が低いMgAlスピネル粒子が多くなったり大きくなったりするため、母材であるアルミナ焼結体の熱衝撃抵抗性が低下する。
-About requirement <2> In this invention, 0.1-1.0 weight% of magnesia is contained as a sintering auxiliary agent. Preferably it is 0.2-0.7 weight%. When the magnesia content is within the above range, magnesia suppresses abnormal grain growth of alumina particles during firing, so that an alumina sintered body having a uniform crystal grain size can be obtained. Furthermore, MgAl 2 O 4 spinel particles are formed at the grain boundaries of the alumina particles to improve the corrosion resistance, strengthen the grain boundaries, and have high temperature characteristics such as high temperature strength, creep resistance, thermal shock resistance, and thermal stability. improves. When the magnesia content is less than 0.1% by weight, the amount of MgAl 2 O 4 spinel particles produced is small, the effect of improving high temperature characteristics and corrosion resistance is small, and magnesia grows abnormally as alumina particles during firing. Therefore, the crystal grain size is increased, the variation in the grain size distribution is increased, and the mechanical characteristics are deteriorated. If the magnesia content exceeds 1.0% by weight, a large amount of the second phase and glass phase are formed at the grain boundary of the alumina particles and the corrosion resistance is lowered, and the thermal shock resistance contained in the alumina sintered body is low. Since low MgAl 2 O 4 spinel particles increase or increase in size, the thermal shock resistance of the alumina sintered body as the base material is lowered.

・要件<3>について
本発明では、不純物であるシリカを0.10重量%以下とする。好ましくは0.07重量%以下、更に好ましくは0.05重量%以下である。シリカが0.10重量%を超えると、結晶粒界にシリカ以外の不純物とのガラス相や第2相を形成しやすくなり、耐食性の低下及び、高温強度や耐クリープ性、熱安定性等の高温特性の低下が起こる。特にシリカは、圧電体等に使用される鉛との反応性が高いため、鉛を使用する分野では極力シリカ含有量を減らし、鉛に対する耐食性を向上させることが望ましい。
-About requirement <3> In this invention, the silica which is an impurity shall be 0.10 weight% or less. Preferably it is 0.07 weight% or less, More preferably, it is 0.05 weight% or less. When silica exceeds 0.10% by weight, it becomes easy to form a glass phase or a second phase with impurities other than silica at the crystal grain boundary, such as a decrease in corrosion resistance, high temperature strength, creep resistance, thermal stability, etc. Degradation of high temperature characteristics occurs. In particular, since silica is highly reactive with lead used in piezoelectric materials and the like, it is desirable to reduce the silica content as much as possible and improve the corrosion resistance to lead in the field where lead is used.

・要件<4>について
本発明ではマグネシアとシリカの重量比(マグネシア/シリカ)を2.0以上とする。マグネシア含有量0.1〜1.0重量%、かつシリカ含有量0.10重量%以下という要件を満たしても、前記重量比が2.0未満の場合は、シリカとその他の成分でガラス相や第2相が多く形成され、MgAlスピネル粒子による高温強度、耐クリープ性、熱安定性等の高温特性及び耐食性向上の効果よりも、ガラス相や第2相による耐食性及び高温特性の低下の影響が著しくなる。また、シリカは高温特性を低下させる不純物であるから含有量は極力少ない方が望ましい。したがって、マグネシア/シリカの重量比が無限大に近付く可能性があるが、どれだけ大きい値になっても、得られるアルミナ焼結体の特性に悪影響を及ぼすことはないから、前記重量比に上限はない。
-About requirement <4> In this invention, the weight ratio (magnesia / silica) of magnesia and silica shall be 2.0 or more. If the weight ratio is less than 2.0 even if the requirements of magnesia content of 0.1 to 1.0% by weight and silica content of 0.10% by weight or less are satisfied, the glass phase is composed of silica and other components. In addition to the effects of improving the high temperature properties such as high temperature strength, creep resistance, thermal stability and corrosion resistance due to the MgAl 2 O 4 spinel particles, the corrosion resistance and high temperature properties of the glass phase and the second phase are increased. The effect of decline becomes significant. Further, since silica is an impurity that lowers the high temperature characteristics, it is desirable that the content be as small as possible. Therefore, the weight ratio of magnesia / silica may approach infinity, but no matter how large the weight ratio does not adversely affect the characteristics of the resulting alumina sintered body, There is no.

・要件<5>について
本発明では、アルミナ焼結体のかさ密度を3.85g/cm以上とする。好ましくは3.90g/cm以上である。かさ密度が3.85g/cm未満の場合は、焼結体内部に気孔が多く存在することになり、強度及び熱衝撃抵抗性の低下を引き起こす。また、気孔が起点となって腐食及び反応が進行し易くなるため耐食性の低下が起こる。アルミナ焼結体のかさ密度は理論上最大で3.99g/cmであるが、実際の上限は3.98g/cm程度である。かさ密度はJIS R 1634に準拠して測定する。
In-requirement <5> present invention for, the bulk density of the alumina sintered body and 3.85 g / cm 3 or more. Preferably it is 3.90 g / cm 3 or more. When the bulk density is less than 3.85 g / cm 3 , many pores are present inside the sintered body, causing a decrease in strength and thermal shock resistance. In addition, since corrosion and reaction are likely to proceed starting from pores, corrosion resistance is reduced. The bulk density of the alumina sintered body is theoretically 3.99 g / cm 3 at the maximum, but the actual upper limit is about 3.98 g / cm 3 . The bulk density is measured according to JIS R 1634.

・要件<6>について
本発明では、アルミナ焼結体の平均結晶粒径を3〜20μmとする。好ましくは、5〜15μmである。平均結晶粒径が3μm未満の場合は、耐食性が低下し、特に高温下での耐クリープ性が低下する。一方、20μmを超えると、強度等の機械的特性が低下する。
なお、平均結晶粒径はアルミナ焼結体を鏡面研磨し、熱エッチングを施した後、走査型電子顕微鏡で、1視野にアルミナ粒子が100個以上入るように設定した倍率で観察し、インターセプト法による10点平均から下式により求めた。

D=1.8×L/n
[D:平均結晶粒径(μm)、L:測定長さ(μm)、n:長さL当たりの結晶の数]
-About requirement <6> In this invention, the average crystal grain diameter of an alumina sintered compact shall be 3-20 micrometers. Preferably, it is 5-15 micrometers. When the average crystal grain size is less than 3 μm, the corrosion resistance is lowered, and particularly the creep resistance at high temperature is lowered. On the other hand, when it exceeds 20 μm, mechanical properties such as strength are deteriorated.
The average grain size was mirror-polished from an alumina sintered body, subjected to thermal etching, and then observed with a scanning electron microscope at a magnification set so that 100 or more alumina particles could fit in one field of view. Was obtained from the average of 10 points by the following formula.

D = 1.8 × L / n
[D: Average crystal grain size (μm), L: Measurement length (μm), n: Number of crystals per length L]

・要件<7>について
本発明では、アルミナ焼結体中にMgAlスピネル粒子を含有する必要がある。アルミナ粒子の粒界にMgAlスピネル粒子が存在することにより耐食性が向上し、粒界が強化されて高温強度、耐クリープ性、熱衝撃抵抗性、熱安定性等の高温特性が向上する。更に本発明では、アルミナ焼結体中に存在するMgAlスピネルとアルミナの結晶相量比(MgAlスピネル/アルミナ)が0.01〜0.07である必要があり、好ましくは0.02〜0.05の範囲である。マグネシア含有量0.1〜1.0重量%という要件<2>を満たしていても、前記比が0.01未満の場合は、アルミナ粒子の粒界に存在するMgAlスピネル粒子が少ないため、高温強度、耐クリープ性、熱衝撃抵抗性等の高温特性及び耐食性を向上させる効果が小さい上に熱安定性も著しく低下する。また、前記比が0.07を超えると、アルミナ粒子の粒界に存在するMgAlスピネル粒子が多くなったり大きくなったりする。MgAlスピネルはアルミナよりも熱衝撃抵抗性が低いため、MgAlスピネル粒子を多く含有するアルミナ焼結体は熱衝撃抵抗性が低下する。また、MgAlスピネル粒子のサイズは5μm以下が好ましく、5μmを超えるMgAlスピネル粒子を含有するアルミナ焼結体は熱衝撃抵抗性が低下する。上記MgAlスピネル粒子のサイズは、アルミナ焼結体を鏡面研磨し、熱エッチングを施した後、走査型電子顕微鏡で、1視野にアルミナ粒子が100個以上入るように設定した倍率で観察及びEDX分析し、マグネシアとアルミナが共存している粒子をMgAlスピネル粒子と定義し、MgAlスピネル粒子10個の最大径の平均から求めた。
· Requirement in the present invention for <7>, you are necessary to contain the MgAl 2 O 4 spinel particles in the alumina sintered body. The presence of MgAl 2 O 4 spinel particles at the grain boundaries of alumina particles improves corrosion resistance, and the grain boundaries are strengthened to improve high temperature properties such as high temperature strength, creep resistance, thermal shock resistance, and thermal stability. . Further, in the present invention, the crystal phase amount ratio (MgAl 2 O 4 spinel / alumina) of MgAl 2 O 4 spinel and alumina present in the alumina sintered body needs to be 0.01 to 0.07, preferably It is the range of 0.02-0.05. Even when the requirement <2> of the magnesia content of 0.1 to 1.0% by weight is satisfied, when the ratio is less than 0.01, there are few MgAl 2 O 4 spinel particles present at the grain boundaries of the alumina particles. Therefore, the effect of improving the high temperature characteristics such as high temperature strength, creep resistance, thermal shock resistance, and corrosion resistance is small, and the thermal stability is significantly reduced. On the other hand, when the ratio exceeds 0.07, MgAl 2 O 4 spinel particles present at the grain boundaries of the alumina particles increase or increase. Since MgAl 2 O 4 spinel has lower thermal shock resistance than alumina, an alumina sintered body containing a large amount of MgAl 2 O 4 spinel particles has lower thermal shock resistance. The size of the MgAl 2 O 4 spinel particles is preferably 5 μm or less, and the alumina sintered body containing MgAl 2 O 4 spinel particles exceeding 5 μm has a reduced thermal shock resistance. The size of the MgAl 2 O 4 spinel particles was observed with a scanning electron microscope at a magnification set so that 100 or more alumina particles could be included in one field of view after mirror-polishing the alumina sintered body and performing thermal etching. and to EDX analysis, the particles magnesia and alumina coexist defined as MgAl 2 O 4 spinel particles were determined from the average of the maximum diameter of 10 MgAl 2 O 4 spinel particles.

なお、本発明でアルミナ焼結体中にMgAlスピネル粒子を含有するとは、アルミナ焼結体を研磨し、その鏡面を、X線源CuKα、管電圧40kV、管電流40mA、発散スリット0.3°、受光側スリットOPEN、スキャンスピード3.0°/min、走査軸2θ/θ、走査範囲10°〜70°の条件で、XRD(X線回折)測定した際に、アルミナ以外にMgAlスピネルの回折ピークが観測されることを言う。
そして、アルミナ焼結体中に存在するMgAlスピネル結晶相量とアルミナの結晶相量の比は、上記測定で得られたMgAlスピネル結晶相の(311)面ピークとアルミナ結晶相の(113)面ピークの強度比(次式参照)より求めた。

結晶相量の比=MgAlスピネルの(311)面のピーク強度/
アルミナの(113)面のピーク強度
In the present invention, when the alumina sintered body contains MgAl 2 O 4 spinel particles, the alumina sintered body is polished, and its mirror surface is X-ray source CuKα, tube voltage 40 kV, tube current 40 mA, diverging slit 0. .3 °, receiving side slit OPEN, scanning speed 3.0 ° / min, scanning axis 2θ / θ, scanning range 10 ° to 70 °, XRD (X-ray diffraction) measurement, MgAl in addition to alumina It means that a diffraction peak of 2 O 4 spinel is observed.
The ratio of the amount of MgAl 2 O 4 spinel crystal phase present in the alumina sintered body to the amount of crystal phase of alumina is the (311) plane peak of the MgAl 2 O 4 spinel crystal phase obtained by the above measurement and the alumina crystal It calculated | required from the intensity ratio (refer following formula) of the (113) plane peak of a phase.

Ratio of crystal phase amount = peak intensity of (311) plane of MgAl 2 O 4 spinel /
Peak intensity of (113) plane of alumina

・要件<8>について
本発明では、アルミナ結晶粒径の分布の変動係数が20%以下であることが好ましい。変動係数は、結晶粒径の標準偏差を平均結晶粒径で割った値(次式参照)である。

変動係数(%)=(アルミナ結晶粒径の標準偏差/アルミナの平均結晶粒径)×100

変動係数が20%より大きいとは、結晶粒径の分布が広いことを意味し、結晶粒径が小さい部分と大きい部分が存在し、結晶粒径が小さい部分は耐食性の低下、特に耐クリープ性の低下を引き起こし、結晶粒径が大きい部分は曲げ強度や熱衝撃抵抗性の低下を引き起こすので好ましくない。
-About requirement <8> In this invention, it is preferable that the variation coefficient of distribution of an alumina crystal grain diameter is 20% or less. The coefficient of variation is a value obtained by dividing the standard deviation of the crystal grain size by the average crystal grain size (see the following formula).

Coefficient of variation (%) = (standard deviation of alumina crystal grain size / average crystal grain size of alumina) × 100

When the coefficient of variation is larger than 20%, it means that the distribution of the crystal grain size is wide. There are a part where the crystal grain size is small and a part where the crystal grain size is small, and the part where the crystal grain size is small is a decrease in corrosion resistance, especially creep resistance. A portion having a large crystal grain size is not preferable because it causes a decrease in bending strength and thermal shock resistance.

・要件<9>について
シリカ以外の不純物もアルミナ焼結体の高温特性及び耐食性を低下させるため、少ない方が好ましい。中でも、ジルコニアは0.10重量%以下が好ましく、0.05重量%以下がより好ましく、0.01重量%以下が更に好ましい。0.10重量%を超えると、高温での機械的特性の低下や耐食性の低下を引き起こす可能性があるので好ましくない。
更に、カルシアは0.5重量%以下が好ましく、0.3重量%以下がより好ましく、0.1重量%以下が更に好ましい。0.5重量%を超えると、アルミナ粒子の異常粒成長を助長し、結晶粒径が大きくなり、更には粒径分布のバラツキが大きくなり、機械的特性の低下を引き起こす可能性があるので好ましくない。
-About requirement <9> Since impurities other than a silica also reduce the high temperature characteristic and corrosion resistance of an alumina sintered compact, it is preferable that there are few. Among them, zirconia is preferably 0.10% by weight or less, more preferably 0.05% by weight or less, and still more preferably 0.01% by weight or less. If it exceeds 0.10% by weight, it is not preferable because it may cause deterioration of mechanical properties and corrosion resistance at high temperatures.
Further, calcia is preferably 0.5% by weight or less, more preferably 0.3% by weight or less, and further preferably 0.1% by weight or less. If it exceeds 0.5% by weight, abnormal grain growth of alumina particles is promoted, the crystal grain size is increased, and further, the dispersion of the grain size distribution is increased, which may cause a decrease in mechanical properties. Absent.

本発明のアルミナ焼結体は次のようにして製造できる。
アルミナ原料には、純度99.7重量%以上、好ましくは99.8重量%以上、平均粒子径3μm以下、好ましくは2μm以下、比表面積3〜10m/g、好ましくは4〜8m/gのものを使用する。平均粒子径が3μmより大きく、比表面積が3m/gより小さい粉体は成形性が低く、そのため焼結体内部に欠陥が生じやすく、強度及び耐食性が低下するので好ましくない。また、比表面積が10m/gより大きい粉体は、焼成時に異常粒成長を起こし易いため、アルミナ焼結体の微構造が不均一になり、高温特性及び耐食性が低下するので好ましくない。
The alumina sintered body of the present invention can be produced as follows.
The alumina raw material has a purity of 99.7% by weight or more, preferably 99.8% by weight or more, an average particle diameter of 3 μm or less, preferably 2 μm or less, a specific surface area of 3 to 10 m 2 / g, preferably 4 to 8 m 2 / g. Use one. A powder having an average particle size larger than 3 μm and a specific surface area smaller than 3 m 2 / g is not preferable because it has low moldability, and therefore defects are easily generated inside the sintered body, and strength and corrosion resistance are lowered. In addition, a powder having a specific surface area larger than 10 m 2 / g is not preferable because abnormal grain growth is liable to occur during firing, and the microstructure of the alumina sintered body becomes non-uniform and high temperature characteristics and corrosion resistance deteriorate.

焼結助剤としては、純度98重量%以上、好ましくは99重量%以上、平均粒子径5μm以下、比表面積5m/g以上のマグネシア粉体が使用可能であるが、均一分散性等の点から、平均粒子径8μm以下、比表面積10m/g以上で、酸化物にした場合の純度が98重量%以上の水酸化物、炭酸化物等の塩、又は、平均粒子径3μm以下、比表面積5m/g以上のMgAlスピネル粉体が好ましい。
これらの粉体の平均粒子径や比表面積が上記範囲を外れると、粉砕・分散混合においてアルミナ粉体への混合分散性が低下し、焼結体に含まれるMgAlスピネル相量やMgAlスピネル粒子サイズが所定の範囲にならず、耐食性及び高温特性が低下したりバラツキが大きくなるため好ましくない。
As the sintering aid, magnesia powder having a purity of 98% by weight or more, preferably 99% by weight or more, an average particle diameter of 5 μm or less, and a specific surface area of 5 m 2 / g or more can be used. From an average particle diameter of 8 μm or less, a specific surface area of 10 m 2 / g or more, and a purity of 98% by weight or more when converted to an oxide, a salt of a carbonate or the like, or an average particle diameter of 3 μm or less, a specific surface area MgAl 2 O 4 spinel powder of 5 m 2 / g or more is preferable.
If the average particle size or specific surface area of these powders is out of the above range, the mixing and dispersibility into the alumina powder is reduced during pulverization and dispersion mixing, and the amount of MgAl 2 O 4 spinel phase contained in the sintered body and MgAl Since the 2 O 4 spinel particle size does not fall within the predetermined range, the corrosion resistance and the high temperature characteristics are deteriorated and the variation becomes large, it is not preferable.

アルミナ原料に対し、所定の量及び組成になるように焼結助剤を添加し、水を溶媒として湿式でポットミル、アトリッションミル等により高純度アルミナボールを用いて粉砕・分散混合する。粉砕・分散混合後の粉体の平均粒子径は0.4〜1.5μm、好ましくは0.5〜1.0μmとする必要がある。平均粒子径が上記範囲を外れると、成形性の低下や焼結性の低下を来たし、焼結体内部にポア等の欠陥が多くなり、機械的特性及び耐食性が低下するので好ましくない。また、粉砕・分散混合により、ミル、ボール等からの不純物の混入があるため、不純物混入量が極力少なくなるように粉砕・分散混合条件を適宜設定し、得られる粉体の平均粒子径及び不純物量が特定の範囲内になるようにする。
成形方法としてプレス成形、ラバープレス成形等を採用する場合には、分散・混合スラリーに、必要に応じて公知の成形助剤(例えばワックスエマルジョン、PVA、アクリル系樹脂等)を加え、スプレードライヤー等の公知の方法で乾燥させて成形粉体を作製し、これを用いて成形する。
A sintering aid is added to the alumina raw material so as to have a predetermined amount and composition, and the mixture is pulverized and dispersed using high-purity alumina balls in a wet pot mill, attrition mill or the like using water as a solvent. The average particle size of the powder after pulverization / dispersion mixing needs to be 0.4 to 1.5 μm, preferably 0.5 to 1.0 μm. If the average particle diameter is out of the above range, moldability and sinterability are deteriorated, defects such as pores increase in the sintered body, and mechanical properties and corrosion resistance are deteriorated. Moreover, since impurities from mills, balls, etc. are mixed by pulverization / dispersion mixing, the pulverization / dispersion mixing conditions are appropriately set so that the amount of impurities mixed is minimized, and the average particle diameter and impurities of the resulting powder Make sure the amount is within a certain range.
When adopting press molding, rubber press molding, etc. as a molding method, a known molding aid (for example, wax emulsion, PVA, acrylic resin, etc.) is added to the dispersed / mixed slurry as necessary, and a spray dryer, etc. The powder is dried by a known method to produce a molded powder, which is then molded.

また、鋳込成形法を採用する場合には、分散・混合スラリーに、必要に応じて公知の成形助剤(ワックスエマルジョン、アクリル系樹脂等)を加え、石膏型又は樹脂型を用いて排泥鋳込、充填鋳込、加圧鋳込法により成形する。
また、押出成形法を採用する場合には、分散・混合したスラリーを乾燥させ、整粒し、混合機を用いて水、バインダー(例えばメチルセルロース等)などを混合して坏土を作製し、押出成形する。
以上のようにして得られた成形体を1500℃〜1750℃、好ましくは1550℃〜1700℃で焼成することによって、本発明の高温特性及び耐食性に優れたアルミナ焼結体が得られる。焼成温度が上記範囲外の場合、得られるアルミナ焼結体は、本発明の要件を少なくとも1つ以上満たさなくなるため、本発明の高温特性及び耐食性に優れたアルミナ焼結体が得られない。
In addition, when adopting the cast molding method, a known molding aid (wax emulsion, acrylic resin, etc.) is added to the dispersed / mixed slurry as necessary, and the mud is discharged using a gypsum mold or a resin mold. Molding is performed by casting, filling casting, or pressure casting.
In addition, when an extrusion molding method is adopted, the dispersed and mixed slurry is dried, sized, and mixed with water, a binder (for example, methylcellulose, etc.) using a mixer to produce a clay, and extruded. Mold.
By firing the molded body obtained as described above at 1500 ° C. to 1750 ° C., preferably 1550 ° C. to 1700 ° C., an alumina sintered body excellent in high temperature characteristics and corrosion resistance of the present invention can be obtained. When the firing temperature is out of the above range, the obtained alumina sintered body does not satisfy at least one of the requirements of the present invention, and thus the alumina sintered body excellent in high temperature characteristics and corrosion resistance of the present invention cannot be obtained.

以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はこれらの実施例により何等限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited at all by these Examples.

実施例1〜14、比較例1〜11
平均粒子径0.8μm、比表面積6m/g、アルミナ純度99.8重量%のアルミナ原料に、焼結助剤のマグネシア源である水酸化マグネシウム(比表面積32m/g)を、表1の実施例及び比較例の各欄に示すようなマグネシア含有量となるように添加配合し、92重量%アルミナ製ポットミル及びボールを用いて粉砕・混合した。得られたスラリーにバインダーとしてアクリル樹脂を添加し、スプレードライヤー乾燥して成形用粉体を作製した。得られた成形用粉体を成形圧100MPaでCIP成形し、大気中、1480〜1780℃で2時間焼成した。得られたアルミナ焼結体を研削加工し、曲げ試験用テストピース(3mm×4mm×50mm)、クリープ試験用テストピース(2mm×5mm×140mm)、熱衝撃試験用テストピース(5mm×6mm×50mm)、熱安定性試験用テストピース(20mm×20mm×5mm)、耐PbO性試験用テストピース(15mm×15mm×2mm)を作製した。テストピースの表面粗さは0.20μmRa以下とした。
なお、比較例5では、粉砕・分散混合に使用するボールとしてジルコニアボールを使用した。
また、比較例9では、平均粒子径3.5μmのアルミナ原料を使用したため、粉砕・分散混合後の粉体平均粒子径が1.59μmと、所定の範囲を超えていた。
Examples 1-14, Comparative Examples 1-11
Table 1 shows magnesium hydroxide (specific surface area 32 m 2 / g), which is a magnesia source of a sintering aid, on an alumina raw material having an average particle size of 0.8 μm, a specific surface area of 6 m 2 / g, and an alumina purity of 99.8% by weight. These were added and blended so as to have a magnesia content as shown in each column of Examples and Comparative Examples, and pulverized and mixed using a 92 wt% alumina pot mill and balls. An acrylic resin was added as a binder to the resulting slurry, and spray-dried to prepare a molding powder. The obtained molding powder was CIP-molded at a molding pressure of 100 MPa and fired at 1480 to 1780 ° C. for 2 hours in the air. The obtained alumina sintered body is ground and processed, a test piece for bending test (3 mm × 4 mm × 50 mm), a test piece for creep test (2 mm × 5 mm × 140 mm), a test piece for thermal shock test (5 mm × 6 mm × 50 mm) ), A test piece for thermal stability test (20 mm × 20 mm × 5 mm) and a test piece for PbO resistance test (15 mm × 15 mm × 2 mm). The surface roughness of the test piece was 0.20 μmRa or less.
In Comparative Example 5, zirconia balls were used as balls used for pulverization / dispersion mixing.
In Comparative Example 9, since the alumina raw material having an average particle size of 3.5 μm was used, the average particle size of the powder after pulverization / dispersion mixing was 1.59 μm, which exceeded the predetermined range.

実施例及び比較例の原料特性を表1に、焼結体特性を表2に示す。各特性の測定方法は以下のとおりである。

<原料特性>
アルミナ含有量、マグネシア含有量及び不純物含有量は、島津製作所社製ICP発光分析装置ICPS−8100を用いて測定した。粉砕・混合後の粉体の平均粒子径は、日機装社製マイクロトラック3300EXを用いて測定した。

<焼結体特性>
かさ密度は、JIS R 1634に準拠し、メトラー・トレド社製電子天秤XP205DRを用いて測定した。
平均結晶粒径は、アルミナ焼結体を鏡面研磨し、熱エッチングを施した後、日立ハイテクノロジーズ社製の電界放出形走査電子顕微鏡SU8020を用いてインターセプト法により求めた。また、得られた平均結晶粒径及び標準偏差から、結晶粒径の分布の変動係数(結晶粒径変動係数)を求めた。
MgAlスピネル/アルミナ結晶相量比は、ブルカー・エイエックスエス社製X線回折装置D8ADVANCEを用いて測定した。
The raw material characteristics of Examples and Comparative Examples are shown in Table 1, and the sintered body characteristics are shown in Table 2. The measuring method of each characteristic is as follows.

<Raw material characteristics>
The alumina content, magnesia content and impurity content were measured using an ICP emission analyzer ICPS-8100 manufactured by Shimadzu Corporation. The average particle size of the powder after pulverization and mixing was measured using a Microtrac 3300EX manufactured by Nikkiso Co., Ltd.

<Sintered body characteristics>
The bulk density was measured according to JIS R 1634 using an electronic balance XP205DR manufactured by METTLER TOLEDO.
The average crystal grain size was determined by an intercept method using a field emission scanning electron microscope SU8020 manufactured by Hitachi High-Technologies Corporation after mirror-polishing an alumina sintered body and performing thermal etching. Further, from the obtained average crystal grain size and standard deviation, the coefficient of variation of crystal grain size distribution (crystal grain size coefficient of variation) was determined.
The MgAl 2 O 4 spinel / alumina crystal phase ratio was measured using an X-ray diffractometer D8ADVANCE manufactured by Bruker AXS.

上記実施例及び比較例の各試験用テストピースを用いて、下記のテストを行った。
結果を纏めて表2に示す。

<曲げ強さ>
室温ではJIS R 1601に準拠し、1400℃(高温)ではJIS R 1604に準拠し曲げ試験を行い、曲げ強さ(MPa)を測定した。室温での曲げ強さの測定にはINSTRON社製の万能材料試験機5965型を用い、高温での曲げ強さの測定には島津製作所製の精密万能試験機AG−500Cを用いた。
The following tests were performed using the test pieces for the tests of the above Examples and Comparative Examples.
The results are summarized in Table 2.

<Bending strength>
A bending test was conducted at room temperature in accordance with JIS R 1601, and at 1400 ° C. (high temperature) in accordance with JIS R 1604, and bending strength (MPa) was measured. A universal material testing machine 5965 manufactured by INSTRON was used for measuring the bending strength at room temperature, and a precision universal testing machine AG-500C manufactured by Shimadzu Corporation was used for measuring the bending strength at high temperature.

<耐クリープ性>
支点間距離100mmで固定したテストピースの中央に、負荷応力が2MPaになるように長さ31mmのアルミナ焼結体からなるオモシを載せ、電気炉を用いて大気中、1450℃で2時間加熱し、加熱後のテストピースのたわみ量(mm)を測定した。測定にはMITUTOYO社製のLINEAR GAGE LG−150を用いた。
<Creep resistance>
In the center of the test piece fixed at a fulcrum distance of 100 mm, a wormwood made of an alumina sintered body with a length of 31 mm is placed so that the load stress is 2 MPa, and heated in the atmosphere at 1450 ° C. for 2 hours using an electric furnace. The deflection (mm) of the test piece after heating was measured. For measurement, LINEAR GAGE LG-150 manufactured by MITUTOYO was used.

<熱衝撃抵抗性>
テストピースを大気中で100〜230℃に保持した電気炉に挿入し、30分保持した後、10℃の水中へ投入し、30分後に水中からテストピースを取り出して室温での曲げ試験を行い、曲げ強さが低下する温度差〔ΔT(℃)〕を測定した。なおΔT(℃)は次式により求めた。

ΔT(℃)=電気炉での加熱温度(℃)−水温(℃)
<Thermal shock resistance>
Insert the test piece into an electric furnace maintained at 100 to 230 ° C. in the atmosphere, hold it for 30 minutes, and then put it into 10 ° C. water. After 30 minutes, take out the test piece from the water and perform a bending test at room temperature. The temperature difference [ΔT (° C.)] at which the bending strength decreases was measured. ΔT (° C.) was obtained by the following equation.

ΔT (° C.) = Heating temperature in electric furnace (° C.) − Water temperature (° C.)

<熱安定性>
テストピースを、電気炉を用いて、大気中、1500℃で100時間加熱した。加熱前後のテストピースをそれぞれ鏡面研磨し、熱エッチングを施した後、走査型電子顕微鏡を用いてインターセプト法により、加熱前後のアルミナ粒子の平均結晶粒径を求め、次式により粒成長率(%)を算出した。微構造の観察には、日立ハイテクノロジーズ社製の電界放出形走査電子顕微鏡SU8020を用いた。

粒成長率(%)=〔(加熱後平均結晶粒径−加熱前平均結晶粒径)/
加熱前平均結晶粒径〕×100
<Thermal stability>
The test piece was heated in the atmosphere at 1500 ° C. for 100 hours using an electric furnace. Each test piece before and after heating is mirror-polished and subjected to thermal etching, and then the average crystal grain size of the alumina particles before and after heating is determined by an intercept method using a scanning electron microscope. The grain growth rate (% ) Was calculated. For observation of the microstructure, a field emission scanning electron microscope SU8020 manufactured by Hitachi High-Technologies Corporation was used.

Grain growth rate (%) = [(average grain size after heating−average grain size before heating) /
Average grain size before heating] × 100

<耐PbO性>
テストピースにφ12mm×1mmのPbO成形体を載せ、その上に、荷重が0.5×10Paになるように高純度ZrO焼結体からなるオモシを載せ、アルミナ焼結体からなる容器で密閉し、電気炉を用いて、大気中、870℃で20時間の加熱を3サイクル行い、加熱前後のテストピースの重量を測定して、次式により重量変化率を算出した。
測定にはsartorius社製の電子天秤LC1201Sを用いた。

重量変化率(%)=
〔(加熱後テストピース重量−加熱前テストピース重量)/加熱前テストピース重量〕
×100
<PbO resistance>
A PbO molded body having a diameter of 12 mm × 1 mm is placed on a test piece, and a wormwood made of a high-purity ZrO 2 sintered body is placed thereon so that the load is 0.5 × 10 2 Pa. Then, using an electric furnace, heating was performed in the atmosphere at 870 ° C. for 20 hours for 3 cycles, the weight of the test piece before and after heating was measured, and the weight change rate was calculated by the following equation.
An electronic balance LC1201S manufactured by Sartorius was used for the measurement.

Weight change rate (%) =
[(Test piece weight after heating−Test piece weight before heating) / Test piece weight before heating]
× 100

Figure 2017095333
Figure 2017095333

Figure 2017095333
Figure 2017095333

上記表1、表2から分かるように、本発明のアルミナ焼結体は、マグネシア源添加量の制御によりアルミナ粒子の粒界にMgAlスピネル粒子が生成し、それにより粒界が強化されて高温強度、耐クリープ性、熱衝撃抵抗性等の高温特性が向上し、更に粒界にMgAlスピネル粒子が存在し且つ粒界の不純物が少ないため、高い耐食性を有している。
したがって、耐熱及び耐食材料として有用であり、更に、高温下での結晶粒成長が非常に小さく熱安定性に優れるため、熱処理用部材として長寿命を有している。
これに対し、本発明の要件<1>〜<7>を一つ以上満たさないアルミナ焼結体は高温特性及び耐食性が劣る。
As can be seen from Tables 1 and 2, the alumina sintered body of the present invention produces MgAl 2 O 4 spinel particles at the grain boundaries of the alumina particles by controlling the amount of magnesia source added, thereby strengthening the grain boundaries. In addition, high temperature characteristics such as high temperature strength, creep resistance, and thermal shock resistance are improved, and MgAl 2 O 4 spinel particles are present at the grain boundaries and there are few impurities at the grain boundaries, resulting in high corrosion resistance.
Therefore, it is useful as a heat and corrosion resistant material, and further has a long life as a member for heat treatment because crystal grain growth at high temperature is very small and excellent in thermal stability.
On the other hand, an alumina sintered body that does not satisfy one or more of the requirements <1> to <7> of the present invention is inferior in high temperature characteristics and corrosion resistance.

即ち、比較例1、2は、マグネシア含有量が要件<2>の範囲外の例である。
比較例3は、マグネシア含有量が要件<2>の下限値に近く且つ焼成温度が1500℃より低かったため、MgAlスピネル粒子の生成量が少なくなり、MgAlスピネル/アルミナの結晶相量比が要件<7>の範囲より小さくなった例である。
比較例4は、マグネシア含有量が要件<2>の上限値に近く且つ焼成温度が1750℃より高かったため、MgAlスピネル粒子の生成量が多くなり、MgAlスピネル/アルミナの結晶相量比が要件<7>の範囲より大きくなった例である。
比較例5は、アルミナ原料及び水酸化マグネシウムを粉砕・分散混合する際に、アルミナボールではなくジルコニアボールを使用したため、ミル容器や粉砕ボールからシリカやジルコニアが混入して含有量が増加した例である。
比較例6は、アルミナ原料及び水酸化マグネシウムを粉砕・分散混合する際に、シリカ含有量が要件<3>の範囲より多くなるようにシリカを添加した例である。
比較例7は、アルミナ原料及び水酸化マグネシウムを粉砕・分散混合する際に、カルシア含有量が0.5重量%より多くなるようにカルシアを添加したため、アルミナ含有量が要件<1>の範囲よりも少なくなった例である。
比較例8は、マグネシア及びシリカ含有量は要件<2><3>の範囲内であるが、マグネシア/シリカの重量比が要件<4>の範囲より小さい例である。
比較例9は、平均粒子径の大きいアルミナ原料を使用したため、粉砕・分散混合後の粉体平均粒子径が大きく、且つ、焼成温度が1500℃より低かったため、かさ密度が要件<5>の範囲より小さくなった例である。
比較例10は、焼成温度が1500℃より低かったため、アルミナ結晶粒子の平均結晶粒径が要件<6>の範囲より小さくなった例である。
比較例11は、焼成温度が1750℃より高かったため、アルミナ結晶粒子の平均結晶粒径が要件<6>の範囲より大きくなった例である。
That is, Comparative Examples 1 and 2 are examples in which the magnesia content is outside the range of the requirement <2>.
In Comparative Example 3, since the magnesia content was close to the lower limit of the requirement <2> and the firing temperature was lower than 1500 ° C., the amount of MgAl 2 O 4 spinel particles generated was reduced, and MgAl 2 O 4 spinel / alumina crystals This is an example in which the phase ratio is smaller than the range of requirement <7>.
In Comparative Example 4, since the magnesia content was close to the upper limit of the requirement <2> and the firing temperature was higher than 1750 ° C., the amount of MgAl 2 O 4 spinel particles generated increased, and MgAl 2 O 4 spinel / alumina crystals This is an example in which the phase ratio is larger than the requirement <7>.
In Comparative Example 5, zirconia balls were used instead of alumina balls when the alumina raw material and magnesium hydroxide were pulverized / dispersed and mixed, so that the content of silica and zirconia increased from the mill container and pulverized balls. is there.
In Comparative Example 6, when the alumina raw material and magnesium hydroxide are pulverized and dispersed and mixed, silica is added so that the silica content exceeds the range of requirement <3>.
In Comparative Example 7, when the alumina raw material and magnesium hydroxide were pulverized and dispersed and mixed, calcia was added so that the calcia content was more than 0.5% by weight, so the alumina content was more than the range of requirement <1>. This is an example of less.
Comparative Example 8 is an example in which the magnesia and silica contents are within the range of requirement <2><3>, but the weight ratio of magnesia / silica is smaller than the range of requirement <4>.
In Comparative Example 9, since an alumina raw material having a large average particle diameter was used, the powder average particle diameter after pulverization / dispersion mixing was large, and the firing temperature was lower than 1500 ° C., so the bulk density was in the range of requirement <5>. This is a smaller example.
In Comparative Example 10, since the firing temperature was lower than 1500 ° C., the average crystal grain size of the alumina crystal particles was smaller than the requirement <6> range.
In Comparative Example 11, since the firing temperature was higher than 1750 ° C., the average crystal grain size of the alumina crystal particles was larger than the range of requirement <6>.

Claims (3)

次の要件<1>〜<7>を満たすことを特徴とするアルミナ焼結体。
<1>アルミナ含有量が98.3重量%以上
<2>マグネシア含有量が0.1〜1.0重量%
<3>シリカ含有量が0.10重量%以下
<4>マグネシアとシリカの重量比(マグネシア/シリカ)が2.0以上
<5>かさ密度が3.85g/cm以上
<6>平均結晶粒径が3〜20μm
<7>MgAlスピネルとアルミナの結晶相量の比(MgAlスピネル/アルミナ)が0.01〜0.07
An alumina sintered body that satisfies the following requirements <1> to <7>.
<1> Alumina content is 98.3% by weight or more <2> Magnesia content is 0.1 to 1.0% by weight
<3> silica content of 0.10 wt% or less <4> weight ratio of magnesia and silica (magnesia / silica) of 2.0 or more <5> bulk density 3.85 g / cm 3 or more <6> mean crystal Particle size is 3-20μm
<7> Ratio of MgAl 2 O 4 spinel and alumina crystal phase amount (MgAl 2 O 4 spinel / alumina) is 0.01 to 0.07
次の要件<8>を満たすことを特徴とする請求項1記載のアルミナ焼結体。
<8>アルミナ結晶粒径の分布の変動係数が20%以下
The alumina sintered body according to claim 1, wherein the following requirement <8> is satisfied.
<8> Coefficient of variation of alumina crystal grain size distribution is 20% or less
次の要件<9>を満たすことを特徴とする請求項1又は2記載のアルミナ焼結体。
<9>ジルコニア含有量が0.10重量%以下、カルシア含有量が0.5重量%以下
The alumina sintered body according to claim 1 or 2, wherein the following requirement <9> is satisfied.
<9> Zirconia content is 0.10 wt% or less, calcia content is 0.5 wt% or less
JP2015232155A 2015-11-27 2015-11-27 Alumina sintered body with excellent high temperature properties and corrosion resistance Active JP6636307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015232155A JP6636307B2 (en) 2015-11-27 2015-11-27 Alumina sintered body with excellent high temperature properties and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015232155A JP6636307B2 (en) 2015-11-27 2015-11-27 Alumina sintered body with excellent high temperature properties and corrosion resistance

Publications (2)

Publication Number Publication Date
JP2017095333A true JP2017095333A (en) 2017-06-01
JP6636307B2 JP6636307B2 (en) 2020-01-29

Family

ID=58803693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015232155A Active JP6636307B2 (en) 2015-11-27 2015-11-27 Alumina sintered body with excellent high temperature properties and corrosion resistance

Country Status (1)

Country Link
JP (1) JP6636307B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073781A1 (en) * 2017-10-12 2019-04-18 住友電気工業株式会社 Ceramic substrate, laminate, and saw device
WO2019073782A1 (en) * 2017-10-12 2019-04-18 住友電気工業株式会社 Ceramic substrate, laminate, and saw device
WO2019188148A1 (en) * 2018-03-28 2019-10-03 日本碍子株式会社 Composite sintered body, semiconductor manufacturing device member, and method for manufacturing composite sintered body
CN111201710A (en) * 2017-10-12 2020-05-26 住友电气工业株式会社 Ceramic substrate, layered body, and SAW device
WO2020138074A1 (en) 2018-12-26 2020-07-02 住友化学株式会社 Alumina, alumina slurry, alumina film, laminate separator, nonaqueous electrolyte secondary battery and manufacturing method thereof
CN114929647A (en) * 2020-01-10 2022-08-19 京瓷株式会社 Heat-resistant member
US11760694B2 (en) 2017-10-05 2023-09-19 Coorstek Kk Alumina sintered body and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952758A (en) * 1995-08-10 1997-02-25 Nippon Steel Corp Alumina ceramic and its production
JPH10236866A (en) * 1996-12-26 1998-09-08 Ngk Spark Plug Co Ltd Aluminium bearing sintered compact
JP2003321270A (en) * 2002-04-25 2003-11-11 Nitsukatoo:Kk Alumina ceramics superior in wearing resistance and corrosion resistance and method for manufacturing its molding
JP2004292230A (en) * 2003-03-26 2004-10-21 Kyocera Corp Wear resistant alumina sintered compact and method of manufacturing the same
JP2005239463A (en) * 2004-02-25 2005-09-08 Kyocera Corp Alumina sintered compact
JP2009091196A (en) * 2007-10-09 2009-04-30 Nitsukatoo:Kk Alumina ceramic excellent in wear resistance, and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952758A (en) * 1995-08-10 1997-02-25 Nippon Steel Corp Alumina ceramic and its production
JPH10236866A (en) * 1996-12-26 1998-09-08 Ngk Spark Plug Co Ltd Aluminium bearing sintered compact
JP2003321270A (en) * 2002-04-25 2003-11-11 Nitsukatoo:Kk Alumina ceramics superior in wearing resistance and corrosion resistance and method for manufacturing its molding
JP2004292230A (en) * 2003-03-26 2004-10-21 Kyocera Corp Wear resistant alumina sintered compact and method of manufacturing the same
JP2005239463A (en) * 2004-02-25 2005-09-08 Kyocera Corp Alumina sintered compact
JP2009091196A (en) * 2007-10-09 2009-04-30 Nitsukatoo:Kk Alumina ceramic excellent in wear resistance, and method for producing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11760694B2 (en) 2017-10-05 2023-09-19 Coorstek Kk Alumina sintered body and manufacturing method therefor
JP7180607B2 (en) 2017-10-12 2022-11-30 住友電気工業株式会社 Ceramic substrates, laminates and SAW devices
WO2019073782A1 (en) * 2017-10-12 2019-04-18 住友電気工業株式会社 Ceramic substrate, laminate, and saw device
CN111201710A (en) * 2017-10-12 2020-05-26 住友电气工业株式会社 Ceramic substrate, layered body, and SAW device
US11750171B2 (en) 2017-10-12 2023-09-05 Sumitomo Electric Industries, Ltd. Layered body, and saw device
JPWO2019073781A1 (en) * 2017-10-12 2020-09-24 住友電気工業株式会社 Ceramic substrates, laminates and SAW devices
US11699985B2 (en) 2017-10-12 2023-07-11 Sumitomo Electric Industries, Ltd. Layered body, and saw device
WO2019073781A1 (en) * 2017-10-12 2019-04-18 住友電気工業株式会社 Ceramic substrate, laminate, and saw device
JP7248653B2 (en) 2018-03-28 2023-03-29 日本碍子株式会社 Composite sintered body, semiconductor manufacturing device member, and manufacturing method of composite sintered body
JPWO2019188148A1 (en) * 2018-03-28 2021-04-08 日本碍子株式会社 Manufacturing method of composite sintered body, semiconductor manufacturing equipment member and composite sintered body
KR102497967B1 (en) * 2018-03-28 2023-02-10 엔지케이 인슐레이터 엘티디 Composite sintered body, semiconductor manufacturing equipment member, and manufacturing method of composite sintered body
KR20200131884A (en) * 2018-03-28 2020-11-24 엔지케이 인슐레이터 엘티디 Composite sintered body, semiconductor manufacturing device member, and manufacturing method of composite sintered body
CN111902383A (en) * 2018-03-28 2020-11-06 日本碍子株式会社 Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body
WO2019188148A1 (en) * 2018-03-28 2019-10-03 日本碍子株式会社 Composite sintered body, semiconductor manufacturing device member, and method for manufacturing composite sintered body
WO2020138074A1 (en) 2018-12-26 2020-07-02 住友化学株式会社 Alumina, alumina slurry, alumina film, laminate separator, nonaqueous electrolyte secondary battery and manufacturing method thereof
CN114929647A (en) * 2020-01-10 2022-08-19 京瓷株式会社 Heat-resistant member
CN114929647B (en) * 2020-01-10 2023-11-21 京瓷株式会社 Heat resistant member

Also Published As

Publication number Publication date
JP6636307B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
JP6636307B2 (en) Alumina sintered body with excellent high temperature properties and corrosion resistance
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
JP4357584B1 (en) Alumina sintered body with excellent corrosion resistance, thermal shock resistance and durability
JP2011088759A (en) Alumina refractory and method of producing the same
JP4836348B2 (en) Heat-treating member made of an alumina sintered body with excellent durability
JP4667520B2 (en) Silicon nitride based composite ceramics and method for producing the same
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2008013411A (en) Dielectric ceramic
JP4507148B2 (en) Heat treatment member made of mullite sintered body
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP2007112670A (en) Firing vessel
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP4906228B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance and heat treatment member using the same
KR101961836B1 (en) Pure monoclinic sintered zirconia material and method of manufacturing
JP2014024740A (en) Ceramic sintered body, and member for heat treatment
KR101850585B1 (en) Heat insulator
JP6524012B2 (en) Method of producing a degreased molded body of ceramics
JP4906240B2 (en) Alumina sintered body excellent in thermal shock resistance and corrosion resistance, heat treatment member comprising the same, and method for producing the same
JP4430782B2 (en) CHROMIA-ZIRCONIA SINTERED BODY AND PROCESS FOR PRODUCING THE SAME
WO2013100071A1 (en) Tin-oxide refractory
JP6041719B2 (en) Heat treatment member made of zirconia sintered body
JP6911953B1 (en) Resistance adjustment Low conductivity Alumina zirconia composite ceramics and its manufacturing method
JPH08198664A (en) Alumina-base sintered body and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191218

R150 Certificate of patent or registration of utility model

Ref document number: 6636307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250