JP2017088949A - Copper alloy material - Google Patents

Copper alloy material Download PDF

Info

Publication number
JP2017088949A
JP2017088949A JP2015219852A JP2015219852A JP2017088949A JP 2017088949 A JP2017088949 A JP 2017088949A JP 2015219852 A JP2015219852 A JP 2015219852A JP 2015219852 A JP2015219852 A JP 2015219852A JP 2017088949 A JP2017088949 A JP 2017088949A
Authority
JP
Japan
Prior art keywords
mass
less
copper alloy
crystal grain
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015219852A
Other languages
Japanese (ja)
Other versions
JP6693092B2 (en
Inventor
翔一郎 矢野
Shoichiro Yano
翔一郎 矢野
寛太 大楽
Kanta Oraku
寛太 大楽
敏夫 坂本
Toshio Sakamoto
敏夫 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015219852A priority Critical patent/JP6693092B2/en
Priority to KR1020187012111A priority patent/KR20180078245A/en
Priority to CN201680065499.1A priority patent/CN108350530A/en
Priority to US15/771,847 priority patent/US20190062874A1/en
Priority to PCT/JP2016/080125 priority patent/WO2017081972A1/en
Priority to EP16863936.7A priority patent/EP3375898B1/en
Publication of JP2017088949A publication Critical patent/JP2017088949A/en
Application granted granted Critical
Publication of JP6693092B2 publication Critical patent/JP6693092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy material having stable characteristic features and an excellent use-life even when used under a high temperature environment of 500°C or higher.SOLUTION: The copper alloy material has a composition comprising not less than 0.3 mass% and not greater than 0.5 mass% of Cr, not less than 0.01 mass% and not greater than 0.15 mass% of Zr, the balance of Cu and unavoidable impurities where the average crystal grain size is not less than 0.1 mm and not greater than 2.0 mm, and the standard deviation of crystal grain sizes is not greater than 0.6.SELECTED DRAWING: None

Description

本発明は、例えば鋳造用モールド材やコンタクトチップ等の溶接用部材等の高温環境下で使用される部材に適した銅合金素材に関するものである。   The present invention relates to a copper alloy material suitable for a member used in a high temperature environment such as a casting mold material or a welding member such as a contact tip.

従来、C18150等のCu−Cr−Zr系合金は、優れた耐熱性及び導電性を備えていることから、特許文献1,2に示すように、使用環境が高温となる鋳造用モールド材や溶接用部材の素材として利用されている。
このようなCu−Cr−Zr系合金は、通常、Cu−Cr−Zr系合金鋳塊に塑性加工を施し、例えば保持温度が950〜1050℃、保持時間が0.5〜1.5時間の溶体化処理と、例えば保持温度が400〜500℃、保持時間が2〜4時間の時効処理と、を行い、最後に機械加工により所定の形状に仕上げる製造工程によって製造される。
溶体化処理でCr及びZrをCuの母相中に固溶し、時効処理によってCrやZrの析出物を微細分散させることで、強度及び導電率の向上を図っている。
Conventionally, Cu—Cr—Zr alloys such as C18150 have excellent heat resistance and electrical conductivity, and therefore, as shown in Patent Documents 1 and 2, a molding material for casting or welding in which the use environment becomes high temperature. It is used as a material for construction materials.
Such a Cu-Cr-Zr-based alloy is usually subjected to plastic working on a Cu-Cr-Zr-based alloy ingot, for example, a holding temperature of 950 to 1050 ° C and a holding time of 0.5 to 1.5 hours. It is manufactured by a manufacturing process in which a solution treatment and an aging treatment with a holding temperature of 400 to 500 ° C. and a holding time of 2 to 4 hours are performed, and finally finished into a predetermined shape by machining.
Strength and electrical conductivity are improved by solid solution of Cr and Zr in the matrix of Cu by solution treatment and fine dispersion of Cr and Zr precipitates by aging treatment.

特開昭62−097748号公報JP 62-097748 A 特開平05−339688号公報JP 05-339688 A

ところで、上述のCu−Cr−Zr系合金においては、優れた耐熱性を有しているが、ピーク温度が500℃以上の使用環境にさらされると、析出物の再固溶が始まり、それにともなって強度及び導電率が低下するとともに結晶粒の粗大化が発生することがある。
結晶粒の粗大化が起きた場合には、亀裂の伝播速度が増大し、製品寿命が短くなるおそれがあった。また、結晶粒の粗大化が局所的に発生することで、強度及び伸び等の機械的特性が著しく低下するといった問題があった。
By the way, the above-described Cu—Cr—Zr alloy has excellent heat resistance, but when exposed to a use environment having a peak temperature of 500 ° C. or higher, reprecipitation of precipitates begins, and accordingly. As a result, the strength and electrical conductivity are lowered, and coarsening of crystal grains may occur.
When the coarsening of crystal grains occurs, the propagation speed of cracks may increase and the product life may be shortened. Further, there is a problem that mechanical properties such as strength and elongation are remarkably deteriorated due to the occurrence of coarsening of crystal grains locally.

この発明は、前述した事情に鑑みてなされたものであって、500℃以上の高温環境下で使用された場合であっても、特性が安定しており、使用寿命に優れた銅合金素材を提供することを目的とする。   The present invention has been made in view of the circumstances described above, and is a copper alloy material that has stable characteristics and excellent service life even when used in a high temperature environment of 500 ° C. or higher. The purpose is to provide.

上記の課題を解決するために、本発明の銅合金素材は、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成を有し、平均結晶粒径が0.1mm以上2.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が0.6以下であることを特徴としている。   In order to solve the above-mentioned problems, the copper alloy material of the present invention contains Cr in the range of 0.3 mass% to less than 0.5 mass%, Zr in the range of 0.01 mass% to 0.15 mass%, with the balance being Cu and inevitable. It has a composition composed of impurities, has an average crystal grain size in the range of 0.1 mm to 2.0 mm, and has a standard deviation of crystal grain size of 0.6 or less.

この構成の銅合金素材においては、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成とされているので、時効処理によって微細な析出物を析出させることにより、強度(硬さ)及び導電率を向上させることができる。また、Crの含有量が0.3mass%以上0.5mass%未満と比較的少なくされているので、Cr晶出物が少なく、このCr晶出物に起因して局所的なひずみが蓄積され、再結晶粒のサイズが不均一となることを抑制できる。よって、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を抑制できる。
そして、本発明の銅合金素材においては、平均結晶粒径が0.1mm以上2.0mm以下の範囲内とされているので、ひずみの蓄積が比較的少なく、再結晶しにくい。また、結晶粒径の標準偏差が0.6以下とされているので、結晶粒径が均一となっており、局所的なひずみの蓄積が少なく、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を抑制できる。
In the copper alloy material of this structure, Cr is 0.3 mass% or more and less than 0.5 mass%, Zr is 0.01 mass% or more and 0.15 mass% or less, and the balance is composed of Cu and inevitable impurities. Therefore, strength (hardness) and electrical conductivity can be improved by depositing fine precipitates by aging treatment. In addition, since the Cr content is relatively low as 0.3 mass% or more and less than 0.5 mass%, there is little Cr crystallized matter, and local strain is accumulated due to this Cr crystallized product, It can suppress that the size of a recrystallized grain becomes non-uniform | heterogenous. Therefore, even when used in a high-temperature environment, local crystal grain coarsening can be suppressed.
And in the copper alloy raw material of this invention, since the average crystal grain diameter is made into the range of 0.1 mm or more and 2.0 mm or less, accumulation | storage of distortion is comparatively small and it is hard to recrystallize. In addition, since the standard deviation of the crystal grain size is 0.6 or less, the crystal grain size is uniform, there is little accumulation of local strain, and even when used in a high temperature environment, Can prevent coarsening of crystal grains.

ここで、本発明の銅合金素材においては、断面観察におけるCr晶出物の面積率が0.5%以下であることが好ましい。
この場合、断面観察におけるCr晶出物の面積率が0.5%以下に制限されているので、局所的なひずみの蓄積が少なく、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を確実に抑制できる。
Here, in the copper alloy material of the present invention, it is preferable that the area ratio of Cr crystallized material in cross-sectional observation is 0.5% or less.
In this case, since the area ratio of the Cr crystallized material in the cross-sectional observation is limited to 0.5% or less, there is little accumulation of local strain, and even when used in a high temperature environment, local crystal grains Can be reliably suppressed.

また、本発明の銅合金素材においては、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径が0.1mm以上3.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が1.5以下であることが好ましい。
この場合、1000℃で1時間保持の熱処理を実施した後でも、結晶粒が粗大化しておらず、かつ、結晶粒径が比較的均一とされているので、500℃以上の高温環境下で使用された場合であっても、機械的特性や導電率が安定している。
In addition, in the copper alloy material of the present invention, the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is within the range of 0.1 mm to 3.0 mm, and the standard of crystal grain size The deviation is preferably 1.5 or less.
In this case, even after a heat treatment held at 1000 ° C. for 1 hour, the crystal grains are not coarsened and the crystal grain size is relatively uniform, so it is used in a high temperature environment of 500 ° C. or higher. Even in such a case, the mechanical properties and conductivity are stable.

また、本発明の銅合金素材においては、さらに、Alを0.1mass%以上2.0mass%以下の範囲内で含んでいてもよい。
この場合、Cr及びZrに加えてさらにAlを0.1mass%以上2.0mass%以下の範囲内で含んでいるので、導電率を30〜60%IACS程度に調整することができる。このような導電率の銅合金素材は、電磁撹拌用途の鋳造用モールド材として特に適している。
Moreover, in the copper alloy raw material of this invention, Al may be further included in the range of 0.1 mass% or more and 2.0 mass% or less.
In this case, in addition to Cr and Zr, Al is further included in the range of 0.1 mass% to 2.0 mass%, so that the conductivity can be adjusted to about 30 to 60% IACS. A copper alloy material having such a conductivity is particularly suitable as a molding material for casting for use in electromagnetic stirring.

また、本発明の銅合金素材においては、さらに、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素を合計で0.005mass%以上0.1mass%以下含んでいてもよい。
この場合、Cr及びZrに加えてさらにFe,Co,Sn,Zn,P,Si,Mgといった元素を上述の範囲内で含有していることから、これらの元素を含む化合物による結晶粒界のピン止め効果によって、結晶粒の粗大化をさらに確実に抑制することができる。
In the copper alloy material of the present invention, one or more elements selected from Fe, Co, Sn, Zn, P, Si, Mg are further added in a total amount of 0.005 mass% or more and 0.1 mass%. The following may be included.
In this case, in addition to Cr and Zr, elements such as Fe, Co, Sn, Zn, P, Si, and Mg are contained within the above range. Due to the stopping effect, the coarsening of crystal grains can be more reliably suppressed.

本発明によれば、500℃以上の高温環境下で使用された場合であっても、特性が安定しており、使用寿命に優れた銅合金素材を提供することができる。   According to the present invention, even when used in a high temperature environment of 500 ° C. or higher, it is possible to provide a copper alloy material having stable characteristics and an excellent service life.

本発明の一実施形態である銅合金素材の製造方法のフロー図である。It is a flowchart of the manufacturing method of the copper alloy raw material which is one Embodiment of this invention. 実施例における組織観察写真である。(a)が本発明例1、(b)が比較例4である。It is a structure | tissue observation photograph in an Example. (A) is Invention Example 1 and (b) is Comparative Example 4. 実施例において1000℃で1時間保持の熱処理を実施した後の組織観察写真である。(a)が本発明例1、(b)が比較例4である。It is a structure | tissue observation photograph after implementing the heat processing hold | maintained at 1000 degreeC for 1 hour in an Example. (A) is Invention Example 1 and (b) is Comparative Example 4. 実施例におけるCr晶出物の観察写真である。(a)が本発明例1、(b)が比較例4である。It is an observation photograph of the Cr crystallization thing in an Example. (A) is Invention Example 1 and (b) is Comparative Example 4.

以下に、本発明の一実施形態である銅合金素材について説明する。
本実施形態である銅合金素材は、例えば鋳造用モールドや溶接用部材等の高温環境下で使用される部材に用いられるものである。
Below, the copper alloy raw material which is one Embodiment of this invention is demonstrated.
The copper alloy material according to the present embodiment is used for a member used in a high temperature environment such as a casting mold or a welding member.

本実施形態である銅合金素材は、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成を有する。なお、本実施形態である銅合金素材においては、必要に応じて、さらにAlを0.1mass%以上2.0mass%以下の範囲内で含んでいてもよい。また、さらにFe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素を合計で0.005mass%以上0.1mass%以下の範囲内で含んでいてもよい。   The copper alloy material according to the present embodiment has a composition including Cr in the range of 0.3 mass% to less than 0.5 mass%, Zr in the range of 0.01 mass% to 0.15 mass%, and the balance of Cu and inevitable impurities. In addition, in the copper alloy raw material which is this embodiment, Al may be further included in the range of 0.1 mass% or more and 2.0 mass% or less as needed. Further, one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg may be included within a total range of 0.005 mass% to 0.1 mass%. .

そして、本実施形態である銅合金素材においては、平均結晶粒径が0.1mm以上2.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が0.6以下とされている。
また、本実施形態である銅合金素材においては、断面観察におけるCr晶出物の面積率が0.5%以下とされている。
さらに、本実施形態である銅合金素材においては、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径が0.1mm以上3.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が1.5以下とされている。
And in the copper alloy raw material which is this embodiment, while an average crystal grain diameter shall be in the range of 0.1 mm or more and 2.0 mm or less, the standard deviation of crystal grain diameter shall be 0.6 or less.
Moreover, in the copper alloy raw material which is this embodiment, the area ratio of the Cr crystallized substance in cross-sectional observation is 0.5% or less.
Further, in the copper alloy material according to the present embodiment, the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is within the range of 0.1 mm to 3.0 mm, and the crystal grain size Standard deviation of 1.5 or less.

以下に、本実施形態である銅合金素材において、成分組成、結晶組織等を上述のように規定した理由について説明する。   The reason why the component composition, the crystal structure and the like are defined as described above in the copper alloy material according to the present embodiment will be described below.

(Cr:0.3mass%以上0.5mass%未満)
Crは、時効処理によって母相の結晶粒内にCr系の析出物を微細に析出させることにより、強度(硬さ)及び導電率を向上させる作用効果を有する元素である。
ここで、Crの含有量が0.3mass%未満の場合には、時効処理において析出量が不十分となり、強度(硬さ)向上の効果を十分に得られないおそれがある。また、Crの含有量が0.5mass%以上の場合には、溶体化処理後においてもCr晶出物が比較的多く存在し、このCr晶出物に起因して局所的なひずみが蓄積され、再結晶粒のサイズが不均一となって、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。
以上のことから、本実施形態では、Crの含有量を0.3mass%以上0.5mass%未満の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Crの含有量の下限を0.35mass%以上とすることが好ましく、Crの含有量の上限を0.45mass%以下とすることが好ましい。
(Cr: 0.3 mass% or more and less than 0.5 mass%)
Cr is an element having an effect of improving strength (hardness) and conductivity by finely depositing Cr-based precipitates in the crystal grains of the parent phase by aging treatment.
Here, when the Cr content is less than 0.3 mass%, the amount of precipitation becomes insufficient in the aging treatment, and the effect of improving the strength (hardness) may not be sufficiently obtained. In addition, when the Cr content is 0.5 mass% or more, a relatively large amount of Cr crystallized material exists even after the solution treatment, and local strain is accumulated due to the Cr crystallized material. The size of the recrystallized grains becomes non-uniform, and the crystal grains may become coarse when used in a high temperature environment.
From the above, in this embodiment, the Cr content is set within a range of 0.3 mass% or more and less than 0.5 mass%. In order to ensure that the above-described effects are achieved, the lower limit of the Cr content is preferably 0.35 mass% or more, and the upper limit of the Cr content is preferably 0.45 mass% or less. .

(Zr:0.01mass%以上0.15mass%以下)
Zrは、時効処理によって母相の結晶粒界にZr系の析出物を微細に析出することにより、強度(硬さ)及び導電率を向上させる作用効果を有する元素である。
ここで、Zrの含有量が0.01mass%未満の場合には、時効処理において析出量が不十分となり、強度(硬さ)向上の効果を十分に得られないおそれがある。また、Zrの含有量が0.15mass%を超える場合には、導電率及び熱伝導率が低下してしまうおそれがある。また、Zrを0.15mass%を超えて含有しても、さらなる強度向上の効果が得られないおそれがある。
以上のことから、本実施形態では、Zrの含有量を0.01mass%以上0.15mass%以下の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Zrの含有量の下限を0.05mass%以上とすることが好ましく、Zrの含有量の上限を0.13mass%以下とすることが好ましい。
(Zr: 0.01 mass% or more and 0.15 mass% or less)
Zr is an element having an effect of improving strength (hardness) and electrical conductivity by finely depositing a Zr-based precipitate at a crystal grain boundary of the parent phase by aging treatment.
Here, when the content of Zr is less than 0.01 mass%, the precipitation amount becomes insufficient in the aging treatment, and there is a possibility that the effect of improving the strength (hardness) cannot be obtained sufficiently. Moreover, when content of Zr exceeds 0.15 mass%, there exists a possibility that electrical conductivity and thermal conductivity may fall. Moreover, even if it contains Zr exceeding 0.15 mass%, there exists a possibility that the effect of the further intensity | strength improvement may not be acquired.
From the above, in this embodiment, the content of Zr is set within a range of 0.01 mass% or more and 0.15 mass% or less. In order to ensure that the above-described effects are achieved, the lower limit of the Zr content is preferably 0.05 mass% or more, and the upper limit of the Zr content is preferably 0.13 mass% or less. .

(Al:0.1mass%以上2.0mass%未満)
Alは、銅合金に固溶することによって導電率を低下させる作用効果を有する元素である。よって、必要に応じて、Alの添加量を制御することにより、銅合金素材の導電率を30〜60%IACS程度に調整することができる。
ここで、Alの含有量が0.1mass%未満の場合には、導電率を低く抑えることが困難となる。また、Alの含有量が2.0mass%以上の場合には、導電率が大きく低下し、熱伝導率が不十分となるおそれがある。
以上のことから、本実施形態では、Alを添加する場合には、Alの含有量を0.1mass%以上2.0mass%未満の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Alの含有量の下限を0.3mass%以上とすることが好ましく、Alの含有量の上限を1.5mass%以下とすることが好ましい。また、Alを意図的に添加しない場合には、0.1mass%未満のAlを不純物として含有していてもよい。
(Al: 0.1 mass% or more and less than 2.0 mass%)
Al is an element having an effect of lowering the conductivity by dissolving in a copper alloy. Therefore, if necessary, the conductivity of the copper alloy material can be adjusted to about 30 to 60% IACS by controlling the amount of Al added.
Here, when the Al content is less than 0.1 mass%, it is difficult to keep the conductivity low. Further, when the Al content is 2.0 mass% or more, the electrical conductivity is greatly reduced, and the thermal conductivity may be insufficient.
From the above, in the present embodiment, when Al is added, the Al content is set within a range of 0.1 mass% or more and less than 2.0 mass%. In order to achieve the above-described effects, the lower limit of the Al content is preferably set to 0.3 mass% or more, and the upper limit of the Al content is preferably set to 1.5 mass% or less. . Moreover, when not intentionally adding Al, less than 0.1 mass% Al may be contained as an impurity.

(Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素:合計で0.005mass%以上0.1mass%以下)
Fe,Co,Sn,Zn,P,Si,Mgといった元素は、微細な化合物を形成し、結晶成長を抑制するピン止め効果を発現する元素である。
ここで、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計の含有量が0.005mass%未満の場合には、上述のピン止め効果を十分に奏功せしめることができないおそれがある。一方、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計の含有量が0.1mass%を超える場合には、導電率及び熱伝導率が低下してしまうおそれがある。
以上のことから、本実施形態では、これらの元素を添加する場合には、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計含有量を0.005mass%以上0.1mass%以下の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるためには、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計含有量の下限を0.02mass%以上とすることが好ましく、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素の合計含有量の上限を0.07mass%以下とすることが好ましい。また、Fe,Co,Sn,Zn,P,Si,Mgといった元素を意図的に添加しない場合には、これらの元素を不純物として総量で0.005mass%未満含有していてもよい。
(One or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg: 0.005 mass% or more and 0.1 mass% or less in total)
Elements such as Fe, Co, Sn, Zn, P, Si, and Mg are elements that form a fine compound and exhibit a pinning effect that suppresses crystal growth.
Here, when the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is less than 0.005 mass%, the above-described pinning effect is obtained. There is a risk that it will not be successful enough. On the other hand, when the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg exceeds 0.1 mass%, the conductivity and thermal conductivity are May decrease.
From the above, in this embodiment, when these elements are added, the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is set. It is set within the range of 0.005 mass% or more and 0.1 mass% or less. In order to ensure that the above-described effects are achieved, the lower limit of the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg is set to 0.02 mass. Preferably, the upper limit of the total content of one or more elements selected from Fe, Co, Sn, Zn, P, Si, Mg is 0.07 mass% or less. . Further, when elements such as Fe, Co, Sn, Zn, P, Si, and Mg are not intentionally added, these elements may be contained as impurities in a total amount of less than 0.005 mass%.

(その他の不可避不純物:0.05mass%以下)
なお、上述したCr,Zr,Al,Fe,Co,Sn,Zn,P,Si,Mg以外のその他の不可避的不純物としては、B、Ag,Ca,Te,Mn,Ni,Sr,Ba,Sc,Y,Ti,Hf,V,Nb,Ta,Mo,W,Re,Ru,Os,Se,Rh,Ir,Pd,Pt,Au,Cd,Ga,In,Li,Ge,As,Sb,Tl,Pb,Be,N,H,Hg,Tc,Na,K,Rb,Cs,Po,Bi,ランタノイド、O,S,C等が挙げられる。これらの不可避不純物は、導電率及び熱伝導率を低下させるおそれがあるため、総量で0.05mass%以下とすることが好ましい。
(Other inevitable impurities: 0.05 mass% or less)
In addition to the above-mentioned Cr, Zr, Al, Fe, Co, Sn, Zn, P, Si, Mg, other inevitable impurities include B, Ag, Ca, Te, Mn, Ni, Sr, Ba, Sc. , Y, Ti, Hf, V, Nb, Ta, Mo, W, Re, Ru, Os, Se, Rh, Ir, Pd, Pt, Au, Cd, Ga, In, Li, Ge, As, Sb, Tl , Pb, Be, N, H, Hg, Tc, Na, K, Rb, Cs, Po, Bi, lanthanoid, O, S, C and the like. Since these inevitable impurities may reduce the electrical conductivity and thermal conductivity, the total amount is preferably 0.05 mass% or less.

(平均結晶粒径:0.1mm以上2.0mm以下/結晶粒径の標準偏差:0.6以下)
平均結晶粒径が0.1mm未満の微細な結晶組織を有する場合には、再結晶時の駆動力が大きくなるとともに、局所的に高い歪みが導入されている可能性がある。このため、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。一方、平均結晶粒径が2.0mmを超える場合には、加工性が不十分となり、工業的に使用し難い。具体的には、粒界強度が低下することにより、引張強度や伸びが低下し、また亀裂伝播速度も上昇するため、工業的に使用し難い。
また、結晶粒径の標準偏差が0.6を超える場合には、結晶粒径のばらつきが大きく、局所的にひずみが蓄積されており、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。また、機械的特性が低下するおそれがある。
以上のことから、本実施形態では、平均結晶粒径を0.1mm以上2.0mm以下の範囲内、結晶粒径の標準偏差を0.6以下に規定している。なお、平均結晶粒径の下限を0.15mm以上とすることが好ましく、平均結晶粒径の上限を1.0mm以下とすることが好ましい。また、結晶粒径の標準偏差の上限を0.5以下とすることが好ましい。
(Average crystal grain size: 0.1 mm to 2.0 mm / standard deviation of crystal grain size: 0.6 or less)
When the crystal grain has a fine crystal structure with an average crystal grain size of less than 0.1 mm, the driving force at the time of recrystallization increases, and high strain may be introduced locally. For this reason, when used in a high temperature environment, the crystal grains may be coarsened. On the other hand, if the average crystal grain size exceeds 2.0 mm, the processability becomes insufficient and it is difficult to use industrially. Specifically, when the grain boundary strength is lowered, the tensile strength and elongation are lowered, and the crack propagation speed is also raised, so that it is difficult to use industrially.
In addition, when the standard deviation of the crystal grain size exceeds 0.6, the crystal grain size varies widely and the strain is accumulated locally. When used in a high temperature environment, the crystal grain becomes coarse. There is a risk. Moreover, there exists a possibility that a mechanical characteristic may fall.
From the above, in this embodiment, the average crystal grain size is defined within the range of 0.1 mm to 2.0 mm, and the standard deviation of the crystal grain size is defined as 0.6 or less. The lower limit of the average crystal grain size is preferably 0.15 mm or more, and the upper limit of the average crystal grain size is preferably 1.0 mm or less. Moreover, it is preferable that the upper limit of the standard deviation of the crystal grain size is 0.5 or less.

(断面観察におけるCr晶出物の面積率:0.5%以下)
Cr晶出物の面積率が0.5%を超える場合には、ひずみが局所的に蓄積されるため、再結晶粒のサイズが均一になり難く、高温環境下で使用した際に、結晶粒が粗大化するおそれがある。
以上のことから、本実施形態では、断面観察におけるCr晶出物の面積率を0.5%以下に規定している。なお、Cr晶出物の面積率の上限は0.3%以下とすることが好ましい。
(Area ratio of Cr crystallized material in cross-sectional observation: 0.5% or less)
When the area ratio of the Cr crystallized product exceeds 0.5%, strain is accumulated locally, so the size of the recrystallized grains is difficult to be uniform, and when used in a high temperature environment, the crystal grains May become coarse.
From the above, in this embodiment, the area ratio of the Cr crystallized product in the cross-sectional observation is regulated to 0.5% or less. In addition, it is preferable that the upper limit of the area ratio of Cr crystallized substance shall be 0.3% or less.

(1000℃で1時間保持の熱処理を実施した後の平均結晶粒径:0.1mm以上3.0mm以下/結晶粒径の標準偏差:1.5以下)
1000℃で1時間保持の熱処理後の平均結晶粒径が上述の範囲内とされることにより、高温環境下で使用した際の結晶粒の粗大化が確実に抑制されることになる。また、1000℃で1時間保持の熱処理後の標準偏差が1.5以下とされることにより、高温環境下で使用した際の結晶粒径のばらつきの発生が確実に抑制されることになる。
以上のことから、本実施形態では、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径を0.1mm以上3.0mm以下の範囲内、結晶粒径の標準偏差を1.5以下としている。なお、平均結晶粒径の下限を0.2mm以上とすることが好ましく、平均結晶粒径の上限を0.5mm以下とすることが好ましい。また、結晶粒径の標準偏差の上限を1.3以下とすることが好ましい。
(Average grain size after heat treatment held at 1000 ° C. for 1 hour: 0.1 mm to 3.0 mm / standard deviation of crystal grain size: 1.5 or less)
By setting the average crystal grain size after heat treatment held at 1000 ° C. for 1 hour within the above range, coarsening of crystal grains when used in a high temperature environment is surely suppressed. In addition, when the standard deviation after heat treatment held at 1000 ° C. for 1 hour is 1.5 or less, the occurrence of variations in crystal grain size when used in a high temperature environment is surely suppressed.
From the above, in this embodiment, the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is in the range of 0.1 mm to 3.0 mm, and the standard deviation of the crystal grain size is 1.5. It is as follows. The lower limit of the average crystal grain size is preferably 0.2 mm or more, and the upper limit of the average crystal grain size is preferably 0.5 mm or less. Moreover, it is preferable that the upper limit of the standard deviation of the crystal grain size is 1.3 or less.

次に、本発明の一実施形態に係る銅合金素材の製造方法を、図1のフロー図を参照して説明する。   Next, the manufacturing method of the copper alloy raw material which concerns on one Embodiment of this invention is demonstrated with reference to the flowchart of FIG.

(溶解・鋳造工程S01)
まず、銅の純度が99.99mass%以上の無酸素銅からなる銅原料を、カーボンるつぼに装入し、真空溶解炉を用いて溶解し、銅溶湯を得る。次いで、得られた溶湯に、所定の濃度となるように前述の添加元素を添加して、成分調製を行い、銅合金溶湯を得る。
ここで、添加元素であるCr、Zrの原料としては、純度の高いものを使用し、例えばCrの原料は純度99.99mass%以上のものを使用し、Zrの原料は純度99.95mass%以上のものを使用する。また、Al,Fe,Co,Sn,Zn,P,Si,Mgを必要に応じて添加する。なお、Cr、Zr、Al,Fe,Co,Sn,Zn,P,Si,Mgの原料として、Cuとの母合金を用いてもよい。
そして、成分調製された銅合金溶湯を鋳型に注湯して鋳塊を得る。
(Melting / Casting Process S01)
First, a copper raw material made of oxygen-free copper having a copper purity of 99.99 mass% or more is charged into a carbon crucible and melted using a vacuum melting furnace to obtain a molten copper. Next, the aforementioned additive elements are added to the obtained molten metal so as to have a predetermined concentration, and the components are prepared to obtain a molten copper alloy.
Here, as the raw material for the additive elements Cr and Zr, a material having a high purity is used. For example, a Cr material having a purity of 99.99 mass% or more is used, and a Zr material is having a purity of 99.95 mass% or more. Use one. Al, Fe, Co, Sn, Zn, P, Si, and Mg are added as necessary. A mother alloy with Cu may be used as a raw material for Cr, Zr, Al, Fe, Co, Sn, Zn, P, Si, and Mg.
And the ingot is obtained by pouring the prepared copper alloy melt into the mold.

(均質化処理工程S02)
次に、得られた鋳塊の均質化のために熱処理を行う。
具体的には、鋳塊を大気雰囲気にて、950℃以上1050℃以下、1時間以上の条件で均質化処理を行う。
(Homogenization step S02)
Next, heat treatment is performed to homogenize the obtained ingot.
Specifically, the ingot is homogenized in an air atmosphere at 950 ° C. or higher and 1050 ° C. or lower for 1 hour or longer.

(熱間加工工程S03)
次いで、鋳塊に対して900℃以上1000℃以下の温度範囲で、加工率50%以上99%以下の熱間圧延を行い、圧延材を得る。なお、熱間加工の方法は、熱間鍛造であっても良い。この熱間加工後、直ちに水冷によって冷却する。
(Hot processing step S03)
Next, hot rolling with a processing rate of 50% to 99% is performed on the ingot in a temperature range of 900 ° C. to 1000 ° C. to obtain a rolled material. The hot working method may be hot forging. Immediately after this hot working, it is cooled by water cooling.

(溶体化処理工程S04)
次いで、熱間加工工程S03で得られた圧延材を、920℃以上1050℃以下、0.5時間以上5時間以下の条件で加熱処理を施し、溶体化処理を行う。加熱処理は、例えば大気または不活性ガス雰囲気で行い、加熱後の冷却は、水冷によって行う。
(Solution treatment step S04)
Next, the rolled material obtained in the hot working step S03 is subjected to a heat treatment under conditions of 920 ° C. or higher and 1050 ° C. or lower and 0.5 hours or longer and 5 hours or shorter. The heat treatment is performed in, for example, air or an inert gas atmosphere, and cooling after heating is performed by water cooling.

(時効処理工程S05)
次に、溶体化処理工程S04の後に、第一時効処理を実施し、Cr系析出物及びZr系析出物などの析出物を微細に析出させ、第一時効処理材を得る。
ここで、時効処理は、例えば400℃以上530℃以下、0.5時間以上5時間以下の条件で行う。
なお、時効処理時の熱処理方法は、特に限定しないが、不活性ガス雰囲気で行うことが好ましい。また、加熱処理後の冷却方法は、特に限定しないが、水冷で行うことが好ましい。
このような工程により、本実施形態である銅合金素材が製造される。
(Aging treatment step S05)
Next, after the solution treatment step S04, a first temporary effect treatment is performed, and precipitates such as a Cr-based precipitate and a Zr-based precipitate are finely precipitated to obtain a first temporary effect treatment material.
Here, the aging treatment is performed under conditions of, for example, 400 ° C. or more and 530 ° C. or less and 0.5 hour or more and 5 hours or less.
The heat treatment method during the aging treatment is not particularly limited, but it is preferably performed in an inert gas atmosphere. Further, the cooling method after the heat treatment is not particularly limited, but it is preferably performed by water cooling.
The copper alloy material which is this embodiment is manufactured by such a process.

以上のような構成とされた本実施形態に係る銅合金素材によれば、Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成とされているので、溶体化処理及び時効処理を行うことで、微細な析出物を析出させることができ、強度及び導電率を向上させることができる。   According to the copper alloy material according to the present embodiment configured as described above, Cr includes 0.3 mass% or more and less than 0.5 mass%, Zr includes 0.01 mass% or more and 0.15 mass% or less, and the balance is Since it is set as the composition which consists of Cu and an unavoidable impurity, by performing a solution treatment and an aging treatment, a fine precipitate can be deposited and an intensity | strength and electrical conductivity can be improved.

また、Crの含有量が0.3mass%以上0.5mass%未満と比較的少なくされているので、溶体化処理後においてCr晶出物がほとんど存在しない。具体的には、断面観察におけるCr晶出物の面積率が0.5%以下となる。よって、Cr晶出物に起因して局所的なひずみが蓄積され、再結晶粒のサイズが不均一となることを抑制でき、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を確実に抑制できる。   Further, since the Cr content is relatively low at 0.3 mass% or more and less than 0.5 mass%, there is almost no Cr crystallized product after the solution treatment. Specifically, the area ratio of Cr crystallized material in cross-sectional observation is 0.5% or less. Therefore, it is possible to prevent local strain from being accumulated due to the Cr crystallized product and to make the recrystallized grains non-uniform in size. Even when used in a high temperature environment, the local crystal grains are coarse. Can be reliably suppressed.

そして、本実施形態においては、平均結晶粒径が0.1mm以上2.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が0.6以下とされているので、局所的なひずみの蓄積が少なく、高温環境下で使用された場合でも、局所的な結晶粒の粗大化を抑制できる。
さらに、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径が0.1mm以上3.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が1.5以下とされており、1000℃で1時間保持の熱処理を実施した後でも、局所的に結晶粒が粗大化しておらず、500℃以上の高温環境下で使用された場合であっても、機械的特性や導電率が安定している。
In this embodiment, the average crystal grain size is in the range of 0.1 mm to 2.0 mm, and the standard deviation of the crystal grain size is 0.6 or less. Even when used in a high temperature environment, local grain coarsening can be suppressed.
Furthermore, the average crystal grain size after carrying out the heat treatment held at 1000 ° C. for 1 hour is in the range of 0.1 mm to 3.0 mm, and the standard deviation of the crystal grain size is 1.5 or less. Even after the heat treatment held at 1000 ° C. for 1 hour, even if the crystal grains are not locally coarsened and used in a high temperature environment of 500 ° C. or higher, the mechanical properties and conductivity The rate is stable.

また、本実施形態において、さらにAlを0.1mass%以上2.0mass%以下の範囲内で含む場合には、導電率を30〜60%IACS程度に調整することができる。これにより、電磁撹拌用途の鋳造用モールド材として特に適した銅合金素材を得ることができる。
また、本実施形態において、さらにFe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素を合計で0.005mass%以上0.1mass%以下含む場合には、これらの元素を含む化合物によるピン止め効果によって結晶粒の粗大化をさらに確実に抑制することができる。
Moreover, in this embodiment, when Al is further contained in the range of 0.1 mass% or more and 2.0 mass% or less, the conductivity can be adjusted to about 30 to 60% IACS. Thereby, it is possible to obtain a copper alloy material particularly suitable as a molding material for casting for use in electromagnetic stirring.
In the present embodiment, when one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg are further included in a total of 0.005 mass% to 0.1 mass%. The coarsening of the crystal grains can be further reliably suppressed by the pinning effect by the compound containing these elements.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.

以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
純度99.99mass%以上の無酸素銅からなる銅原料を準備し、これをカーボンるつぼに装入し、真空溶解炉(真空度10−2Pa以下)で溶解し、銅溶湯を得た。得られた銅溶湯内に、各種添加元素を添加して表1に示す成分組成に調製し、5分間保持した後、銅合金溶湯を鋳鉄製の鋳型に注湯して鋳塊を得た。鋳塊の大きさは、幅約80mm、厚さ約50mm、長さ約130mmとした。
なお、添加元素であるCrの原料は純度99.99mass%以上、Zrの原料は純度99.95mass%以上のものを使用した。
Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
A copper raw material made of oxygen-free copper having a purity of 99.99 mass% or more was prepared, charged into a carbon crucible, and melted in a vacuum melting furnace (vacuum degree: 10 −2 Pa or less) to obtain a molten copper. Various additive elements were added to the obtained molten copper to prepare the component compositions shown in Table 1, and after maintaining for 5 minutes, the molten copper alloy was poured into a cast iron mold to obtain an ingot. The size of the ingot was about 80 mm in width, about 50 mm in thickness, and about 130 mm in length.
In addition, the raw material of Cr, which is an additive element, was used with a purity of 99.99 mass% or more, and the raw material of Zr was a purity of 99.95 mass% or more.

次に、大気雰囲気において1000℃で1時間の条件で均質化処理を行った後、熱間圧延を実施した。熱間圧延時の圧下率を80%とし、幅約100mm×厚さ約10mm×長さ約520mmの熱間圧延材を得た。
この熱間圧延材を用いて、1000℃で1.5時間の条件で溶体化処理を行い、その後、表2に示す冷却速度で冷却した。
次に、500(±15)℃で3時間の条件で時効処理を実施した。これにより、銅合金素材を得た。
Next, after performing a homogenization process at 1000 ° C. for 1 hour in an air atmosphere, hot rolling was performed. The rolling reduction during hot rolling was 80%, and a hot rolled material having a width of about 100 mm, a thickness of about 10 mm, and a length of about 520 mm was obtained.
Using this hot-rolled material, solution treatment was performed at 1000 ° C. for 1.5 hours, followed by cooling at a cooling rate shown in Table 2.
Next, an aging treatment was performed at 500 (± 15) ° C. for 3 hours. Thereby, a copper alloy material was obtained.

得られた銅合金素材について、時効処理後の銅合金素材の組織観察を行い、平均結晶粒径及び結晶粒径の標準偏差を測定した。
また、この銅合金素材に対して、1000℃で1時間保持の熱処理を実施した後の平均結晶粒径及び結晶粒径の標準偏差を測定した。
さらに、溶体化処理後の材料について、断面観察を行い、Cr晶出物の面積率を測定した。
About the obtained copper alloy raw material, the structure | tissue observation of the copper alloy raw material after an aging treatment was performed, and the standard deviation of the average crystal grain diameter and crystal grain diameter was measured.
In addition, the average crystal grain size and the standard deviation of the crystal grain size after the heat treatment of holding the copper alloy material at 1000 ° C. for 1 hour were measured.
Furthermore, the cross-sectional observation was performed about the material after solution treatment, and the area ratio of Cr crystallization thing was measured.

(組成分析)
得られた銅合金素材の成分組成は、ICP−MS分析によって測定した。測定結果を表1に示す。
(Composition analysis)
The component composition of the obtained copper alloy material was measured by ICP-MS analysis. The measurement results are shown in Table 1.

(平均結晶粒径及び結晶粒径の標準偏差)
得られた銅合金素材の板厚で板幅中心部から10mm×15mmの試料を切り出し、圧延方向(RD方向)の面を研磨後、ミクロエッチングを行った。
この試料を観察し、JIS H 0501に規定された切断法により、平均結晶粒径を測定した。
(Average crystal grain size and standard deviation of crystal grain size)
A sample of 10 mm × 15 mm was cut out from the center of the plate width with the plate thickness of the obtained copper alloy material, and the surface in the rolling direction (RD direction) was polished and then microetched.
This sample was observed, and the average crystal grain size was measured by a cutting method defined in JIS H 0501.

(Cr晶出物の面積率)
銅合金素材の板厚で板幅中心部から10mm×15mmの試料を切り出し、圧延方向(RD方向)の面を研磨後、ミクロエッチングを行った。
この試料をSEM観察し、1500倍のSEM−EPMA画像(およそ70μm×70μmの視野)において、母相よりもCr濃度が高い領域を「Cr晶出物」であると判断し、Cr晶出物の面積率を以下の式で求めた。
面積率=(Cr晶出物が占める面積)/(70μm×70μm)
図4に本発明例1及び比較例4のSEM−EPMA画像を示す。
(Area ratio of Cr crystallized product)
A sample of 10 mm × 15 mm was cut out from the center of the plate width with the thickness of the copper alloy material, and the surface in the rolling direction (RD direction) was polished and then microetched.
This sample was observed by SEM, and in the SEM-EPMA image of 1500 times (approximately 70 μm × 70 μm visual field), it was judged that the region having a higher Cr concentration than the parent phase was “Cr crystallized product”. The area ratio was determined by the following formula.
Area ratio = (area occupied by Cr crystallized product) / (70 μm × 70 μm)
FIG. 4 shows SEM-EPMA images of Example 1 and Comparative Example 4.

(引張強度)
圧延方向を引張方向としてJIS Z 2241 2号試験片を採取し、100kN引張試験機を用いて試験に供した。
(Tensile strength)
A JIS Z 2241 No. 2 test piece was taken with the rolling direction as the tensile direction, and was subjected to the test using a 100 kN tensile tester.

Crの含有量が本発明の範囲より少なく、結晶粒径の標準偏差が本発明の範囲より大きい比較例1においては、時効熱処理後及び1000℃で1時間の熱処理後の引張強度が不十分であった。
Crの含有量が本発明の範囲より多く、平均結晶粒径が本発明より小さく、結晶粒径の標準偏差が本発明の範囲より大きい比較例2−4においては、1000℃で1時間の熱処理後に引張強度が大きく低下した。
In Comparative Example 1 in which the Cr content is less than the range of the present invention and the standard deviation of the crystal grain size is greater than the range of the present invention, the tensile strength after aging heat treatment and after heat treatment at 1000 ° C. for 1 hour is insufficient. there were.
In Comparative Example 2-4 in which the Cr content is larger than the range of the present invention, the average crystal grain size is smaller than that of the present invention, and the standard deviation of the crystal grain size is larger than the range of the present invention, heat treatment is performed at 1000 ° C. for 1 hour. Later, the tensile strength was greatly reduced.

これに対して、本発明例1−6においては、時効熱処理後の引張強度が高く、かつ、1000℃で1時間の熱処理後に引張強度が大きく低下しなかった。
以上のことから、本発明例によれば、500℃以上の高温環境下で使用された場合であっても、特性が安定しており、使用寿命に優れた銅合金素材を提供可能であることが確認された。
On the other hand, in Inventive Example 1-6, the tensile strength after the aging heat treatment was high, and the tensile strength was not significantly reduced after the heat treatment at 1000 ° C. for 1 hour.
From the above, according to the present invention example, it is possible to provide a copper alloy material having stable characteristics and excellent service life even when used in a high temperature environment of 500 ° C. or higher. Was confirmed.

Claims (5)

Crを0.3mass%以上0.5mass%未満、Zrを0.01mass%以上0.15mass%以下、含み、残部がCu及び不可避不純物からなる組成を有し、
平均結晶粒径が0.1mm以上2.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が0.6以下であることを特徴とする銅合金素材。
Cr has a composition composed of 0.3 mass% or more and less than 0.5 mass%, Zr 0.01 mass% or more and 0.15 mass% or less, and the balance consisting of Cu and inevitable impurities,
A copper alloy material having an average crystal grain size in a range of 0.1 mm to 2.0 mm and a standard deviation of crystal grain size of 0.6 or less.
断面観察におけるCr晶出物の面積率が0.5%以下であることを特徴とする請求項1に記載の銅合金素材。   2. The copper alloy material according to claim 1, wherein the area ratio of the Cr crystallized product in cross-sectional observation is 0.5% or less. 1000℃で1時間保持の熱処理を実施した後の平均結晶粒径が0.1mm以上3.0mm以下の範囲内とされるとともに、結晶粒径の標準偏差が1.5以下であることを特徴とする請求項1又は請求項2に記載に記載の銅合金素材。   The average crystal grain size after carrying out the heat treatment held at 1000 ° C. for 1 hour is in the range of 0.1 mm to 3.0 mm, and the standard deviation of the crystal grain size is 1.5 or less The copper alloy material according to claim 1 or claim 2. さらに、Alを0.1mass%以上2.0mass%以下の範囲内で含むことを特徴とする請求項1から請求項3のいずれか一項に記載の銅合金素材。   Furthermore, Al is contained within the range of 0.1 mass% or more and 2.0 mass% or less, The copper alloy raw material as described in any one of Claims 1-3 characterized by the above-mentioned. さらに、Fe,Co,Sn,Zn,P,Si,Mgから選択される1種又は2種以上の元素を合計で0.005mass%以上0.1mass%以下の範囲内で含むことを特徴とする請求項1から請求項4のいずれか一項に記載の銅合金素材。   Furthermore, it contains one or more elements selected from Fe, Co, Sn, Zn, P, Si, and Mg within a total range of 0.005 mass% to 0.1 mass%. The copper alloy material according to any one of claims 1 to 4.
JP2015219852A 2015-11-09 2015-11-09 Copper alloy material Active JP6693092B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015219852A JP6693092B2 (en) 2015-11-09 2015-11-09 Copper alloy material
KR1020187012111A KR20180078245A (en) 2015-11-09 2016-10-11 Copper alloy material
CN201680065499.1A CN108350530A (en) 2015-11-09 2016-10-11 Cu alloy material
US15/771,847 US20190062874A1 (en) 2015-11-09 2016-10-11 Copper alloy material
PCT/JP2016/080125 WO2017081972A1 (en) 2015-11-09 2016-10-11 Copper alloy material
EP16863936.7A EP3375898B1 (en) 2015-11-09 2016-10-11 Copper alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015219852A JP6693092B2 (en) 2015-11-09 2015-11-09 Copper alloy material

Publications (2)

Publication Number Publication Date
JP2017088949A true JP2017088949A (en) 2017-05-25
JP6693092B2 JP6693092B2 (en) 2020-05-13

Family

ID=58695049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015219852A Active JP6693092B2 (en) 2015-11-09 2015-11-09 Copper alloy material

Country Status (6)

Country Link
US (1) US20190062874A1 (en)
EP (1) EP3375898B1 (en)
JP (1) JP6693092B2 (en)
KR (1) KR20180078245A (en)
CN (1) CN108350530A (en)
WO (1) WO2017081972A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094530A (en) * 2017-11-21 2019-06-20 三菱マテリアル株式会社 Mold material for casting, and copper alloy material
WO2020170956A1 (en) * 2019-02-20 2020-08-27 三菱マテリアル株式会社 Copper alloy material, commutator segment, and electrode material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106350698B (en) * 2016-09-09 2018-03-27 宁波博威合金板带有限公司 Anti-softening copper alloy, preparation method and applications
CN112981170B (en) * 2021-02-05 2022-04-12 宁波金田铜业(集团)股份有限公司 Chromium-zirconium-copper alloy for cold heading and preparation method thereof
CN114318049A (en) * 2021-12-16 2022-04-12 镇江市镇特合金材料有限公司 Long-life copper alloy for welding head box body and preparation method thereof
CN115896535B (en) * 2022-11-26 2023-12-12 广州番禺职业技术学院 Copper incense burner material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212839A (en) * 1982-06-03 1983-12-10 Mitsubishi Metal Corp Cu alloy for continuous casting mold
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPS6297748A (en) * 1985-03-25 1987-05-07 Fujikura Ltd Cast wheel and its production
JPH05339688A (en) * 1992-06-05 1993-12-21 Furukawa Electric Co Ltd:The Production of molding material for casting metal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946699B2 (en) * 1979-03-27 1984-11-14 日立造船株式会社 Mold material for continuous casting equipment
JPS58107459A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JPS58107462A (en) * 1981-12-21 1983-06-27 Chuetsu Gokin Chuko Kk Mold material for precipitation hardening type continuous casting
JP3303623B2 (en) * 1995-09-22 2002-07-22 三菱マテリアル株式会社 Method for producing copper alloy mold material for steelmaking continuous casting and mold produced thereby
US9455058B2 (en) * 2009-01-09 2016-09-27 Mitsubishi Shindoh Co., Ltd. High-strength and high-electrical conductivity copper alloy rolled sheet and method of manufacturing the same
CN103080347A (en) * 2010-08-27 2013-05-01 古河电气工业株式会社 Copper alloy sheet and method for producing same
CN102534291A (en) * 2010-12-09 2012-07-04 北京有色金属研究总院 CuCrZr alloy with high strength and high conductivity, and preparation and processing method thereof
KR101364542B1 (en) * 2011-08-11 2014-02-18 주식회사 풍산 Copper alloy material for continuous casting mold and process of production same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212839A (en) * 1982-06-03 1983-12-10 Mitsubishi Metal Corp Cu alloy for continuous casting mold
JPS59193233A (en) * 1983-04-15 1984-11-01 Toshiba Corp Copper alloy
JPS6297748A (en) * 1985-03-25 1987-05-07 Fujikura Ltd Cast wheel and its production
JPH05339688A (en) * 1992-06-05 1993-12-21 Furukawa Electric Co Ltd:The Production of molding material for casting metal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHI,XIAOHUI、外1名: "Effect of zirconium and heat treatment on the microstructure and properties of cast chromium bronze", INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, vol. 106, no. 2, JPN6016049800, February 2015 (2015-02-01), DE, pages 192 - 194, XP009510788, ISSN: 0004096288, DOI: 10.3139/146.111164 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094530A (en) * 2017-11-21 2019-06-20 三菱マテリアル株式会社 Mold material for casting, and copper alloy material
JP7035478B2 (en) 2017-11-21 2022-03-15 三菱マテリアル株式会社 Molding material for casting
WO2020170956A1 (en) * 2019-02-20 2020-08-27 三菱マテリアル株式会社 Copper alloy material, commutator segment, and electrode material

Also Published As

Publication number Publication date
CN108350530A (en) 2018-07-31
KR20180078245A (en) 2018-07-09
EP3375898A4 (en) 2019-04-03
EP3375898B1 (en) 2022-05-11
US20190062874A1 (en) 2019-02-28
WO2017081972A1 (en) 2017-05-18
EP3375898A1 (en) 2018-09-19
JP6693092B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
WO2017081972A1 (en) Copper alloy material
JP5712585B2 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, and rolled copper alloy material for electronic equipment
JP5668814B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
WO2011142428A1 (en) Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
JP6488951B2 (en) Mold material for casting and Cu-Cr-Zr alloy material
WO2013069687A1 (en) Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices
WO2021177469A1 (en) Pure copper plate
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP6736869B2 (en) Copper alloy material
CN111212923B (en) Casting die material and copper alloy material
JP2014173145A (en) Copper alloy-plasticized material for electronic/electric appliances, component for electronic/electric appliances, and terminal
KR102500630B1 (en) Mold materials for casting and Cu-Cr-Zr-Al alloy materials
JP2016125093A (en) Copper alloy for electronic and electrical device, copper alloy thin sheet for electronic and electrical device, component for electronic and electrical device, terminal and bus bar
JP6821290B2 (en) Cu-Ni-Co-Si alloy for electronic components
WO2016047484A1 (en) CASTING MOLD MATERIAL AND Cu-Cr-Zr ALLOY MATERIAL
JP6830135B2 (en) Cu-Ni-Co-Si alloy for electronic components
JP2016216794A (en) Copper alloy sheet and manufacturing method of copper alloy sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6693092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150